JP7465418B2 - 治療用バクテリオシン - Google Patents
治療用バクテリオシン Download PDFInfo
- Publication number
- JP7465418B2 JP7465418B2 JP2020552184A JP2020552184A JP7465418B2 JP 7465418 B2 JP7465418 B2 JP 7465418B2 JP 2020552184 A JP2020552184 A JP 2020552184A JP 2020552184 A JP2020552184 A JP 2020552184A JP 7465418 B2 JP7465418 B2 JP 7465418B2
- Authority
- JP
- Japan
- Prior art keywords
- bacteriocin
- protein
- domain
- cells
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/10—Animals; Substances produced thereby or obtained therefrom
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/50—Isolated enzymes; Isolated proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/164—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/21—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pseudomonadaceae (F)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/24—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/24—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
- C07K14/245—Escherichia (G)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/24—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
- C07K14/26—Klebsiella (G)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2462—Lysozyme (3.2.1.17)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Virology (AREA)
- Environmental Sciences (AREA)
- Dentistry (AREA)
- Plant Pathology (AREA)
- Pest Control & Pesticides (AREA)
- Agronomy & Crop Science (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
本発明は、受容体媒介性トランスロケーション機能(例えば、バクテリオシンに由来する)に、別の機能性カーゴドメイン、例えば、死滅ドメインを、バクテリオシン内におけるように連結させて、グラム陰性細菌標的を攻撃できる実体(entity)を達成する。本明細書に記載されるキメラ(及び関連する)「バクテリオシン」構築物は、ペプチドグリカン分解酵素活性であり得る標識機能又は死滅機能に、バクテリオシン由来の受容体媒介性トランスロケーション機能を、結合して組み合わせたものである。バクテリオシン由来の受容体媒介性トランスロケーション機能は、細菌の外膜受容体を認識し、典型的にはトランスロケーションの媒介に役立つタンパク質である、タンパク質セグメントにより達成される。通常、受容体認識機能は、その内部へのトランスロケーションを生じさせる標的細胞における選択性及び特異性を提供する。したがって、トランスロケーションは、「受容体に媒介される」プロセスとして特徴付けられる場合がある。多くの実施形態では、トランスロケーションには、2つの「機能」工程及びバクテリオシン内のドメイン、すなわち結合工程(受容体結合セグメント(receptor binding segment)又はRBSが関与する)とトランスロケーション工程(トランスロケーションセグメント(translocation segment)又はTSが関与する)とが含まれるが、この2つの工程は必ずしも物理的又は時間的に分離可能であるとは限らない。前記結合工程には、バクテリオシンのその同族受容体への結合のある程度の特異性が関与することが多く、ここで同族受容体は、バクテリオシン及びカーゴドメインを輸送又は反転させて脂質二重層膜を渡って移動させる構造形状をとる場合がある。
A.外膜
グラム陰性細菌の細胞エンベロープは、内膜(inner membrane(IM))及び外膜(outer membrane(OM))の2つの膜で構成され、これらはペプチドグリカン層を含むペリプラズムによって分離されている。前記2つの膜の構造及び構成は全く異なる。IMがリン脂質二重層であるのに対し、OMは非対称の二重層であり、それぞれ内葉及び外葉においてリン脂質及びリポ多糖(LPS)からなる。さらに、これらの膜は内在性膜タンパク質の構造についても異なる。内在性IMタンパク質が通常、疎水性αヘリックスの形で膜にまたがっている一方で、内在性OMタンパク質(OMP)は通常、親水性の内部と外側を向いて膜脂質に面する疎水性残基とを有する円筒状のβバレルに折りたたまれた逆平行両親媒性βストランドを構成する(Koebnik et al.(2000)“Structure and function of bacterial outer membrane proteins: barrels in a nutshell” Mol. Microbiol. 37:239-53)。両方の膜にはリポタンパク質も含まれており、N末端N-アシル-ジアシルグリセリルシステインを介して膜に固定されており、Escherichia coli(E.coli)の場合、タンパク質部分は通常ペリプラズムに面している(Pettersson et al.(1997)“Response of Neisseria meningitidis to iron limitation” Antonie van Leeuwenhoek 71:129-36)。LPS分子は、リピドA、コア多糖、O抗原繰り返し構造(O-antigen repeats)の3つの部分に分けることができる。リピドAは、LPSの疎水性成分であり、外膜の外葉に位置する一方で、コア多糖及びO抗原繰り返し構造は細菌細胞の表面に表示される(Raetz et al.(2007)“Lipid A modification systems in Gram-negative bacteria” Annu Rev Biochem 76:295-329)。LPSの詳細な構造は細菌によって異なり、この変化は細菌の病原性に影響を与える可能性がある。例えば、Galanos et al.(1985)“Synthetic and natural Escherichia coli free lipid A express identical endotoxic activities” Eur J Biochem 148:1-5及びWilkinson(1996)“Bacterial lipopolysaccharides-themes and variations” Prog Lipid Res 35:283-343を参照。
ペプチドグリカン(ムレイン)は、ほとんど全ての細菌の細胞膜の外側にある細菌細胞壁の必須かつ特異的な成分である(Rogers et al.,(1980)、Park(1996)、Nanninga(1998)、Mengin-Lecreulx & Lemaitre(2005))。その主な機能は、内部浸透圧に耐えることによって細胞の完全性(integrity)を維持することである。細胞増殖中のペプチドグリカンの生合成又はその特異的分解の如何なる阻害も、細胞溶解をもたらす。ペプチドグリカンは、既定の細胞形状の維持にも寄与し、タンパク質(Dramsi et al., 2008)やテイコ酸(Neuhaus & Baddiley,(2003))などの他の細胞エンベロープ成分を固定するための足場として機能する。グラム陽性菌及びグラム陰性細菌の両方のペプチドグリカン構造は、N-アセチルムラミン酸(NAM)残基に結合したペプチドステム鎖によって架橋されるN-アセチルグルコサミン(NAG)とβ-(1-4)-N-アセチルムラミン酸(NAM)の二糖骨格繰り返し構造(repeating disaccharide backbones)を含む。グラム陰性細菌では、各ムラミン酸のカルボキシル基に結合したステムペプチドは通常、L-Ala-_-D-Glu-(L)-メソジアミノピメリン酸(Dap)-D-Alaで構成されるが、ペプチドはしばしばD-Alaを欠くか、又はより稀にはD-Ala-D-Alaで終了する。ステムペプチドの約半分は、隣接するグリカン鎖間の架橋に関与する(Rogers et al.,(1980))。
原核生物宿主の脂質二重層を分解するリパーゼ及び他の機能的活性は、細胞を死滅させることができる。標的のグラム陰性細胞を死滅させる付加的な毒性セグメント又は毒素セグメントは、細胞へのトランスロケーションのためにカーゴペプチドに結合したより小さな分子毒素であり得るように置換され得る。好ましくは、原核生物にのみ作用し、真核生物には影響を及ぼさないと考えられる活性は、効果上非常に選択的であり、標的にのみ作用するが、グラム陰性細菌に感染している宿主生物にはほとんど又は全く影響を及ぼさない。
A.バクテリオシン
バクテリオシンは、細菌によって産生されるタンパク質抗生物質の多様なファミリーであり、同じ又は近縁の種のメンバーを死滅させるために自然に使用される。コリシンと呼ばれる、E.coliによって産生されたバクテリオシンは、最初に同定されたものであり、よく研究されており、その多くが特徴解析されている。これまでに特徴解析されたコリシンのほとんど全ては、N末端トランスロケーションドメイン、受容体結合ドメイン、及びC末端死滅ドメインの3つのドメイン構成を示す。死滅ドメインは通常、ヌクレアーゼ又は膜損傷孔形成物(membrane damaging pore formers)のいずれかである。バクテリオシン産生細菌は、バクテリオシン発現株によって産生され死滅ドメインに化学量論的に結合することによって機能してその活性を阻害する免疫タンパク質によって、それ自体の作用から保護される。
Klebsiellaによって産生されるバクテリオシンは、クレビシンと称される。クレビシンは、E.coliから単離されたコリシンと同様のドメイン構造を有する。クレビシンB、クレビシンC、クレビシンCCL、及びクレビシンDの4種類の異なるクレビシンが報告され、そのDNA配列が記述されている(Riley et al.(2001)及びChavan et al.(2005))。
可溶性ピオシン又はS型ピオシンは、Pseudomonas aeruginosa(P.aeruginosa)からの、同種由来の細胞を死滅させることが可能な、プロテアーゼ感受性であり熱感受性であり染色体にコードされているバクテリオシンである。これらの抗微生物剤は、死滅機能を内包する大きなタンパク質と、前者の細胞毒性ドメインにしっかりと結合して維持される小さな免疫タンパク質とからなる二成分タンパク質複合体から分泌される。いくつかのタイプのS型ピオシンが記述され及び特徴解析されている:ピオシンS1、ピオシンS2、ピオシンAP41、ピオシンS3、ピオシンS4、及びピオシンS5。ピオシンSaはピオシンS2と同一であることが判明した。標的細胞を死滅させるために、S型ピオシンは最初に細菌細胞の外膜にある特定の受容体に結合し、次にさらにトランスロケーションしてその阻害機能を発揮する。
Yersinia pestisのペスチシンは、Y. pestis、Yersinia enterocolitica、及び特定のEscherichia coli株を死滅させる毒素であり(Hu and Brubaker(1974))、9.5kbのプラスミドであるpYPによってコードされている(Kol’tsova et al.(1973)、Ferber and Brubaker(1981))。ペスチシンはN-アセチルグルコサミニダーゼ活性を示す(Ferber and Brubaker(1979))。ペスチシンは、エルシニア鉄キレート剤であるエルシニアバクチンの輸送に関与するFyuA受容体を利用することができる(Heesemann et al.(1993)、Rakin et al.(1994)、Fetherston et al.(1995))。ペスチシンの発現はSOSシステムによって制御されていると考えられており(Hu et al.(1972))、ペスチシンの外膜を介しての輸送及び同族のFyuA受容体との相互作用は、TonB依存的である(Ferber et al.(1981))。
本発明のキメラ構築物を調製するために、バクテリオシン由来受容体媒介性トランスロケーションドメインは、所望の機能(例えば、標識又は死滅)を提供する異種カーゴドメインに連結される。例えば、死滅セグメントが含み得るセグメントは、完全な「ドメイン」より小さく(less than)、機能を保持するものの、標的細胞を死滅させる従来定義されてきた「ドメイン」とは異なるバリエーションを含み得る。ドメインは例えば、標的細胞を死滅させるように自然に機能するタンパク質であるバクテリオシンの成分であり得る。かかるドメインは、標的細胞を死滅させることができるか、これは前記細胞を死滅させることができる触媒活性であるか、又は死滅させるために正常な細胞活性を遮断又は妨害するように機能するいくつかの構造的特徴である、別のドメインで、置換又は代替することができる。さらに別の選択肢は、実際に毒性の化学物質又は構造を、受容体媒介性トランスロケーションドメインに作動可能に連結されている担体ペプチド又は他の化学結合に連結又は結合させることである。例としては、標的細胞に取り込まれ、細胞内の担体から放出される可能性があり、標的酵素又は基質の多くの異なるコピーに干渉する可能性のある化学量論性を有する、化学療法で標的毒素として使用されるものに類似した毒性複合物であり得る。死滅セグメントの例を表2に示す。
本発明のキメラ構築物の多くは、異なる成分を結合して単一のポリペプチドとするリンカーを有するであろう。あるいは、前記構築物は、しばしば単一のポリペプチドとして合成されるが切断されて二次構造又は三次構造によって構造的完全性を維持し得る、複数のポリペプチドを含み得る。
「受容体媒介性トランスロケーションドメイン」(Receptor Mediated Translocation Domain(RMTD))は、典型的にはバクテリオシン又は関連タンパク質に由来するドメインであり、グラム陰性外膜を横断する本発明のバクテリオシン及びキメラ構築物の受容体特異的トランスロケーションを提供するように機能する。通常、ドメイン構造は、境界を設定する際に二次タンパク質構造又は三次タンパク質構造を考慮する。同定されたセグメントは上記の通りである。変異誘発の様々な形態又は配列の必要なマッチングにおける可変性を試験する手段は、経験的に試験することができる。通常、RMTDは、天然の配列に最適にアラインメントした場合、少なくとも約60%のマッチングを示すが、アラインメントの領域全体に対して、例えば、約65%、70%、75%、80%のようなより高いマッチングを示すことが好ましく、好ましくは85%、90%、95%又はそれ以上となることが好ましい。セグメントは通常、長さが少なくとも約65%、70%、75%、好ましくは80%、85%、90%又はそれ以上であり得る領域に渡って、ドメイン全体よりも、特に高いマッチング率を示す領域であると考えられる。セグメントマッチングは、アライメントのより短いセグメントに渡って選択されたより高いマッチング数となるであろう。
本明細書に記載のバクテリオシンポリペプチドの様々な用途は、直ちに認識され得る。前記タンパク質は、通常の使用で汚染される可能性のある物品の抗菌処理に使用できる。標的細菌が公衆衛生上の危険となる場所、表面、装置、又は環境は、本明細書に記載のバクテリオシンポリペプチドを使用して処理することができる。目的の場所としては、標的細菌を含む材料が存在する公衆衛生施設が挙げられる。これらの材料としては、廃棄物、例えば、液体、固体、又は気体が挙げられよう。キメラバクテリオシン構築物又はこれらのポリペプチドを発現及び放出する細胞で処理することによって、流出物から標的細菌を排除するために、本明細書に記載のキメラバクテリオシン構築物を水性廃棄物処理プラントに組み込むことができる。固形廃棄物サイトでは、これらのポリペプチドを導入して、標的宿主の発生の可能性を最小限に抑えることができる。
本明細書に記載のこれらのバクテリオシンポリペプチド及びキメラバクテリオシン構築物の投与経路及び投与量は、感染細菌株、感染の部位及び程度(例えば、局所又は全身)、並びに治療される対象によって変化する。投与経路には肺への送達のための経口、エアロゾル、又は他のデバイス、鼻腔スプレー、静脈内(IV)、筋肉内、腹腔内、髄腔内、眼内、膣内、直腸、局所、腰椎穿刺、髄腔内、脳及び/又は髄膜への直接適用が含まれるが、これらに限定されない。治療薬の送達のためのビヒクルとして使用できるエクシピエント(excipients)は、当業者には明らかであろう。例えば、ムレイン分解ポリペプチドは、凍結乾燥形態であり得、投与(例えば、IV静脈内注射による)前に溶解(再懸濁)され得る。投与量は、宿主感染における細菌あたり約0.03、0.1、0.3、1、3、10、30、100、300、1000、3000、10000個以上のキメラバクテリオシン構築物分子の範囲内であると考えられる。直列的に関連付けられているか、複数のサブユニットの形式(ダイマー、トリマー、テトラマー、ペンタマーなど)であるか、又は1又は複数の他の実体(酵素や異なる特異性の断片など)と組み合わされていてもよい、タンパク質のサイズに応じて、用量は、約100万~約10兆/kg/日、好ましくは約1兆/kg/日であり得、約106死滅単位/kg/日~約1013死滅単位/kg/日であり得る。
本発明はさらに、医薬的に許容されるエクシピエント(excipient)中に配置される本発明の少なくとも1つのバクテリオシンポリペプチドを含む医薬組成物を企図する。したがって、本発明の製剤及び医薬組成物は、細菌宿主に特異的な単離バクテリオシンポリペプチドを含む製剤、同一又は典型的な細菌宿主に影響を与える2、3、5、10、又は20以上の酵素の混合物、及び異なる細菌宿主又は同一細菌宿主の異なる細菌株に影響を与える2、3、5、10、又は20以上の酵素の混合物、例えば、複数のグラム陰性細菌種の増殖を一括して阻害するバクテリオシンポリペプチドのカクテル混合物を企図する。このようにして、本発明の組成物は、患者のニーズに合わせることができる。前記化合物又は組成物は、無菌又はほぼ無菌であり得る。
本発明を実施するいくつかの態様は、周知の方法、一般的な臨床微生物学、バクテリオファージを取り扱うための一般的な方法、並びにバイオテクノロジーの一般的な基礎、原理、及び方法を含む。このような方法の参考文献を以下に示す。
一般的な微生物学は微生物の研究である。例えば、Sonenshein et al.(ed. 2002)Bacillus Subtilis and Its Closest Relatives: From Genes to Cells Amer. Soc. Microbiol.、Alexander and Strete(2001)Microbiology: A Photographic Atlas for the Laboratory Benjamin/Cummings、Cann(2001)Principles of Molecular Virology(3d ed.),、Garrity(ed. 2005)Bergey’s Manual of Systematic Bacteriology(2 vol. 2d ed.)Plenum,、Salyers and Whitt(2001)Bacterial Pathogenesis: A Molecular Approach(2d ed.)Amer. Soc. Microbiol.、Tierno(2001)The Secret Life of Germs: Observations and Lessons from a Microbe Hunter Pocket Star、Block(ed. 2000)Disinfection, Sterilization, and Preservation(5th ed.)Lippincott Williams & Wilkins Publ.、Cullimore(2000)Practical Atlas for Bacterial Identification Lewis Pub.、Madigan et al.(2000)Brock Biology of Microorganisms(9th ed.)Prentice Hall、Maier et al.(eds. 2000)Environmental Microbiology Academic Pr.、Tortora et al.(2000)Microbiology: An Introduction including Microbiology Place(TM)Website, Student Tutorial CD-ROM, and Bacteria ID CD-ROM(7th ed.), Benjamin/Cummings、Demain et al.(eds. 1999)Manual of Industrial Microbiology and Biotechnology(2d ed.)Amer. Soc. Microbiol.、Flint et al.(eds. 1999)Principles of Virology: Molecular Biology, Pathogenesis, and Control Amer. Soc. Microbiol.、Murray et al.(ed. 1999)Manual of Clinical Microbiology(7th ed.)Amer. Soc. Microbiol.、Burlage et al.(eds. 1998)Techniques in Microbial Ecology Oxford Univ. Press、Forbes et al.(1998)Bailey & Scott’s Diagnostic Microbiology(10th ed.)Mosby、Schaechter et al.(ed. 1998)Mechanisms of Microbial Disease(3d ed.)Lippincott, Williams & Wilkins、Tomes(1998)The Gospel of Germs: Men, Women, and the Microbe in American Life Harvard Univ. Pr.、Snyder and Champness(1997)Molecular Genetics of Bacteria Amer. Soc. Microbiol., ISBN: 1555811027、Karlen(1996)MAN AND MICROBES: Disease and Plagues in History and Modern Times Touchstone Books、及びBergey(ed. 1994)Bergey’s Manual of Determinative Bacteriology(9th ed.)Lippincott, Williams & Wilkinsを参照。最新版が利用できる場合がある。
バクテリオファージを取り扱うための一般的な方法は周知であり、例えば、Snustad and Dean(2002)Genetics Experiments with Bacterial Viruses Freeman、O’Brien and Aitken(eds. 2002)Antibody Phage Display: Methods and Protocols Humana、Ring and Blair(eds. 2000)Genetically Engineered Viruses BIOS Sci. Pub.、Adolf(ed. 1995)Methods in Molecular Genetics: Viral Gene Techniques vol. 6, Elsevier、Adolf(ed. 1995)Methods in Molecular Genetics: Viral Gene Techniques vol. 7, Elsevier、及びHoban and Rott(eds. 1988)Molec. Biol. of Bacterial Virus Systems(Current Topics in Microbiology and Immunology No. 136)Springer-Verlagを参照。
バイオテクノロジーの一般的な基礎、原理、及び方法は、例えば、Alberts et al.(2002)Molecular Biology of the Cell(4th ed.)Garland、Lodish et al.(1999)Molecular Cell Biology(4th ed.)Freeman、Janeway et al.(eds. 2001)Immunobiology(5th ed.)Garland、Flint et al.(eds. 1999)Principles of Virology: Molecular Biology, Pathogenesis, and Control, Am. Soc. Microbiol.、Nelson et al.(2000)Lehninger Principles of Biochemistry(3d ed.)Worth、Freshney(2000)Culture of Animal Cells: A Manual of Basic Technique(4th ed.)Wiley-Liss、Arias and Stewart(2002)Molecular Principles of Animal Development, Oxford University Press、Griffiths et al.(2000)An Introduction to Genetic Analysis(7th ed.)Freeman、Kierszenbaum(2001)Histology and Cell Biology, Mosby、Weaver(2001)Molecular Biology(2d ed.)McGraw-Hill、Barker(1998)At the Bench: A Laboratory Navigator CSH Laboratory、Branden and Tooze(1999)Introduction to Protein Structure(2d ed.), Garland Publishing、Sambrook and Russell(2001)Molecular Cloning: A Laboratory Manual(3 vol., 3d ed.), CSH Lab. Press、及びScopes(1994)Protein Purification: Principles and Practice(3d ed.)Springer Verlagに記載されている。より新しい版が利用できる場合もある。
本明細書で提供される構造的及び機能的説明に基づいて、相同体及び機能的バリアントを生成することができる。透過関数を有するセグメントは、構造的相同性によって見つけることができる。これらは、構造体のバリアントをスクリーニングするための開始点としても機能し得る。例えば、かかる構造体を変異誘発し、望ましい特性、例えば、より広い基質特異性を有するものをスクリーニングする。突然変異誘発の標準的な方法を使用してもよく、例えば、Johnson-Boaz et al.(1994)Mol. Microbiol. 13:495-504、米国特許第6,506,602号、第6,518,065号、第6,521,453号、第6,579,678号を参照。
スクリーニング方法は、変異体又は新しい死滅セグメント候補を評価するために考案することができる。
本発明はさらに、死滅セグメント又は膜輸送タンパク質をコードする核酸を提供する。かかるポリヌクレオチドは、例えば、本明細書に記載のバクテリオシン、及び上記のような他の死滅ドメインをコードし得る。
本明細書に記載のタンパク質は、E.coli、他の細菌宿主、及び酵母を含む、様々な宿主細胞で発現され得る。宿主細胞は、例えば、酵母細胞、細菌細胞、又は糸状菌細胞などの微生物であり得る。適切な宿主細胞の例には、例えば、とりわけAzotobacter属種(例えば、A. vinelandii)、Pseudomonas属種、Rhizobium属種、Erwinia属種、Escherichia属種(例えば、E.coli)、Bacillus属種、Pseudomonas属種、Proteus属種、Salmonella属種、Serratia属種、Shigella属種、Rhizobia属種、Vitreoscilla属種、Paracoccus属種、Staphylococcus属種、及びKlebsiella属種が含まれる。細胞はいくつかの属の任意のものであればよく、Saccharomyces属(例えば、S. cerevisiae)、Candida属(例えば、C. utilis、C. parapsilosis、C. krusei、C. versatilis、C. lipolytica、C. zeylanoides、C. guilliermondii、C. albicans、and C. humicola)、Pichia属(例えば、P. farinosa and P. ohmeri)、Torulopsis属(例えば、T. candida、T. sphaerica、T. xylinus、T. famata、and T. versatilis)、Debaryomyces属(例えば、D. subglobosus、D. cantarellii、D. globosus、D. hansenii、and D. japonicus)、Zygosaccharomyces属(例えば、Z. rouxii and Z. bailii)、Kluyveromyces属(例えば、K. marxianus)、Hansenula属(例えば、H. anomala and H. jadinii)、及びBrettanomyces属(例えば、B. lambicus and B. anomalus)が含まれる。有用な細菌の例には、Escherichia属、Enterobacter属、Azotobacter属、Erwinia属、Klebsielia属、Bacillus属、Pseudomonas属、Proteus属、及びSalmonella属が含まれるが、これらに限定されない。真核細胞、例えば、CHO細胞又は酵母細胞もまた、産生のために使用され得る。
本発明の方法においては、本明細書に記載の発現された細胞内ポリペプチド又は分泌ポリペプチドを含む粗細胞抽出物を使用することができる。
クレビシンは、Klebsiella属種によって産生される高分子量(>30kDa)バクテリオシンである。他のバクテリオシンと同様に、クレビシンも3つのドメインを有するモジュール型タンパク質である。クレビシンB、クレビシンC、クレビシンCCL、クレビシンDなどのクレビシンが配列決定され、それらのいくつかはKlebsiella菌株の疫学的タイピングに使用することが提案されたが、その抗菌特性についてはほとんど知られていない。
クレビシンCCLは、Enterobacter cloacaeが産生するバクテリオシンであるクロアシン(Cloacin)DF13と同一である。クロアシンDF13は、トランスロケーションにTol-ABQR経路を利用し、細胞表面受容体としてLutAを用いる。クレビシンの受容体は、鉄の存在によって調節されると予想される。細菌はシデロフォアを使用して環境から鉄を浚い取り、これらのシデロフォアは細胞表面に発現している受容体を利用して細胞内へ入る。
プライマーは、データベースから入手可能な配列を使用して、クレビシンCCLの存在をスクリーニングするように設計した。免疫遺伝子は小さい産物であり、常にクレビシンと関連しているため、免疫遺伝子PCRを実施した。いくつかのKlbesiella属種臨床分離株をコロニーPCRでスクリーニングした。試験した19分離株のうち、4菌株は免疫遺伝子が陽性であり、これら4菌株はクレビシンCCL遺伝子を保有していると予想される。結果を表4に示す。B2092株は、クローニング用のCCL遺伝子を単離するために使用した。
クレビシンCCLをコードする遺伝子をその免疫遺伝子と共にKlebsiella株B2092からPCR増幅し、NdeI-XhoI部位でE.coli発現ベクターpET26bにクローニングし、アフィニティタグなしのネイティブな形態で発現させた。E.coli形質転換体をPCRによりスクリーニングし、プラスミドDNAを陽性クローンから単離し、挿入断片の存在を制限消化分析により確認した。
試験タンパク質の発現は、1mM IPTGを用いて37℃で4時間誘導することにより、E.coli ER2566で実施した。融合タンパク質の予想サイズは約60kDaである。4時間のIPTG誘導の後、細胞をペレット化し、pH7の20mMリン酸ナトリウムバッファーに再懸濁し、超音波処理して細胞を溶解した。細胞の可溶性及び不溶性画分を、10000rpmで15分間の遠心分離により分離した。上清及びペレットを12%アクリルアミドゲルで分析した。
P628はアフィニティタグなしで発現されたため、従来のイオン交換クロマトグラフィーで精製した。簡潔には、超音波処理した上清画分を陰イオン交換クロマトグラフィーマトリックス(UNO Q)に通し、フロースルーを収集した。次に、収集したフロースルーを陽イオン交換クロマトグラフィーマトリックス(UNO S)にロードした。タンパク質に結合したマトリックスを洗浄し、NaCl含有バッファーの濃度を上げてタンパク質を溶出した。100mM、300mM、500mM、及び1Mの各濃度のNaClによる段階的勾配溶出を行い、試料を12%アクリルアミドゲルで分析した。
精製P628の抗菌活性を、a)菌叢阻害アッセイ、b)CFU低下アッセイ、c)MICアッセイの3つのアッセイで測定した。
菌叢阻害アッセイは、試験タンパク質の抗菌活性を測定するための簡単な定性的アッセイである。このアッセイでは、試験分離株を使用して細菌叢をLB寒天プレート上で作成し、規定の濃度の試験タンパク質を菌叢上に置き、風乾し、37℃で16~18時間インキュベートする。陽性結果では、明瞭な菌叢阻害区域が呈される。
P628の抗菌活性を、Klebsiella pneumoniae(K.pneumoniae)臨床分離株B2094に対して、LB培地及びウシ胎児血清(FBS)の両方で試験した。簡潔には、約106細胞/mLのB2094を、LB又はFBSに再懸濁し、200μLの容量でpH7.0の20mM SPB中の100μg/mL及び200μg/mLの各濃度のP628で処理した。反応混合物を37℃で2時間インキュベートし、残存する生存細胞数をLBプレートに希釈プレーティングして測定し、37℃で18時間インキュベートした。
追加株を用いたCFU低下アッセイを、増殖培地及びFBSで行った。本アッセイでは、2つの追加K.pneumoniae臨床分離株であるB2064及びB2065で、P628の抗菌活性を試験した。これらの菌株を、カチオン調整ミューラーヒントン培地(Muller Hinton Broth)(CA-MHB培地)中、50%FBS中、又は75%FBS中で、200μg/mLのP628で処理した。反応混合物を37℃で2時間インキュベートし、残存する生存細胞数をLBプレートに希釈プレーティングして測定し、37℃で18時間インキュベートした。
最小発育阻止濃度(Minimum Inhibitory Concentration(MIC))は、CA-MHB、カザミノ酸培地(CAA)、及びFBS中で、K.pneumoniae株2094に対して、改変CLSI(Clinical and Laboratory Standards Institute)培地微量希釈手順を使用して決定した。マイクロタイタープレートに10点のMICを2連に設定し、875μg/mLから開始して2倍に希釈した。各ウェルに5×105細胞の試験分離株を接種した。マイクロタイタープレートを35℃で18~20時間インキュベートした。本アッセイの終了点では、ヨードニトロテトラゾリウム(INT)色素の添加後にウェルが無色であり、インキュベート終了時に増殖が完全に阻害されていたことが確認された。
いくつかの抗生物質に耐性を有する、さらなる16株の臨床株を、CAMHB及びFBSの両方において、MICによって、P628に対する感受性を試験した。結果を表6に示す。
ウシ胎児血清(FCS)におけるP628の用量反応は、CFU低下アッセイを使用して2つのK.pneumoniae株で評価した。簡潔には、タンパク質の濃度を変えて50%FCS中で約106個の細胞を37℃で2時間インキュベートし、LBプレートにプレーティングすることで残存する生存細胞数を数えた。実験は2連に設定し、結果は2連の平均としてプロットした。
本研究では、Klebsiella pneumoniae肺感染症モデルの標準的な好中球減少症マウスモデルを使用した(W. A. Craig and D. R. Andes. 2008. In Vivo Pharmacodynamics of Ceftobiprole against Multiple Bacterial Pathogens in Murine Thigh and Lung Infection Models. Antimicrob. Agents And Chemother. 52,[10]3492-3496)。
序論:
バクテリオシンは、細菌によって産生されるタンパク質抗生物質の多様なファミリーであり、同じ種又は近縁種のメンバーを死滅させる。Klebsiella属種由来のバクテリオシン(クレビシン)の報告はわずかであり、それらのいずれも特徴解析されておらず、その抗菌特性については何ら知られていない。クレビシンは、何十年にもわたってKlebsiella属種を分類する目的で使用されてきたが、イン・ビトロ又はイン・ビボでの抗菌特性に関しては特徴解析されていない。
クレビシンCCLトランスロケーションドメイン(TD)-受容体結合ドメイン(RBD)をPCR増幅し、クレビシンB免疫タンパク質(この免疫タンパク質は転写的にのみ融合され、融合タンパク質の発現に不可欠である)と共にクレビシンB死滅ドメイン(KD)のPCR増幅産物に対してオーバーラップエクステンションPCRにより融合した。得られたPCR産物をNdeI-XhoIとしてpET26bにクローニングした。
OD6000.8で1mM IPTGを用いて37℃で4時間誘導することにより、E.coli ER2566においてタンパク質を発現させ、SDS-PAGEで確認した。
P636の抗菌活性は、CFU低下アッセイを使用して試験した。200μg/mLとしてCasアミノ酸(CAA)培地及び50%FCS中で約106細胞を37℃で2時間インキュベートし、残存する生存細胞数を数えた。実験は2連に設定し、結果は2連の平均として表にした。結果を図5に示す。P636はCAAで活性があり、4logの低下を示したが、50%ではcfuの大幅な低下は見られなかった。
細胞結合アッセイを行い、P636のK.pneumoniaeへの結合能を決定した。150mM生理食塩水を含む10mM SPB中のKlebsiella pneumoniae B2094の細胞(108細胞)を10μgのP636タンパク質と37℃で30分間インキュベートし、バイアルを10,000rpmで遠心分離して細胞をペレット化し、細胞ペレットを緩衝液で洗浄した。上清及びペレットをSDS-PAGEにロードした。細胞を含まないタンパク質のみを対照として維持した。上清にP636が観察され、これは前記タンパク質がアッセイ緩衝液に可溶であることを示す。さらに、上清にP636が観察され、これは前記タンパク質が試験した条件下で細胞に結合しなかったことを示す。
序論:
バクテリオシンは、近縁の細菌を死滅させるために細菌によって生成されるタンパク質性分子である。例えば、コリシン、ピオシン、ペスチシンなど、いくつかのバクテリオシンが公知である。ピオシンは、Pseudomonas属種の70%以上が産生するバクテリオシンである。高分子量のピオシンはR型及びF型のピオシンであり、低分子量のピオシンはS型のピオシンである。S型ピオシンの侵入の特異性は、細胞表面に存在する受容体によって決定される。これらの受容体は、鉄の取込みのために細胞によって利用され、鉄シデロフォア(iron-siderophore)受容体と称される。S型ピオシンのドメイン構成は、受容体結合ドメイン(RD)、トランスロケーションドメイン(TD)、及び死滅ドメイン(KD)である。
S型ピオシン、並びに、S型ピオシントランスロケーションドメイン及びリゾチームドメイン(ペプチドグリカン分解ドメイン)とを有する結合ドメインの融合体は、pET26bプラスミドにクローニングすることにより得られ、配列が確認された。リゾチームドメインのソースは以下に由来する。
a.P.aeruginosaファージP134由来GP36 CD
b.B.subtilisファージPhi29由来Phi29リゾチーム
c.E.coliファージBP7由来BP7eリゾチーム
OD6000.8で1mM IPTGを用いて37℃で4時間誘導することにより、E.coli ER2566においてタンパク質を発現させた。誘導済細胞のペレットを20mMリン酸ナトリウム緩衝液に再懸濁し、超音波処理して細胞を溶解し、10,000rpmでの遠心分離により上清とペレットを分離した。P624、P625、P626、及びP652の各タンパク質は、2段階イオン交換クロマトグラフィーを用いて可溶性画分から精製した。簡潔には、清澄化された細胞溶解物を、UNOsphere Qマトリックス(Biorad社)を使用して陰イオン交換クロマトグラフィーに通し、目的のタンパク質を含むフロースルーを収集した。次に、フロースルーを、UNOsphere Sマトリックス(Biorad社)を使用して陽イオン交換クロマトグラフィーに通し、結合したタンパク質をNaClの段階的勾配で溶出した。目的のタンパク質は、P624、P625、P626、及びP652の場合、300mM NaClで溶出した。タンパク質は、P624、P626、及びP652の場合は20mM SPB(pH7.0)+150mM NaClに対して、P625の場合は20mM SPB(pH7.0)に対して透析した。
全てのリゾチームドメイン(GP36 CD、Phi29リゾチーム、及びBP7eリゾチーム)の触媒活性は、クロロホルム処理したP.aeruginosa PA01細胞を基質として使用して、濁度低減OD減少アッセイによって測定した。本アッセイでは、50μg/mLの精製タンパク質を使用した。OD減少アッセイによる活性タンパク質も、融合タンパク質におけるリゾチームドメインの正しいフォールディングを示唆すると考えられる。3つのリゾチームドメインは全て触媒的に活性であった。結果を図7に示す。
P.aeruginosa KGN 1665の菌叢を、0.8のOD600までLB培地でコロニーを成長させることによって作成した。菌叢はLB寒天プレート上で作成した。融合タンパク質を、下記の濃度でスポットした。P626は、P.aeruginosa PA01上のCAA寒天にスポットし、P652は、P.aeruginosa DSMZ 50071上のLB寒天上にスポットした。P623:20μg、P624:38μg、P625:32μg、P626:60μg、P638:12μg、P652:30μg。阻害区域は、P625を除くすべての被験タンパク質で観察された。
S5ピオシン並びにキメラ融合体P623、P624、P625、P626、P638、及びP652の抗菌活性を、CFU低下アッセイを使用して、P.aeruginosa PA01に対して試験した。簡潔には、200μg/mLとしてCAA培地及び50%ウシ胎児血清(FCS)中で約106細胞を37℃で2時間インキュベートし、適切な希釈物をLB寒天プレート上にプレーティングすることで残存する生存細胞数を数えた。実験は2連に設定し、結果は2連の平均として表にした。リゾチーム(P200、P198、及びP501)をそれぞれ陰性対照として使用した。結果を図8A~図8Cに示す。P623及びP624(S5ピオシン-GP36融合体)は、CAAのPA01で殺菌活性を示していた。50%FCSのPA01に殺菌作用を有するタンパク質は認められなかった。
序論:
Klebsiella pneumoniae及びPseudomonas aeruginosaは、尿路、気道、及び熱傷の感染時に異物と共存可能な2つのバイオフィルム形成生物である(Childers et al.(2013))。
クレビシンCCL遺伝子は、K.pneumoniaeのゲノムからその免疫遺伝子とともにPCR増幅され、pET26bプラスミドにクローニングされ、E.coli ER2566で発現され、従来のクロマトグラフィー(陰イオン交換クロマトグラフィー及び陽イオン交換クロマトグラフィー)で精製された。構築物の配列を確認し、pGDC 628としてラベルした(命名した)。
K.pneumoniae B2094及びP.aeruginosa KGN 1665の菌叢をLB寒天プレート上に作成した。25μgの濃度の両方のタンパク質をCAA寒天プレートにスポットした。P628及びP652の組み合わせは、混合培養において菌叢の阻害を示した。
P628及びP652の抗菌活性は、CFU低下アッセイを使用して試験した。200μg/mL及び400μg/mLとして、約106細胞のP.aeruginosa KGN 1665(約1×106)及びK.pneumoniae B2094(約1×106)をCAA培地に混合し、37℃で2時間インキュベートし、残存する生存細胞数を数えた。実験は2連に設定し、結果は2連の平均として表にした。結果を図9A及び図9Bに示す。P628及びP652の組み合わせは、混合培養において400μg/mL及び200μg/mLで殺菌活性を示す。
P628及びP652の抗菌活性は、CFU低下アッセイを使用して試験した。約106細胞のP.aeruginosa KGN 1665(約1×106)及びE.coli B563(約1×106)をCAA培地に混合し、タンパク質をそれぞれ又は組み合わせて10μg/mLで混合し、37℃で2時間インキュベートし、残存する生存細胞数を数えた。実験は2連に設定し、結果は2連の平均として表にした。結果を図10Bに示す。P628及びP652の組み合わせは、混合培養において10μg/mLで殺菌活性を示す。
序論:
細菌は、鉄の取込みのために細胞表面の受容体を介して鉄を利用する。取込みは、シデロフォアと呼ばれる分子によって媒介される。シデロフォアは遊離鉄に結合し、受容体を介して入り、その後、鉄がシデロフォアから放出されて利用される。
Fyu A結合ドメインを、pET26bのNdeI-XhoI部位としてT4リゾチームと融合して、合成構築物とした。Fyu A結合ドメインを、E.coli発現ベクターpET26bのP.aeruginosaファージP134ビリオン関連リゾチームGP36にクローニング部位NdeI-XhoIで融合した。クローンの配列を確認し、pGDC 558(Fyu A BD-T4リゾチーム融合体)及びpGDC 567(Fyu A BD-GP36融合体)と命名した。
試験タンパク質の発現は、OD6000.8で1mM IPTGを用いて37℃で4時間誘導することにより、E.coli ER2566で実施した。誘導済細胞をペレット化し、20mMリン酸ナトリウムバッファーに再懸濁し、超音波処理して細胞を溶解した。次に溶解物を10,000rpmで15分間遠心分離してペレット化し、上清及びペレットを別々に収集して、SDS-PAGEゲルで分析した。タンパク質発現は、細胞の可溶性画分において、アクリルアミドゲル上で、P558の場合は約37kDa、P567の場合は約42kDaで観察された。
OD6000.8で1mM IPTGを用いて37℃で4時間誘導することにより、E.coli ER2566においてタンパク質を発現させた。誘導済細胞のペレットを20mMリン酸ナトリウム緩衝液に再懸濁し、超音波処理して細胞を溶解し、10,000rpmでの遠心分離により上清とペレットを分離した。タンパク質は、2段階イオン交換クロマトグラフィーを用いて可溶性画分から精製した。簡潔には、清澄化された細胞溶解物を、UNOsphere Qマトリックス(Biorad社)を使用して陰イオン交換クロマトグラフィーに通し、目的のタンパク質を含むフロースルーを収集した。次に、フロースルーを、UNOsphere Sマトリックス(Biorad社)を使用して陽イオン交換クロマトグラフィーに通し、結合したタンパク質をNaClの段階的勾配で溶出した。目的のタンパク質は、500mM NaClで溶出した。タンパク質を20mM SPB(pH7.0)+300mM NaClに対して透析した。
前記融合タンパク質におけるT4リゾチーム及びGP36リゾチームの触媒活性を、濁度低減OD減少アッセイにより、クロロホルム処理したP.aeruginosa PA01細胞を基質として用いて測定した。本アッセイでは、50μg/mLの精製タンパク質を使用した。OD減少アッセイによる活性タンパク質も、融合タンパク質におけるリゾチームドメインの正しいリフォールディングを示すと考えられる。結果を図11に示す。精製タンパク質P558及びP567は、触媒的に活性であった。
FyuA BD融合体は細菌への侵入にFyuA受容体を利用する。E.coliの実験室株はこの受容体を持たないため、これらのタンパク質に感受性ではない。しかし、前記受容体が実験室E.coliのプラスミドから異種発現できた場合、その菌株は融合タンパク質に感受性となりうる。この目的のために、前記FyuA受容体をE.coli臨床分離株から単離し、受容体のペリプラズム局在化のためのPelBシグナル配列融合タグとして発現させるためにNcoI-XhoIとしてpET26bにクローニングした。
試験タンパク質の発現は、0.8のOD600で1mM IPTGを用いて37℃で4時間誘導することにより、E.coli ER2566で実施した。予想されたサイズのタンパク質が、誘導細胞で観察された。クローンの配列を確認し、pGDC 571と命名した。
pGDC571及びpET26bでE.coli ER2566を形質転換し、得られたコロニーをOD600が0.8になるまで増殖させ、菌叢をLBプレート上で作成した。50μgのP558及びP567を、ER2566/pGDC 571+及びER2566 pET26b(対照)にスポットした。P558及びP567で観察された菌叢の阻害は、これらのタンパク質がFyuA発現E.coli株で活性であることを示している。
P558及びP567の抗菌活性は、CFU低下アッセイを使用して、FyuA発現E.coliに対して試験した。LB培地中の約107細胞のER2566/pGDC 571を、30μg/mL又は300μg/mLのP558、及び300μg/mLのP567で処理し、37℃で2時間及び4時間インキュベートし、残存する生存細胞数を数えた。実験は2連に設定し、結果は2連の平均として表にした。結果を図12に示す。300μg/mLのP558で4時間まで静的効果が観察された。
FyuA発現E.coliに対するP558の抗菌活性を、CFU低下アッセイを使用して試験した。簡潔には、50%LB培地及び50%ウシ胎児血清(FCS)中の約107細胞のER2566/FyuAを300μg/mLのP558で処理し、37℃で2時間及び4時間インキュベートし、残存する生存細胞数を数えることにより細胞の死滅を決定した。実験は2連に設定し、結果は2連の平均として表にした。結果を図15A及び図15Bに示す。
Yersinia pseudotuberculosisに対するP558の抗菌活性は、CFU低下アッセイを使用して試験した。簡潔には、50%LB培地及び50%ウシ胎児血清(FCS)中の約107細胞のY.pseudotuberculosisを300μg/mLのP558で処理し、37℃で2時間及び4時間インキュベートし、残存する生存細胞数を数えることにより細胞の死滅を決定した。実験は2連に設定し、結果は2連の平均として表にした。結果を図16に示す。P558は50%LB培地及び50%FCSの両方でY.pseudotuberculosisに対して静的効果を示した。
尿路感染症(UTI)分離株であるE.coli SLC-6に対するP558の抗菌活性は、CFU低下アッセイを使用して試験した。UTI分離株は、FyuA遺伝子を保有し、尿路で受容体を発現することから、細菌のコロニー形成や生存を助長すると考えられる。簡潔には、300μg/mLとして、50%LB培地及び50%ウシ胎児血清(FCS)中で約107細胞を37℃で2時間及び4時間インキュベートし、残存する生存細胞数を数えた。実験は2連に設定し、結果は2連の平均として表にした。結果を図17に示す。P558は50%LB培地及び50%FCSの両方でE.coli SLC-6に対して静的効果を示した。
尿から単離したE.coli臨床株について、fyuA遺伝子の存在するものをPCRでスクリーニングした。P558活性測定用の試験菌株として採用された陽性菌は少数であった。アッセイ条件:50%LB培地及び50%ウシ胎児血清(FCS)、反応液量:2ml。所要時間:37℃、200rpmで2時間及び4時間。試験菌株:E.coli ER2566/FyuA、B5031、B5113(E.coli UTI分離株)。結果を図18A及び図18Bに示す。P558は50%LB及び50%FCSにおいてE.coli B5031に対して静的効果を示した。
尿から単離したKlebsiella臨床株について、fyuA遺伝子の存在するものをPCRでスクリーニングした。P558活性測定用の試験菌株として採用された陽性菌は少数であった。アッセイ条件:50%LB培地及び50%ウシ胎児血清(FCS)、反応液量:2ml。所要時間:37℃、200rpmで2時間及び4時間。試験菌株:E.coli ER2566/FyuA、Klebsiella属種B2103、Klebsiella属種B2096(KlebsiellaはPCRでFyuA+陽性)。結果を図19に示す。P558は50%LBにおいてE.coli B2103に対して静的効果を示した。
MICアッセイを、CLSI法により、E.coli ER2566/FyuA、E.coli ER2566/pET26b、Y.pseudotuberculosis、及びE.coli SLC-6に対して、P558を用いて50%LB及び50%FCSにおいて実施した。MICは、6時間と18時間の両方の時点で観察した。結果を表8及び表9に示す。P558は6時間でのみE.coli ER2566(FyuA)で非常に低いMICを示したが、試験した他の菌株ではMICは認められなかった。
FyuA結合ドメインとペプチドグリカン分解ドメインとの融合体を、pET26bプラスミドにクローニングすることにより生成し、配列を確認した。
a.FyuA BD-B.subtilisファージPhi29由来Phi29リゾチーム
b.FyuA BD-E.coliファージBP7由来BP7eリゾチーム
c.FyuA BD-P.syringiaeファージPhi6由来Phi6 P5溶解酵素
d.FyuA BD-GSリンカー-GP36 CD
FyuA融合体の触媒活性を、OD減少アッセイにより、クロロホルム処理したP.aeruginosa細胞を基質として用いて決定した。本アッセイでは、50μg/mLの精製タンパク質を使用した。OD減少アッセイによる活性タンパク質も、リゾチームの正しいリフォールディングを示すと考えられる。結果を図20に示す。精製されたタンパク質P581、P583、及びP580は、触媒的に活性であることが、得られたOD減少によって観察された。P578は活性ではなく、触媒ドメインが機能していないことを示していた。
FyuA発現E.coliに対する前記融合タンパク質の抗菌活性を、CFU低下アッセイを使用して試験した。簡潔には、50%LB培地中の約107細胞のER2566/FyuAを300μg/mLのP558で処理し、37℃で2時間及び4時間インキュベートし、残存する生存細胞数を数えることにより細胞の死滅を決定した。実験は2連に設定し、結果は2連の平均として表にした。結果を図21に示す。P558及びP581は、FyuA受容体を発現するER2566細胞の増殖を阻害した。他のタンパク質では阻害は観察されなかった。
fyuA構築物pGDC571でE.coli ER2566を形質転換し、得られたコロニーをOD600が0.8になるまでLB培地で増殖させ、菌叢をLB寒天プレート上で作成した。融合タンパク質を、ER2566/pGDC 571及びY.pseudotuberculosisにスポットした。FyuA発現ER2566及びY.pseudotuberculosisに対して、P581で明確な阻害区域が観察された。
Yersinia pseudotuberculosis、E.coli B5501、E.coli B5503、及びE.coli B5504。アッセイ条件:50%LB培地及び50%ウシ胎児血清(FCS)。反応液量:2ml。所要時間:37℃、200rpmで2時間及び4時間。細胞:105CFU/mL。タンパク質:300μg/mL。インキュベート:37℃、200rpm、2時間、4時間。結果を図23に示す。P581は、LB及びFCSの両方でY.pseudotuberculosisに対して活性であった。
FyuA受容体をコードする遺伝子は、Yersinia pseudotuberculosisゲノム(受託番号:Z35107.1)から、E.coliシグナル配列(例えば、pelB)を含むプライマーを使用してPCR増幅される。宿主範囲の広い接合性プラスミド(例えば、pLM2)がSalmonella typhimurium LT2から単離され、上記のPCR産物が適切な制限部位でクローン化され、エレクトロポレーションによりE.coli実験室株が形質転換され、PCRにより組換えクローンがスクリーニングされる。目的の遺伝子を含むコロニーが「ドナー」細菌である。5mlのドナー細胞及びレシピエント細胞(FyuA受容体を発現させる必要があるE.coli)をOD6000.5~0.7まで増殖させる。100μLのドナー培養物及びレシピエント培養物を混合し(対照:ドナー細胞及びレシピエント細胞のみを100μL)、遠心分離して0.85%生理食塩水で細胞を2回洗浄する。ペレットを20μLの生理食塩水に再懸濁し、よく乾燥したLB寒天ペトリ皿にスポットする。前記プレートを乾燥させ、30℃で一晩インキュベートした後、培養物を500μLの生理食塩水中に掻き取り、ボルテックスして交配対(mating pairs)を破壊する。懸濁液を、それぞれの選択プレート、例えば、二重抗生物質プレート上で様々な適切な希釈物を平板培養する。適切なコロニーは、通常、接合性プラスミドの存在をPCRで確認することで接合が確認される。接合子コロニーは、LB培地でOD600が0.8になるまで増殖させる。培養物をOD600が0.2になるように希釈し、LB寒天プレートに広げて平板培養し、乾燥させる。タンパク質P558(FyuA結合ドメイン-T4リゾチーム)融合体を菌叢にスポットし(10μg)、37℃で17時間平板培養する。クリアランスとして見られる阻害区域は、FyuA受容体の発現による細菌の感受性を示す。レシピエント細菌の対照培養物にもP558をスポットする。
バクテリオシンをコードする遺伝子は、pETプラスミドなどのE.coli発現ベクターにクローニングされ、組換えバクテリオシンの発現が確認される。AMPをコードするDNA配列は、バクテリオシンの5’末端又は3’末端にPCRに基づく方法でクローニングされ、融合遺伝子が得られる。上記の表に記載されている種々のAMP配列は、様々なバクテリオシンと融合される。これらの融合遺伝子は細菌発現ベクターにクローニングされ、DNA配列が確認される。あるいは、AMPをコードするDNA配列は、適切な制限酵素認識部位を有するオリゴとして合成され、バクテリオシン遺伝子を既に含むプラスミドにクローニングされる。
全てのDNA配列が確認されたキメラバクテリオシンは、適切な実験室E.coli株で発現される。例えば、プラスミドを担持するE.coli ER2566は、例えば、OD600が約0.8~1.0に達するまで37℃で増殖され、IPTGを1mMの最終濃度まで添加することによりタンパク質発現が誘導され、かかる誘導は、例えば、37℃で4時間行われる。4時間のIPTG誘導後、細胞を回収し、タンパク質発現をアクリルアミドゲルで確認する。試験組換えキメラバクテリオシンの発現が確認されたら、例えばアフィニティークロマトグラフィーにより、精製する。細胞の可溶性画分で発現されるタンパク質は、例えば天然の精製条件を使用して、精製され、封入体(inclusion body(IB))として発現されるタンパク質は、IBを変性するための尿素又は塩酸グアニジンのいずれかを使用する変性条件下で精製される。変性タンパク質のリフォールディングは、例えば変性剤を除去することにより行われ、これは例えば適切な緩衝液に対して4℃で16~18時間透析することにより行われる。リフォールディング後、精製されリフォールディングしたタンパク質の均一性を、アクリルアミドゲルで分析し、タンパク質濃度をブラッドフォード(Bradford)アッセイで測定する。
a)バッファー及び緩衝生理食塩水におけるCFU低下アッセイ:
対数増殖期中期(OD600が約0.6)になるまで、例えばLB培地で、増殖したグラム陰性細胞を、150mM NaCl含有又は非含有20mM HEPES(pH7.0)又は20mM SPB(pH7.0)などの適切なバッファーで100倍に希釈し、最終密度を約106CFU/mLとする。100μLの細胞を、種々の濃度(例えば、50~200μg/mL)の精製された試験タンパク質で処理する。反応混合物の最終容量は、例えば、適切な緩衝液で200μLに調整される。前記反応混合物を、例えば、37℃で2時間インキュベートし、LBプレート上に適切な希釈物をプレーティングし、その後37℃で一晩インキュベートすることにより、残存する生存細胞数を数える。抗菌活性は、未処理の細胞の初期数を残存細胞数により対数単位で割り、棒グラフとしてデータをプロットすることで計算する。
対数増殖期中期(OD600が約0.6)になるまで、例えばLB培地で、増殖したグラム陰性細胞を、LB培地又はCA-MHB培地で100倍に希釈し、最終密度を約106CFU/mLとする。100μLの細胞を、種々の濃度(例えば、50~200μg/mL)の精製された試験タンパク質で処理する。反応混合物の最終容量は、例えば、適切な緩衝液で200μLに調整される。前記反応混合物を、例えば、37℃で2時間インキュベートし、LBプレート上に適切な希釈物をプレーティングし、その後37℃で一晩インキュベートすることにより、残存する生存細胞数を数える。抗菌活性は、未処理の細胞の初期数を残存細胞数により対数単位で割り、棒グラフとしてデータをプロットすることで計算する。
対数増殖期中期(OD600が約0.6)になるまで、例えば、LB培地で、増殖したグラム陰性細胞を、FBSで100倍に希釈し、最終密度を約106CFU/mLとする。100μLの細胞を、種々の濃度(例えば、100~400μg/mL)の精製された試験タンパク質で処理する。反応混合物の最終容量は、例えば、CA-MHB培地で200μLに調整される。前記反応混合物を、例えば、37℃で2時間インキュベートし、LBプレート上に適切な希釈物をプレーティングし、その後37℃で一晩インキュベートすることにより、残存する生存細胞数を数える。抗菌活性は、未処理の細胞の初期数を残存細胞数により対数単位で割り、棒グラフとしてデータをプロットすることで計算する。
MICは、例えば、カチオン調整ミューラーヒントン培地(CA-MHB培地)又は50%FBS中で、グラム陰性細胞に対して、改変CLSI培地微量希釈手 順を使用して決定する。マイクロタイタープレートに10点のMICを、2倍希釈の2連で設定する。96ウェルポリスチレンプレートのウェルを、例えば、37℃で1時間、0.5%BSAでコーティングし、各ウェルに、例えば、5×105細胞/mLのグラム陰性細菌を接種する。試験タンパク質を含まない増殖の陽性対照をアッセイに含める。マイクロタイタープレートを、例えば、35℃で18~20時間インキュベートする。MICは、インキュベーション終了時において細菌増殖を完全に阻害する最小濃度として定義される。例えば、ヨードニトロテトラゾリウム(INT)色素の添加後にウェルが無色であることで測定される。
本願発明の例示的な態様を以下に記載する。
<1> 標的グラム陰性細菌を死滅させることができる実質的に単離されたキメラバクテリオシン構築物であって、
a)受容体媒介性トランスロケーションドメイン、ここで、該受容体媒介性トランスロケーションドメインは、所望によりバクテリオシンのトランスロケーションセグメント(TS)に対して70%以上のマッチング、及び/又はバクテリオシンの受容体結合セグメント(RBS)に対して70%以上のマッチングを含む;及び
b)前記受容体媒介性トランスロケーションセグメントに作動可能に連結されると前記標的細菌を死滅させることができるカーゴドメイン、を含み、
前記キメラバクテリオシン構築物は、
i)前記標的細菌が前記キメラバクテリオシン構築物と接触したときに、前記標的細菌を死滅させることができ、かつ
ii)天然のS型ピオシンとは異なる配列を含む、実質的に単離されたキメラバクテリオシン構築物。
<2> 別の抗微生物剤、抗生物質、又は他の治療的介入と組み合わせて使用される、<1>に記載のキメラバクテリオシン構築物。
<3> a)1つのセグメントの70%のマッチングは80%以上である、
b)TS及びRBSは両方とも単一のバクテリオシンに由来する、
c)標的は混合細菌培養物である、
d)標的は異なる種の細菌を含む、
e)標的は異なる属の細菌を含む、
f)死滅セグメントはバクテリオシンに由来する、
g)死滅セグメントは相同バクテリオシンに由来する、
h)死滅セグメントは異種バクテリオシンに由来する、又は
i)異なる配列は精製タグを含む、
<1>に記載のキメラバクテリオシン構築物。
<4> a)前記標的細菌は感受性Klebsiella属標的を含む、
b)前記TS及び/又はRBSはクレビシンに由来する、
c)前記死滅セグメントはクレビシンに由来する、
d)前記TS、RBS、及び死滅セグメントは全て複数のクレビシンに由来する、
e)前記TS、RBS、及び死滅セグメントは全て単一のクレビシンに由来する、又は
f)前記TS、RBS、及び死滅セグメントのそれぞれは、異なるクレビシンに由来する、
<1>に記載のキメラバクテリオシン構築物。
<5> <4>に記載のキメラバクテリオシン構築物をコードする、単離された核酸。
<6> a)前記標的細菌は感受性Pseudomonas属標的を含む、
b)前記TS及び/又はRBSはS型ピオシンに由来する、
c)前記死滅セグメントはS型ピオシンに由来する、
d)前記TS、RBS、及び死滅セグメントの全ては複数のS型ピオシンに由来する、
e)前記TS、RBS、及び死滅セグメントの全ては単一のS型ピオシンに由来する、又は
f)前記TS、RBS、及び死滅セグメントのそれぞれは、異なるS型ピオシンに由来する、
<1>に記載のキメラバクテリオシン構築物。
<7> <6>に記載のキメラバクテリオシン構築物をコードする、単離された核酸。
<8> a)前記標的細菌は感受性Escherichia属標的を含む、
b)前記TS及び/又はRBSは大腸菌ペスチシン(coli pesticin)に由来する、
c)前記死滅セグメントは大腸菌ペスチシンに由来する、
d)前記TS、RBS、及び死滅セグメントの全ては複数の大腸菌ペスチシンに由来する、
e)前記TS、RBS、及び死滅セグメントの全ては単一の大腸菌ペスチシンに由来する、又は
f)前記TS、RBS、及び死滅セグメントのそれぞれは、異なる大腸菌ペスチシンに由来する、
<1>に記載のキメラバクテリオシン構築物。
<9> <8>に記載のキメラバクテリオシン構築物をコードする、単離された核酸。
<10> バクテリオシン感受性を標的細菌に導入する方法であって、前記標的の外膜で発現されるバクテリオシン受容体を前記標的に導入する可動性要素(mobilizable element)を導入(transfer)することにより、前記バクテリオシン受容体を前記標的に導入する工程を含む方法。
<11> 前記受容体を発現している標的を前記バクテリオシンと接触させ、前記標的細菌の死滅をもたらす工程をさらに含む、<10>に記載の方法。
<12> 標的グラム陰性細菌の外膜を横断してポリペプチドセグメントを送達することができる実質的に単離されたポリペプチドであって、
a)バクテリオシンのトランスロケーションセグメント(TS)に対して70%以上のマッチングを含むセグメント、及び/又はバクテリオシンの受容体結合セグメント(RBS)に対して70%以上のマッチングを含むセグメント、及び
b)前記トランスロケーションセグメント又は前記受容体結合セグメントに作動可能に連結された場合に前記標的細菌に送達されるためのカーゴポリペプチドセグメント、を含み、
前記単離されたポリペプチドは、前記標的細菌が前記ポリペプチドと接触した場合に、前記標的細菌の前記外膜を横断して前記カーゴポリペプチドを送達することができる、
実質的に単離されたポリペプチド。
<13> a)1つのセグメントの70%のマッチングは80%以上である、
b)TS及びRBSは両方とも単一のバクテリオシンに由来する、
c)標的は混合細菌培養物である、
d)標的は異なる種の細菌を含む、
e)標的は異なる属の細菌を含む、
f)カーゴポリペプチドはバクテリオシンに由来する、
g)カーゴポリペプチドは相同バクテリオシンに由来する、
h)カーゴポリペプチドは異種バクテリオシンに由来する、
i)カーゴポリペプチドは標的細菌の生存率又は増殖を調節する、又は
j)単離されたポリペプチドは精製タグを含む、
<12>に記載の単離されたポリペプチド。
Claims (14)
- Klebsiella pneumoniae又はEscherichia coliを、有効量のバクテリオシン又は前記バクテリオシンを含有する組成物と接触させることを含む、インビトロで前記Klebsiella pneumoniae又はEscherichia coliを死滅させる方法であって、前記バクテリオシンは:
a)配列番号2のアミノ酸配列における第1位~第320位のアミノ酸からなるセグメントを含む、受容体媒介性トランスロケーションドメイン;
b)配列番号2のアミノ酸配列における第322位~第457位のアミノ酸からなるセグメントを含む、受容体結合ドメイン;及び
c)配列番号2のアミノ酸配列における第475位~第559位のアミノ酸からなるセグメントを含む、カーゴドメイン、
を含む、配列番号2のアミノ酸配列を含む、
前記方法。 - 前記バクテリオシンがさらに精製タグを含む、請求項1に記載の方法。
- 前記Klebsiella pneumoniae又はEscherichia coliを前記バクテリオシンとは別の抗微生物剤、抗生物質、又はその他の治療剤と接触させることをさらに含む、請求項1に記載の方法。
- Pseudomonas aeruginosaの存在下で前記Klebsiella pneumoniae又はEscherichia coliをピオシンと接触させることをさらに含む、請求項1に記載の方法。
- 前記ピオシンがS型ピオシンである、請求項4に記載の方法。
- 前記S型ピオシンがS5ピオシンである、請求項5に記載の方法。
- 前記Klebsiella pneumoniaeが薬剤耐性Klebsiella pneumoniaeである、又は前記Escherichia coliが薬剤耐性Escherichia coliである、請求項1に記載の方法。
- Klebsiella pneumoniae又はEscherichia coliを死滅させるための、バクテリオシンを含む医薬、ここで前記バクテリオシンは: a)配列番号2のアミノ酸配列における第1位~第320位のアミノ酸からなるセグメントを含む、受容体媒介性トランスロケーションドメイン;
b)配列番号2のアミノ酸配列における第322位~第457位のアミノ酸からなるセグメントを含む、受容体結合ドメイン;及び
c)配列番号2のアミノ酸配列における第475位~第559位のアミノ酸からなるセグメントを含む、カーゴドメイン、
を含む、配列番号2のアミノ酸配列を含む、
前記医薬。 - 前記バクテリオシンがさらに精製タグを含む、請求項8に記載の医薬。
- 前記バクテリオシンとは別の抗微生物剤、抗生物質、又はその他の治療剤をさらに含む、請求項8に記載の医薬。
- 前記医薬が、Pseudomonas aeruginosaの存在下でKlebsiella pneumoniae又はEscherichia coliを死滅させるためのものであり、ピオシンをさらに含む、請求項8に記載の医薬。
- 前記ピオシンがS型ピオシンである、請求項11に記載の医薬。
- 前記S型ピオシンがS5ピオシンである、請求項12に記載の医薬。
- 前記Klebsiella pneumoniaeが薬剤耐性Klebsiella pneumoniaeである、又は前記Escherichia coliが薬剤耐性Escherichia coliである、請求項8に記載の医薬。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN201741045069 | 2017-12-14 | ||
IN201741045069 | 2017-12-14 | ||
PCT/IN2018/050837 WO2019116392A1 (en) | 2017-12-14 | 2018-12-13 | Therapeutic bacteriocins |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021506341A JP2021506341A (ja) | 2021-02-22 |
JP7465418B2 true JP7465418B2 (ja) | 2024-04-11 |
Family
ID=66819621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020552184A Active JP7465418B2 (ja) | 2017-12-14 | 2018-12-13 | 治療用バクテリオシン |
Country Status (7)
Country | Link |
---|---|
US (1) | US11857606B2 (ja) |
EP (1) | EP3723488A4 (ja) |
JP (1) | JP7465418B2 (ja) |
CN (1) | CN111770687A (ja) |
CA (1) | CA3085697A1 (ja) |
MX (1) | MX2020006191A (ja) |
WO (1) | WO2019116392A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3378485A1 (en) * | 2017-03-24 | 2018-09-26 | Nomad Bioscience GmbH | Bacteriocins for control of salmonella enterica |
CA3085697A1 (en) * | 2017-12-14 | 2019-06-20 | Bactoclear Holdings Pte Ltd. | Therapeutic bacteriocins |
EP3873917A4 (en) * | 2018-11-02 | 2022-08-17 | The Rockefeller University | COMPOSITIONS AND METHODS COMPRISING LYSOCINES AS BIOTECHNICAL ANTIMICROBIAL FOR USE IN TARGETING GRAM-NEGATIVE BACTERIA |
GB202109082D0 (en) * | 2021-06-24 | 2021-08-11 | Univ Oxford Innovation Ltd | Polypeptides and uses thereof |
CA3225734A1 (en) * | 2021-07-12 | 2023-01-19 | Anisha AMBADY | Chimeric klebicins |
EP4248987A1 (en) * | 2022-03-21 | 2023-09-27 | Nomad Bioscience GmbH | Chimeric bacteriocins and method for the control of pseudomonas |
WO2023230745A1 (zh) * | 2022-05-30 | 2023-12-07 | 中国科学院深圳先进技术研究院 | 一种生产靶向治疗活性成分的可生成细菌纤维素工程菌及其制备方法 |
WO2023239814A1 (en) * | 2022-06-07 | 2023-12-14 | University Of Cincinnati | Epitope-independent pretargeted therapy of cancers using bacteria |
US20240010689A1 (en) * | 2022-07-08 | 2024-01-11 | Bactoclear Holdings PTE, Ltd. | Chimeric klebicins |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013545460A (ja) | 2010-11-08 | 2013-12-26 | アビッドバイオティクス コーポレイション | 組換えp4バクテリオファージおよびその使用方法 |
JP2014516358A (ja) | 2011-04-12 | 2014-07-10 | ガンガゲン インコーポレーティッド | キメラ抗菌ポリペプチド |
JP2017529398A (ja) | 2014-09-23 | 2017-10-05 | ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ グラスゴー | 細菌性呼吸器感染症を処置するためのピオシン類の肺投与 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4458066A (en) | 1980-02-29 | 1984-07-03 | University Patents, Inc. | Process for preparing polynucleotides |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4935349A (en) | 1986-01-17 | 1990-06-19 | Zymogenetics, Inc. | Expression of higher eucaryotic genes in aspergillus |
GB8612087D0 (en) | 1986-05-19 | 1986-06-25 | Ici Plc | Hybridisation probes |
US5017478A (en) | 1987-07-16 | 1991-05-21 | Berlex Laboratories, Inc. | Transfected cells containing plasmids having genes oriented in opposing directions and methods of using |
US5414085A (en) | 1992-04-06 | 1995-05-09 | Biosite Diagnostics, Inc. | Barbiturate derivatives and protein and polypeptide barbiturate derivative conjugates and labels |
US5426039A (en) | 1993-09-08 | 1995-06-20 | Bio-Rad Laboratories, Inc. | Direct molecular cloning of primer extended DNA containing an alkane diol |
US6335160B1 (en) | 1995-02-17 | 2002-01-01 | Maxygen, Inc. | Methods and compositions for polypeptide engineering |
US6395547B1 (en) | 1994-02-17 | 2002-05-28 | Maxygen, Inc. | Methods for generating polynucleotides having desired characteristics by iterative selection and recombination |
US6506602B1 (en) | 1996-03-25 | 2003-01-14 | Maxygen, Inc. | Methods for generating polynucleotides having desired characteristics by iterative selection and recombination |
US6376246B1 (en) | 1999-02-05 | 2002-04-23 | Maxygen, Inc. | Oligonucleotide mediated nucleic acid recombination |
CN101437532B (zh) | 2006-05-05 | 2013-08-21 | 冈戈根股份有限公司 | 噬菌体衍生的抗微生物活性剂 |
US7700729B2 (en) | 2006-05-15 | 2010-04-20 | Avidbiotics Corporation | Modified bacteriocins and methods for their use |
US20110311499A1 (en) * | 2009-12-16 | 2011-12-22 | University Of Washington Through Its Center For Commercialization | Secretion System and Methods for its Use |
CA3085697A1 (en) * | 2017-12-14 | 2019-06-20 | Bactoclear Holdings Pte Ltd. | Therapeutic bacteriocins |
-
2018
- 2018-12-13 CA CA3085697A patent/CA3085697A1/en active Pending
- 2018-12-13 JP JP2020552184A patent/JP7465418B2/ja active Active
- 2018-12-13 EP EP18889717.7A patent/EP3723488A4/en active Pending
- 2018-12-13 CN CN201880088446.0A patent/CN111770687A/zh active Pending
- 2018-12-13 US US16/954,120 patent/US11857606B2/en active Active
- 2018-12-13 WO PCT/IN2018/050837 patent/WO2019116392A1/en unknown
- 2018-12-13 MX MX2020006191A patent/MX2020006191A/es unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013545460A (ja) | 2010-11-08 | 2013-12-26 | アビッドバイオティクス コーポレイション | 組換えp4バクテリオファージおよびその使用方法 |
JP2014516358A (ja) | 2011-04-12 | 2014-07-10 | ガンガゲン インコーポレーティッド | キメラ抗菌ポリペプチド |
JP2017529398A (ja) | 2014-09-23 | 2017-10-05 | ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ グラスゴー | 細菌性呼吸器感染症を処置するためのピオシン類の肺投与 |
Non-Patent Citations (1)
Title |
---|
Journal of Bacteriology,2007年11月,Vol. 189, No. 21,p. 7663-7668 |
Also Published As
Publication number | Publication date |
---|---|
EP3723488A1 (en) | 2020-10-21 |
JP2021506341A (ja) | 2021-02-22 |
CN111770687A (zh) | 2020-10-13 |
US20210163546A1 (en) | 2021-06-03 |
CA3085697A1 (en) | 2019-06-20 |
WO2019116392A1 (en) | 2019-06-20 |
MX2020006191A (es) | 2020-11-06 |
US11857606B2 (en) | 2024-01-02 |
EP3723488A4 (en) | 2021-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7465418B2 (ja) | 治療用バクテリオシン | |
JP6685360B2 (ja) | ファージに由来する抗微生物活性 | |
US9932569B2 (en) | Chimeric antibacterial polypeptides | |
US20220220464A1 (en) | Chimeric lysm poylpeptides | |
US20190282673A1 (en) | Staphtame activity on biofilms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221130 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230529 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230627 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240130 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20240228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240229 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20240228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7465418 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |