Nothing Special   »   [go: up one dir, main page]

JP7493772B2 - Distance measuring device and distance measuring method - Google Patents

Distance measuring device and distance measuring method Download PDF

Info

Publication number
JP7493772B2
JP7493772B2 JP2020139983A JP2020139983A JP7493772B2 JP 7493772 B2 JP7493772 B2 JP 7493772B2 JP 2020139983 A JP2020139983 A JP 2020139983A JP 2020139983 A JP2020139983 A JP 2020139983A JP 7493772 B2 JP7493772 B2 JP 7493772B2
Authority
JP
Japan
Prior art keywords
light
generating unit
signal
frequency
light generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020139983A
Other languages
Japanese (ja)
Other versions
JP2022035564A (en
Inventor
洋介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Original Assignee
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2020139983A priority Critical patent/JP7493772B2/en
Publication of JP2022035564A publication Critical patent/JP2022035564A/en
Application granted granted Critical
Publication of JP7493772B2 publication Critical patent/JP7493772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、距離測定装置及び距離測定方法に関する。 The present invention relates to a distance measurement device and a distance measurement method.

従来、強度変調されたプローブ光を発生し、測定対象で反射した戻り光と強度変調された参照光との強度相関をとって強度相関信号を取得し、取得した強度相関信号に基づいて測定対象までの距離を測定する手法が知られている(例えば、特許文献1)。 Conventionally, a method is known in which an intensity-modulated probe light is generated, an intensity correlation signal is obtained by calculating the intensity correlation between the return light reflected from the measurement object and an intensity-modulated reference light, and the distance to the measurement object is measured based on the obtained intensity correlation signal (for example, Patent Document 1).

特開2019-215165号公報JP 2019-215165 A

上記の手法では、正弦波によって強度変調をしたプローブ光と参照光を利用するため、良好な信号対雑音比を得るためには、プローブ光、参照光の平均光パワーを上げて変調振幅を拡大する必要がある。しかし、プローブ光のパワーを上げすぎると、特に光ファイバの場合、後方散乱光である誘導ブリルアン散乱が発生し、遠方までプローブ光を伝送することができなくなるという問題があった。また、参照光のパワーを上げすぎると、機器の損傷を招く他、そもそも大出力の光増幅器が必要になる等の問題があった。そのため、長手方向に複数存在する反射点までの距離が測れる上記手法においても光パワーの面で測定点数に限界があった。 The above method uses probe light and reference light that are intensity modulated by a sine wave, so in order to obtain a good signal-to-noise ratio, it is necessary to increase the average optical power of the probe light and reference light to expand the modulation amplitude. However, if the power of the probe light is increased too much, especially in the case of optical fiber, stimulated Brillouin scattering, which is backscattered light, occurs, making it impossible to transmit the probe light far away. In addition, if the power of the reference light is increased too much, it can cause damage to the equipment and can also pose problems such as the need for a high-output optical amplifier in the first place. Therefore, even with the above method, which can measure the distance to multiple reflection points in the longitudinal direction, there is a limit to the number of measurement points in terms of optical power.

本発明は、以上のような課題に鑑みてなされたものであり、その目的とするところは、平均光パワーを抑えつつ信号対雑音比を向上させることが可能な距離測定装置等を提供することにある。 The present invention was made in consideration of the above problems, and its purpose is to provide a distance measuring device etc. that can improve the signal-to-noise ratio while suppressing the average optical power.

(1)本発明は、互いに異なる波長のレーザー光であって同一の周波数で強度変調されたレーザー光を発生する第1光発生部及び第2光発生部と、前記第1光発生部及び前記第2光発生部に変調信号を出力する信号発生器と、前記第1光発生部からのレーザー光が測定対象で反射した戻り光と、前記第2光発生部からのレーザー光を合波する合波器と、前記合波器からの光を受光し二光子吸収応答により強度相関信号を出力する光検出器と、前記信号発生器を制御し、前記光検出器からの強度相関信号に基づき前記測定対象までの距離を算出する制御部とを含み、前記第2光発生部は、前記レーザー光としてパルス光を発生する距離測定装置に関する。 (1) The present invention relates to a distance measuring device that includes a first light generating unit and a second light generating unit that generate laser light having different wavelengths and intensity modulated at the same frequency, a signal generator that outputs a modulation signal to the first light generating unit and the second light generating unit, a multiplexer that multiplexes return light reflected by a measurement object from the laser light from the first light generating unit and the laser light from the second light generating unit, a photodetector that receives light from the multiplexer and outputs an intensity correlation signal by a two-photon absorption response, and a control unit that controls the signal generator and calculates the distance to the measurement object based on the intensity correlation signal from the photodetector, and the second light generating unit generates pulsed light as the laser light.

また、本発明は、互いに異なる波長のレーザー光であって同一の周波数で強度変調されたレーザー光を第1光発生部及び第2光発生部により発生する光発生ステップと、信号発生器により前記第1光発生部及び前記第2光発生部に変調信号を出力する信号発生ステップと、前記第1光発生部からのレーザー光が測定対象で反射した戻り光と、前記第2光発生部からのレーザー光を合波器により合波する合波ステップと、前記合波器からの光を光検出器により受光し二光子吸収応答により強度相関信号を出力する光検出ステップと、前記信号発生器を制御し、前記光検出器からの強度相関信号に基づき前記測定対象までの距離を算出する制御ステップとを含み、前記光発生ステップでは、前記信号発生器からの変調信号に基づき強度変調されたレーザー光を第1光発生部及び第2光発生部により発生し、前記第2光発生部は、前記レーザー光としてパルス光を発生する距離測定方法に関する
The present invention also relates to a distance measuring method including a light generating step of generating laser light having different wavelengths and intensity modulated at the same frequency by a first light generating unit and a second light generating unit; a signal generating step of outputting a modulation signal to the first light generating unit and the second light generating unit by a signal generator; a combining step of combining, by a combiner, return light of the laser light from the first light generating unit reflected by an object to be measured and the laser light from the second light generating unit; a light detecting step of receiving the light from the combiner by a photodetector and outputting an intensity correlation signal by a two-photon absorption response; and a control step of controlling the signal generator and calculating a distance to the object to be measured based on the intensity correlation signal from the photodetector, wherein in the light generating step, the first light generating unit and the second light generating unit generate laser light intensity modulated based on the modulation signal from the signal generator, and the second light generating unit generates pulsed light as the laser light.

本発明によれば、参照光(第2光発生部が発生するレーザー光)としてパルス光を用いることで、平均光パワーを抑えつつ信号対雑音比を向上させることができる。 According to the present invention, by using pulsed light as the reference light (laser light generated by the second light generating unit), it is possible to improve the signal-to-noise ratio while suppressing the average optical power.

(2)また本発明に係る距離測定装置及び距離測定方法では、前記信号発生器は、前記第2光発生部に前記変調信号としてパルス信号を出力してもよい。 (2) In the distance measurement device and distance measurement method according to the present invention, the signal generator may output a pulse signal to the second light generating unit as the modulation signal.

(3)また本発明に係る距離測定装置及び距離測定方法では、前記第2光発生部は、パルスレーザー光源を備えてもよい。 (3) In the distance measurement device and distance measurement method according to the present invention, the second light generating unit may include a pulsed laser light source.

本実施形態に係る距離測定装置の構成の一例を示す図。FIG. 1 is a diagram showing an example of the configuration of a distance measuring device according to an embodiment of the present invention. 本実施形態の手法により距離を測定する実験で得られたフーリエスペクトルを示す図。FIG. 4 is a diagram showing a Fourier spectrum obtained in an experiment for measuring distance using the method of the present embodiment. 本実施形態に係る距離測定装置の構成の他の例を示す図。FIG. 4 is a diagram showing another example of the configuration of the distance measuring device according to the embodiment.

以下、本実施形態について説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。 The present embodiment will be described below. Note that the present embodiment described below does not unduly limit the content of the present invention described in the claims. Furthermore, not all of the configurations described in the present embodiment are necessarily essential components of the present invention.

図1は、第1の実施形態に係る距離測定装置の構成の一例を示す図である。距離測定装置1は、第1光発生部として機能するレーザー光源10及び強度変調器11と、第2光発生部として機能するレーザー光源12及び強度変調器13と、信号発生器20と、光検出器30と、演算処理部(プロセッサー)及び記憶部を有する制御部40とを含む。図1に示す例では、プローブ光路となる5kmの光ファイバの先端に測定対象となる反射点R(ミラー)を配置している。 Figure 1 is a diagram showing an example of the configuration of a distance measuring device according to the first embodiment. The distance measuring device 1 includes a laser light source 10 and an intensity modulator 11 functioning as a first light generating unit, a laser light source 12 and an intensity modulator 13 functioning as a second light generating unit, a signal generator 20, a photodetector 30, and a control unit 40 having an arithmetic processing unit (processor) and a memory unit. In the example shown in Figure 1, a reflection point R (mirror) to be measured is placed at the tip of a 5 km optical fiber that serves as the probe light path.

強度変調器11は、レーザー光源10からのレーザー光を変調周波数fの正弦波で強度変調して、変調周波数fで強度変調されたレーザー光(プローブ光)を発生し、強度変調器13は、レーザー光源12からのレーザー光を変調周波数fのパルス波で強度変調して、変調周波数fで強度変調されたパルスレーザー光(参照光)を発生する。受光素子の二光子吸収応答を利用した計測では光電界干渉は雑音となるため、レーザー光源10,12としては、互いに波長が僅かに異なる単一モードレーザー光源を用いる。ここでは、レーザー光源10の波長を1550nmとし、レーザー光源12の波長を1552nmとした。図1に示す例では、第1及び第2光発生部をレーザー光源と強度変調器で構成する場合について説明するが、変調信号をレーザー光源10,12に出力してレーザー光を強度変調する直接変調方式(変調信号に基づき駆動電流を強度変調することでレーザー光源の出力強度を直接変調する方式)を採用してもよい。 The intensity modulator 11 intensity-modulates the laser light from the laser light source 10 with a sine wave of a modulation frequency f m to generate a laser light (probe light) intensity-modulated with the modulation frequency f m , and the intensity modulator 13 intensity-modulates the laser light from the laser light source 12 with a pulse wave of a modulation frequency f m to generate a pulse laser light (reference light) intensity-modulated with the modulation frequency f m . In a measurement using the two-photon absorption response of a light receiving element, optical field interference becomes noise, so single mode laser light sources having slightly different wavelengths are used as the laser light sources 10 and 12. Here, the wavelength of the laser light source 10 is set to 1550 nm, and the wavelength of the laser light source 12 is set to 1552 nm. In the example shown in FIG. 1, a case will be described in which the first and second light generating units are configured with a laser light source and an intensity modulator, but a direct modulation method (a method in which the output intensity of the laser light source is directly modulated by intensity-modulating the drive current based on the modulation signal) in which a modulation signal is output to the laser light sources 10 and 12 to intensity-modulate the laser light may also be adopted.

信号発生器20は、制御部40からの制御信号に基づき、強度変調器11に変調周波数fの正弦波の変調信号を出力し、強度変調器13に変調周波数fのパルス波の変調信号(パルス信号)を出力する。また、信号発生器20は、ロックインアンプ70に周波数fの参照信号を出力する。強度変調器11は、信号発生器20からの変調信号に基づきレーザー光源10からのレーザー光を強度変調してプローブ光を発生し、強度変調器13は、信号発生器20からの変調信号に基づきレーザー光源12からのレーザー光を強度変調して参照光を発生する。 Based on a control signal from the control unit 40, the signal generator 20 outputs a sine wave modulation signal with a modulation frequency fm to the intensity modulator 11, and outputs a pulse wave modulation signal (pulse signal) with a modulation frequency fm to the intensity modulator 13. The signal generator 20 also outputs a reference signal with a frequency fm to the lock-in amplifier 70. The intensity modulator 11 generates probe light by intensity modulating the laser light from the laser light source 10 based on the modulation signal from the signal generator 20, and the intensity modulator 13 generates reference light by intensity modulating the laser light from the laser light source 12 based on the modulation signal from the signal generator 20.

第1光発生部(レーザー光源10、強度変調器11)から出射されたプローブ光は、光
サーキュレータ60を通過して反射点Rに至る。反射点Rで反射したプローブ光(戻り光)は、光サーキュレータ60を通過して光カプラ61(合波器)で参照光と合波され、レンズ62で集光されて光検出器30に入射する。一方、第2光発生部(レーザー光源12、強度変調器13)から出射された参照光は、光増幅器50(EDFA)で増幅された(平均光パワーが調整された)後、光カプラ61でプローブ光と合波され、レンズ62で集光されて光検出器30に入射する。なお、光サーキュレータ60、光カプラ61に代えて、ハーフミラーを用いてもよい。
The probe light emitted from the first light generating unit (laser light source 10, intensity modulator 11) passes through the optical circulator 60 and reaches the reflection point R. The probe light (return light) reflected at the reflection point R passes through the optical circulator 60 and is multiplexed with the reference light by the optical coupler 61 (multiplexer), and is collected by the lens 62 and enters the photodetector 30. On the other hand, the reference light emitted from the second light generating unit (laser light source 12, intensity modulator 13) is amplified (average optical power is adjusted) by the optical amplifier 50 (EDFA), and then is multiplexed with the probe light by the optical coupler 61, and is collected by the lens 62 and enters the photodetector 30. Note that a half mirror may be used instead of the optical circulator 60 and the optical coupler 61.

光検出器30は、光カプラ61からの光(プローブ光(戻り光)と参照光が合波された)を受光する。ここでは、光検出器30の受光素子として、Si-APD(Avalanche Photo Diode)を用いる。Si-APDに波長1.5μm帯の高強度光を入射すると、二光子吸収応答により入射光強度(戻り光と参照光の強度の和)の二乗平均に比例した電流(二光子吸収電流)が発生するため、これを利用することで高速に強度相関信号を得られる。光検出器30からの信号は、ロックインアンプ70により周波数fでロックイン検出(同期検波)される。ロックインアンプ70の出力信号は、図示しないAD変換器によりデジタルデータに変換され、制御部40に出力される。 The photodetector 30 receives light (probe light (return light) and reference light combined) from the optical coupler 61. Here , an Si-APD (Avalanche Photo Diode) is used as the light receiving element of the photodetector 30. When high-intensity light in the 1.5 μm wavelength band is incident on the Si-APD, a current (two-photon absorption current) proportional to the root mean square of the incident light intensity (the sum of the intensities of the return light and the reference light) is generated by two-photon absorption response, and by utilizing this, an intensity correlation signal can be obtained at high speed. The signal from the photodetector 30 is subjected to lock-in detection (synchronous detection) at a frequency f m by the lock-in amplifier 70. The output signal of the lock-in amplifier 70 is converted to digital data by an AD converter (not shown) and output to the control unit 40.

制御部40は、信号発生器20を制御し、また、ロックインアンプ70の出力信号に基づいて反射点Rまでの距離(反射点Rで反射したプローブ光と参照光の伝搬距離差)を算出する。より詳細には、制御部40は、信号発生器20を制御して変調周波数fを一定の周波数間隔で離散的に掃引し、変調周波数fを掃引したときに周期的に変化する強度相関信号(出力信号)の周期に基づいて反射点Rまでの距離を算出する。 The control unit 40 controls the signal generator 20, and calculates the distance to the reflection point R (the difference in propagation distance between the probe light reflected at the reflection point R and the reference light) based on the output signal of the lock-in amplifier 70. More specifically, the control unit 40 controls the signal generator 20 to discretely sweep the modulation frequency fm at constant frequency intervals, and calculates the distance to the reflection point R based on the period of the intensity correlation signal (output signal) that changes periodically when the modulation frequency fm is swept.

ここで、プローブ光の光検出器30の受光面における強度pは、以下の式(1)で表され、参照光の光検出器30の受光面における強度rは、以下の式(2)で表される。 Here, the intensity p of the probe light on the light receiving surface of the photodetector 30 is expressed by the following formula (1), and the intensity r of the reference light on the light receiving surface of the photodetector 30 is expressed by the following formula (2).

Figure 0007493772000001
ここで、Iはプローブ光の光検出器30の受光面における係数であり、Iは参照光の光検出器30の受光面における係数であり、tは時間であり、nは光が伝搬する媒質の屈折率であり、ΔLは反射点Rで反射したプローブ光と参照光の伝搬距離差(プローブ光路と参照光路の伝搬光路長差)、すなわち、反射点Rまでの往復距離であり、cは光速であり、δはデルタ関数である。図1に示す例では、プローブ光路となる光ファイバ長が5km(往復10km)、光ファイバの屈折率nが1.5であるから、nΔL=15kmとなる。
Figure 0007493772000001
Here, Ip is a coefficient of the probe light on the light receiving surface of the photodetector 30, Ir is a coefficient of the reference light on the light receiving surface of the photodetector 30, t is time, n is a refractive index of the medium through which the light propagates, ΔL is a propagation distance difference between the probe light reflected at the reflection point R and the reference light (propagation optical path length difference between the probe optical path and the reference optical path), i.e., a round trip distance to the reflection point R, c is the speed of light, and δ is a delta function. In the example shown in Fig. 1, the length of the optical fiber serving as the probe optical path is 5 km (round trip 10 km), and the refractive index n of the optical fiber is 1.5, so that nΔL = 15 km.

>>Iのとき、光検出器30から出力される二光子吸収電流iTPAは、以下の式(3)で表される。 When I r >>I p , the two-photon absorption current i TPA output from the photodetector 30 is expressed by the following equation (3).

Figure 0007493772000002
<<Iのとき、二光子吸収電流を周波数fでロックイン検出すると、検出される信号iは、以下の式(4)で表される。ただし、2aI cos[2πf(t-nΔL/c)]の項は無視した。
Figure 0007493772000002
When I S <<I r , if the two-photon absorption current is locked-in detected at a frequency f m , the detected signal i is expressed by the following equation (4), where the term 2aI S 2 cos[2πf m (t−nΔL/c)] is ignored.

Figure 0007493772000003
式(4)より、変調周波数fを掃引して得られた出力信号(余弦波状に変化する波形)のフーリエスペクトルピークからnΔLが求められることがわかる。すなわち、当該出力信号をフーリエ変換して得られるスペクトルにおけるピーク位置がnΔLに対応する。また、式(4)より、信号がI倍になることがわかる。また、平均光パワーはτI/T(τはパルス時間幅、Tはパルス繰り返し周期)であり、平均光パワーのT/τ倍の信号増幅が可能なことがわかる。
Figure 0007493772000003
From equation (4), it can be seen that nΔL can be obtained from the Fourier spectrum peak of the output signal (waveform that changes like a cosine wave) obtained by sweeping the modulation frequency fm . In other words, the peak position in the spectrum obtained by Fourier transforming the output signal corresponds to nΔL. Furthermore, from equation (4), it can be seen that the signal is Ir times stronger. Furthermore, the average optical power is τIr /T (τ is the pulse time width, T is the pulse repetition period), and it can be seen that the signal can be amplified by T/τ times the average optical power.

図1に示す例においてnΔLを測定する実験を行った。この実験では、変調周波数fを500kHz~1500kHzの範囲にわたり2.5kHz間隔で掃引した。この掃引範囲は空間分解能300mを与える。また、強度変調器13に供給するパルス波の変調信号のパルス時間幅を25.5nsに設定した。従って、参照光のピークパワーは平均光パワーの26倍以上になる。 An experiment was carried out to measure nΔL in the example shown in FIG. 1. In this experiment, the modulation frequency f m was swept over the range of 500 kHz to 1500 kHz at 2.5 kHz intervals. This sweep range gives a spatial resolution of 300 m. In addition, the pulse time width of the pulse wave modulation signal supplied to the intensity modulator 13 was set to 25.5 ns. Therefore, the peak power of the reference light is 26 times or more the average light power.

図2に、本実験で得られたフーリエスペクトルを示す。図2に示すように15km付近にピークが現れており、本実施形態の手法により光ファイバに対応する距離測定ができていることが示された。 Figure 2 shows the Fourier spectrum obtained in this experiment. As shown in Figure 2, a peak appears near 15 km, demonstrating that the method of this embodiment can measure distances corresponding to optical fibers.

本実施形態の手法によれば、参照光としてパルス光を用いることで、パルス光のピーク強度の分だけ信号を増幅することができるため、平均光パワーを抑えつつ信号対雑音比を向上させることができる。平均光パワーを抑えることで、光源の駆動電力の負担を抑制し、光源パワーの負担を軽減することができ、また、高い光パワーによる光学機器の損傷の危険もないという効果もある。 According to the method of this embodiment, by using pulsed light as the reference light, the signal can be amplified by the peak intensity of the pulsed light, so that the signal-to-noise ratio can be improved while suppressing the average optical power. By suppressing the average optical power, the burden on the driving power of the light source can be suppressed, and the burden on the light source power can be reduced, and there is also the effect of eliminating the risk of damage to optical equipment due to high optical power.

上記例では、第2光発生部の強度変調器13にパルス波の変調信号を供給することで参照光をパルス光とする場合について説明したが、第2光発生部の光源をパルスレーザー光源とすることで参照光をパルス光とするようにしてもよい。図3に示す例では、第2光発生部の光源として、モード同期ファイバリング型パルスレーザー光源を用いている。モード同期ファイバリング型パルスレーザー光源は、ファイバリング14と、強度変調器13と、光増幅器15とを備える。強度変調器13には変調周波数fmの変調信号が供給され、モード同期ファイバリング型パルスレーザー光源は、変調周波数fで強度変調されたパルスレーザー光(参照光)を発生する。この構成では、パルス時間幅を1ns程度にすることも可能であり、上述の実験と変調周波数fの条件が同じであれば、参照光のピー
クパワーを平均光パワーの650倍以上にすることができる。
In the above example, the reference light is pulsed light by supplying a pulse wave modulation signal to the intensity modulator 13 of the second light generating unit. However, the reference light may be pulsed light by using a pulse laser light source as the light source of the second light generating unit. In the example shown in FIG. 3, a mode-locked fiber ring type pulse laser light source is used as the light source of the second light generating unit. The mode-locked fiber ring type pulse laser light source includes a fiber ring 14, an intensity modulator 13, and an optical amplifier 15. A modulation signal with a modulation frequency fm is supplied to the intensity modulator 13, and the mode-locked fiber ring type pulse laser light source generates a pulse laser light (reference light) intensity-modulated with the modulation frequency fm . In this configuration, the pulse time width can be set to about 1 ns, and if the condition of the modulation frequency fm is the same as in the above experiment, the peak power of the reference light can be 650 times or more the average optical power.

本発明に係る距離測定装置は、光ファイバ回折格子(FBG:Fiber Bragg Grating)を用いた多点型FBGセンサに適用することができる。多点型FBGセンサは、構造物の健全性診断に用いられるが、測定点数は10点程度が一般的である。本発明の手法でピークパワーの高い参照光を利用することで、測定可能な点数を一桁増やすことも可能になる。 The distance measuring device according to the present invention can be applied to a multi-point FBG sensor that uses an optical fiber diffraction grating (FBG: Fiber Bragg Grating). Multi-point FBG sensors are used to diagnose the soundness of structures, and typically measure around 10 points. By using a reference light with high peak power in the method of the present invention, it is possible to increase the number of measurable points by an order of magnitude.

また本発明に係る距離測定装置は、マルチコア光ファイバとFBGを用いた曲げセンサに適用することができる。当該センサでは、プローブ光をN個のコアに分け、戻り光を同じ光ファイバに戻すので、少なくとも光パワーが1/Nに減衰してしまう。本発明の手法を用いれば、その影響を抑制でき、コアへの光入力の制御に光スイッチ等を用いることなく、多点同時曲げセンシングを実現することができる。 The distance measuring device according to the present invention can be applied to a bending sensor using a multi-core optical fiber and an FBG. In this sensor, the probe light is split into N cores and the return light is returned to the same optical fiber, so the optical power is attenuated to at least 1/ N2 . By using the method of the present invention, the influence can be suppressed, and multi-point simultaneous bending sensing can be realized without using an optical switch or the like to control the optical input to the cores.

なお、本発明は、上述の実施の形態に限定されるものではなく、種々の変更が可能である。本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。 The present invention is not limited to the above-described embodiment, and various modifications are possible. The present invention includes configurations that are substantially the same as those described in the embodiment (for example, configurations with the same functions, methods, and results, or configurations with the same purpose and effect). The present invention also includes configurations in which non-essential parts of the configurations described in the embodiment are replaced. The present invention also includes configurations that achieve the same effects as the configurations described in the embodiment, or that can achieve the same purpose. The present invention also includes configurations in which publicly known technology is added to the configurations described in the embodiment.

1…距離測定装置、10,12…レーザー光源、11,13…強度変調器、14…ファイバリング、15…光増幅器、20…信号発生器、30…光検出器、40…制御部、50…光増幅器、60…光サーキュレータ、61…光カプラ、62…レンズ、70…ロックインアンプ、R…反射点(測定対象) 1...distance measuring device, 10, 12...laser light source, 11, 13...intensity modulator, 14...fiber ring, 15...optical amplifier, 20...signal generator, 30...photodetector, 40...controller, 50...optical amplifier, 60...optical circulator, 61...optical coupler, 62...lens, 70...lock-in amplifier, R...reflection point (measurement object)

Claims (4)

互いに異なる波長のレーザー光であって同一の周波数 の変調信号に基づき強度変調されたレーザー光を発生する第1光発生部及び第2光発生部と、
前記第1光発生部及び前記第2光発生部に周波数f 変調信号を出力する信号発生器と、
前記第1光発生部からのレーザー光が測定対象で反射した戻り光と、前記第2光発生部からのレーザー光を合波する合波器と、
前記合波器からの光を受光し二光子吸収応答により発生する二光子吸収電流を出力する光検出器と、
前記光検出器からの二光子吸収電流を周波数f でロックイン検出して強度相関信号を出力するロックインアンプと、
前記信号発生器を制御し、前記ロックインアンプからの強度相関信号に基づき前記測定対象までの距離を算出する制御部とを含み、
前記信号発生器は、
前記第1光発生部に周波数f の正弦波の変調信号を出力し、
前記第2光発生部は、
前記レーザー光として周波数f の変調信号に基づき強度変調されたパルス光を発生し、
前記制御部は、
前記信号発生器を制御して周波数f を掃引し、周波数f を掃引したときに周期的に変化する前記強度相関信号の周期に基づいて前記測定対象までの距離を算出する、距離測定装置。
a first light generating unit and a second light generating unit for generating laser beams having different wavelengths and intensity-modulated based on a modulation signal having the same frequency fm ;
a signal generator that outputs a modulation signal having a frequency fm to the first light generating unit and the second light generating unit;
a multiplexer that multiplexes return light resulting from reflection of the laser light from the first light generating unit on a measurement target and the laser light from the second light generating unit;
a photodetector that receives light from the multiplexer and outputs a two-photon absorption current generated by a two-photon absorption response;
a lock-in amplifier that performs lock-in detection of the two-photon absorption current from the photodetector at a frequency fm and outputs an intensity correlation signal;
a control unit that controls the signal generator and calculates a distance to the measurement target based on an intensity correlation signal from the lock-in amplifier ,
The signal generator includes:
A sine wave modulation signal having a frequency fm is output to the first light generating unit ,
The second light generating unit is
generating, as the laser light, a pulsed light intensity-modulated based on a modulation signal having a frequency fm ;
The control unit is
A distance measuring device that controls the signal generator to sweep a frequency fm , and calculates a distance to the object based on a period of the intensity correlation signal that changes periodically when the frequency fm is swept.
請求項1において、
前記信号発生器は、
前記第2光発生部に前記変調信号として周波数f パルス信号を出力する、距離測定装置。
In claim 1,
The signal generator includes:
a pulse signal having a frequency fm outputted to the second light generating section as the modulation signal;
請求項1において、
前記第2光発生部は、
周波数f の変調信号に基づき強度変調されたパルスレーザー光を発生するパルスレーザー光源を備える、距離測定装置。
In claim 1,
The second light generating unit is
A distance measuring device comprising a pulsed laser light source that generates a pulsed laser light whose intensity is modulated based on a modulation signal having a frequency fm .
互いに異なる波長のレーザー光であって同一の周波数 の変調信号に基づき強度変調されたレーザー光を第1光発生部及び第2光発生部により発生する光発生ステップと、
信号発生器により前記第1光発生部及び前記第2光発生部に周波数f 変調信号を出力する信号発生ステップと、
前記第1光発生部からのレーザー光が測定対象で反射した戻り光と、前記第2光発生部からのレーザー光を合波器により合波する合波ステップと、
前記合波器からの光を光検出器により受光し二光子吸収応答により発生する二光子吸収電流を出力する光検出ステップと、
前記光検出器からの二光子吸収電流をロックインアンプにより周波数f でロックイン検出して強度相関信号を出力するロックイン検出ステップと、
前記信号発生器を制御し、前記ロックインアンプからの強度相関信号に基づき前記測定対象までの距離を算出する制御ステップとを含み、
前記信号発生器は、
前記第1光発生部に周波数f の正弦波の変調信号を出力し、
前記第2光発生部は、
前記レーザー光として周波数f の変調信号に基づき強度変調されたパルス光を発生し、
前記制御ステップでは、
前記信号発生器を制御して周波数f を掃引し、周波数f を掃引したときに周期的に変化する前記強度相関信号の周期に基づいて前記測定対象までの距離を算出する、距離測定方法。
a light generating step of generating laser light having different wavelengths and intensity modulated based on a modulation signal having the same frequency fm by a first light generating unit and a second light generating unit;
a signal generating step of outputting a modulated signal having a frequency fm to the first light generating unit and the second light generating unit by a signal generator;
a combining step of combining, by a combiner, return light resulting from reflection of the laser light from the first light generating unit on a measurement target and the laser light from the second light generating unit;
a photodetection step of receiving the light from the multiplexer with a photodetector and outputting a two-photon absorption current generated by a two-photon absorption response;
a lock-in detection step of detecting the two-photon absorption current from the photodetector by a lock-in amplifier at a frequency fm and outputting an intensity correlation signal;
a control step of controlling the signal generator and calculating a distance to the measurement target based on an intensity correlation signal from the lock-in amplifier ;
The signal generator includes:
A sine wave modulation signal having a frequency fm is output to the first light generating unit ,
The second light generating unit is
generating, as the laser light, a pulsed light intensity-modulated based on a modulation signal having a frequency fm ;
In the control step,
A distance measuring method comprising the steps of: controlling the signal generator to sweep a frequency fm ; and calculating a distance to the object based on a period of the intensity correlation signal which changes periodically when the frequency fm is swept .
JP2020139983A 2020-08-21 2020-08-21 Distance measuring device and distance measuring method Active JP7493772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020139983A JP7493772B2 (en) 2020-08-21 2020-08-21 Distance measuring device and distance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020139983A JP7493772B2 (en) 2020-08-21 2020-08-21 Distance measuring device and distance measuring method

Publications (2)

Publication Number Publication Date
JP2022035564A JP2022035564A (en) 2022-03-04
JP7493772B2 true JP7493772B2 (en) 2024-06-03

Family

ID=80443486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020139983A Active JP7493772B2 (en) 2020-08-21 2020-08-21 Distance measuring device and distance measuring method

Country Status (1)

Country Link
JP (1) JP7493772B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7557753B1 (en) 2024-01-29 2024-09-30 Ipu株式会社 Distance Detection Device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324563A (en) 2000-05-12 2001-11-22 Mitsubishi Electric Corp Laser radar device
WO2007086357A1 (en) 2006-01-27 2007-08-02 The University Of Tokyo Optical fiber characteristic measuring device and optical fiber characteristics measuring method
JP2007205949A (en) 2006-02-02 2007-08-16 Tokyo Univ Of Agriculture & Technology Distance detector
US20080100823A1 (en) 2006-07-25 2008-05-01 Delfyett Peter J Systems and methods for long-range, high-resolution laser radar range detection
WO2015087564A1 (en) 2013-12-10 2015-06-18 三菱電機株式会社 Laser radar device
JP2019215165A (en) 2018-06-11 2019-12-19 国立大学法人東京農工大学 Distance measuring device and distance measuring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324563A (en) 2000-05-12 2001-11-22 Mitsubishi Electric Corp Laser radar device
WO2007086357A1 (en) 2006-01-27 2007-08-02 The University Of Tokyo Optical fiber characteristic measuring device and optical fiber characteristics measuring method
JP2007205949A (en) 2006-02-02 2007-08-16 Tokyo Univ Of Agriculture & Technology Distance detector
US20080100823A1 (en) 2006-07-25 2008-05-01 Delfyett Peter J Systems and methods for long-range, high-resolution laser radar range detection
WO2015087564A1 (en) 2013-12-10 2015-06-18 三菱電機株式会社 Laser radar device
JP2019215165A (en) 2018-06-11 2019-12-19 国立大学法人東京農工大学 Distance measuring device and distance measuring method

Also Published As

Publication number Publication date
JP2022035564A (en) 2022-03-04

Similar Documents

Publication Publication Date Title
JP6308160B2 (en) Optical fiber strain measuring device and optical fiber strain measuring method
US9784643B2 (en) Optical fiber property measuring device and optical fiber property measuring method
JP5021221B2 (en) Distributed optical fiber sensor
US20150301178A1 (en) Lidar measuring system and lidar measuring method
JP5043714B2 (en) Optical fiber characteristic measuring apparatus and method
EP3795968B1 (en) Optical fiber bocda sensor using phase code modulation of pump light and probe light which have time difference
KR102163517B1 (en) distributed optical fiber sensor apparatus and control method thereof
JP5332103B2 (en) Lightwave radar device
JP7247446B2 (en) Multi-core optical fiber sensing system
JP7286994B2 (en) Optical fiber strain and temperature measuring device and optical fiber strain and temperature measuring method
JPWO2018070442A1 (en) Optical angle modulation measuring apparatus and measuring method
JP7493772B2 (en) Distance measuring device and distance measuring method
JP2021515192A (en) A method for determining changes in physical parameters with the correct code and a device equipped with an optical fiber.
JP2018059789A (en) Distance measuring apparatus and distance measuring method
JP6793033B2 (en) Distance measuring device
KR101889351B1 (en) Spatially-selective brillouin distributed optical fiber sensor with increased effective sensing points and sensing method using brillouin scattering
US20210396508A1 (en) Method and device for in situ process monitoring
JP7352962B2 (en) Brillouin frequency shift measurement device and Brillouin frequency shift measurement method
KR100468612B1 (en) Fiber Optic Brillouin OTDA(Optical Time Domain Analysis) Sensor System and the Strain Measurement Method of Large Structures
JP2020051941A (en) Optical fiber strain and temperature measuring device, and optical fiber strain and temperature measuring method
JP7061364B2 (en) Distance measuring device and distance measuring method
US20230288232A1 (en) Optical fiber sensor and brillouin frequency shift measurement method
KR101292549B1 (en) Distributed optical fiber sensor and method for suppressing beat noise in distributed optical fiber sensor
RU2282142C1 (en) Fiber-optic deformation sensor
CN115854901A (en) Distributed strain temperature sensing device and method based on chaotic laser Rayleigh scattering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240515

R150 Certificate of patent or registration of utility model

Ref document number: 7493772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150