Nothing Special   »   [go: up one dir, main page]

JP7482718B2 - Electrochemical Cell - Google Patents

Electrochemical Cell Download PDF

Info

Publication number
JP7482718B2
JP7482718B2 JP2020143669A JP2020143669A JP7482718B2 JP 7482718 B2 JP7482718 B2 JP 7482718B2 JP 2020143669 A JP2020143669 A JP 2020143669A JP 2020143669 A JP2020143669 A JP 2020143669A JP 7482718 B2 JP7482718 B2 JP 7482718B2
Authority
JP
Japan
Prior art keywords
interface
particles
length
electrochemical cell
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020143669A
Other languages
Japanese (ja)
Other versions
JP2022038934A (en
Inventor
勝也 山際
敏典 武市
知明 松尾
良仁 猪飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2020143669A priority Critical patent/JP7482718B2/en
Publication of JP2022038934A publication Critical patent/JP2022038934A/en
Application granted granted Critical
Publication of JP7482718B2 publication Critical patent/JP7482718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は固体酸化物形電気化学セルに関する。 The present invention relates to a solid oxide electrochemical cell.

固体酸化物形電気化学セルは高い耐久性が求められている。特許文献1には、電解質層と、電解質層の一方の面に設けられた燃料極と、電解質層の他方の面に設けられた空気極と、を備える電気化学セルにおいて、耐久性を向上させるために、燃料極の組織を制御する技術が開示されている。 Solid oxide electrochemical cells are required to have high durability. Patent Document 1 discloses a technology for controlling the structure of the fuel electrode in order to improve durability in an electrochemical cell that includes an electrolyte layer, a fuel electrode provided on one side of the electrolyte layer, and an air electrode provided on the other side of the electrolyte layer.

特許第5624085号公報Japanese Patent No. 5624085

しかし上記技術には改善の余地がある。 However, there is room for improvement in the above technology.

本発明はこの要求に応えるためになされたものであり、耐久性を向上できる電気化学セルを提供することを目的とする。 The present invention was made to meet this demand, and aims to provide an electrochemical cell with improved durability.

この目的を達成するために本発明の電気化学セルは、電解質層と、電解質層の一方の面に設けられた燃料極と、電解質層の他方の面に設けられた空気極と、を備え、燃料極は、電解質層に接する活性層を含み、活性層は、イオン伝導性を有する第1の粒子、及び、電子伝導性を有する第2の粒子を含み、第1の粒子は燃料極雰囲気下で電子伝導性も有する、燃料極支持型の電気化学セルである。活性層の断面に現出する、第1の粒子と第2の粒子との間の第1の界面、第1の粒子と気孔との間の第2の界面、及び、第2の粒子と気孔との間の第3の界面において、第1の界面の長さと、第2の界面の長さと、第3の界面の長さと、を合わせた界面長に対する第2の界面の長さの割合は40%以上である。 To achieve this object, the electrochemical cell of the present invention is an anode-supported electrochemical cell comprising an electrolyte layer, an anode provided on one side of the electrolyte layer, and an air electrode provided on the other side of the electrolyte layer, the anode including an active layer in contact with the electrolyte layer, the active layer including a first particle having ionic conductivity and a second particle having electronic conductivity, the first particle also having electronic conductivity in the anode atmosphere. In the first interface between the first particle and the second particle, the second interface between the first particle and the pore, and the third interface between the second particle and the pore, which appear in the cross section of the active layer, the ratio of the length of the second interface to the combined interface length of the first interface, the second interface, and the third interface is 40% or more.

第1の態様によれば、第1の界面(固体/固体界面)の長さと、第2の界面(固体/気体界面)の長さと、第3の界面(固体/気体界面)の長さと、を合わせた界面長に対して、第2の界面の長さの割合が40%以上なので、相対的に、第2の粒子と気孔との間の第3の界面の長さが短くなる。第3の界面の長さが短くなると、第2の粒子を構成する原子の表面拡散が低減し、電気化学セルの性能の低下を低減できる。よって耐久性を向上できる。 According to the first aspect, the ratio of the length of the second interface to the combined interface length of the first interface (solid/solid interface), the second interface (solid/gas interface), and the third interface (solid/gas interface) is 40% or more, so the length of the third interface between the second particle and the pores is relatively short. When the length of the third interface is shortened, the surface diffusion of the atoms constituting the second particle is reduced, and the deterioration of the performance of the electrochemical cell can be reduced. Thus, durability can be improved.

第2の態様によれば、界面長に対する第1の界面の長さの割合と、界面長に対する第2の界面の長さの割合と、界面長に対する第3の界面の長さの割合と、を比較したときに、界面長に対する第3の界面の長さの割合が最も低い。第1の態様の効果に加え、耐久性をさらに向上できる。 According to the second aspect, when the ratio of the length of the first interface to the interface length is compared with the ratio of the length of the second interface to the interface length, and the ratio of the length of the third interface to the interface length, the ratio of the length of the third interface to the interface length is the lowest. In addition to the effect of the first aspect, durability can be further improved.

第3の態様によれば、第2の粒子の、断面上の第1の方向の長さの平均値Aを、第1の方向に垂直な断面上の第2の方向の長さの平均値Bで除した値A/Bは、0.9より大きく1.1未満である。第2の粒子の断面が円形に近づくため第2の粒子の活性を低下させることができる。よって第1又は第2の態様の効果に加え、耐久性をさらに向上できる。 According to the third aspect, the value A/B obtained by dividing the average length A of the second particles in the first direction on the cross section by the average length B of the second direction on the cross section perpendicular to the first direction is greater than 0.9 and less than 1.1. Since the cross section of the second particles approaches a circle, the activity of the second particles can be reduced. Thus, in addition to the effect of the first or second aspect, durability can be further improved.

第4の態様によれば、第1の粒子の、断面上の第1の方向の長さの平均値Cを、第1の方向に垂直な断面上の第2の方向の長さの平均値Dで除した値C/Dは、0.9より大きく1.1未満である。第1の粒子の断面が円形に近づくため第1の粒子の活性を低下させることができる。よって第1から第3の態様のいずれかの効果に加え、耐久性をさらに向上できる。 According to the fourth aspect, the value C/D obtained by dividing the average length C of the first particle in the first direction on the cross section by the average length D of the first particle in the second direction on the cross section perpendicular to the first direction is greater than 0.9 and less than 1.1. Since the cross section of the first particle approaches a circle, the activity of the first particle can be reduced. Thus, in addition to the effect of any one of the first to third aspects, durability can be further improved.

一実施の形態における電気化学セルの模式的な断面図である。FIG. 1 is a schematic cross-sectional view of an electrochemical cell according to one embodiment. 図1のIIで示す部分を拡大した燃料極の断面図である。FIG. 2 is an enlarged cross-sectional view of the fuel electrode showing a portion indicated by II in FIG. 活性層の組織の模式図である。FIG. 2 is a schematic diagram of the structure of an active layer. 断面上の所定の範囲における活性層の模式図である。2 is a schematic diagram of an active layer in a predetermined area on a cross section. FIG. 実施例における第2の粒子の粒度分布である。4 shows the particle size distribution of second particles in an example. 比較例における第2の粒子の粒度分布である。13 is a particle size distribution of second particles in a comparative example.

以下、本発明の好ましい実施の形態について添付図面を参照して説明する。図1は一実施の形態における電気化学セル10の模式的な断面図である。電気化学セル10は、電解質層11と、電解質層11の一方の面に設けられた燃料極12と、電解質層11の他方の面に設けられた空気極13と、を備えている。電気化学セル10は、例えば燃料電池(SOFC)、水蒸気改質セル、水蒸気電解セル(SOEC)として使われる。 Below, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view of an electrochemical cell 10 in one embodiment. The electrochemical cell 10 comprises an electrolyte layer 11, a fuel electrode 12 provided on one side of the electrolyte layer 11, and an air electrode 13 provided on the other side of the electrolyte layer 11. The electrochemical cell 10 is used, for example, as a fuel cell (SOFC), a steam reforming cell, or a steam electrolysis cell (SOEC).

本実施形態では、電気化学セル10は、電解質層11と空気極13との間に中間層14が設けられている。本実施形態における電気化学セル10は、燃料極12の厚さが、電解質層11や空気極13よりも厚い燃料極支持型の電気化学セルである。 In this embodiment, the electrochemical cell 10 has an intermediate layer 14 between the electrolyte layer 11 and the air electrode 13. The electrochemical cell 10 in this embodiment is an anode-supported electrochemical cell in which the thickness of the anode 12 is thicker than the electrolyte layer 11 and the air electrode 13.

電解質層11は、電気化学セル10の作動条件で酸化物イオン伝導性を示す固体電解質からなる。固体電解質は、安定化ジルコニア、セリア系固溶体が例示される。また固体電解質は、安定化ジルコニア及びセリア系固溶体から選択される1種または2種以上とアルミナとの固溶体が例示される。安定化ジルコニアの安定化剤は、CaO,MgO,Y,Sc,Ybが例示される。セリア系固溶体のセリアに固溶する元素は、Gd,Sm,Yが例示される。電解質層11にセリア系固溶体が含まれる場合には、燃料極雰囲気の還元性雰囲気において電解質層11に無視できない電子伝導性が発現するため、その雰囲気において電子伝導性が小さい安定化ジルコニアやBaCe1-XSm等の層を電解質層11に設けるのが好ましい。 The electrolyte layer 11 is made of a solid electrolyte that exhibits oxide ion conductivity under the operating conditions of the electrochemical cell 10. Examples of the solid electrolyte include stabilized zirconia and ceria-based solid solutions. Examples of the solid electrolyte include a solid solution of one or more selected from stabilized zirconia and ceria-based solid solutions and alumina. Examples of stabilizers for stabilized zirconia include CaO, MgO, Y 2 O 3 , Sc 2 O 3 , and Yb 2 O 3. Examples of elements that are solid-dissolved in ceria in the ceria-based solid solution include Gd, Sm, and Y. When the electrolyte layer 11 contains a ceria-based solid solution, the electrolyte layer 11 exhibits non-negligible electronic conductivity in the reducing atmosphere of the fuel electrode atmosphere, so it is preferable to provide a layer of stabilized zirconia or BaCe 1-X Sm X O 3 , which has low electronic conductivity in that atmosphere, in the electrolyte layer 11.

空気極13は、燃料電池においては気相の酸素が電子と反応して酸化物イオンになる場であり、水蒸気電解においては酸化物イオンが電子を放出して酸素になる場である。空気極13は酸化剤ガス(酸素、空気)が吸着し易く酸化物イオン伝導性が高いことが必要であり、電子伝導性も必要である。空気極13の材料は、ペロブスカイト型酸化物であるLa1-XSrMnO3-δ,La1-XSrCoO3-δ,La1-XSrCo1-YFe3-δ,Pr1-XSrMnO3-δが例示される。また空気極13の材料は、これらのペロブスカイト型酸化物から選択される1種または2種以上の酸化物と電解質層11を構成し得る固体電解質との複合材料が挙げられる。 In a fuel cell, the air electrode 13 is a place where gaseous oxygen reacts with electrons to become oxide ions, and in steam electrolysis, it is a place where oxide ions release electrons to become oxygen. The air electrode 13 is required to be easy to adsorb oxidant gas (oxygen, air) and have high oxide ion conductivity, and also needs to have electronic conductivity. Examples of the material of the air electrode 13 include perovskite oxides such as La 1-X Sr X MnO 3-δ , La 1-X Sr X CoO 3-δ , La 1-X Sr X Co 1-Y Fe Y O 3-δ , and Pr 1-X Sr X MnO 3-δ . Examples of the material of the air electrode 13 include a composite material of one or more oxides selected from these perovskite oxides and a solid electrolyte that can constitute the electrolyte layer 11.

中間層14は、電気化学セル10の製造時(焼成)や運転時における高温下での電解質層11と空気極13との反応を低減する。中間層14の材料はセリア系固溶体が例示される。セリア系固溶体のセリアに固溶する元素は、Gd,Sm,La,Yが例示される。 The intermediate layer 14 reduces the reaction between the electrolyte layer 11 and the air electrode 13 at high temperatures during the manufacture (firing) and operation of the electrochemical cell 10. An example of the material for the intermediate layer 14 is a ceria-based solid solution. Examples of elements that dissolve in ceria in a ceria-based solid solution include Gd, Sm, La, and Y.

図2は図1のIIで示す部分を拡大した燃料極12の断面図である。燃料極12は、ガス透過性を有する多孔質体である。燃料極12は、支持層20と、支持層20と電解質層11との間に配置された活性層21と、を含む。活性層21は電解質層11に接している。本実施形態では、支持層20は活性層21に接している。 Figure 2 is a cross-sectional view of the fuel electrode 12, enlarging the portion indicated by II in Figure 1. The fuel electrode 12 is a porous body having gas permeability. The fuel electrode 12 includes a support layer 20 and an active layer 21 disposed between the support layer 20 and the electrolyte layer 11. The active layer 21 is in contact with the electrolyte layer 11. In this embodiment, the support layer 20 is in contact with the active layer 21.

支持層20は、主に活性層21を支持する機能をもつ。支持層20の厚さは例えば200μm-1000μmである。活性層21は、燃料電池においては電解質層11から供給される酸化物イオンと燃料(水素、一酸化炭素、炭化水素など)とを反応させて電子を生成する機能をもち、水蒸気電解においては通電により水蒸気を電解して水素と酸化物イオンに変換する機能をもつ。活性層21の厚さは例えば10μm-40μmである。 The support layer 20 mainly functions to support the active layer 21. The thickness of the support layer 20 is, for example, 200 μm-1000 μm. In a fuel cell, the active layer 21 has the function of reacting oxide ions supplied from the electrolyte layer 11 with fuel (hydrogen, carbon monoxide, hydrocarbon, etc.) to generate electrons, and in steam electrolysis, it has the function of electrolyzing water vapor by passing electricity through it to convert it into hydrogen and oxide ions. The thickness of the active layer 21 is, for example, 10 μm-40 μm.

支持層20を構成する材料は、活性層21を構成する材料と同じ材料でも良いし、活性層21を構成する材料と異なる材料でも良い。支持層20を構成する材料が、活性層21を構成する材料と異なる場合には、支持層20の材料は安定化ジルコニアが例示される。 The material constituting the support layer 20 may be the same as the material constituting the active layer 21, or may be a material different from the material constituting the active layer 21. When the material constituting the support layer 20 is different from the material constituting the active layer 21, the material of the support layer 20 is exemplified by stabilized zirconia.

燃料極12は、所望の電気化学セル10の形状に応じて、円筒、平板などの形状に形成される。電気化学セル10の形状が円筒の場合は、支持体となる燃料極12が、中空の円筒状に形成され、燃料極12の外周面に電解質層11が設けられ、電解質層11の外周面に中間層14及び空気極13が設けられる。電気化学セル10の形状が平板の場合は、支持体となる燃料極12が板状に形成され、電解質層11、中間層14及び空気極13が燃料極12に設けられる。 The fuel electrode 12 is formed into a shape such as a cylinder or a plate depending on the shape of the desired electrochemical cell 10. When the electrochemical cell 10 is cylindrical, the fuel electrode 12 serving as a support is formed into a hollow cylinder, the electrolyte layer 11 is provided on the outer peripheral surface of the fuel electrode 12, and the intermediate layer 14 and the air electrode 13 are provided on the outer peripheral surface of the electrolyte layer 11. When the electrochemical cell 10 is flat, the fuel electrode 12 serving as a support is formed into a plate shape, and the electrolyte layer 11, the intermediate layer 14, and the air electrode 13 are provided on the fuel electrode 12.

電気化学セル10は、燃料極12、電解質層11、中間層14及び空気極13のそれぞれを構成する原料の調製・混合、成形および焼成の工程を経て製造される。混合工程では、必要に応じて、バインダー、造孔材、可塑剤なども混合する。燃料極12の成形の手段は、押出成形、プレス成形、テープ成形、射出成形が例示される。電解質層11、中間層14及び空気極13の成形の手段は、原料が液体中に分散したスラリーの塗布による厚膜印刷、テープ成形が例示される。成形体の焼成により電気化学セル10が得られる。 The electrochemical cell 10 is manufactured through the processes of preparing and mixing, molding, and firing the raw materials that make up the fuel electrode 12, electrolyte layer 11, intermediate layer 14, and air electrode 13. In the mixing process, binders, pore-forming materials, plasticizers, etc. are also mixed as necessary. Examples of the means for molding the fuel electrode 12 include extrusion molding, press molding, tape molding, and injection molding. Examples of the means for molding the electrolyte layer 11, intermediate layer 14, and air electrode 13 include thick film printing by applying a slurry in which the raw materials are dispersed in a liquid, and tape molding. The electrochemical cell 10 is obtained by firing the molded body.

成形および焼成は、例えば、燃料極12の成形体と電解質層11の成形体とを重ねたものを焼成して燃料極12及び電解質層11を得た後、中間層14の成形体を電解質層11に設けて焼成し、空気極13の成形体を中間層14に設けて焼成して電気化学セル10を得ることができる。又は、燃料極12、電解質層11、中間層14及び空気極13の各成形体を重ねたものを焼成して、電気化学セル10を得ることもできる。 For example, the molding and firing can be performed by stacking a molded body of the fuel electrode 12 and a molded body of the electrolyte layer 11 and firing them to obtain the fuel electrode 12 and the electrolyte layer 11, then providing a molded body of the intermediate layer 14 on the electrolyte layer 11 and firing them, and providing a molded body of the air electrode 13 on the intermediate layer 14 and firing them to obtain the electrochemical cell 10. Alternatively, the electrochemical cell 10 can be obtained by stacking the molded bodies of the fuel electrode 12, electrolyte layer 11, intermediate layer 14, and air electrode 13 and firing them.

図3は活性層21の組織の模式図である。活性層21の組織は、電解質層11と活性層21との間の界面21a(図2参照)の法線を含む活性層21の断面に、斜め方向から集束イオンビーム(FIB)を照射して得られた面(以下「観察面」と称す)を、走査型電子顕微鏡(SEM)で観察して特定される。観察面は、活性層21に含まれる金属の変形が極めて少ない平滑な断面である。 Figure 3 is a schematic diagram of the structure of the active layer 21. The structure of the active layer 21 is identified by observing, with a scanning electron microscope (SEM), a surface (hereinafter referred to as the "observation surface") obtained by irradiating a cross section of the active layer 21, including the normal to the interface 21a (see Figure 2) between the electrolyte layer 11 and the active layer 21, with a focused ion beam (FIB) from an oblique direction. The observation surface is a smooth cross section with very little deformation of the metal contained in the active layer 21.

活性層21は、イオン伝導性を有する第1の粒子22、及び、電子伝導性を有する第2の粒子23を含む。第1の粒子22は、燃料極雰囲気下で電子伝導性も有する。第1の粒子22が酸化物イオン伝導性を有することは、第1の粒子22を構成する物質を電解質として酸素濃淡電池を構成したときに、起電力が発生することにより確認できる。第1の粒子22が、燃料極雰囲気下で電子伝導性を有することは、第1の粒子22を構成する物質の電気伝導度の酸素濃度依存性を測定したときに、当該酸素濃度依存性を示すグラフにおける燃料極雰囲気に相当する酸素濃度領域において傾きを有することにより確認できる。本実施形態における燃料極雰囲気とは、1%以上の水素を含む雰囲気として定義する。 The active layer 21 includes first particles 22 having ion conductivity and second particles 23 having electronic conductivity. The first particles 22 also have electronic conductivity in the fuel electrode atmosphere. The oxide ion conductivity of the first particles 22 can be confirmed by the generation of electromotive force when an oxygen concentration cell is constructed using the material constituting the first particles 22 as an electrolyte. The electronic conductivity of the first particles 22 in the fuel electrode atmosphere can be confirmed by the presence of a slope in the oxygen concentration region corresponding to the fuel electrode atmosphere in a graph showing the oxygen concentration dependence when the oxygen concentration dependence of the electrical conductivity of the material constituting the first particles 22 is measured. In this embodiment, the fuel electrode atmosphere is defined as an atmosphere containing 1% or more hydrogen.

第1の粒子22は、セリア系固溶体、ペロブスカイト型酸化物が例示される。セリア系固溶体のセリアに固溶する元素は、Gd,Sm,La,Yが例示される。ペロブスカイト型酸化物はSr1-XLaTiOが例示される。 The first particles 22 are exemplified by a ceria-based solid solution and a perovskite-type oxide. Examples of elements dissolved in ceria in the ceria-based solid solution include Gd, Sm, La, and Y. An example of the perovskite-type oxide is Sr 1-x La x TiO 3 .

第2の粒子23は、Niが例示される。Niは、純Ni、Ni基合金、NiOと固体電解質との複合体(焼結体)であるサーメット等に含まれる。サーメットに含まれるNiOは水素還元によりNiに変化する。水素還元後も残存したNiOはNiに含めない。サーメットに含まれる固体電解質は、セリア系固溶体から選択される1種または2種以上とアルミナとの固溶体、セリア系固溶体が例示される。 An example of the second particles 23 is Ni. Ni is contained in pure Ni, Ni-based alloys, cermets which are composites (sintered bodies) of NiO and solid electrolytes, and the like. NiO contained in cermets is converted to Ni by hydrogen reduction. NiO remaining after hydrogen reduction is not included in Ni. Examples of solid electrolytes contained in cermets include solid solutions of alumina and one or more types selected from ceria-based solid solutions, and ceria-based solid solutions.

活性層21に占める第2の粒子23の体積比は、40vol%-60vol%が好ましい。第2の粒子23による電子伝導性と第1の粒子22によるイオン伝導性とを確保するためである。第2の粒子23の体積比は、還元後の活性層21中の第2の粒子23の体積比である。第2の粒子23の体積比はSEMの画像から算出され、第2の粒子23の面積を、第1の粒子22の面積と第2の粒子23の面積を合わせた面積で除した値(%)である。 The volume ratio of the second particles 23 in the active layer 21 is preferably 40 vol%-60 vol%. This is to ensure electronic conductivity by the second particles 23 and ionic conductivity by the first particles 22. The volume ratio of the second particles 23 is the volume ratio of the second particles 23 in the active layer 21 after reduction. The volume ratio of the second particles 23 is calculated from an SEM image, and is the value (%) obtained by dividing the area of the second particles 23 by the combined area of the first particles 22 and the area of the second particles 23.

ガス透過性を有する活性層21は、3次元的につながった無数の気孔を含む。活性層21の断面(観察面)に現出する気孔は、3次元的につながった無数の気孔の一断面であり、第1の粒子22に内包される第1の閉気孔24、第2の粒子23に内包される第2の閉気孔25、及び、第1の粒子22及び第2の粒子23に接する気孔26を含む。閉気孔24,25は、活性層21の内部に孤立した気孔の一断面か否か、外気と接続している開気孔の一断面か否かに関わらず、観察面において第1の粒子22及び第2の粒子23の内部にそれぞれ孤立していることを表している。閉気孔24,25は観察されなくても良い。 The gas-permeable active layer 21 contains countless pores that are connected three-dimensionally. The pores that appear on the cross section (observation surface) of the active layer 21 are cross sections of the countless pores that are connected three-dimensionally, and include a first closed pore 24 contained in the first particle 22, a second closed pore 25 contained in the second particle 23, and a pore 26 that contacts the first particle 22 and the second particle 23. The closed pores 24 and 25 are shown to be isolated inside the first particle 22 and the second particle 23, respectively, on the observation surface, regardless of whether they are cross sections of pores isolated inside the active layer 21 or cross sections of open pores connected to the outside air. The closed pores 24 and 25 do not have to be observed.

第1の界面27は、第1の粒子22と第2の粒子23との間の界面である。気孔26は、第1の粒子22と第3の気孔26との間に第2の界面28を作り、第2の粒子23と第3の気孔26との間に第3の界面29を作る。第1の粒子22、第2の粒子23及び気孔26は、第1の界面27と第2の界面28と第3の界面29とが交わる三相界面30を作る。三相界面30は気孔26の中を通って供給される燃料、第1の粒子22及び第2の粒子23が接する反応場である。 The first interface 27 is the interface between the first particle 22 and the second particle 23. The pores 26 create a second interface 28 between the first particle 22 and the third pores 26, and a third interface 29 between the second particle 23 and the third pores 26. The first particle 22, the second particle 23, and the pores 26 create a three-phase interface 30 where the first interface 27, the second interface 28, and the third interface 29 intersect. The three-phase interface 30 is a reaction field where the fuel supplied through the pores 26, the first particle 22, and the second particle 23 come into contact.

第1の粒子22はセリア系固溶体が好適である。セリアに溶解したHがセリアの表面に移動してO2-と反応し、反応場が三相界面30だけでなく、三相界面30近傍のセリア表面にまで拡大すると推察される。これにより反応過電圧の低減が期待される。 A ceria-based solid solution is suitable for the first particles 22. It is presumed that H + dissolved in ceria moves to the surface of the ceria and reacts with O2- , and the reaction field expands not only to the three-phase interface 30 but also to the ceria surface near the three-phase interface 30. This is expected to reduce the reaction overvoltage.

図4は観察面(断面)上の所定の範囲(実視野31)における活性層21の模式図である。活性層21の組織は、以下のようにして特定される。まず活性層21の観察面の実視野31におけるSEMの画像を取得する。実視野31の大きさ及び形状は、例えば短辺が10μm、長辺が20μmの大きさの矩形とする。本実施形態では、実視野31の長辺が延びる方向を第1の方向とし、実視野31の短辺が延びる方向を第2の方向とする。 Figure 4 is a schematic diagram of the active layer 21 in a specified range (field of view 31) on the observation surface (cross section). The structure of the active layer 21 is identified as follows. First, an SEM image of the field of view 31 of the observation surface of the active layer 21 is obtained. The size and shape of the field of view 31 is, for example, a rectangle with short sides of 10 μm and long sides of 20 μm. In this embodiment, the direction in which the long sides of the field of view 31 extend is the first direction, and the direction in which the short sides of the field of view 31 extend is the second direction.

実視野31は、活性層21の任意の位置に任意の向きで設定できる。活性層21が平板の場合、実視野31の長辺が、界面21a(図2参照)に沿うように実視野31を設定できる。活性層21と支持層20との間の界面21bと界面21aとの間の距離(活性層21の厚さ)が10μm以上あれば、界面21aに沿って実視野31の長辺(20μm)を設定し、活性層21の厚さ方向に実視野31の短辺(10μm)を設定する。実視野31の面積は、品質管理の精度を確保するため、少なくとも200μmとする。活性層21の厚さが10μm未満のときは、実視野31の短辺を活性層21の厚さ方向に最大に設定し、実視野31の面積が200μm以上になるように、界面21aに沿って実視野31の長辺を設定する。 The field of view 31 can be set at any position in the active layer 21 in any direction. When the active layer 21 is a flat plate, the field of view 31 can be set so that the long side of the field of view 31 is along the interface 21a (see FIG. 2). If the distance between the interface 21b and the interface 21a between the active layer 21 and the support layer 20 (the thickness of the active layer 21) is 10 μm or more, the long side (20 μm) of the field of view 31 is set along the interface 21a, and the short side (10 μm) of the field of view 31 is set in the thickness direction of the active layer 21. The area of the field of view 31 is at least 200 μm 2 to ensure the accuracy of quality control. When the thickness of the active layer 21 is less than 10 μm, the short side of the field of view 31 is set to the maximum in the thickness direction of the active layer 21, and the long side of the field of view 31 is set along the interface 21a so that the area of the field of view 31 is 200 μm 2 or more.

取得したSEMの画像の輝度およびエネルギー分散型X線分光器(EDS)による元素分析の結果に基づき、画像処理によって、例えば第1の粒子22が白色、第2の粒子23が灰色、閉気孔24,25及び気孔26が黒色となるように、実視野31の全体を3値化する。次に画像解析によって、実視野31に含まれる全ての第2の粒子23について、第2の粒子23と同じ面積(閉気孔25の面積は含まない)をもつ円の直径である第2の粒子23の円相当径を粒子ごとに算出する。 Based on the brightness of the acquired SEM image and the results of elemental analysis by an energy dispersive X-ray spectrometer (EDS), the entire field of view 31 is ternarized by image processing so that, for example, the first particles 22 are white, the second particles 23 are gray, and the closed pores 24, 25 and pores 26 are black. Next, by image analysis, the circle equivalent diameter of the second particles 23, which is the diameter of a circle having the same area as the second particles 23 (excluding the area of the closed pores 25), is calculated for each particle for all second particles 23 included in the field of view 31.

画像解析によって、第1の界面27の長さ、第2の界面28の長さ、及び、第3の界面29の長さを界面ごとに算出する。実視野31に含まれる全ての界面27,28,29の長さを合計した界面長を算出し、実視野31に含まれる全ての第1の界面27の長さを界面長で除した割合(%)、実視野31に含まれる全ての第2の界面28の長さを界面長で除した割合(%)、実視野31に含まれる全ての第3の界面29の長さを界面長で除した割合(%)を算出する。 The length of the first interface 27, the length of the second interface 28, and the length of the third interface 29 are calculated for each interface by image analysis. The interface length is calculated by adding up the lengths of all interfaces 27, 28, and 29 included in the actual field of view 31, and the percentage (%) of the length of all first interfaces 27 included in the actual field of view 31 divided by the interface length, the percentage (%) of the length of all second interfaces 28 included in the actual field of view 31 divided by the interface length, and the percentage (%) of the length of all third interfaces 29 included in the actual field of view 31 divided by the interface length are calculated.

画像解析によって、粒子22,23の第1の方向の長さの平均値および第2の方向の長さの平均値を算出する。これらの平均値の算出は、“水谷惟恭、尾崎義治、木村敏夫、山口喬著、「セラミックプロセッシング」、技報堂出版株式会社、1985年3月25日発行、第192頁から第195頁”に記載の方法(インターセプト法)に従って行うことができる。具体的には、実視野31の第1の方向(例えば実視野31の長辺が延びる方向)に直線(長辺に平行な直線)を1.0μmよりも細かい間隔で画像上に引き、実視野31に含まれる全ての第2の粒子23に切り取られた線分の長さを測定する。次いで、各線分の長さの合計値を、当該合計値を求めた線分の数で除した数値を求める。当該数値を第2の粒子23の第1方向の長さの平均値Aとする。 The average length of the particles 22 and 23 in the first direction and the average length of the particles 22 and 23 in the second direction are calculated by image analysis. These average values can be calculated according to the method (intercept method) described in "Ceramic Processing, by Mizutani Takayoshi, Ozaki Yoshiharu, Kimura Toshio, and Yamaguchi Takashi, published by Gihodo Publishing Co., Ltd. on March 25, 1985, pages 192 to 195". Specifically, straight lines (straight lines parallel to the long side) are drawn on the image in the first direction of the field of view 31 (for example, the direction in which the long side of the field of view 31 extends) at intervals finer than 1.0 μm, and the lengths of the line segments cut out by all the second particles 23 included in the field of view 31 are measured. Next, the total value of the lengths of the line segments is divided by the number of line segments for which the total value was calculated to obtain a numerical value. This numerical value is set as the average length A of the second particles 23 in the first direction.

画像解析によって、実視野31の第2の方向(例えば実視野31の短辺が延びる方向)に直線(短辺に平行な直線)を1.0μmよりも細かい間隔で画像上に引き、実視野31に含まれる全ての第2の粒子23に切り取られた線分の長さを測定する。次いで、各線分の長さの合計値を、当該合計値を求めた線分の数で除した数値を求める。当該数値を第2の粒子23の第2方向の長さの平均値Bとする。 By image analysis, straight lines (straight lines parallel to the short side) are drawn on the image in the second direction of the field of view 31 (for example, the direction in which the short side of the field of view 31 extends) at intervals finer than 1.0 μm, and the lengths of the line segments cut out by all second particles 23 included in the field of view 31 are measured. Next, the total length of each line segment is divided by the number of line segments for which this total was calculated to determine a numerical value. This numerical value is regarded as the average value B of the lengths of the second particles 23 in the second direction.

画像解析によって、実視野31の第1の方向(例えば実視野31の長辺が延びる方向)に直線(長辺に平行な直線)を1.0μmよりも細かい間隔で画像上に引き、実視野31に含まれる全ての第1の粒子22に切り取られた線分の長さを測定する。次いで、各線分の長さの合計値を、当該合計値を求めた線分の数で除した数値を求める。当該数値を第1の粒子22の第1方向の長さの平均値Cとする。 By image analysis, straight lines (straight lines parallel to the long side) are drawn on the image in the first direction of the field of view 31 (for example, the direction in which the long side of the field of view 31 extends) at intervals finer than 1.0 μm, and the lengths of the line segments cut out by all of the first particles 22 included in the field of view 31 are measured. Next, the total length of each line segment is divided by the number of line segments for which this total was found to determine a numerical value. This numerical value is regarded as the average value C of the lengths of the first particles 22 in the first direction.

画像解析によって、実視野31の第2の方向(例えば実視野31の短辺が延びる方向)に直線(短辺に平行な直線)を1.0μmよりも細かい間隔で画像上に引き、実視野31に含まれる全ての第1の粒子22に切り取られた線分の長さを測定する。次いで、各線分の長さの合計値を、当該合計値を求めた線分の数で除した数値を求める。当該数値を第1の粒子22の第2方向の長さの平均値Dとする。 By image analysis, straight lines (straight lines parallel to the short side) are drawn on the image in the second direction of the field of view 31 (for example, the direction in which the short side of the field of view 31 extends) at intervals finer than 1.0 μm, and the lengths of the line segments cut out by all of the first particles 22 included in the field of view 31 are measured. Next, the total length of each line segment is divided by the number of line segments for which this total was calculated to determine a numerical value. This numerical value is regarded as the average value D of the lengths of the first particles 22 in the second direction.

これらの画像解析では、第1の粒子22、第2の粒子23及び気孔26のうち一部が実視野31の外にあるもの(第1の粒子22、第2の粒子23及び気孔26のうち実視野31の長辺および短辺で切り取られたもの)は数値の算出に使わない。数値の算出精度を確保するためである。 In these image analyses, the first particles 22, second particles 23, and pores 26 that are partially outside the field of view 31 (the first particles 22, second particles 23, and pores 26 that are cut off by the long and short sides of the field of view 31) are not used in the calculation of the values. This is to ensure the accuracy of the calculation of the values.

図5は実視野31に現出する第2の粒子23の円相当径による粒度分布である。図5の横軸に示す規格化粒子径は、実視野31に現出する第2の粒子23について、第2の粒子23の粒子ごとの円相当径を当該円相当径の最大値で除した値である。図5の横軸は、当該円相当径の最大値を1として、0.05ごとに20の区間に区切った階級である。図5の縦軸は、各区間の下限値を超え各区間の上限値以下の円相当径(規格化粒子径)をもつ第2の粒子23の頻度(%)である(これらは図6においても同じ)。 Figure 5 shows the particle size distribution of the second particles 23 appearing in the actual field of view 31 based on the equivalent circle diameter. The normalized particle diameter shown on the horizontal axis of Figure 5 is the value obtained by dividing the equivalent circle diameter of each particle of the second particles 23 appearing in the actual field of view 31 by the maximum value of the equivalent circle diameter. The horizontal axis of Figure 5 shows a classification divided into 20 intervals every 0.05, with the maximum value of the equivalent circle diameter being 1. The vertical axis of Figure 5 shows the frequency (%) of the second particles 23 having an equivalent circle diameter (normalized particle diameter) that exceeds the lower limit of each interval and is equal to or less than the upper limit of each interval (the same applies to Figure 6).

図5に示すように、活性層21の実視野31に現出する第2の粒子23の粒度分布において、第2の粒子23の円相当径の最大値の1/20以下の円相当径をもつ第2の粒子の頻度は10%以下であることが好ましい。これにより微小な第2の粒子23のシンタリングによる電気化学セル10の性能の低下を低減できるので、電気化学セル10の耐久性を向上できる。 As shown in FIG. 5, in the particle size distribution of the second particles 23 appearing in the field of view 31 of the active layer 21, it is preferable that the frequency of second particles having a circular equivalent diameter of 1/20 or less of the maximum circular equivalent diameter of the second particles 23 is 10% or less. This can reduce the deterioration of the performance of the electrochemical cell 10 due to sintering of the minute second particles 23, thereby improving the durability of the electrochemical cell 10.

活性層21の実視野31に現出する第2の粒子23は、円相当径の最大値の1/20以下の円相当径をもつ第2の粒子23の面積が、実視野31に現出する全ての第2の粒子23の面積の0.1%以下であることが好ましい。微小な第2の粒子23のシンタリングによる電気化学セル10の性能の低下を低減できるので、電気化学セル10の耐久性を向上できる。 It is preferable that the area of the second particles 23 appearing in the actual field of view 31 of the active layer 21, which have a circular equivalent diameter of 1/20 or less of the maximum circular equivalent diameter, is 0.1% or less of the area of all the second particles 23 appearing in the actual field of view 31. This can reduce the deterioration of the performance of the electrochemical cell 10 due to sintering of the minute second particles 23, thereby improving the durability of the electrochemical cell 10.

平均値Aを平均値Bで除した値A/Bは、0.9より大きく1.1未満であることが好ましい。これにより第2の粒子23の断面が円形に近づくため、第2の粒子23の活性を低下させることができる。第2の粒子23の表面拡散を低減できるので、電気化学セル10の耐久性をさらに向上できる。 The value A/B obtained by dividing the average value A by the average value B is preferably greater than 0.9 and less than 1.1. This makes the cross section of the second particles 23 closer to a circle, thereby reducing the activity of the second particles 23. Since the surface diffusion of the second particles 23 can be reduced, the durability of the electrochemical cell 10 can be further improved.

平均値Cを平均値Dで除した値C/Dは、0.9より大きく1.1未満であることが好ましい。これにより第1の粒子22の断面が円形に近づくため、第1の粒子22の活性を低下させることができる。第1の粒子22の表面拡散を低減できるので、電気化学セル10の耐久性をさらに向上できる。 The value C/D obtained by dividing the average value C by the average value D is preferably greater than 0.9 and less than 1.1. This makes the cross section of the first particles 22 closer to a circle, thereby reducing the activity of the first particles 22. Since the surface diffusion of the first particles 22 can be reduced, the durability of the electrochemical cell 10 can be further improved.

第1の界面27の長さと、第2の界面28の長さと、第3の界面29の長さと、を合わせた界面長に対して、第2の界面28の長さの割合は40%以上であることが好ましい。第2の粒子23を構成する原子の拡散は、第1の界面27(固体/固体界面)で起きる粒界拡散に比べ、第3の界面29(固体/気体界面)で起きる表面拡散の方が起こり易い。第2の界面28の長さの割合が40%以上であると、相対的に第3の界面29の長さが短くなるので、第2の粒子23を構成する原子の表面拡散が低減する。これにより電気化学セル10の性能の低下を低減できる。よって耐久性を向上できる。 It is preferable that the ratio of the length of the second interface 28 to the total interface length of the first interface 27, the second interface 28, and the third interface 29 is 40% or more. The diffusion of the atoms constituting the second particle 23 is more likely to occur as surface diffusion at the third interface 29 (solid/gas interface) than as grain boundary diffusion at the first interface 27 (solid/solid interface). When the ratio of the length of the second interface 28 is 40% or more, the length of the third interface 29 becomes relatively short, thereby reducing the surface diffusion of the atoms constituting the second particle 23. This can reduce the deterioration of the performance of the electrochemical cell 10. Therefore, durability can be improved.

界面長に対する第2の界面28の長さの割合は40%以上50%以下であることが好ましい。より好ましくは40%以上45%以下である。第2の界面28の長さの割合が45%を超えると、活性層21の中で第2の粒子23同士がつながり難くなり、電子伝導性が低下する傾向がみられる。特に第2の界面28の長さの割合が50%を超えると、その傾向が著しくなる。 The ratio of the length of the second interface 28 to the interface length is preferably 40% or more and 50% or less. More preferably, it is 40% or more and 45% or less. If the ratio of the length of the second interface 28 exceeds 45%, it becomes difficult for the second particles 23 to connect to each other in the active layer 21, and there is a tendency for electronic conductivity to decrease. In particular, if the ratio of the length of the second interface 28 exceeds 50%, this tendency becomes more pronounced.

界面長に対する第1の界面27の長さの割合と、界面長に対する第2の界面28の長さの割合と、界面長に対する第3の界面29の長さの割合と、を比較したときに、界面長に対する第3の界面29の長さの割合が最も低いことが好ましい。第3の界面29の長さの割合が最も低いと、第2の粒子23を構成する原子の表面拡散をさらに低減できるので、耐久性をさらに向上できる。 When comparing the ratio of the length of the first interface 27 to the interface length, the ratio of the length of the second interface 28 to the interface length, and the ratio of the length of the third interface 29 to the interface length, it is preferable that the ratio of the length of the third interface 29 to the interface length is the lowest. If the ratio of the length of the third interface 29 is the lowest, the surface diffusion of the atoms constituting the second particle 23 can be further reduced, and therefore durability can be further improved.

電気化学セル10の運転前に、電気化学セル10に還元処理および通電処理を施すことにより、活性層21の組織の制御ができる。還元処理および通電処理は電気化学セル10の製造者または使用者が行う。 The structure of the active layer 21 can be controlled by subjecting the electrochemical cell 10 to a reduction treatment and an electric current treatment before the operation of the electrochemical cell 10. The reduction treatment and the electric current treatment are performed by the manufacturer or user of the electrochemical cell 10.

還元処理では、電気化学セル10の運転時の燃料極12の温度(以下「運転温度」と称す)付近の温度で、還元ガス雰囲気の下、燃料極12が還元される。還元ガスは水素を含む還元性のガスであり、好適には純水素である。還元処理では、運転温度よりも高い温度に燃料極12が加熱されるのが好ましい。より好ましくは運転温度よりも50℃以上高い温度に燃料極12が加熱される。還元処理によって第2の粒子23に含まれるNiOが還元され、Niとなる。還元処理によって燃料極12の電気抵抗値が低減するので、通電処理を行うことが可能になる。 In the reduction process, the fuel electrode 12 is reduced in a reducing gas atmosphere at a temperature close to the temperature of the fuel electrode 12 during operation of the electrochemical cell 10 (hereinafter referred to as the "operating temperature"). The reducing gas is a reducing gas containing hydrogen, and is preferably pure hydrogen. In the reduction process, the fuel electrode 12 is preferably heated to a temperature higher than the operating temperature. More preferably, the fuel electrode 12 is heated to a temperature at least 50°C higher than the operating temperature. The reduction process reduces the NiO contained in the second particles 23 to Ni. The reduction process reduces the electrical resistance of the fuel electrode 12, making it possible to perform the current flow process.

還元ガスの水素濃度は、例えば4%から100%の範囲の中から適宜設定される。都市ガスを燃料とする場合には、都市ガスを水蒸気で改質した還元性ガス(水素濃度60~70%)を用いることができる。還元処理の時間は、触媒の還元が達成できるように適宜設定される。 The hydrogen concentration of the reducing gas is set appropriately within the range of, for example, 4% to 100%. When using city gas as fuel, reducing gas (hydrogen concentration 60-70%) obtained by reforming city gas with water steam can be used. The reduction process time is set appropriately so that reduction of the catalyst can be achieved.

通電処理では、電気化学セル10への通電によって、燃料極12に対して空気極13が正の電位を有するように、燃料極12に対して空気極13の電位が-0.2Vから0.45Vの範囲(以下「第1範囲」と称す)になる状態と、0.9Vから1.5Vの範囲(以下「第2範囲」と称す)になる状態と、に電位を交互に設定する。これにより燃料極12の分極抵抗が安定化し、電気化学セル10の耐久性が向上する。なお、電気化学セル10の電位は、通常、燃料極12に対して空気極13の電位を正として取り扱っているため、以後は便宜上、燃料極12に対して空気極13の電位を正として表記する。 In the current application process, the electric potential of the air electrode 13 is alternately set between a state in which the electric potential of the air electrode 13 is in the range of -0.2 V to 0.45 V (hereinafter referred to as the "first range") relative to the fuel electrode 12 and a state in which the electric potential of the air electrode 13 is in the range of 0.9 V to 1.5 V (hereinafter referred to as the "second range") relative to the fuel electrode 12 so that the air electrode 13 has a positive electric potential relative to the fuel electrode 12. This stabilizes the polarization resistance of the fuel electrode 12 and improves the durability of the electrochemical cell 10. Note that the electric potential of the electrochemical cell 10 is usually treated as being positive relative to the fuel electrode 12, so hereafter, for convenience, the electric potential of the air electrode 13 will be expressed as being positive relative to the fuel electrode 12.

第1範囲と第2範囲に設定する時間は、それぞれ5秒から30分までが例示される。これらの電位の設定を繰り返す回数は、第1範囲および第2範囲に電位を1度ずつ設定する過程を1サイクルとして、1サイクルから300サイクルまでが例示される。 The times for which the potential is set to the first range and the second range are, for example, from 5 seconds to 30 minutes. The number of times for which these potential settings are repeated is, for example, from 1 cycle to 300 cycles, with the process of setting the potential to the first range and the second range once each being one cycle.

燃料極12に対する空気極13の電位を設定する装置としては、任意の大きさの負荷電流を両方向に流すことができる電子負荷装置が挙げられる。燃料極12と空気極13との間に電子負荷装置を接続し、燃料極12に対する空気極13の電位が所望の値になるように負荷電流値を設定すれば良い。 An example of a device for setting the potential of the air electrode 13 relative to the fuel electrode 12 is an electronic load device that can pass a load current of any magnitude in both directions. An electronic load device is connected between the fuel electrode 12 and the air electrode 13, and the load current value is set so that the potential of the air electrode 13 relative to the fuel electrode 12 becomes the desired value.

電気化学セル10の通電処理は、燃料極12に燃料ガス(水素、一酸化炭素、炭化水素など)を供給し、空気極13に酸化剤ガス(酸素、空気)を供給しながら行われる。通電時の燃料極12の温度、及び、供給するガスの流量は、電気化学セル10の運転時の燃料極12の温度やガスの流量とほぼ等しくて良い。通電時の燃料極12の温度は600℃から700℃までが例示される。 The electrochemical cell 10 is energized while supplying a fuel gas (hydrogen, carbon monoxide, hydrocarbon, etc.) to the fuel electrode 12 and an oxidant gas (oxygen, air) to the air electrode 13. The temperature of the fuel electrode 12 and the flow rate of the gas supplied during energization may be approximately equal to the temperature of the fuel electrode 12 and the flow rate of the gas supplied during operation of the electrochemical cell 10. The temperature of the fuel electrode 12 during energization is, for example, 600°C to 700°C.

電気化学セル10の耐久性は、燃料極12(活性層21)において酸化物イオン伝導性を有する第1の粒子22及び電子伝導性を有する第2の粒子23の化学状態および微細構造がいかに維持されるかに大きく依存する。通電処理による第2の粒子23の表面の酸化および再還元により、第1の粒子22及び第2の粒子23の微細構造および第1の粒子22の化学状態が維持されると推定している。 The durability of the electrochemical cell 10 depends greatly on how well the chemical state and microstructure of the first particles 22 having oxide ion conductivity and the second particles 23 having electronic conductivity in the fuel electrode 12 (active layer 21) are maintained. It is presumed that the microstructure of the first particles 22 and second particles 23 and the chemical state of the first particles 22 are maintained by the oxidation and re-reduction of the surface of the second particles 23 due to the current application treatment.

本発明を実施例によりさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。 The present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples.

(実施例1における電気化学セルの作製)
イットリア安定化ジルコニア(YSZ)粉末とNiO粉末とを混合し、ブチラール樹脂、造孔材としてのポリメタクリル酸メチル製のビーズ、可塑剤、分散剤、及び、溶剤を加え、混合してスラリーを得た。ドクターブレード法によりスラリーを厚さ200μmのグリーンシートにして、支持層の成形体を得た。
(Preparation of Electrochemical Cell in Example 1)
Yttria-stabilized zirconia (YSZ) powder and NiO powder were mixed, and butyral resin, polymethylmethacrylate beads as a pore former, plasticizer, dispersant, and solvent were added and mixed to obtain a slurry. The slurry was made into a green sheet with a thickness of 200 μm by a doctor blade method to obtain a molded body for the support layer.

Gdが固溶したセリア(Gd0.2Ce0.82-δ)粉末(GDC粉末)とNiO粉末とを混合し、ブチラール樹脂、造孔材としてのポリメタクリル酸メチル製のビーズ、可塑剤、分散剤、及び、溶剤を加え、混合してスラリーを得た。ドクターブレード法によりスラリーを厚さ20μmのグリーンシートにして、活性層の成形体を得た。 Gd- doped ceria ( Gd0.2Ce0.8O2 ) powder (GDC powder) and NiO powder were mixed, and butyral resin, polymethylmethacrylate beads as a pore former, plasticizer, dispersant, and solvent were added and mixed to obtain a slurry. The slurry was made into a green sheet with a thickness of 20 μm by the doctor blade method to obtain a green body for the active layer.

YSZ粉末にブチラール樹脂、可塑剤、分散剤、及び、溶剤を加え、混合してスラリーを得た。ドクターブレード法によりスラリーを厚さ10μmのグリーンシートにして、電解質層の成形体を得た。支持層、活性層および電解質層の成形体を重ねて圧着し、脱脂後、大気中1350℃で焼成して、燃料極12と電解質層11との積層体を得た。 Butyral resin, plasticizer, dispersant, and solvent were added to the YSZ powder and mixed to obtain a slurry. The slurry was made into a green sheet of 10 μm thickness using the doctor blade method to obtain a green sheet for the electrolyte layer. The green sheets for the support layer, active layer, and electrolyte layer were stacked and pressed together, degreased, and then fired at 1350°C in air to obtain a laminate of the fuel electrode 12 and electrolyte layer 11.

GDC粉末にポリビニルアルコール及び溶媒を加えて混合し、粘度を調整してペーストを得た。スクリーン印刷によって積層体の電解質層11にペーストを塗布し、成膜した。乾燥後、大気中1200℃で焼成して、中間層14が設けられた積層体を得た。 Polyvinyl alcohol and a solvent were added to the GDC powder, mixed, and the viscosity was adjusted to obtain a paste. The paste was applied to the electrolyte layer 11 of the laminate by screen printing to form a film. After drying, it was fired at 1200°C in air to obtain a laminate provided with an intermediate layer 14.

La0.6Sr0.4Co0.2Fe0.83-δ粉末にポリビニルアルコール及び溶媒を加えて混合し、粘度を調整してペーストを得た。スクリーン印刷によって積層体の中間層14にペーストを塗布し、成膜した。乾燥後、大気中1100℃で焼成して、空気極13が設けられた電気化学セル10を得た。 The La0.6Sr0.4Co0.2Fe0.8O3 powder was mixed with polyvinyl alcohol and a solvent, and the viscosity was adjusted to obtain a paste. The paste was applied to the intermediate layer 14 of the laminate by screen printing to form a film. After drying , it was fired at 1100°C in air to obtain an electrochemical cell 10 provided with an air electrode 13.

(還元処理)
窒素雰囲気の下、燃料極12が700℃になるように昇温し、700℃になった後に水素雰囲気に切替え、燃料極12を還元した。水素の濃度は100%とし、還元時間は1時間とした。
(Reduction Treatment)
The temperature of the fuel electrode 12 was raised to 700° C. under a nitrogen atmosphere, and after the temperature reached 700° C., the atmosphere was switched to a hydrogen atmosphere to reduce the fuel electrode 12. The hydrogen concentration was 100%, and the reduction time was 1 hour.

(通電処理)
還元処理を行った電気化学セル10の燃料極12が700℃になるように電気化学セル10を加熱しつつ、燃料極12に燃料ガス(水素:20ml/分、水蒸気:100ml/分)を供給し、空気極13に酸化剤ガス(空気:100ml/分)を供給しながら、電気化学セル10の燃料極12と空気極13との間に通電した。通電によって、燃料極12に対して空気極13が正の電位を有するように、燃料極12に対して空気極13の電位を-0.2Vから0.45Vの範囲(第1範囲)と0.9Vから1.5Vの範囲(第2範囲)に交互に設定した。
(Electrical supply processing)
While heating the electrochemical cell 10 so that the fuel electrode 12 of the electrochemical cell 10 that had undergone the reduction treatment was heated to 700° C., a fuel gas (hydrogen: 20 ml/min, steam: 100 ml/min) was supplied to the fuel electrode 12, and an oxidant gas (air: 100 ml/min) was supplied to the air electrode 13, and a current was passed between the fuel electrode 12 and the air electrode 13 of the electrochemical cell 10. The potential of the air electrode 13 with respect to the fuel electrode 12 was alternately set to a range of −0.2 V to 0.45 V (first range) and a range of 0.9 V to 1.5 V (second range) so that the air electrode 13 had a positive potential with respect to the fuel electrode 12 by the current passing.

第1範囲や第2範囲に電位を設定した時間は一定ではなかったが、それぞれ5秒から5分までの間とした。第1範囲および第2範囲に電位を1度ずつ設定した過程を1サイクルとして、200サイクルの通電を行った。総通電時間は3時間であった。これにより実施例1における電気化学セルを得た。 The time for which the potential was set in the first and second ranges was not constant, but ranged from 5 seconds to 5 minutes. The process of setting the potential in the first and second ranges once each was counted as one cycle, and 200 cycles of current were passed. The total current passing time was 3 hours. In this way, the electrochemical cell in Example 1 was obtained.

(実施例2)
活性層に含まれるNiO粉末の平均粒径を変えた以外は、実施例1と同様に電気化学セルを作製して、実施例2における電気化学セルを得た。
Example 2
An electrochemical cell in Example 2 was obtained by producing an electrochemical cell in the same manner as in Example 1, except that the average particle size of the NiO powder contained in the active layer was changed.

(比較例1)
通電処理を行わなかった以外は、実施例1と同様に電気化学セルを作製して、比較例1における電気化学セルを得た。
(Comparative Example 1)
An electrochemical cell in Comparative Example 1 was obtained by producing an electrochemical cell in the same manner as in Example 1, except that no current application treatment was performed.

(比較例2)
GDC粉末とNiO粉末とを含む燃料極の活性層を省略し、さらに通電処理を行わなかった以外は、実施例1と同様に電気化学セルを作製して、燃料極の組成がNi-YSZである比較例2における電気化学セルを得た。
(Comparative Example 2)
An electrochemical cell was produced in the same manner as in Example 1, except that the active layer of the fuel electrode containing the GDC powder and the NiO powder was omitted and no current was applied, to obtain an electrochemical cell in Comparative Example 2 in which the composition of the fuel electrode was Ni-YSZ.

(活性層の組織の特定)
実施例1、実施例2及び比較例1における電気化学セルの一部を切り出して試料を採取した。試料をそれぞれ常温硬化型樹脂に埋め込み、活性層21と電解質層11との間の界面21aに垂直な活性層21の断面を研磨加工した。活性層21の断面に、斜め方向からFIBを照射して活性層21の平滑な観察面を作製した。SEMにより、縦10μm横20μmの大きさの矩形の実視野31における観察面の画像を取得した。実視野31は、実視野31の長辺を界面21aに沿って設定した。
(Identification of the active layer structure)
A part of the electrochemical cell in Example 1, Example 2, and Comparative Example 1 was cut out to obtain a sample. Each sample was embedded in a room temperature curing resin, and a cross section of the active layer 21 perpendicular to the interface 21a between the active layer 21 and the electrolyte layer 11 was polished. A FIB was irradiated from an oblique direction to the cross section of the active layer 21 to prepare a smooth observation surface of the active layer 21. An image of the observation surface in a rectangular field of view 31 measuring 10 μm in length and 20 μm in width was obtained by SEM. The long side of the field of view 31 was set along the interface 21a.

画像処理によって、GDC(第1の粒子22)が白色、Ni(第2の粒子23)が灰色、閉気孔24,25及び気孔16が黒色となるように実視野31の全体を3値化した後、画像解析によって、実視野31に含まれる全ての第2の粒子23の円相当径を粒子ごとに算出した。実施例1における試料の第2の粒子23の円相当径の最大値は2.176μm、実施例2における試料の第2の粒子23の円相当径の最大値は1.968μm、比較例1における試料の第2の粒子23の円相当径の最大値は1.788μmであった。 After the entire field of view 31 was ternarized by image processing so that GDC (first particles 22) was white, Ni (second particles 23) was gray, and closed pores 24, 25 and pores 16 were black, the circle-equivalent diameters of all second particles 23 contained in the field of view 31 were calculated for each particle by image analysis. The maximum circle-equivalent diameter of the second particles 23 in the sample in Example 1 was 2.176 μm, the maximum circle-equivalent diameter of the second particles 23 in the sample in Example 2 was 1.968 μm, and the maximum circle-equivalent diameter of the second particles 23 in the sample in Comparative Example 1 was 1.788 μm.

実視野31に現出する第2の粒子23について、第2の粒子23の粒子ごとの円相当径を当該円相当径の最大値で除した規格化粒子径を算出した。次いで、当該円相当径の最大値を1として、0.05ごとに区切った区間に含まれる円相当径(規格化粒子径)をもつ第2の粒子23の頻度(%)を求めた。実施例1における第2の粒子23の粒度分布を図5に示し、比較例1における第2の粒子23の粒度分布を図6に示した。 For the second particles 23 appearing in the field of view 31, the normalized particle diameter was calculated by dividing the circle-equivalent diameter of each particle of the second particles 23 by the maximum circle-equivalent diameter. Next, the maximum circle-equivalent diameter was set to 1, and the frequency (%) of the second particles 23 having a circle-equivalent diameter (normalized particle diameter) included in the intervals divided by 0.05 was calculated. The particle size distribution of the second particles 23 in Example 1 is shown in Figure 5, and the particle size distribution of the second particles 23 in Comparative Example 1 is shown in Figure 6.

画像解析によって、第1の界面27の長さ、第2の界面28の長さ、及び、第3の界面29の長さを界面ごとに算出し、実視野31に含まれる全ての界面27,28,29の長さを合計した界面長を求めた。実施例1における試料の界面長は635μm、実施例2における試料の界面長は643μm、比較例1における試料の界面長は641μmであった。実視野31に含まれる全ての第1の界面27の長さを界面長で除した割合(%)、実視野31に含まれる全ての第2の界面28の長さを界面長で除した割合(%)、実視野31に含まれる全ての第3の界面29の長さを界面長で除した割合(%)を算出した。 By image analysis, the length of the first interface 27, the length of the second interface 28, and the length of the third interface 29 were calculated for each interface, and the interface length was calculated by adding up the lengths of all interfaces 27, 28, and 29 included in the actual field of view 31. The interface length of the sample in Example 1 was 635 μm, the interface length of the sample in Example 2 was 643 μm, and the interface length of the sample in Comparative Example 1 was 641 μm. The percentage (%) of the length of all first interfaces 27 included in the actual field of view 31 divided by the interface length, the percentage (%) of the length of all second interfaces 28 included in the actual field of view 31 divided by the interface length, and the percentage (%) of the length of all third interfaces 29 included in the actual field of view 31 divided by the interface length were calculated.

画像解析によって、実視野31の長辺に平行な直線を画像上に等間隔に21本引き、全ての第2の粒子23に切り取られた線分の長さを測定した。次いで、各線分の長さの合計値を、当該合計値を求めた線分の数で除した平均値Aを算出した。 Image analysis was performed by drawing 21 straight lines parallel to the long side of the field of view 31 at equal intervals on the image, and measuring the lengths of all the line segments cut by the second particles 23. Next, the average value A was calculated by dividing the total length of each line segment by the number of line segments for which the total value was calculated.

同様に、実視野31の短辺に平行な直線を画像上に等間隔に21本引き、全ての第2の粒子23に切り取られた線分の長さを測定した。次いで、各線分の長さの合計値を、当該合計値を求めた線分の数で除した平均値Bを算出し、A/Bを求めた。 Similarly, 21 straight lines parallel to the short side of the field of view 31 were drawn at equal intervals on the image, and the lengths of all the line segments cut by the second particles 23 were measured. Next, the average value B was calculated by dividing the total length of each line segment by the number of line segments for which the total value was calculated, and A/B was calculated.

画像解析によって、実視野31の長辺に平行な直線を画像上に等間隔に21本引き、全ての第1の粒子22に切り取られた線分の長さを測定した。次いで、各線分の長さの合計値を、当該合計値を求めた線分の数で除した平均値Cを算出した。 Image analysis was performed by drawing 21 straight lines parallel to the long side of the field of view 31 at equal intervals on the image, and measuring the lengths of all the line segments cut by the first particles 22. Next, the average value C was calculated by dividing the total length of each line segment by the number of line segments for which the total value was calculated.

同様に、実視野31の短辺に平行な直線を画像上に等間隔に21本引き、全ての第1の粒子22に切り取られた線分の長さを測定した。次いで、各線分の長さの合計値を、当該合計値を求めた線分の数で除した平均値Dを算出し、C/Dを求めた。 Similarly, 21 straight lines parallel to the short side of the field of view 31 were drawn at equal intervals on the image, and the lengths of all the line segments cut by the first particles 22 were measured. Next, the average value D was calculated by dividing the total length of each line segment by the number of line segments for which the total value was calculated, and C/D was calculated.

(耐久試験)
電気化学セル10(SOEC)を800℃に加熱しつつ、燃料極12に水蒸気を含む水素(HO:90ml/分、H:10ml/分)を供給し、空気極13に空気(100ml/分)を供給しながら、燃料極12と空気極13との間に1.5A/cmの電流を流した。この状態で燃料極12と空気極13との間の電圧の経時変化を1000時間まで測定した。試験開始時の電圧Vと1000時間経過後の電圧Vから、燃料極12と空気極13との間の電気抵抗値の増加率を表す劣化率(%)=(V-V)/V×100を求めた。
(An endurance test)
While heating the electrochemical cell 10 (SOEC) to 800° C., hydrogen containing water vapor (H 2 O: 90 ml/min, H 2 : 10 ml/min) was supplied to the fuel electrode 12, and air (100 ml/min) was supplied to the air electrode 13, while a current of 1.5 A/cm 2 was passed between the fuel electrode 12 and the air electrode 13. In this state, the change over time in the voltage between the fuel electrode 12 and the air electrode 13 was measured up to 1000 hours. From the voltage V 0 at the start of the test and the voltage V T after 1000 hours had elapsed, the deterioration rate (%)=(V T -V 0 )/V 0 ×100, which represents the rate of increase in the electrical resistance between the fuel electrode 12 and the air electrode 13, was calculated.

表1に、実施例および比較例における活性層の組成、第2の粒子23の円相当径による粒度分布における第2の粒子23の最大径の1/20以下の円相当径をもつ第2の粒子23の頻度(%)、第2の粒子23の最大径の1/20以下の円相当径をもつ第2の粒子23の面積の、全ての第2の粒子23の面積に対する割合(%)、A/B、C/D、界面長に対する第1の界面27の割合(%)、界面長に対する第2の界面28の割合(%)、界面長に対する第3の界面29の割合(%)、及び、耐久試験による電気化学セルの劣化率(%)を示した。 Table 1 shows the composition of the active layer in the examples and comparative examples, the frequency (%) of second particles 23 having a circle equivalent diameter of 1/20 or less of the maximum diameter of the second particles 23 in the particle size distribution by the circle equivalent diameter of the second particles 23, the ratio (%) of the area of the second particles 23 having a circle equivalent diameter of 1/20 or less of the maximum diameter of the second particles 23 to the area of all the second particles 23, A/B, C/D, the ratio (%) of the first interface 27 to the interface length, the ratio (%) of the second interface 28 to the interface length, the ratio (%) of the third interface 29 to the interface length, and the deterioration rate (%) of the electrochemical cell in the durability test.

Figure 0007482718000001
表1に示すように、第2の粒子23の最大径の1/20以下の円相当径をもつ第2の粒子23の頻度が10%以下である実施例1及び2は、その頻度が21%である比較例1に比べて劣化率が低く、耐久性に優れることが明らかになった。
Figure 0007482718000001
As shown in Table 1, Examples 1 and 2, in which the frequency of second particles 23 having a circular equivalent diameter that is 1/20 or less of the maximum diameter of second particles 23 is 10% or less, have a lower deterioration rate and are superior in durability compared to Comparative Example 1, in which the frequency is 21%.

第2の粒子23の最大径の1/20以下の円相当径をもつ第2の粒子23の面積の、全ての第2の粒子23の面積に対する割合が0.1%以下である実施例1及び2は、その割合が0.54%である比較例1に比べて劣化率が低く、耐久性に優れることが明らかになった。 It was revealed that Examples 1 and 2, in which the ratio of the area of second particles 23 having a circle equivalent diameter of 1/20 or less of the maximum diameter of the second particles 23 to the area of all second particles 23 is 0.1% or less, have a lower deterioration rate and are superior in durability compared to Comparative Example 1, in which the ratio is 0.54%.

A/Bが0.9より大きく1.1未満である実施例1及び2は、A/Bが1.11である比較例1に比べて劣化率が低く、耐久性に優れることが明らかになった。 It was revealed that Examples 1 and 2, in which A/B is greater than 0.9 and less than 1.1, have a lower deterioration rate and are more durable than Comparative Example 1, in which A/B is 1.11.

C/Dが0.9より大きく1.1未満である実施例1及び2は、C/Dが1.10である比較例1に比べて劣化率が低く、耐久性に優れることが明らかになった。 It was revealed that Examples 1 and 2, in which the C/D ratio was greater than 0.9 and less than 1.1, had a lower deterioration rate and superior durability compared to Comparative Example 1, in which the C/D ratio was 1.10.

界面長に対する第2の界面28の割合が40%以上である実施例1及び2は、その割合が39.2%である実施例1に比べて劣化率が低く、耐久性に優れることが明らかになった。実施例1及び2は、界面長に対する第3の界面29の割合が、界面長に対する他の界面27,28の割合よりも低かった。 It was revealed that Examples 1 and 2, in which the ratio of the second interface 28 to the interface length was 40% or more, had a lower deterioration rate and superior durability than Example 1, in which the ratio was 39.2%. In Examples 1 and 2, the ratio of the third interface 29 to the interface length was lower than the ratios of the other interfaces 27 and 28 to the interface length.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。 The present invention has been described above based on the embodiments, but the present invention is in no way limited to the above embodiments, and it can be easily imagined that various improvements and modifications are possible within the scope of the invention without departing from its spirit.

実施形態では、電解質層11と空気極13との間に中間層14が配置された電気化学セル10について説明したが、必ずしもこれに限られるものではない。電解質層11や空気極13の材料によって中間層14を省略することは当然可能である。 In the embodiment, the electrochemical cell 10 in which the intermediate layer 14 is disposed between the electrolyte layer 11 and the air electrode 13 has been described, but this is not necessarily limited to this. Of course, it is possible to omit the intermediate layer 14 depending on the materials of the electrolyte layer 11 and the air electrode 13.

実施例では、燃料極12に含まれる電解質がGd0.2Ce0.82-δの場合について説明したが、必ずしもこれに限られるものではない。燃料極12に含まれる電解質は適宜設定できる。 In the embodiment, the electrolyte contained in the fuel electrode 12 is Gd 0.2 Ce 0.8 O 2-δ , but this is not necessarily limited to this. The electrolyte contained in the fuel electrode 12 can be set as appropriate.

10 電気化学セル
11 電解質層
12 燃料極
13 空気極
21 活性層
22 第1の粒子
23 第2の粒子
26 気孔
27 第1の界面
28 第2の界面
29 第3の界面
REFERENCE SIGNS LIST 10 Electrochemical cell 11 Electrolyte layer 12 Anode 13 Cathode 21 Active layer 22 First particle 23 Second particle 26 Pore 27 First interface 28 Second interface 29 Third interface

Claims (4)

電解質層と、前記電解質層の一方の面に設けられた燃料極と、前記電解質層の他方の面に設けられた空気極と、を備え、
前記燃料極は、前記電解質層に接する活性層を含み、
前記活性層は、イオン伝導性を有する第1の粒子、及び、電子伝導性を有する第2の粒子を含み、
前記第1の粒子は燃料極雰囲気下で電子伝導性も有する、燃料極支持型の電気化学セルであって、
前記活性層の断面に現出する、前記第1の粒子と前記第2の粒子との間の第1の界面、前記第1の粒子と気孔との間の第2の界面、及び、前記第2の粒子と前記気孔との間の第3の界面において、
前記第1の界面の長さと、前記第2の界面の長さと、前記第3の界面の長さと、を合わせた界面長に対する前記第2の界面の長さの割合は40%以上である電気化学セル。
The fuel cell comprises an electrolyte layer, a fuel electrode provided on one surface of the electrolyte layer, and a cathode provided on the other surface of the electrolyte layer,
the anode includes an active layer in contact with the electrolyte layer,
the active layer includes first particles having ionic conductivity and second particles having electronic conductivity;
The first particles also have electronic conductivity in an anode atmosphere,
a first interface between the first particle and the second particle, a second interface between the first particle and a pore, and a third interface between the second particle and the pore, which appear in a cross section of the active layer,
An electrochemical cell, wherein a ratio of a length of the second interface to a total interface length of the first interface, the second interface, and the third interface is 40% or more.
前記界面長に対する前記第1の界面の長さの割合と、前記界面長に対する前記第2の界面の長さの割合と、前記界面長に対する前記第3の界面の長さの割合と、を比較したときに、前記界面長に対する前記第3の界面の長さの割合が最も低い請求項1記載の電気化学セル。 The electrochemical cell of claim 1, wherein the ratio of the length of the third interface to the interface length is the lowest when comparing the ratio of the length of the first interface to the interface length, the ratio of the length of the second interface to the interface length, and the ratio of the length of the third interface to the interface length. 前記第2の粒子の、前記断面上の第1の方向の長さの平均値Aを、前記第1の方向に垂直な前記断面上の第2の方向の長さの平均値Bで除した値A/Bは、0.9より大きく1.1未満である請求項1又は2に記載の電気化学セル。 The electrochemical cell according to claim 1 or 2, wherein the value A/B obtained by dividing the average length A of the second particles in the first direction on the cross section by the average length B of the second particles in the second direction on the cross section perpendicular to the first direction is greater than 0.9 and less than 1.1. 前記第1の粒子の、前記断面上の第1の方向の長さの平均値Cを、前記第1の方向に垂直な前記断面上の第2の方向の長さの平均値Dで除した値C/Dは、0.9より大きく1.1未満である請求項1から3のいずれかに記載の電気化学セル。 An electrochemical cell according to any one of claims 1 to 3, wherein the value C/D obtained by dividing the average length C of the first particles in a first direction on the cross section by the average length D of the first particles in a second direction on the cross section perpendicular to the first direction is greater than 0.9 and less than 1.1.
JP2020143669A 2020-08-27 2020-08-27 Electrochemical Cell Active JP7482718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020143669A JP7482718B2 (en) 2020-08-27 2020-08-27 Electrochemical Cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020143669A JP7482718B2 (en) 2020-08-27 2020-08-27 Electrochemical Cell

Publications (2)

Publication Number Publication Date
JP2022038934A JP2022038934A (en) 2022-03-10
JP7482718B2 true JP7482718B2 (en) 2024-05-14

Family

ID=80498643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020143669A Active JP7482718B2 (en) 2020-08-27 2020-08-27 Electrochemical Cell

Country Status (1)

Country Link
JP (1) JP7482718B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327278A (en) 2003-04-25 2004-11-18 Nissan Motor Co Ltd Electrode material for fuel cell, and solid oxide fuel cell using same
JP2014026720A (en) 2011-10-14 2014-02-06 Ngk Insulators Ltd Fuel battery cell
JP2019091584A (en) 2017-11-14 2019-06-13 日本特殊陶業株式会社 Electrochemical reaction single cell and electrochemical reaction cell stack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327278A (en) 2003-04-25 2004-11-18 Nissan Motor Co Ltd Electrode material for fuel cell, and solid oxide fuel cell using same
JP2014026720A (en) 2011-10-14 2014-02-06 Ngk Insulators Ltd Fuel battery cell
JP2019091584A (en) 2017-11-14 2019-06-13 日本特殊陶業株式会社 Electrochemical reaction single cell and electrochemical reaction cell stack

Also Published As

Publication number Publication date
JP2022038934A (en) 2022-03-10

Similar Documents

Publication Publication Date Title
KR20170132140A (en) Proton conductor, solid electrolyte layer for fuel cell, cell structure, and fuel cell including the same
WO2017002559A1 (en) Fuel cell
KR20130123189A (en) Anode support for solid oxide fuel cell and manufacturing method thereof, and solid oxide fuel cell including the anode support
JP2021155852A (en) Production method of high temperature steam electrolytic cell, production method of hydrogen electrode layer for high temperature steam electrolytic cell, and production method of solid oxide electrochemical cell
JP2012195281A (en) Solid oxide fuel cell
JP2015062165A (en) Solid oxide fuel cell
KR101734854B1 (en) Powder mixture for layer in a solid oxide fuel cell
JP2017145445A (en) Electrode for electrochemical cell and electrochemical cell
JP6664132B2 (en) Porous structure, method of manufacturing the same, and electrochemical cell using the same and method of manufacturing the same
JP7482718B2 (en) Electrochemical Cell
JP7482716B2 (en) Electrochemical Cell
JP7482717B2 (en) Electrochemical Cell
US10483578B2 (en) Method for manufacturing anode support of solid oxide fuel cell, and anode support of solid oxide fuel cell
JP3729194B2 (en) Solid oxide fuel cell
JP7545264B2 (en) Method for manufacturing an electrochemical cell
CN109478648B (en) Fuel cell
EP2688128B1 (en) Solid oxide fuel cell
US11453618B2 (en) Ceramic sintering
JP7107875B2 (en) Manufacturing method of fuel electrode-solid electrolyte layer composite
JP2014067562A (en) Solid oxide type fuel cell and power generating method using the same
Suzuki et al. Low temperature densification process of solid-oxide fuel cell electrolyte controlled by anode support shrinkage
JP2022034601A (en) Fuel electrode for electrochemical cell
JP6712119B2 (en) Solid oxide fuel cell stack
US20230067972A1 (en) Solid oxide fuel cells and methods of forming thereof
JP7136185B2 (en) cell structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240430

R150 Certificate of patent or registration of utility model

Ref document number: 7482718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150