JP7472826B2 - Electric resistance welded steel pipe and its manufacturing method - Google Patents
Electric resistance welded steel pipe and its manufacturing method Download PDFInfo
- Publication number
- JP7472826B2 JP7472826B2 JP2021033959A JP2021033959A JP7472826B2 JP 7472826 B2 JP7472826 B2 JP 7472826B2 JP 2021033959 A JP2021033959 A JP 2021033959A JP 2021033959 A JP2021033959 A JP 2021033959A JP 7472826 B2 JP7472826 B2 JP 7472826B2
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- electric
- resistance welded
- welded steel
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 133
- 239000010959 steel Substances 0.000 title claims description 133
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 238000000034 method Methods 0.000 claims description 40
- 238000005496 tempering Methods 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 25
- 238000010791 quenching Methods 0.000 claims description 21
- 230000000171 quenching effect Effects 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 16
- 230000009466 transformation Effects 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 12
- 238000003466 welding Methods 0.000 claims description 7
- 238000005422 blasting Methods 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 238000005098 hot rolling Methods 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910000734 martensite Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 30
- 239000010410 layer Substances 0.000 description 14
- 238000005261 decarburization Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 229910052761 rare earth metal Inorganic materials 0.000 description 10
- 150000002910 rare earth metals Chemical class 0.000 description 10
- 230000007423 decrease Effects 0.000 description 8
- 238000010276 construction Methods 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 229910001567 cementite Inorganic materials 0.000 description 5
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910001562 pearlite Inorganic materials 0.000 description 3
- -1 0.0005-0.0300% Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000003796 beauty Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Heat Treatment Of Articles (AREA)
Description
本発明は、特に建設機械用のフレーム部材(本発明では建機フレームという)、中でも、クレーンラチス用、あるいはクレーンブーム用として好適な高強度かつ低温靭性に優れた電縫溶接鋼管およびその製造方法に関する。 The present invention relates to electric resistance welded steel pipes with high strength and excellent low-temperature toughness that are particularly suitable for use in frame members for construction machinery (referred to as construction machinery frames in this invention), particularly for crane lattices and crane booms, and a method for manufacturing the same.
建機フレーム、とくにクレーンラチス用、あるいはクレーンブーム用としての鋼管は、クレーンの大型化および極寒冷地での使用を考慮し、高強度化と高靭性化が求められている。
最近では、引張強度(TS):780MPa級の鋼管で、かつ-20℃という低温での優れた靭性が要求されるようになってきた。これらの用途に用いられる鋼管は、肉厚がmm程度の比較的薄肉のものから、10mmを超える厚肉品にいたるまで幅広く、これまでは、薄肉のものについては、シームレス鋼管あるいは電縫溶接鋼管が、また厚肉のものについてはシームレス鋼管が使われ、かつ厚肉の場合には造管後の後熱処理(焼き入れ・焼き戻し)により必要強度を確保する方法がとられてきた。
Steel pipes for construction machinery frames, particularly for crane lattices and crane booms, are required to have high strength and toughness in consideration of the increasing size of cranes and their use in extremely cold regions.
Recently, there has been a demand for steel pipes with a tensile strength (TS) of 780 MPa and excellent toughness at a low temperature of -20° C. Steel pipes used for these applications range widely from relatively thin ones with a wall thickness of about mm to thick ones with a wall thickness of over 10 mm, and so far, seamless steel pipes or electric resistance welded steel pipes have been used for thin ones, while seamless steel pipes have been used for thick ones, and in the case of thick ones, a method has been used in which the required strength is ensured by post-heat treatment (quenching and tempering) after pipe making.
例えば、特許文献1に開示されている技術によれば、クレーンのブーム等の機械構造部材に適用される引張強度が700MPa以上で、かつ伸びが25%以上の高強度を有し、さらに、シャルピー衝撃試験によって得られる破面遷移温度vTrsが-40℃以下であるという低温靭性に優れる継目無鋼管を提供することができる。 For example, the technology disclosed in Patent Document 1 makes it possible to provide seamless steel pipes that have a tensile strength of 700 MPa or more and an elongation of 25% or more, which is suitable for use in mechanical structural components such as crane booms, and that have excellent low-temperature toughness, with a fracture surface transition temperature vTrs of -40°C or less as determined by a Charpy impact test.
しかしながら、特許文献1で提案された技術は、高強度と高靭性の両方を有する鋼管であるものの、一般的に電縫鋼管と比べて製造コストが高い継目無鋼管のため、価格競争力の面で課題がある。
さらに、造管工程(穿孔前の丸ビレットの高温加熱:約1200℃)でパイプ表面に脱炭層が生じるため、その後に実施される焼入れ工程において、焼入れ硬さ不足が生じたり、かかる脱炭層部分の鋼管組織の粒径が焼入れ時の加熱工程でさらに粗大化することによって低温靭性が低下したりする問題があった。
However, although the technology proposed in Patent Document 1 produces a steel pipe having both high strength and high toughness, the production costs of the seamless steel pipe are generally higher than those of electric resistance welded steel pipe, and therefore there are issues in terms of price competitiveness.
Furthermore, a decarburized layer is formed on the surface of the pipe during the pipe-making process (high-temperature heating of the round billet before piercing: approximately 1,200°C), which can result in insufficient hardness after quenching in the subsequent quenching process, and can also cause the grain size of the steel pipe structure in the decarburized layer to further coarsen during the heating process during quenching, resulting in a decrease in low-temperature toughness.
これらの問題は、焼入れ工程の前にパイプの表面を研削し表面脱炭層を削除することで回避が可能ではあるものの、かかるパイプの内面の研削は極めて難しいばかりでなく研削工程の追加という製造コストの上昇につながる問題があった。 Although these problems can be avoided by grinding the surface of the pipe and removing the decarburized surface layer before the hardening process, grinding the inner surface of such a pipe is not only extremely difficult, but also requires the addition of an additional grinding process, which increases manufacturing costs.
本発明は、かかる現状に鑑み、高強度かつ優れた低温靭性を有した建機フレーム用の電縫溶接鋼管、とりわけクレーンラチスあるいはクレーンブーム用の鋼管において、鋼管の内側の表面である管内表面および鋼菅の外側の表面である管外表面(以下、管内表面および管外表面ともいう)における表面脱炭層の少ない鋼管が要求され、同時に厚肉品にも対応するような溶接品質に優れた電縫溶接鋼管を、かかる電縫溶接鋼管を低コストに製造する方法とともに提供することを目的とする。 In view of the current situation, the present invention aims to provide electric-resistance welded steel pipes with high strength and excellent low-temperature toughness for construction machinery frames, particularly steel pipes for crane lattices or crane booms, which require steel pipes with little surface decarburization on the inner pipe surface, which is the inside surface of the steel pipe, and the outer pipe surface, which is the outside surface of the steel pipe (hereinafter also referred to as the inner pipe surface and the outer pipe surface), and which have excellent welding quality and can also be used for thick-walled products, together with a method for manufacturing such electric-resistance welded steel pipes at low cost.
発明者らは、鋭意研究を繰り返し、鋼成分の最適化、特にCr量を最適化することによって、焼入れ工程における素管の加熱段階での表面脱炭、すなわち管外表面および管内表面の脱炭を効果的に抑制することが可能であることを知見した。
Crはセメンタイトを安定化させる元素なので、焼入れ時の加熱中に、焼入れ前の組織におけるパーライト中のセメンタイトが溶解して拡散し脱炭反応に供されるのを防ぐ効果がある。すなわち、パイプの全厚にわたり均一な焼入れ後の硬さ(強度)を得ることが可能となるのである。さらに、パイプ表面の結晶粒粗大化が抑制されることで、鋼管の表面近傍における低温靭性の低下を、効果的に防ぐことが可能であることを併せて知見した。
The inventors have conducted extensive research and discovered that by optimizing the steel components, in particular the amount of Cr, it is possible to effectively suppress surface decarburization, i.e., decarburization of the outer and inner surfaces of the tube, during the heating stage of the mother tube in the quenching process.
Cr is an element that stabilizes cementite, and therefore has the effect of preventing the cementite in the pearlite in the structure before quenching from dissolving and diffusing during heating during quenching, and being subjected to a decarburization reaction. In other words, it is possible to obtain uniform hardness (strength) after quenching throughout the entire thickness of the pipe. Furthermore, it was also discovered that by suppressing the coarsening of crystal grains on the pipe surface, it is possible to effectively prevent a decrease in low-temperature toughness near the surface of the steel pipe.
本発明は、かかる知見に基づいて、さらに検討を加えて完成されたものである。
すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.20~0.30%、Si:0.05~0.50%、Mn:0.05~1.50%、P:0.0005~0.0300%、S:0.0001~0.0300%、Al:0.010~0.100%、Cr:0.25~0.50%、Ti:0.010~0.100%、B:0.0001~0.0050%、N:0.0005~0.0100%およびCa:0.0001~0.0050%を含み、残部Feおよび不可避的不純物であって、かつTi/N≧4.0の関係を満足する組成を有し、鋼管の内表面および外表面の両面に脱炭層を備え、該脱炭層深さは最大深さがそれぞれ0.20mm以下である電縫鋼管。
The present invention was completed based on these findings and through further investigation.
That is, the gist and configuration of the present invention are as follows.
1. An electric resistance welded steel pipe containing, by mass%, 0.20-0.30% C, 0.05-0.50% Si, 0.05-1.50% Mn, 0.0005-0.0300%, S: 0.0001-0.0300%, Al: 0.010-0.100%, Cr: 0.25-0.50%, Ti: 0.010-0.100%, B: 0.0001-0.0050%, N: 0.0005-0.0100% and Ca: 0.0001-0.0050%, with the balance being Fe and unavoidable impurities, and having a composition which satisfies the relationship Ti/N≧4.0, and which has a decarburized layer on both its inner surface and outer surface, and the maximum depth of each of the decarburized layers is 0.20 mm or less.
2.さらに、質量%で、Nb:0.0100~0.1000%、Mo:0.05~0.30%、Cu:0.001~0.500%、Ni:0.001~0.500%、W:0.001~0.050%、V:0.001~0.010%、REM:0.020%以下のうちから選んだ1種または2種以上を含有する前記1に記載の電縫鋼管。 2. The electric welded steel pipe according to 1, further containing, by mass%, one or more selected from the following: Nb: 0.0100-0.1000%, Mo: 0.05-0.30%, Cu: 0.001-0.500%, Ni: 0.001-0.500%, W: 0.001-0.050%, V: 0.001-0.010%, REM: 0.020%.
3.前記1に記載の電縫鋼管を製造する方法であって、質量%で、C:0.20~0.30%、Si:0.05~0.50%、Mn:0.05~1.50%、P:0.0005~0.0300%、S:0.0001~0.0300%、Al:0.010~0.100%、Cr:0.25~0.50%、Ti:0.010~0.100%、B:0.0001~0.0050%、N:0.0005~0.0100%およびCa:0.0001~0.0050%を含み、残部Feおよび不可避的不純物であって、かつTi/N≧4.0の関係を満足する組成の鋼素材に、熱間圧延を施して熱延板とする熱延工程を施して鋼管用素材とし、該鋼管用素材を成形して円筒状のオープン管とし、該オープン管を電縫溶接して電縫鋼管とする造管工程を施し、該電縫鋼管をAc3変態点以上まで昇温し、50℃/s以上の冷却速度でマルテンサイト変態点(Ms点)以下まで冷却して焼き入れを行う工程、および焼き戻し工程を備える電縫鋼管の製造方法。 3. A method for producing an electric resistance welded steel pipe as described in 1 above, comprising the steps of: C: 0.20-0.30%, Si: 0.05-0.50%, Mn: 0.05-1.50%, P: 0.0005-0.0300%, S: 0.0001-0.0300%, Al: 0.010-0.100%, Cr: 0.25-0.50%, Ti: 0.010-0.100%, B: 0.0001-0.0050%, N: 0. a hot rolling process for hot rolling a steel material having a composition containing Ti: 0.0005-0.0100% and Ca: 0.0001-0.0050%, the balance being Fe and unavoidable impurities, and satisfying the relationship of Ti/N≧4.0, to form a hot rolled sheet to produce a steel pipe material, a pipe-making process for forming the steel pipe material into a cylindrical open pipe, and a pipe-making process for electric resistance welding the open pipe to produce an electric resistance welded steel pipe, a process for heating the electric resistance welded steel pipe to an Ac3 transformation point or higher, and a process for quenching by cooling to a martensite transformation point (Ms point) or lower at a cooling rate of 50°C/s or higher, and a tempering process.
4.前記2に記載の電縫鋼管を製造する方法であって、前記鋼素材の組成にさらに、質量%で、Nb:0.0100~0.1000%、Mo:0.05~0.30%、Cu:0.001~0.500%、Ni:0.001~0.500%、W:0.001~0.050%、V:0.001~0.010%、REM:0.020%以下のうちから選ばれた1種または2種以上を含有する前記3に記載の電縫鋼管の製造方法。 4. A method for producing an electric-resistance welded steel pipe as described in 2 above, wherein the composition of the steel material further contains, by mass%, one or more selected from the following: Nb: 0.0100-0.1000%, Mo: 0.05-0.30%, Cu: 0.001-0.500%, Ni: 0.001-0.500%, W: 0.001-0.050%, V: 0.001-0.010%, REM: 0.020%.
5.前記焼き戻し工程は、焼き戻し後の電縫鋼管の引張強度TSを780~980MPaの範囲とする条件で行う前記3または4に記載の電縫鋼管の製造方法。 5. The method for manufacturing an electric-resistance welded steel pipe described in 3 or 4 above, in which the tempering process is carried out under conditions that result in a tensile strength TS of the electric-resistance welded steel pipe after tempering in the range of 780 to 980 MPa.
6.前記焼き戻し工程後の電縫鋼管の外表面に、ショットブラストを施す前記3~5のいずれか1項に記載の電縫鋼管の製造方法。 6. The method for manufacturing an electric-resistance welded steel pipe described in any one of claims 3 to 5, in which shot blasting is performed on the outer surface of the electric-resistance welded steel pipe after the tempering process.
7.前記1または2に記載の電縫鋼管を製造する方法であって、前記1または2に記載の成分を有するオープン管を電縫溶接する造管工程を施して電縫鋼管とし、該電縫鋼管をAc3変態点以上まで昇温し、50℃/s以上の冷却速度でマルテンサイト変態点(Ms点)以下まで冷却する焼入れを施し、次いで焼き戻しを施す電縫鋼管の製造方法。 7. A method for producing an electric resistance welded steel pipe as described in 1 or 2 above, comprising the steps of: conducting a pipe-making process of electric resistance welding an open pipe having the composition as described in 1 or 2 above to obtain an electric resistance welded steel pipe; heating the electric resistance welded steel pipe to the Ac3 transformation point or higher; quenching the electric resistance welded steel pipe by cooling it at a cooling rate of 50°C/s or higher to the martensite transformation point (Ms point) or lower; and then tempering the electric resistance welded steel pipe.
8.前記焼き戻しは、焼き戻し後の電縫鋼管の引張強度TSを780~980MPaとする条件で行う前記7に記載の電縫鋼管の製造方法。 8. The method for manufacturing an electric-resistance welded steel pipe described in 7 above, in which the tempering is performed under conditions that result in a tensile strength TS of the electric-resistance welded steel pipe after tempering of 780 to 980 MPa.
9.前記焼き戻し後の電縫鋼管の外表面に、ショットブラストを施す前記7または8に記載の電縫鋼管の製造方法。 9. The method for manufacturing an electric-resistance welded steel pipe described in 7 or 8, in which shot blasting is performed on the outer surface of the electric-resistance welded steel pipe after the tempering.
本発明によれば、引張強度TSが780~980MPaの高強度で、かつ低温衝撃特性(吸収エネルギー≧24J、シャルピー試験片サイズ幅10mm×高さ5mm、試験温度:-20℃)に優れた建設機械の構造部材、特にクレーンラチスあるいはクレーンブーム用に好適な電縫鋼管を製造・提供することが可能である。 The present invention makes it possible to manufacture and provide electric resistance welded steel pipes that have a high tensile strength (TS) of 780 to 980 MPa and excellent low-temperature impact properties (absorbed energy ≧ 24 J, Charpy test piece size width 10 mm × height 5 mm, test temperature: -20°C) and are suitable for structural components of construction machinery, particularly crane lattices or crane booms.
以下、本発明の実施形態について説明する。
[成分組成]
本発明の建機フレーム部材、特にクレーンラチスあるいはクレーンブーム用電縫鋼管(以下、単に電縫鋼管または鋼管という場合がある)は、所定の成分組成を有する。以下、各成分の含有量およびかかる含有量の限定理由について説明する。なお、特に断らない限り、以下の鋼管成分にかかる「%」は「質量%」を指すものとする。
C:0.20~0.30%
Cは、クレーンラチス、あるいはクレーンブームに求められる強度(硬さ)を確保するために必要な元素であり、0.20%以上の含有を必要とする。一方、C含有量が0.30%を超えると、低温靱性を劣化させる。そのため、C含有量は、0.30%以下とし、好ましくは0.26%以下とする。
Hereinafter, an embodiment of the present invention will be described.
[Component composition]
The construction machine frame member of the present invention, particularly the electric resistance welded steel pipe for crane lattice or crane boom (hereinafter, sometimes simply referred to as electric resistance welded steel pipe or steel pipe), has a specific chemical composition. The content of each component and the reason for limiting the content are explained below. Unless otherwise specified, "%" in the following steel pipe components refers to "mass %".
C: 0.20 to 0.30%
C is an element necessary to ensure the strength (hardness) required for a crane lattice or a crane boom, and must be contained at 0.20% or more. On the other hand, if the C content exceeds 0.30%, low-temperature toughness is deteriorated. Therefore, the C content is set to 0.30% or less, and preferably 0.26% or less.
Si:0.05~0.50%
Siは、脱酸剤として作用するとともに、固溶強化元素としても作用する元素である。前記効果を得るためには0.05%以上の含有を必要とする。そのため、Si含有量は0.05%以上とする。一方、Siは電縫溶接において酸化物を形成しやすく、特に、管厚6mm以上の電縫溶接品質の確保が難しくなる厚肉品においては、Siを0.50%以下にすることが肝要である。そのため、Si含有量は0.50%以下とする。
Si: 0.05 to 0.50%
Silicon acts as a deoxidizer and also acts as a solid solution strengthening element. In order to obtain the above effect, a content of 0.05% or more is required. Therefore, the Si content is set to 0.05% or more. On the other hand, silicon is prone to forming oxides during electric resistance welding, and it is essential to keep the Si content at 0.50% or less, particularly in thick-walled products with a pipe thickness of 6 mm or more, where it is difficult to ensure the quality of electric resistance welding. Therefore, the Si content is set to 0.50% or less.
Mn:0.05~1.50%
Mnは、固溶して鋼の強度向上に寄与するとともに、鋼の焼入れ性を向上させる元素である。クレーンラチス、あるいはクレーンブームに求められる強度(硬さ)を確保するためには、0.05%以上の含有を必要とする。そのため、Mn含有量は0.05%以上、好ましくは0.2%以上とする。一方、1.50%を超えて含有すると、靭性が低下することに加え、高質化して造管が難しくなる。そのため、Mn含有量は1.50%以下、好ましくは1.45%以下とする。
Mn: 0.05 to 1.50%
Mn is an element that contributes to improving the strength of steel by dissolving in solid solution and improves the hardenability of steel. In order to ensure the strength (hardness) required for a crane lattice or a crane boom, a content of 0.05% or more is required. Therefore, the Mn content is set to 0.05% or more, preferably 0.2% or more. On the other hand, if the content exceeds 1.50%, not only does the toughness decrease, but the quality becomes high and pipe manufacturing becomes difficult. Therefore, the Mn content is set to 1.50% or less, preferably 1.45% or less.
P:0.0005~0.0300%
Pは、固溶強化元素としても作用する元素である。前記効果を得るためには0.0005%以上の含有を必要とする。一方で、過度の添加は粒界等に偏析し、溶接割れ性および靭性を低下につながる。そのため、クレーンラチス、あるいはクレーンブームとして用いるためにはP含有量を0.0300%以下に低減する必要がある。なお、好ましくは0.0250%以下である。
P: 0.0005 to 0.0300%
P also acts as a solid solution strengthening element. To obtain the above effect, a content of 0.0005% or more is required. On the other hand, excessive addition of P causes segregation at grain boundaries, etc., leading to reduced weld crack resistance and toughness. Therefore, in order to use it as a crane lattice or a crane boom, the P content must be reduced to 0.0300% or less. Preferably, it is 0.0250% or less.
S:0.0001~0.0300%
Sは、鋼中では硫化物系介在物として存在し、熱間加工性、靭性を低下させる元素である。クレーンラチス、あるいはクレーンブーム用電縫鋼管として用いるためにはS含有量を0.0300%以下に低減すること必要がある。なお、好ましくは0.0100%以下である。一方で、過度に低減することは製鋼(脱硫)コストの上昇につながるため下限は0.0001%とする。
S: 0.0001 to 0.0300%
S exists as sulfide-based inclusions in steel and is an element that reduces hot workability and toughness. In order to use the steel as an electric resistance welded steel pipe for crane lattices or crane booms, it is necessary to reduce the S content to 0.0300% or less. The S content is preferably 0.0100% or less. On the other hand, excessive reduction leads to an increase in steelmaking (desulfurization) costs, so the lower limit is set to 0.0001%.
Al:0.010~0.100%
Alは、脱酸剤として作用するとともに、Nと結合しAlNとして析出し、強度を高める効果を有する。前記効果を得るためには、0.010%以上の含有を必要とする。そのため、Al含有量は0.010%以上とする。一方、0.100%を超えて多量に含有すると、酸化物系介在物量が増加し、加工性が低下する。そのため、Al含有量は0.100%以下、好ましくは0.050%以下とする。
Al: 0.010 to 0.100%
Al acts as a deoxidizer and also combines with N to precipitate as AlN, thereby increasing strength. In order to obtain this effect, an Al content of 0.010% or more is required. Therefore, the Al content is set to 0.010% or more. On the other hand, if the Al content is greater than 0.100%, the amount of oxide-based inclusions increases and workability decreases. Therefore, the Al content is set to 0.100% or less, preferably 0.050% or less.
Cr:0.25~0.50%
Crは、本発明において重要な元素である。Crは固溶して鋼の強度向上に寄与すると同時に、焼入れ時の加熱工程において、素管の構成相であるフェライトーパーライト相のうち、パーライト中のセメンタイトを安定化させることができるため、セメンタイトの溶解と、それにともなう炭素の拡散による脱炭反応の進行を抑制させる元素である。前記効果を得るために、Crは0.25%以上の含有が肝要である。一方、Cr含有量が0.50%を超えると、酸化物が形成されやすくなり、電縫溶接部にCr酸化物が残存して電縫溶接品質が低下する。そのため、Cr含有量は0.50%以下とする。なお、好ましくは0.45%以下である。
Cr: 0.25 to 0.50%
Cr is an important element in the present invention. Cr is dissolved to contribute to improving the strength of steel, and at the same time, Cr can stabilize cementite in pearlite of the ferrite-pearlite phase, which is the constituent phase of the mother pipe, during the heating process during quenching, so that it is an element that suppresses the dissolution of cementite and the progress of the decarburization reaction due to the diffusion of carbon that accompanies the dissolution of cementite. In order to obtain the above effect, it is essential that the Cr content is 0.25% or more. On the other hand, if the Cr content exceeds 0.50%, oxides are easily formed, and Cr oxides remain in the electric resistance welded part, which deteriorates the quality of the electric resistance welded part. Therefore, the Cr content is set to 0.50% or less. In addition, it is preferably 0.45% or less.
Ti:0.010~0.100%
Tiは、鋼中のNと結合しTiNを形成することで、焼入れ性の向上に有効なNと結合していない固溶ホウ素を確保する効果がある。そのためには、0.010%以上の添加が必要である。一方で、0.100%を超えて含有すると、延性が低下する。このため、Tiの含有量は0.100%以下に限定する。なお、好ましくは0.050%以下である。
Ti: 0.010 to 0.100%
Ti combines with N in steel to form TiN, which has the effect of ensuring dissolved boron that is not combined with N, which is effective in improving hardenability. To achieve this, it is necessary to add 0.010% or more. On the other hand, if the content exceeds 0.100%, ductility decreases. For this reason, the Ti content is limited to 0.100% or less. Preferably, it is 0.050% or less.
B:0.0001~0.0050%
Bは鋼中に固溶状態で存在することにより、焼入れ性を向上させることができる。このような効果を発揮するには0.0001%以上の添加が必要である。一方で、0.0050%を超えて添加しても上記の効果は飽和すると同時に靭性の低下につながるため、上限を0.0050%とする。
B: 0.0001 to 0.0050%
B can improve hardenability by existing in a solid solution state in steel. To achieve this effect, the addition of 0.0001% or more is necessary. On the other hand, if the content of B exceeds 0.0050%, the above effect is saturated and the toughness is reduced, so the upper limit is set to 0.0050%.
N:0.0005~0.0100%
Nは、不純物として不可避的に含有されるものの、鋼中の窒化物形成元素と結合し、結晶粒の粗大化の抑制、さらには焼戻後の強度増加に寄与する。このような効果を発揮するには0.0005%以上の含有を有する。一方、0.0100%を超える含有は、溶接部の靭性を低下させる。そのため、Nの含有量は、0.0100%以下、好ましくは0.0050%以下とする。
N: 0.0005 to 0.0100%
Although N is inevitably contained as an impurity, it combines with nitride-forming elements in the steel, suppresses the coarsening of crystal grains, and contributes to increasing strength after tempering. To achieve such effects, the N content is 0.0005% or more. On the other hand, a content exceeding 0.0100% reduces the toughness of the welded portion. Therefore, the N content is set to 0.0100% or less, preferably 0.0050% or less.
Ca:0.0001~0.0050%
Caは、硫化物系介在物の形態を制御して、微細な略球形の介在物とする作用を有する元素である。ここで、スラブ中に存在するMnSは熱間で展伸しやすく加工性や靭性を低下させるが、Caを添加することで、スラブ中の固溶Sは、MnSを形成せずに、熱延工程で展伸しにくく比較的球状のCaSを形成する。そのため、前記MnSの影響を抑制することが可能となる。かかる効果を発揮するためには、Ca含有量は0.0001%以上、好ましくは0.0010%以上とする。一方、Ca含有量が0.0050%を超えると、粗大なCaS系のクラスターが多くなりすぎて、かえって加工性や靭性が低下する。そのため、Ca含有量は0.0050%以下、好ましくは0.0030%以下である。
Ca: 0.0001 to 0.0050%
Ca is an element that has the effect of controlling the form of sulfide-based inclusions to make them fine, approximately spherical inclusions. Here, MnS present in the slab is easily stretched in hot rolling, which reduces workability and toughness, but by adding Ca, the solid solution S in the slab does not form MnS, but forms relatively spherical CaS, which is difficult to stretch in the hot rolling process. Therefore, it is possible to suppress the influence of MnS. In order to exert such an effect, the Ca content is 0.0001% or more, preferably 0.0010% or more. On the other hand, if the Ca content exceeds 0.0050%, the number of coarse CaS-based clusters becomes too large, which in turn reduces workability and toughness. Therefore, the Ca content is 0.0050% or less, preferably 0.0030% or less.
Ti/N≧4.0
Tiは、鋼中のNと結合しTiNを形成することで、焼入れ性の向上に有効なNと結合していない固溶ホウ素を確保する効果がある。そのためには、前述のTi量およびN量の規定に加え、鋼中のN量に応じた添加量が必要になる。したがって、本発明では、鋼中のTi量および鋼中のN量がそれらの質量比でTi/N≧4.0(なお、式中、Tiは鋼中のTi量の質量%を、Nは鋼中のN量の質量%をそれぞれ意味する)の関係を満たすことが必要である。なお、かかるTi/Nの値の上限に特段の制限はないが、Tiの添加量が過剰に多くなると加工性が低下するため、Ti/Nの上限は20程度であることが好ましい。
Ti/N≧4.0
Ti has the effect of securing dissolved boron that is not bound to N, which is effective in improving hardenability, by combining with N in the steel to form TiN. To achieve this, in addition to the above-mentioned Ti and N amounts, an amount of Ti added according to the amount of N in the steel is required. Therefore, in the present invention, the amount of Ti in the steel and the amount of N in the steel must satisfy the relationship Ti/N≧4.0 (where Ti means the mass% of the Ti amount in the steel, and N means the mass% of the N amount in the steel). There is no particular limit to the upper limit of the Ti/N value, but since an excessively large amount of Ti reduces workability, it is preferable that the upper limit of Ti/N is about 20.
さらに、本発明の他の実施形態として、上記成分組成が、さらに任意に、Nb、Mo、Cu、Ni、W、VおよびREMからなる群より選択される1または2以上の元素を以下に記す量で含むことができる。
Nb:0.0100~0.1000%
Nbは、鋼中のCと結合しNbCを形成し微細分散することで焼入れ工程での加熱中のオーステナイト粒の粗大化を防ぎ、靭性の低下を抑制する元素である。かかる効果を発揮するためには、0.0100%以上の含有が好ましい。一方、Nb含有量が0.1000%を超えると、添加効果が飽和して含有量に見合う効果が得られないため、経済的に不利となる。そのため、Nb含有量は0.1000%以下が好ましく、より好ましくは0.0500%以下である。
Furthermore, as another embodiment of the present invention, the above-mentioned composition may further optionally contain one or more elements selected from the group consisting of Nb, Mo, Cu, Ni, W, V and REM in the amounts described below.
Nb: 0.0100 to 0.1000%
Nb is an element that combines with C in steel to form NbC and finely disperses, thereby preventing coarsening of austenite grains during heating in the quenching process and suppressing a decrease in toughness. In order to exert such effects, a content of 0.0100% or more is preferable. On the other hand, if the Nb content exceeds 0.1000%, the effect of addition becomes saturated and no effect commensurate with the content can be obtained, which is economically disadvantageous. Therefore, the Nb content is preferably 0.1000% or less, more preferably 0.0500% or less.
Mo:0.05~0.30%、
Moは、固溶して鋼の強度向上に寄与する元素である。かかる効果を得るためには、Mo含有量を0.05%以上とすることが望ましい。一方、Mo含有量が0.30%を超えると、効果が飽和すると同時に素材のコストの増加に繋がる。そのため、Mo含有量は0.30%以下が好ましく、より好ましくは0.20%以下である。
Mo: 0.05 to 0.30%,
Mo is an element that contributes to improving the strength of steel by forming a solid solution. In order to obtain such an effect, it is desirable to set the Mo content to 0.05% or more. On the other hand, if the Mo content exceeds 0.30%, the effect saturates and the cost of the material increases. Therefore, the Mo content is preferably 0.30% or less, and more preferably 0.20% or less.
Cu:0.001~0.500%
Cuは、耐食性を向上させる作用を有する元素である。かかる効果を得るには0.001%以上の含有が望ましい。一方、Cuは高価な合金元素であるため、Cu含有量が0.500%を超えると材料コストの高騰を招く。そのため、Cu含有量は0.500%以下が好ましく、より好ましくは0.300%以下である。
Cu: 0.001 to 0.500%
Cu is an element that has the effect of improving corrosion resistance. To obtain such an effect, a content of 0.001% or more is desirable. On the other hand, since Cu is an expensive alloy element, if the Cu content exceeds 0.500%, the material cost will rise. Therefore, the Cu content is preferably 0.500% or less, and more preferably 0.300% or less.
Ni:0.001~0.500%
Niは、Cuと同様、耐食性を向上させる作用を有する元素である。かかる効果を得るには0.001%以上の含有が望ましい。一方、Niは高価な合金元素であるため、Ni含有量が0.500%を超えると材料コストの高騰を招く。そのため、Ni含有量は0.500%以下が好ましく、より好ましくは0.300%以下である。
Ni: 0.001 to 0.500%
Ni, like Cu, is an element that has the effect of improving corrosion resistance. To obtain such an effect, a content of 0.001% or more is desirable. On the other hand, since Ni is an expensive alloy element, if the Ni content exceeds 0.500%, the material cost will rise. Therefore, the Ni content is preferably 0.500% or less, and more preferably 0.300% or less.
W:0.001~0.050%
Wは、Nbと同様に、微細な炭化物を形成して強度(硬さ)の増加に寄与する元素である。かかる効果を得るには0.001%以上の含有が望ましい。一方、W含有量が0.050%を超えると、添加効果が飽和して含有量に見合う効果が得られないため、経済的に不利となる。そのため、W含有量は0.050%以下が好ましく、より好ましくは0.030%以下である。
W: 0.001 to 0.050%
Like Nb, W is an element that forms fine carbides and contributes to increasing strength (hardness). To obtain such an effect, a content of 0.001% or more is desirable. On the other hand, if the W content exceeds 0.050%, the effect of addition becomes saturated and no effect commensurate with the content can be obtained, which is economically disadvantageous. Therefore, the W content is preferably 0.050% or less, more preferably 0.030% or less.
V:0.001~0.010%
Vは、Nbと同様に鋼中のCと結合し炭化物を形成し、焼入れ工程での加熱中のオーステナイト粒の粗大化を防ぎ、靭性の低下を抑制する元素である。かかる効果を発揮するためには、0.001%以上の含有が望ましい。一方、V含有量が0.010%を超えると、添加効果が飽和して含有量に見合う効果が得られないため、経済的に不利となる。そのため、V含有量は0.010%以下が好ましく、より好ましくは0.008%以下である。
V: 0.001 to 0.010%
V is an element that combines with C in steel to form carbides, similar to Nb, prevents coarsening of austenite grains during heating in the quenching process, and suppresses the deterioration of toughness. In order to exert such effects, a content of 0.001% or more is desirable. On the other hand, if the V content exceeds 0.010%, the effect of addition becomes saturated and no effect commensurate with the content can be obtained, which is economically disadvantageous. Therefore, the V content is preferably 0.010% or less, more preferably 0.008% or less.
REM:0.020%以下
REM(希土類金属)は、Caと同様に、硫化物系介在物の形態を微細な略球形の介在物に制御する作用を有する元素である。Caの作用を補完するために、任意にREMを添加することができる。一方、REM含有量が0.020%を超えると、疲労き裂の起点となる介在物の量が過剰となり、かえって耐腐食疲労特性が低下する。そのため、REM含有量は0.020%以下が好ましく、より好ましくは0.010%以下である。一方、REM含有量の下限はとくに限定されないが、REMの添加効果を高めるという観点からは、REM含有量を0.001%以上とすることが好ましい。
なお、本発明における上記した成分以外の残部の成分は、Feおよび不可避的不純物である。
REM: 0.020% or less Like Ca, REM (rare earth metal) is an element that has the effect of controlling the shape of sulfide-based inclusions to fine, approximately spherical inclusions. In order to complement the effect of Ca, REM can be added arbitrarily. On the other hand, if the REM content exceeds 0.020%, the amount of inclusions that become the starting point of fatigue cracks becomes excessive, and the corrosion fatigue resistance property is rather deteriorated. Therefore, the REM content is preferably 0.020% or less, more preferably 0.010% or less. On the other hand, the lower limit of the REM content is not particularly limited, but from the viewpoint of enhancing the effect of adding REM, the REM content is preferably 0.001% or more.
The remaining components other than the above-mentioned components in the present invention are Fe and unavoidable impurities.
本発明における鋼管の表面脱炭について、以下説明する。
本発明に従う鋼管は、表面脱炭すなわち、管内表面および管外表面に、以下に規定する脱炭層(本明細書において全脱炭層ともいう)を備える。なお、本発明において、かかる脱炭層は、JIS G0558に記載された方法に準拠して、鋼管の断面を研磨した後、ナイタール液を用いて腐食し、以下の顕微鏡観察で、鋼材の表面から、脱炭層と生地との化学的性質又は物理的性質の差異が、もはや視認で区別できない位置までの距離を意味する。
かかる全脱炭層の深さは、組織観察(管円周(C)方向断面観察)用試験片を用い、光学顕微鏡(倍率:100倍)で組織を観察し、10視野(1視野当たり約1mm長さ)の最大深さ箇所で規定する。
The surface decarburization of the steel pipe in the present invention will be described below.
The steel pipe according to the present invention is surface decarburized, i.e., has a decarburized layer (also referred to as a total decarburized layer in this specification) as defined below on the inner and outer surfaces of the pipe. Note that, in the present invention, the decarburized layer means the distance from the surface of the steel material to the position where the difference in chemical or physical properties between the decarburized layer and the base material can no longer be visually distinguished when the cross section of the steel pipe is polished and then corroded with a nital solution in accordance with the method described in JIS G0558 and observed under the following microscope.
The depth of the total decarburized layer is determined by observing the structure of a test piece for microstructural observation (cross-sectional observation in the circumferential (C) direction of a pipe) under an optical microscope (magnification: 100 times) and determining the maximum depth point among 10 visual fields (each visual field has a length of about 1 mm).
また、かかる全脱炭層の深さは、管内表面でも管外表面でも0.20mmを超えると、焼入れ後に表面で十分な強度(硬さ)が得られないことに加え、表面の結晶粒の粗大化により低温靭性の低下につながる。したがって、本発明では、かかる全脱炭層の深さの上限を0.20mmとする。なお、望ましくは0.15mmである。なお、下限は全脱炭層がなくても問題ないため0mmである。 Furthermore, if the depth of the total decarburized layer exceeds 0.20 mm on either the inner or outer surface of the tube, not only will sufficient strength (hardness) not be obtained at the surface after quenching, but the low-temperature toughness will decrease due to the coarsening of the crystal grains on the surface. Therefore, in the present invention, the upper limit of the depth of the total decarburized layer is set to 0.20 mm. Preferably, it is 0.15 mm. The lower limit is 0 mm, since there is no problem even if there is no total decarburized layer.
以下、本発明における鋼管の機械的特性(引張強度)と低温靭性(衝撃特性)について説明する。
引張強度TS:780~980MPa
本発明における鋼管は、クレーンの大型化および寒冷地での使用を考慮し、高強度化と高靭性化が求められている。そのためには引張強度TSが780MPa以上であることが必要である。一方で、980MPaを超える高強度になると、必要強度を確保するために、鋼中の炭素量を増やす、あるいは焼き戻し温度を低温化する等の必要が生じ、これらは低温靭性を低下させることにつながる。したがって、引張強度TSの上限は980MPaとする。
The mechanical properties (tensile strength) and low-temperature toughness (impact properties) of the steel pipe of the present invention will be described below.
Tensile strength TS: 780 to 980 MPa
The steel pipe of the present invention is required to have high strength and high toughness in consideration of the increase in size of cranes and use in cold regions. To achieve this, the tensile strength TS must be 780 MPa or more. On the other hand, if the strength exceeds 980 MPa, it becomes necessary to increase the carbon content in the steel or lower the tempering temperature in order to ensure the required strength, which leads to a decrease in low-temperature toughness. Therefore, the upper limit of the tensile strength TS is set to 980 MPa.
シャルピー吸収エネルギー:24J以上(シャルピー試験片のサイズ幅:10mm×高さ:5mm、試験温度:-20℃)
本発明における鋼管は、寒冷地での使用を考慮して、低温衝撃特性として、シャルピー吸収エネルギーシャルピー試験片サイズ:10×5mm、試験温度:-20℃)は24J以上が必要である。24J未満では寒冷地での使用において脆性破壊のリスクが増える。なお、上限については特に制限はない。
Charpy absorbed energy: 24 J or more (Charpy test piece size: width: 10 mm x height: 5 mm, test temperature: -20°C)
In consideration of use in cold regions, the steel pipe of the present invention needs to have a low-temperature impact property of 24 J or more (Charpy absorbed energy Charpy test piece size: 10 x 5 mm, test temperature: -20°C). If it is less than 24 J, the risk of brittle fracture increases when used in cold regions. There is no particular upper limit.
本発明における鋼管の製造方法について説明する。
本発明では、鋼素材に、熱延工程を施して鋼管用素材とし、ついで該鋼管用素材に、造管工程を施して電縫鋼管(素管)とする。
例えば、使用する鋼素材は、前記した組成を適宜有する溶鋼を、転炉等の常法の溶製方法で溶製し、連続鋳造法あるいは造塊-圧延法でスラブ等の鋼素材とする。
かかる鋼素材に熱間圧延を施して熱延板とする熱延工程を経た熱延板を鋼管用素材とし、ついで、該鋼管用素材に造管工程を施して電縫鋼管とする。かかる造管工程は、鋼管用素材を連続的に成形し略円筒状のオープン管とし、該オープン管を電縫溶接して電縫鋼管(素管)とする工程である。
The method for producing a steel pipe according to the present invention will now be described.
In the present invention, a steel material is subjected to a hot rolling process to form a steel pipe material, and then the steel pipe material is subjected to a pipe-making process to form an electric resistance welded steel pipe (blank pipe).
For example, the steel material used is prepared by melting molten steel having the above-mentioned composition in a conventional melting method such as a converter, and forming the steel material into a slab or the like by a continuous casting method or an ingot casting-rolling method.
The steel material is hot-rolled to obtain a hot-rolled sheet, which is then used as a steel pipe material, and then the steel pipe material is made into an electric resistance welded steel pipe by a pipe-making process in which the steel pipe material is continuously formed into a substantially cylindrical open pipe, and the open pipe is electric resistance welded to obtain an electric resistance welded steel pipe (blank pipe).
さらに、本発明では上記素管に熱処理を加える。以下、本発明における鋼管の熱処理方法について説明する。
・焼入れ:前記素管をAc3変態点以上まで昇温(焼入れ開始温度がAc3変態点以上と)し、50℃/s以上の冷却速度でマルテンサイト変態点(Ms点)以下まで冷却して焼き入れを行う。
かかる焼入れ開始温度がAc3変態点未満の場合、十分な焼入れ硬さが得られない一方で、過度に高温加熱するとオーステナイト粒の粗大化が生じ低温靭性が低下する。そのため、前記素管をAc3変態点以上まで昇温する。また、かかる焼入れ開始温度の上限は、工業的にAc3変態点+100℃程度である。
また、上記昇温後の冷却の冷却速度が50℃/s未満の場合には十分な焼入れ硬さが得られない。そのため、かかる冷却速度の下限は50℃/sである。一方、かかる冷却速度の上限に、特段の制限はないが、工業的には、150℃/s程度である。
In the present invention, the above-mentioned blank pipe is further subjected to a heat treatment. The heat treatment method for the steel pipe in the present invention will be described below.
Quenching: The raw pipe is heated to or above the Ac3 transformation point (the quenching start temperature is the Ac3 transformation point or higher), and then quenched by cooling to or below the martensite transformation point (Ms point) at a cooling rate of 50°C/s or higher.
If the quenching start temperature is lower than the Ac3 transformation point, sufficient quenching hardness cannot be obtained, while excessive heating to a high temperature causes coarsening of austenite grains and reduces low-temperature toughness. Therefore, the temperature of the blank pipe is raised to the Ac3 transformation point or higher. The upper limit of the quenching start temperature is industrially about the Ac3 transformation point + 100°C.
Furthermore, if the cooling rate after the heating is less than 50° C./s, sufficient hardening hardness cannot be obtained. Therefore, the lower limit of the cooling rate is 50° C./s. On the other hand, there is no particular upper limit to the cooling rate, but industrially it is about 150° C./s.
・焼き戻し:焼き戻しの条件は、焼き戻し後に必要とされる強度(TS:780~980MPa)を外さない条件であればよい。具体的に、焼き戻し温度は、Ac1変態点を超えると鋼管の強度が大きく低下するため、望ましくはAc1点以下とする。また、焼き戻し温度の下限は、300℃未満にすると低温靭性が低下するため、望ましくは300℃以上とする。さらに望ましくは400℃以上である。
保持時間については、特に限定しないが、品質の均一性を確保するためには、10分以上であることが望ましい。
なお、本発明では、かかる本発明の成分組成等を満足するオープン管を準備すれば、それ以降の造管工程および熱処理を上記した本発明の条件とすることで、本発明の電縫鋼管を得ることができる。
Tempering: The conditions for tempering may be any conditions that do not deviate from the strength required after tempering (TS: 780 to 980 MPa). Specifically, the tempering temperature is desirably Ac 1 point or lower, since the strength of the steel pipe is significantly reduced when it exceeds the Ac 1 transformation point. Furthermore, the lower limit of the tempering temperature is desirably 300°C or higher, since low-temperature toughness is reduced when it is lowered below 300°C. More desirably, it is 400°C or higher.
The holding time is not particularly limited, but in order to ensure uniformity of quality, it is desirable for the holding time to be 10 minutes or more.
In the present invention, if an open pipe satisfying the component composition and the like of the present invention is prepared, the electric welded steel pipe of the present invention can be obtained by subjecting the subsequent pipe-making process and heat treatment to the conditions of the present invention described above.
さらに、上記焼き戻し工程の後に、管外表面にショットブラストを実施してもよい。ショットブラストの条件については特に限定しないが、表面の美麗性およびその後の塗装性を確保するよう表面酸化スケール残りがない範囲の条件で実施する。 Furthermore, after the tempering process, shot blasting may be performed on the outer surface of the tube. There are no particular restrictions on the conditions for shot blasting, but it is performed under conditions that leave no surface oxide scale, ensuring the beauty of the surface and subsequent paintability.
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブ(鋼素材)とした。これらスラブ(鋼素材)に熱延圧延を施し、板厚:12mmの熱延板(鋼管用素材)としたのち、ロール成形による成形を施して略円筒状のオープン管とした。ついで、かかるオープン管にスクイズロールで突き合せ部を押圧しながら、高周波抵抗溶接により、該突合せ部を電縫溶接して電縫鋼管(大きさ、外径:114.3mmφ×肉厚:12mm)とした。
その後、表2に示した熱処理(焼入れ、焼き戻し)を実施して得られた電縫鋼管について、全脱炭層(表面脱炭)深さの測定、引張試験、およびシャルピー試験を実施した。試験方法は次のとおりとした。
Molten steel having the composition shown in Table 1 was melted in a converter and made into slabs (steel materials) by continuous casting. These slabs (steel materials) were hot-rolled to obtain hot-rolled sheets (steel pipe materials) with a thickness of 12 mm, which were then rolled to obtain roughly cylindrical open pipes. Next, while pressing the butt joints of the open pipes with a squeeze roll, the butt joints were electric-sewn by high-frequency resistance welding to obtain electric-sewn steel pipes (size, outer diameter: 114.3 mmφ x wall thickness: 12 mm).
Thereafter, the electric resistance welded steel pipes obtained by carrying out the heat treatments (quenching and tempering) shown in Table 2 were subjected to measurement of the total decarburized layer (surface decarburization) depth, tensile tests, and Charpy tests. The test methods were as follows.
(1)全脱炭層深さ
全脱炭層深さの測定はJIS G0558に記載された方法に則り行った。すなわち、得られた鋼管から、組織観察(管円周(C)方向断面観察)用試験片を採取し、断面研磨した後、ナイタール液を用いて腐食し、光学顕微鏡(倍率:100倍)を用いて組織を観察し、全脱炭層深さを測定した。観察は10視野で行い、全脱炭層深さのうち最大脱炭深さを採用した。
(1) Total decarburization depth The total decarburization depth was measured according to the method described in JIS G0558. That is, a test piece for microstructure observation (observation of the cross section in the circumferential (C) direction of the pipe) was taken from the obtained steel pipe, the cross section was polished, and then corroded with a nital solution. The structure was observed using an optical microscope (magnification: 100 times) to measure the total decarburization depth. Observation was performed in 10 fields of view, and the maximum decarburization depth among the total decarburization depth was adopted.
(2)引張試験
得られた鋼管から、JIS Z 2241の規定に準拠して、引張方向が管軸(L)方向となるようにJIS 12号B引張試験片(標点距離:50mm)を採取し、JIS Z 2241の規定に準拠して、引張試験を実施し、0.2%耐力:YS(MPa)、引張強さ:TS(MPa)、伸び:El(%)をそれぞれ求めた。
(2) Tensile Test In accordance with the provisions of JIS Z 2241, JIS No. 12B tensile test pieces (gauge length: 50 mm) were taken from the obtained steel pipes so that the tensile direction was the pipe axis (L) direction, and tensile tests were carried out in accordance with the provisions of JIS Z 2241 to determine the 0.2% yield strength: YS (MPa), tensile strength: TS (MPa), and elongation: El (%).
(3)シャルピー試験(低温衝撃性試験)
得られた鋼管から、JIS Z 2242の規定に準拠して、管長手(L)方向の管厚中央部からVノッチ試験片(幅:10mm×高さ:5mm×長さ:55mm、ノッチ角度:45°、ノッチ深さ:2mm、ノッチ底半径:0.25mm)を採取し、試験温度:‐20℃にて吸収エネルギーを測定した。
得られた結果を表2に併記する。
(3) Charpy test (low temperature impact test)
From the obtained steel pipe, a V-notch test piece (width: 10 mm × height: 5 mm × length: 55 mm, notch angle: 45°, notch depth: 2 mm, notch bottom radius: 0.25 mm) was taken from the center of the pipe thickness in the pipe longitudinal (L) direction in accordance with the provisions of JIS Z 2242, and the absorbed energy was measured at a test temperature of -20°C.
The results are shown in Table 2.
表2に記載のように、本発明に従う鋼管は、いずれも高強度であってかつ低温靭性に優れていることが示されている。これに対して、本発明の範囲を外れた鋼成分あるいは製造条件で作製した鋼管は、強度、低温衝撃特性のいずれか、または両方の特性に劣っていることが示されている。 As shown in Table 2, all steel pipes according to the present invention have high strength and excellent low-temperature toughness. In contrast, steel pipes made with steel components or manufacturing conditions outside the scope of the present invention are shown to be inferior in either strength or low-temperature impact properties, or both.
また、比較として、同じ鋼成分の素材を用いて作製した継目無鋼管を同じ条件で焼入れ、焼き戻しした例を表2のNo.17に記載するが、本発明従う鋼管と比べ、引張強さは同等であるものの、全脱炭層深さが大きく、低温衝撃特性や表面肌の性状(あばた状になり美麗性)に劣っていた。 For comparison, No. 17 in Table 2 shows an example of a seamless steel pipe made from the same steel composition and quenched and tempered under the same conditions. Compared to the steel pipe of the present invention, the tensile strength was the same, but the total decarburized layer depth was large, and the low-temperature impact properties and surface texture (pockmarked and less aesthetically pleasing) were inferior.
Claims (9)
Nb:0.0100~0.1000%、Mo:0.05~0.30%、Cu:0.001~0.500%、Ni:0.001~0.500%、W:0.001~0.050%、V:0.001~0.010%、REM:0.020%以下のうちから選んだ1種または2種以上を含有する請求項1に記載の電縫鋼管。 Further, in mass%,
2. The electric welded steel pipe according to claim 1, containing one or more selected from the following: Nb: 0.0100 to 0.1000%, Mo: 0.05 to 0.30%, Cu: 0.001 to 0.500%, Ni: 0.001 to 0.500%, W: 0.001 to 0.050%, V: 0.001 to 0.010%, and REM: 0.020%.
質量%で、C:0.20~0.30%、Si:0.05~0.50%、Mn:0.05~1.50%、P:0.0005~0.0300%、S:0.0001~0.0300%、Al:0.010~0.100%、Cr:0.25~0.50%、Ti:0.010~0.100%、B:0.0001~0.0050%、N:0.0005~0.0100%およびCa:0.0001~0.0050%を含み、残部Feおよび不可避的不純物であって、かつTi/N≧4.0の関係を満足する組成の鋼素材に、熱間圧延を施して熱延板とする熱延工程を施して鋼管用素材とし、該鋼管用素材を成形して円筒状のオープン管とし、該オープン管を電縫溶接して電縫鋼管とする造管工程を施し、該電縫鋼管をAc3変態点以上まで昇温し、50℃/s以上の冷却速度でマルテンサイト変態点(Ms点)以下まで冷却して焼き入れを行う工程、および焼き戻し工程を備える電縫鋼管の製造方法。 A method for producing the electric resistance welded steel pipe according to claim 1,
In mass%, C: 0.20-0.30%, Si: 0.05-0.50%, Mn: 0.05-1.50%, P: 0.0005-0.0300%, S: 0.0001-0.0300%, Al: 0.010-0.100%, Cr: 0.25-0.50%, Ti: 0.010-0.100%, B: 0.0001-0.0050%, N: 0.0005-0.0100 % and Ca: 0.0001-0.0050%, the balance being Fe and unavoidable impurities, and the composition satisfies the relationship of Ti/N≧4.0, a hot rolling process is performed in which a steel pipe material is hot rolled to form a hot rolled sheet to produce a steel pipe material, the steel pipe material is shaped to form a cylindrical open pipe, and the open pipe is electric resistance welded to produce an electric resistance welded steel pipe, a pipe making process is performed in which the electric resistance welded steel pipe is heated to or above the Ac3 transformation point, cooled at a cooling rate of 50°C/s or more to or below the martensite transformation point (Ms point) to be quenched, and a tempering process is performed.
前記鋼素材の組成にさらに、質量%で、Nb:0.0100~0.1000%、Mo:0.05~0.30%、Cu:0.001~0.500%、Ni:0.001~0.500%、W:0.001~0.050%、V:0.001~0.010%、REM:0.020%以下のうちから選ばれた1種または2種以上を含有する請求項3に記載の電縫鋼管の製造方法。 A method for producing an electric resistance welded steel pipe according to claim 2,
4. The method for producing an electric welded steel pipe according to claim 3, wherein the composition of the steel material further contains, in mass%, one or more selected from the following: Nb: 0.0100 to 0.1000%, Mo: 0.05 to 0.30%, Cu: 0.001 to 0.500%, Ni: 0.001 to 0.500%, W: 0.001 to 0.050%, V: 0.001 to 0.010%, and REM: 0.020%.
請求項1または2に記載の成分を有するオープン管を電縫溶接する造管工程を施して電縫鋼管とし、該電縫鋼管をAc3変態点以上まで昇温し、50℃/s以上の冷却速度でマルテンサイト変態点(Ms点)以下まで冷却する焼入れを施し、次いで焼き戻しを施す電縫鋼管の製造方法。 A method for producing an electric resistance welded steel pipe according to claim 1 or 2,
A method for producing an electric-resistance welded steel pipe, comprising the steps of: conducting a pipe-making process of electric-resistance welding an open pipe having the composition according to claim 1 or 2 to produce an electric-resistance welded steel pipe; heating the electric-resistance welded steel pipe to the Ac3 transformation point or higher; quenching the electric-resistance welded steel pipe by cooling it at a cooling rate of 50°C/s or higher to the martensite transformation point (Ms point) or lower; and then tempering the electric-resistance welded steel pipe.
The method for producing an electric resistance welded steel pipe according to claim 7 or 8, further comprising the step of subjecting the outer surface of the electric resistance welded steel pipe after the tempering to shot blasting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021033959A JP7472826B2 (en) | 2021-03-03 | 2021-03-03 | Electric resistance welded steel pipe and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021033959A JP7472826B2 (en) | 2021-03-03 | 2021-03-03 | Electric resistance welded steel pipe and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022134669A JP2022134669A (en) | 2022-09-15 |
JP7472826B2 true JP7472826B2 (en) | 2024-04-23 |
Family
ID=83231975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021033959A Active JP7472826B2 (en) | 2021-03-03 | 2021-03-03 | Electric resistance welded steel pipe and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7472826B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019131813A1 (en) | 2017-12-27 | 2019-07-04 | Jfeスチール株式会社 | Electric-resistance-welded steel pipe and manufacturing method for electric-resistance-welded steel pipe |
-
2021
- 2021-03-03 JP JP2021033959A patent/JP7472826B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019131813A1 (en) | 2017-12-27 | 2019-07-04 | Jfeスチール株式会社 | Electric-resistance-welded steel pipe and manufacturing method for electric-resistance-welded steel pipe |
Also Published As
Publication number | Publication date |
---|---|
JP2022134669A (en) | 2022-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2775043C (en) | Low yield ratio, high strength and high toughness steel plate and method for manufacturing the same | |
US8926766B2 (en) | Low yield ratio, high strength and high uniform elongation steel plate and method for manufacturing the same | |
JP5499733B2 (en) | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
JP5029748B2 (en) | High strength hot rolled steel sheet with excellent toughness and method for producing the same | |
JP5679114B2 (en) | Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same | |
JP6256654B2 (en) | Thick steel plate for structural pipe, method for manufacturing thick steel plate for structural pipe, and structural pipe | |
JP5532800B2 (en) | Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same | |
JP5834534B2 (en) | High strength low yield ratio steel with high uniform elongation characteristics, manufacturing method thereof, and high strength low yield ratio welded steel pipe | |
JP2013204103A (en) | High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance | |
JP2007138290A (en) | Thick high strength hot rolled steel plate and its production method | |
JP2010196165A (en) | Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and process for producing the same | |
JP2015190026A (en) | Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor | |
JP4507708B2 (en) | Low yield ratio high strength high toughness steel sheet manufacturing method | |
JP6690787B1 (en) | ERW steel pipe, its manufacturing method, and steel pipe pile | |
WO2018025778A1 (en) | Seamless steel pipe and method for producing same | |
JP7348948B2 (en) | High-strength structural steel material with excellent cold bendability and method for producing the same | |
JP4824142B2 (en) | Steel for line pipe with good strength and ductility and method for producing the same | |
JP5842473B2 (en) | High strength welded steel pipe with high uniform elongation characteristics and excellent weld toughness, and method for producing the same | |
JP2023031269A (en) | Ultra-low yield ratio high tensile strength thick steel sheet, and method for producing the same | |
JP7472826B2 (en) | Electric resistance welded steel pipe and its manufacturing method | |
JP5589335B2 (en) | Manufacturing method of high toughness steel | |
JP4026443B2 (en) | High strength and high toughness steel pipe material excellent in weldability and manufacturing method thereof | |
JP2020111771A (en) | Steel sheet for line pipe | |
JP7388371B2 (en) | ERW steel pipe and method for manufacturing ERW steel pipe | |
JP7563585B2 (en) | Electric resistance welded steel pipe and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221028 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240312 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240325 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7472826 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |