Nothing Special   »   [go: up one dir, main page]

JP7445518B2 - automatic blood pressure measuring device - Google Patents

automatic blood pressure measuring device Download PDF

Info

Publication number
JP7445518B2
JP7445518B2 JP2020092610A JP2020092610A JP7445518B2 JP 7445518 B2 JP7445518 B2 JP 7445518B2 JP 2020092610 A JP2020092610 A JP 2020092610A JP 2020092610 A JP2020092610 A JP 2020092610A JP 7445518 B2 JP7445518 B2 JP 7445518B2
Authority
JP
Japan
Prior art keywords
compression
blood pressure
pulse wave
pressure
bag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020092610A
Other languages
Japanese (ja)
Other versions
JP2021186091A (en
Inventor
雅貴 古越
直嵩 長谷部
秀郎 西林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Holon Holdings Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP2020092610A priority Critical patent/JP7445518B2/en
Publication of JP2021186091A publication Critical patent/JP2021186091A/en
Application granted granted Critical
Publication of JP7445518B2 publication Critical patent/JP7445518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

本発明は、腕、足首のような生体の肢体である被圧迫部位に巻き付けられる圧迫帯を備えた自動血圧測定装置に関するものである。 TECHNICAL FIELD The present invention relates to an automatic blood pressure measuring device equipped with a compression band that is wrapped around a compressed body part such as an arm or an ankle of a living body.

生体の被圧迫部位に巻き付けられる圧迫帯を備え、その圧迫帯の圧迫圧力を変化させる過程でその圧迫帯内の圧力振動である脈波を逐次抽出し、その脈波の変化に基づいて生体の血圧値を決定する自動血圧測定装置において、幅方向に連ねられて生体の被圧迫部位を各々圧迫する独立した気室を有する複数の膨張袋を有する圧迫帯を用いるものが知られている。例えば、特許文献1に記載されたものがそれである。特許文献1では、上記幅方向に連ねられた独立した気室である複数の膨張袋は、上流側膨張袋、中間膨張袋、及び下流側膨張袋と称されている。 It is equipped with a compression band that is wrapped around the compressed part of the living body, and in the process of changing the compression pressure of the compression band, pulse waves, which are pressure vibrations within the compression band, are extracted sequentially, and based on changes in the pulse wave, the body's body is detected. 2. Description of the Related Art Among automatic blood pressure measuring devices for determining blood pressure values, one is known that uses a compression band having a plurality of inflation bags connected in the width direction and each having an independent air chamber that compresses a compressed part of a living body. For example, that is what is described in Patent Document 1. In Patent Document 1, the plurality of inflation bags that are independent air chambers arranged in the width direction are referred to as an upstream inflation bag, an intermediate inflation bag, and a downstream inflation bag.

特許文献1の実施例1に記載された自動血圧測定装置では、圧迫帯による圧迫圧力が最高血圧値よりも高い値から下降させられる過程で、例えば中間膨張袋から得られた脈波の頂点を結ぶ包絡線(エンベロープ)が急激な上昇を示す点及び急激な下降を示す点のそれぞれの圧迫圧力を最高血圧値及び最低血圧値として決定する血圧値決定アルゴリズムが用いられている。また、特許文献1の実施例2に記載された自動血圧測定装置では、圧迫帯による圧迫圧力が最高血圧値よりも高い値から下降させられる過程で、下流側膨張袋から得られる脈波の振幅値とその下流側膨張袋よりも上流側に位置する膨張袋から得られる脈波の振幅値の比の変化に基づいて最高血圧値を決定する最高血圧値決定アルゴリズムが用いられている。また、圧迫帯による圧迫圧力が最高血圧値よりも高い値から下降させられる過程で、下流側膨張袋から得られる脈波とその下流側膨張袋よりも上流側に位置する膨張袋から得られる脈波との間の、位相差関連情報(時間差、脈波伝播速度)の変化に基づいて最低血圧値を決定する最低血圧値決定アルゴリズムが用いられている。 In the automatic blood pressure measuring device described in Example 1 of Patent Document 1, during the process in which the compression pressure by the compression cuff is lowered from a value higher than the systolic blood pressure value, the peak of the pulse wave obtained from the intermediate inflation bag is A blood pressure value determination algorithm is used that determines the compression pressures at points where the connecting envelope shows a sudden increase and a point where the envelope shows a sudden drop as the systolic blood pressure value and the diastolic blood pressure value. In addition, in the automatic blood pressure measuring device described in Example 2 of Patent Document 1, the amplitude of the pulse wave obtained from the downstream inflation bag during the process in which the compression pressure by the compression cuff is lowered from a value higher than the systolic blood pressure value. A systolic blood pressure value determination algorithm is used that determines the systolic blood pressure value based on a change in the ratio between the pulse wave amplitude value and the amplitude value of a pulse wave obtained from an expansion bag located upstream of the downstream expansion bag. In addition, during the process in which the compression pressure by the compression band is lowered from a value higher than the systolic blood pressure value, the pulse wave obtained from the downstream inflation bag and the pulse wave obtained from the inflation bag located upstream of the downstream inflation bag are compared. A diastolic blood pressure value determination algorithm is used that determines the diastolic blood pressure value based on changes in phase difference related information (time difference, pulse wave propagation velocity) between the waves.

特開2012-071059号公報Japanese Patent Application Publication No. 2012-071059

しかしながら、圧迫帯による圧迫圧力が最高血圧値よりも高い値から下降させられる過程で、下流側膨張袋から得られる脈波とその下流側膨張袋よりも上流側に位置する膨張袋から得られる脈波との間の位相差関連情報(時間差、脈波伝播速度)は、動脈血管の径が変化する点からの反射波が重畳して変化するため、圧迫圧力の下降に伴う最低血圧値付近において安定的に認識できる明確な変化現象とは言い難いものであった。このため、特許文献1に記載された自動血圧測定装置では、上記の位相差関連情報に基づいて最低血圧値を正確に決定することができない場合があった。 However, during the process in which the compression pressure by the compression band is lowered from a value higher than the systolic blood pressure value, the pulse wave obtained from the downstream inflation bag and the pulse wave obtained from the inflation bag located upstream of the downstream inflation bag. Information related to the phase difference between the waves (time difference, pulse wave propagation velocity) changes as the reflected waves from the point where the diameter of the arterial blood vessel changes are superimposed. It was hard to say that it was a clear change phenomenon that could be stably recognized. For this reason, the automatic blood pressure measuring device described in Patent Document 1 may not be able to accurately determine the diastolic blood pressure value based on the above-mentioned phase difference related information.

本発明の目的とするところは、中間膨張袋から得られる脈波に含まれる反射波情報を用いて、生体の最低血圧値を正確に決定できる自動血圧測定装置を提供することである。 An object of the present invention is to provide an automatic blood pressure measuring device that can accurately determine the diastolic blood pressure value of a living body using reflected wave information contained in a pulse wave obtained from an intermediate inflation bag.

本発明者は、以上の事情を背景として、幅方向に連ねられて独立して生体をそれぞれ圧迫できる上流側膨張袋、中間膨張袋、及び下流側膨張袋を有する3連カフを用いて、各膨張袋から独立に得られるカフ脈波を比較検討するうち、圧迫帯による圧迫圧力が最高血圧値よりも高い値から下降させられる過程で、上流側膨張袋、中間膨張袋、および下流側膨張袋からそれぞれ得られる上流側脈波、中間脈波、および下流側脈波の一次微分波形のうち、中間脈波の一次微分波形および二次微分が最低血圧値付近において特徴的な変化を示すという事実を見出した。その特徴的な変化は、脈波の伝播経路において、下流側膨張袋の下流側端部において動脈血管の断面積が変化する点から上流側へ伝播する反射波の、圧迫圧力の低下に関連した減衰に由来するものと推定される。本発明はかかる知見に基づいて為されたものである。 With the above circumstances as a background, the present inventor has developed a triple cuff that has an upstream inflation bag, an intermediate inflation bag, and a downstream inflation bag that are connected in the width direction and can independently compress a living body. When comparing and examining the cuff pulse waves obtained independently from the inflation bag, we found that in the process of lowering the compression pressure by the compression band from a value higher than the systolic blood pressure value, the pressure from the upstream inflation bladder, intermediate inflation bladder, and downstream inflation bladder Of the first-order differential waveforms of the upstream pulse wave, intermediate pulse wave, and downstream pulse wave obtained from the I found out. The characteristic change is related to a decrease in compression pressure of the reflected wave propagating upstream from the point where the cross-sectional area of the arterial blood vessel changes at the downstream end of the downstream inflation bag in the pulse wave propagation path. It is presumed that this is due to attenuation. The present invention has been made based on this knowledge.

すなわち、第1発明の要旨とするところは、(a)生体の被圧迫部位に巻き付けられ、幅方向に連ねられて前記生体の被圧迫部位を各々圧迫する独立した上流側膨張袋、中間膨張袋、および下流側膨張袋を有し、前記上流側膨張袋、前記中間膨張袋、および前記下流側膨張袋によりそれぞれ同じ圧迫圧力で前記被圧迫部位内の動脈血管を圧迫する圧迫帯を、備える自動血圧測定装置であって、(b)前記圧迫帯による前記被圧迫部位に対する圧迫圧力を変化させる過程で、前記中間膨張袋内の圧迫圧力に含まれる前記生体の心拍に同期した圧力振動である中間脈波を抽出する脈波抽出部と、(c)前記圧迫帯の圧迫圧力が最高血圧値よりも高い値から下降させられる過程で、前記下流側膨張袋の下流側端部下において前記動脈血管の断面積が変化する点から上流側へ反射した反射波が重畳する前記中間脈波の一次微分波形の二次ピーク波の大きさ又は振幅が予め設定された判定閾値未満となったときの前記圧迫帯の圧迫圧力に基づいて、前記生体の最低血圧値を決定する最低血圧値決定部と、を含むことにある。 That is, the gist of the first invention is as follows: (a) independent upstream inflation bags and intermediate inflation bags that are wrapped around a pressured part of a living body and are connected in the width direction to respectively compress the pressured part of the living body; , and a compression band having a downstream inflation bag and compressing an arterial blood vessel in the compressed region with the same compression pressure by the upstream inflation bladder, the intermediate inflation bladder, and the downstream inflation bladder, respectively. In the blood pressure measuring device, (b) in the process of changing the compression pressure on the compressed area by the compression band, an intermediate pressure vibration that is included in the compression pressure in the intermediate expansion bag and synchronized with the heartbeat of the living body; (c) a pulse wave extraction section that extracts a pulse wave; The above when the magnitude or amplitude of the secondary peak wave of the first derivative waveform of the intermediate pulse wave, on which the reflected wave reflected upstream from the point where the cross-sectional area changes is superimposed, is less than a preset determination threshold. The present invention further includes a diastolic blood pressure value determination unit that determines the diastolic blood pressure value of the living body based on the compression pressure of the compression band.

第1発明の自動血圧測定装置によれば、前記圧迫帯の圧迫圧力が最高血圧値よりも高い値から下降させられる過程で、前記下流側膨張袋の下流側端部下において前記動脈血管の断面積が変化する点から上流側へ反射した反射波が重畳する前記中間脈波の一次微分波形の二次ピーク波の大きさ又は振幅が予め設定された判定閾値未満となったときの前記圧迫帯の圧迫圧力に基づいて、前記生体の最低血圧値を決定する最低血圧値決定部を含む。これにより、前記下流側膨張袋の下流側端部下において前記動脈血管の断面積が変化する点から上流側へ反射して前記中間脈波に重畳する反射波が所定以上減衰したことが安定的に判定されるので、生体の最低血圧値の決定精度が高められる。 According to the automatic blood pressure measuring device of the first invention, in the process in which the compression pressure of the compression band is lowered from a value higher than the systolic blood pressure value, the cross-sectional area of the arterial blood vessel is lowered below the downstream end of the downstream inflation bag. The compression band when the magnitude or amplitude of the secondary peak wave of the first-order differential waveform of the intermediate pulse wave, on which the reflected waves reflected upstream from the point where the change changes, is less than a preset determination threshold. The apparatus includes a diastolic blood pressure value determination unit that determines a diastolic blood pressure value of the living body based on the compression pressure of the living body. Thereby, it is stably confirmed that the reflected wave that is reflected upstream from the point where the cross-sectional area of the arterial blood vessel changes under the downstream end of the downstream inflation bag and is superimposed on the intermediate pulse wave has been attenuated by a predetermined amount or more. Since the determination is made, the accuracy of determining the diastolic blood pressure value of the living body is improved.

第2発明の要旨とするところは、(a)生体の被圧迫部位に巻き付けられ、幅方向に連ねられて前記生体の被圧迫部位を各々圧迫する独立した上流側膨張袋、中間膨張袋、および下流側膨張袋を有し、前記上流側膨張袋、前記中間膨張袋、および前記下流側膨張袋によりそれぞれ同じ圧迫圧力で前記被圧迫部位内の動脈血管を圧迫する圧迫帯を、備える自動血圧測定装置であって、(b) 前記圧迫帯による前記被圧迫部位に対する圧迫圧力を変化させる過程で、前記中間膨張袋内の圧迫圧力に含まれる前記生体の心拍に同期した圧力振動である中間脈波を抽出する脈波抽出部と、(c)前記圧迫帯の圧迫圧力が最高血圧値よりも高い値から下降させられる過程で、前記下流側膨張袋の下流側端部下において前記動脈血管の断面積が変化する点から上流側へ反射した反射波が重畳する前記中間脈波の二次微分波形における一次極大極小波後の所定期間の波形が零を示す基線と交差しなくなったときの前記圧迫帯の圧迫圧力に基づいて、前記生体の最低血圧値を決定する最低血圧値決定部と、を含むことにある。これにより、前記中間脈波の二次微分波形の一次極大極小波形後の波形が零を示す基線と交差しなくなったことが安定的に判定されるので、生体の最低血圧値の決定精度が高められる。 The gist of the second invention is as follows: (a) an independent upstream inflation bag and an intermediate inflation bag that are wrapped around a pressured part of a living body and are connected in the width direction to compress each of the pressured parts of the living body; Automatic blood pressure measurement comprising a compression band having a downstream inflation bag and compressing an arterial blood vessel in the compressed region with the same compression pressure by the upstream inflation bag, the intermediate inflation bag, and the downstream inflation bag, respectively. (b) In the process of changing the compression pressure on the compressed site by the compression band, an intermediate pulse wave, which is a pressure vibration synchronized with the heartbeat of the living body, included in the compression pressure in the intermediate expansion bag; (c) a cross-sectional area of the arterial blood vessel below the downstream end of the downstream inflation bag during the process in which the compression pressure of the compression band is lowered from a value higher than the systolic blood pressure value; The compression band when the waveform for a predetermined period after the first maximum minimum wave in the second derivative waveform of the intermediate pulse wave, on which the reflected waves reflected upstream from the point where the change occurs, no longer intersects the baseline indicating zero. and a diastolic blood pressure value determination unit that determines the diastolic blood pressure value of the living body based on the compression pressure of the living body. As a result, it is stably determined that the waveform after the first maximum and minimum waveform of the second-order differential waveform of the intermediate pulse wave no longer intersects the baseline indicating zero , so the accuracy of determining the diastolic blood pressure value of the living body is increased. It will be done.

第3発明の要旨とするところは、第1発明又は第2発明において、前記脈波抽出部は、前記中間膨張袋内の圧迫圧力を表す信号から、45Hz、好適には30Hz、さらに好適には25Hz、またさらに好適には20Hzの上限遮断周波数を有し、その上限遮断周波数未満の周波数成分を通過させるローパスフィルタ処理を施すことで、前記中間膨張袋内の圧迫圧力に含まれる圧力振動である前記中間脈波を抽出する。これにより、反射波の影響を示す特徴を明確に含む中間脈波が得られるので、生体の最低血圧値の決定精度が高められる。 The gist of the third invention is that in the first invention or the second invention, the pulse wave extracting section extracts a frequency of 45 Hz, preferably 30 Hz, more preferably 30 Hz from the signal representing the compression pressure within the intermediate inflation bag. It has an upper limit cutoff frequency of 25 Hz, and more preferably 20 Hz, and is subjected to a low-pass filter process that passes frequency components lower than the upper limit cutoff frequency, so that the pressure vibration contained in the compression pressure in the intermediate inflation bag is The intermediate pulse wave is extracted. As a result, an intermediate pulse wave that clearly includes features indicating the influence of reflected waves can be obtained, so that the accuracy of determining the diastolic blood pressure value of the living body can be improved.

本発明の一実施例である自動血圧測定装置の構成を説明するブロック図である。FIG. 1 is a block diagram illustrating the configuration of an automatic blood pressure measuring device that is an embodiment of the present invention. 図1の圧迫帯を外周面の一部を切り欠いて示す図である。FIG. 2 is a diagram illustrating the compression band of FIG. 1 with a part of the outer circumferential surface cut away. 図2の圧迫帯内に備えられた上流側膨張袋、中間膨張袋、及び下流側膨張袋を示す平面図である。FIG. 3 is a plan view showing an upstream inflation bladder, an intermediate inflation bladder, and a downstream inflation bladder provided in the compression band of FIG. 2. FIG. 図3のIV-IV視断面図であって、上流側膨張袋、中間膨張袋、及び下流側膨張袋を幅方向に切断して示した図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3, showing the upstream inflation bag, intermediate inflation bag, and downstream inflation bag cut in the width direction. 図1の電子制御装置に備えられた制御機能の要部を説明するための機能ブロック線図である。2 is a functional block diagram for explaining main parts of control functions provided in the electronic control device of FIG. 1. FIG. 図5のカフ圧制御部による圧迫圧力制御作動の要部を説明するタイムチャートである。6 is a time chart illustrating a main part of compression pressure control operation by the cuff pressure control section of FIG. 5. FIG. 最高血圧値よりも充分高い圧迫圧力による圧迫状態において、図5の脈波抽出部により上流側膨張袋、中間膨張袋、及び下流側膨張袋の圧迫圧力からそれぞれ抽出された脈波の波形と、図5の一次微分波形算出部により算出された脈波の一次微分波形を示す図である。Pulse wave waveforms extracted from the compression pressures of the upstream expansion bag, intermediate expansion bag, and downstream expansion bag by the pulse wave extraction unit in FIG. 5 in a compression state with compression pressure sufficiently higher than the systolic blood pressure value; FIG. 6 is a diagram showing a first-order differential waveform of a pulse wave calculated by the first-order differential waveform calculating section of FIG. 5; 図7よりも低い圧迫圧力による圧迫状態における脈波の波形と、脈波の一次微分波形とを示す図である。8 is a diagram showing a pulse wave waveform in a compression state with a compression pressure lower than that in FIG. 7 and a first-order differential waveform of the pulse wave. FIG. 図8よりも低い圧迫圧力による圧迫状態における脈波の波形と、脈波の一次微分波形とを示す図である。FIG. 9 is a diagram showing a pulse wave waveform in a compression state with a compression pressure lower than that in FIG. 8 and a first-order differential waveform of the pulse wave. 図9よりも低く生体の最低血圧値付近の圧迫状態における脈波の波形と、脈波の一次微分波形とを示す図である。10 is a diagram showing a waveform of a pulse wave in a compressed state near the diastolic blood pressure value of the living body, which is lower than that in FIG. 9, and a first-order differential waveform of the pulse wave. FIG. 図10よりも低い圧迫圧力による圧迫状態における脈波の波形と、脈波の一次微分波形とを示す図である。11 is a diagram showing a waveform of a pulse wave in a compression state with a compression pressure lower than that in FIG. 10 and a first-order differential waveform of the pulse wave. FIG. 図5の電子制御装置の血圧測定作動の要部を説明するフローチャートを示す図である。FIG. 6 is a diagram showing a flowchart illustrating a main part of the blood pressure measurement operation of the electronic control device of FIG. 5; 本発明の他の実施例における電子制御装置の機能を説明する機能ブロック線図であって、図5に対応する図である。6 is a functional block diagram illustrating the functions of an electronic control device in another embodiment of the present invention, and corresponds to FIG. 5. FIG. 最高血圧値よりも充分高い圧迫圧力による圧迫状態において、図13の脈波抽出部により上流側膨張袋、中間膨張袋、及び下流側膨張袋の圧迫圧力からそれぞれ抽出された脈波の波形と、図13の二次微分波形算出部により算出された脈波の二次微分波形を示す図である。Pulse wave waveforms extracted from the compression pressures of the upstream expansion bag, intermediate expansion bag, and downstream expansion bag by the pulse wave extraction unit of FIG. 13 in a compression state with compression pressure sufficiently higher than the systolic blood pressure value; FIG. 14 is a diagram showing a second-order differential waveform of a pulse wave calculated by the second-order differential waveform calculating section of FIG. 13; 図14よりも低い圧迫圧力による圧迫状態における脈波の波形と、脈波の二次微分波形を示す図である。FIG. 15 is a diagram showing a pulse wave waveform in a compression state with a compression pressure lower than that in FIG. 14 and a second-order differential waveform of the pulse wave. 図15よりも低い圧迫圧力による圧迫状態における脈波の波形と、脈波の二次微分波形を示す図である。FIG. 16 is a diagram showing a pulse wave waveform in a compression state with a compression pressure lower than that in FIG. 15 and a second-order differential waveform of the pulse wave. 図16よりも低く生体の最低血圧値付近の圧迫状態における脈波の波形と、脈波の二次微分波形を示す図である。FIG. 17 is a diagram showing a pulse wave waveform in a compressed state near the diastolic blood pressure value of the living body, which is lower than that in FIG. 16, and a second-order differential waveform of the pulse wave. 図17よりも低い圧迫圧力における脈波の波形と、脈波の二次微分波形を示す図である。18 is a diagram showing a pulse wave waveform and a second-order differential waveform of the pulse wave at a compression pressure lower than that in FIG. 17. FIG. 図13の電子制御装置の血圧測定作動の要部を説明するフローチャートを示す図であって、図12に対応する図である。14 is a diagram illustrating a flowchart illustrating a main part of the blood pressure measurement operation of the electronic control device in FIG. 13, and corresponds to FIG. 12. FIG.

以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比及び形状等は必ずしも正確に描かれていない。 Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. Note that in the following examples, the figures are simplified or modified as appropriate, and the dimensional ratios, shapes, etc. of each part are not necessarily drawn accurately.

図1は、被圧迫部位である生体14の肢体例えば上腕16に巻き付けられた上腕用の圧迫帯12を備えた本発明の一例の自動血圧測定装置10を示している。この自動血圧測定装置10は、上腕16内の動脈18を止血するのに十分な値まで昇圧させた圧迫帯12の圧迫圧力PCを降圧させる過程において、動脈18の容積変化に応答して発生する圧迫帯12内の圧迫圧力PCの圧力振動である脈波を逐次抽出し、その脈波から得られる情報に基づいて生体14の最高血圧値SBP及び最低血圧値DBPを測定するものである。 FIG. 1 shows an automatic blood pressure measuring device 10 according to an example of the present invention, which includes a compression band 12 for an upper arm that is wrapped around a limb of a living body 14, such as an upper arm 16, which is a site to be compressed. This automatic blood pressure measuring device 10 generates blood pressure in response to a change in the volume of the artery 18 in the process of lowering the compression pressure PC of the compression band 12, which has been increased to a value sufficient to stop bleeding in the artery 18 in the upper arm 16. Pulse waves, which are pressure oscillations of compression pressure PC within the compression band 12, are sequentially extracted, and the systolic blood pressure value SBP and diastolic blood pressure value DBP of the living body 14 are measured based on information obtained from the pulse waves.

図2は圧迫帯12を外周側面不織布20aの一部を切り欠いて示す図である。図2に示すように、圧迫帯12は、PVC(polyvinyl chloride)等の合成樹脂により裏面が相互にラミネートされた合成樹脂繊維製の外周側面不織布20a及び内周側不織布20bから成る帯状外袋20と、その帯状外袋20内において幅方向に順次収容され、例えば軟質ポリ塩化ビニールシートなどの可撓性シートから構成されて独立して上腕16を圧迫可能な上流側膨張袋22、中間膨張袋24、及び下流側膨張袋26と、を備える。この圧迫帯12は、外周側面不織布20aの端部に取り付けられた面ファスナ28aに内周側不織布20bの端部に取り付けられた起毛パイル28bが着脱可能に接着されることによって、上腕16に着脱可能に装着されるようになっている。 FIG. 2 is a diagram showing the compression band 12 with a part of the outer peripheral side nonwoven fabric 20a cut away. As shown in FIG. 2, the compression band 12 includes a belt-shaped outer bag 20 made of an outer peripheral side non-woven fabric 20a and an inner peripheral side non-woven fabric 20b made of synthetic resin fibers whose back surfaces are mutually laminated with synthetic resin such as PVC (polyvinyl chloride). , an upstream inflation bag 22 and an intermediate inflation bag which are housed sequentially in the width direction within the belt-shaped outer bag 20 and are made of a flexible sheet such as a soft polyvinyl chloride sheet and can independently compress the upper arm 16. 24, and a downstream expansion bag 26. This compression band 12 can be attached to and detached from the upper arm 16 by attaching and detaching a raised pile 28b attached to the end of the inner nonwoven fabric 20b to a hook and loop fastener 28a attached to the edge of the outer nonwoven fabric 20a. It is designed so that it can be installed.

上流側膨張袋22、中間膨張袋24及び下流側膨張袋26は、長手状の圧迫帯12の幅方向に連ねられて上腕16を各々圧迫する独立した気室をそれぞれ有するとともに、管接続用コネクタ32、34及び36を外周面側に備えている。それら管接続用コネクタ32、34及び36は、外周側面不織布20aを通して圧迫帯12の外周面に露出されている。 The upstream inflation bag 22, the intermediate inflation bag 24, and the downstream inflation bag 26 each have independent air chambers that are connected in the width direction of the longitudinal compression band 12 and compress the upper arm 16, and each have a tube connection connector. 32, 34 and 36 are provided on the outer peripheral surface side. These tube connectors 32, 34, and 36 are exposed on the outer circumferential surface of the compression band 12 through the outer circumferential side nonwoven fabric 20a.

図3は圧迫帯12内に備えられた上流側膨張袋22、中間膨張袋24、及び、下流側膨張袋26を示す平面図であり、図4は図3のIV-IV視断面図である。上流側膨張袋22、中間膨張袋24及び下流側膨張袋26は、それらにより圧迫された動脈18の容積変化に応答して発生する圧力振動である脈波を検出するためのものであり、それぞれ長手状を成している。上流側膨張袋22及び下流側膨張袋26は、中間膨張袋24の両側に隣接した状態で配置されている。また、中間膨張袋24は、上流側膨張袋22及び下流側膨張袋26の間に挟まれた状態で圧迫帯12の幅方向の中央部に配置されている。なお、圧迫帯12が上腕16に巻き付けられた状態においては、上流側膨張袋22及び下流側膨張袋26は上腕16の長手方向に所定間隔を隔てて位置させられ、また、中間膨張袋24は上腕16の長手方向において連なるように上流側膨張袋22及び下流側膨張袋26の間に配置させられる。 FIG. 3 is a plan view showing the upstream inflation bag 22, intermediate inflation bag 24, and downstream inflation bag 26 provided in the compression band 12, and FIG. 4 is a sectional view taken along the line IV-IV in FIG. . The upstream inflation bag 22, the intermediate inflation bag 24, and the downstream inflation bag 26 are for detecting pulse waves, which are pressure vibrations generated in response to changes in the volume of the artery 18 compressed by them. It is elongated. The upstream expansion bag 22 and the downstream expansion bag 26 are arranged adjacent to both sides of the intermediate expansion bag 24 . Further, the intermediate inflation bag 24 is disposed at the center of the compression band 12 in the width direction, sandwiched between the upstream inflation bag 22 and the downstream inflation bag 26. Note that when the compression band 12 is wrapped around the upper arm 16, the upstream inflation bag 22 and the downstream inflation bag 26 are positioned at a predetermined distance in the longitudinal direction of the upper arm 16, and the intermediate inflation bag 24 is It is arranged between the upstream inflation bag 22 and the downstream inflation bag 26 so as to be continuous in the longitudinal direction of the upper arm 16.

中間膨張袋24は所謂マチ構造の側縁部を両側に備えている。すなわち、中間膨張袋24の上腕16の長手方向すなわち圧迫帯12の幅方向における両端部には、互いに接近するほど深くなるように互いに接近する方向に折れ込まれた可撓性シートから成る一対の折込溝24f、24gがそれぞれ形成されている。そして、上流側膨張袋22及び下流側膨張袋26の中間膨張袋24に隣接する側の端部22a及び26aが一対の折込溝24f、24g内にそれぞれ差し入れられて配置されるようになっている。これにより、中間膨張袋24の端部24aと上流側膨張袋22の端部22aとが相互に重ねられ、且つ、中間膨張袋24の端部24bと下流側膨張袋26の端部26aとが相互に重ねられた構造すなわちオーバラップ構造となるので、上流側膨張袋22、中間膨張袋24及び下流側膨張袋26が等圧で上腕16を圧迫したときにそれらの境界付近においても均等な圧力分布が得られる。 The intermediate expansion bag 24 has side edges with a so-called gusset structure on both sides. That is, at both ends of the intermediate inflation bag 24 in the longitudinal direction of the upper arm 16, that is, in the width direction of the compression band 12, there are a pair of flexible sheets that are folded in a direction that approaches each other so that the closer they get to each other, the deeper they become. Folding grooves 24f and 24g are formed, respectively. Ends 22a and 26a of the upstream expansion bag 22 and the downstream expansion bag 26 adjacent to the intermediate expansion bag 24 are inserted into the pair of folding grooves 24f and 24g, respectively. . As a result, the end 24a of the intermediate expansion bag 24 and the end 22a of the upstream expansion bag 22 are overlapped with each other, and the end 24b of the intermediate expansion bag 24 and the end 26a of the downstream expansion bag 26 are overlapped with each other. Since they have a mutually stacked structure, that is, an overlapping structure, when the upstream inflation bag 22, intermediate inflation bag 24, and downstream inflation bag 26 press the upper arm 16 with equal pressure, the pressure is also equal near their boundaries. distribution is obtained.

上流側膨張袋22及び下流側膨張袋26も、マチ構造の側縁部を中間膨張袋24とは反対側の端部22b及び26bに備えている。すなわち、上流側膨張袋22の中間膨張袋24とは反対側の端部22bには、互いに接近するほど深くなるように互いに接近する方向に折れ込まれた可撓性シートから成る折込溝22fが形成されている。また、下流側膨張袋26の中間膨張袋24とは反対側の端部26bには、互いに接近するほど深くなるように互いに接近する方向に折れ込まれた可撓性シートから成る折込溝26gが形成されている。圧迫帯12の幅方向に飛び出ないように、折込溝22fを構成するシートは、上流側膨張袋22内に配置された貫通穴を備える接続シート38を介してその反対側部分すなわち中間膨張袋24側の部分に接続されている。同様に、折込溝26gを構成するシートは、下流側膨張袋26内に配置された貫通穴を備える接続シート40を介してその反対側部分すなわち中間膨張袋24側の部分に接続されている。 The upstream inflation bag 22 and the downstream inflation bag 26 also have side edges of a gusset structure at ends 22b and 26b on the opposite side from the intermediate inflation bag 24. That is, at the end 22b of the upstream inflation bag 22 opposite to the intermediate inflation bag 24, there is a folding groove 22f made of flexible sheets that is folded in the direction toward each other so that the closer they are to each other, the deeper the folding groove 22f is. It is formed. In addition, at the end 26b of the downstream inflation bag 26 opposite to the intermediate inflation bag 24, there is a folding groove 26g made of flexible sheets folded in the direction toward each other so that the closer they are to each other, the deeper the groove is. It is formed. In order to prevent the compression band 12 from protruding in the width direction, the sheet forming the folding groove 22f is inserted into the opposite side, that is, the intermediate inflation bag 24, through a connecting sheet 38 having a through hole arranged in the upstream inflation bag 22. connected to the side part. Similarly, the sheet constituting the folding groove 26g is connected to the opposite side, that is, the intermediate expansion bag 24 side, via a connection sheet 40 provided with a through hole arranged in the downstream expansion bag 26.

これにより、上流側膨張袋22及び下流側膨張袋26の端部22b及び26bにおいても上腕16の動脈18に対する圧迫圧力が他の部分と同様に得られるので、圧迫帯12の幅方向の有効圧迫幅がその幅寸法と同等になる。圧迫帯12の幅方向は12cm程度であり、その幅方向に3つの上流側膨張袋22、中間膨張袋24、及び下流側膨張袋26が配置された構造であるから、それぞれが実質的に4cm程度の幅寸法とならざるを得ない。このような狭い幅寸法であっても圧迫機能を十分に発生させるために、中間膨張袋24の両端部24a及び24bと上流側膨張袋22の端部22a及び下流側膨張袋26の端部26aとが相互に重ねられたオーバラップ構造とされるとともに、上流側膨張袋22及び下流側膨張袋26の中間膨張袋24とは反対側の端部22b及び26bが所謂マチ構造の側縁部とされている。 As a result, compression pressure against the artery 18 of the upper arm 16 can be obtained at the ends 22b and 26b of the upstream inflation bag 22 and the downstream inflation bladder 26 in the same way as in other parts, so effective compression in the width direction of the compression band 12 is achieved. The width will be equal to the width dimension. The width direction of the compression band 12 is about 12 cm, and since the three upstream inflation bags 22, the intermediate inflation bag 24, and the downstream inflation bladder 26 are arranged in the width direction, each of them is substantially 4 cm. It has no choice but to have a width dimension of approximately In order to sufficiently generate the compression function even with such a narrow width dimension, both ends 24a and 24b of the intermediate inflation bag 24, the end 22a of the upstream inflation bag 22, and the end 26a of the downstream inflation bag 26 are are overlapped with each other, and the ends 22b and 26b of the upstream expansion bag 22 and the downstream expansion bag 26 on the opposite side from the intermediate expansion bag 24 are the side edges of a so-called gusset structure. has been done.

上流側膨張袋22及び下流側膨張袋26の中間膨張袋24側の端部22a及び26aと、それが差し入れられている一対の折込溝24f、24gの内壁面すなわち相対向する溝側面との間には、圧迫帯12の長手方向の曲げ剛性よりもその圧迫帯12の幅方向の曲げ剛性が高い剛性の異方性を有する長手状の遮蔽部材42n、42mがそれぞれ介在させられている。遮蔽部材42nは、上流側膨張袋22と中間膨張袋24との重なり寸法と同様の長さ寸法を備えている。同様に、遮蔽部材42mは、下流側膨張袋26と中間膨張袋24との重なり寸法と同様の長さ寸法を備えている。 Between the ends 22a and 26a of the upstream expansion bag 22 and the downstream expansion bag 26 on the intermediate expansion bag 24 side and the inner wall surfaces of the pair of folding grooves 24f and 24g into which they are inserted, that is, the opposing groove side surfaces. are interposed respectively with longitudinal shielding members 42n and 42m having stiffness anisotropy in which the bending stiffness in the width direction of the compression band 12 is higher than the bending stiffness in the longitudinal direction of the compression band 12. The shielding member 42n has a length similar to the overlapping dimension of the upstream inflation bag 22 and the intermediate inflation bag 24. Similarly, the shielding member 42m has a length similar to the overlapping dimension of the downstream expansion bag 26 and the intermediate expansion bag 24.

図3及び図4に示すように、上流側膨張袋22の端部22aとそれが差し入れられている折込溝24fとの間の隙間のうちの外周側の隙間、及び、下流側膨張袋26の端部26aとそれが差し入れられている折込溝24gとの間の隙間のうちの外周側の隙間には、長手状の遮蔽部材42n、42mがそれぞれ介在させられている。本実施例では、内周側の隙間に比較して外周側の隙間の方が遮蔽効果が大きいので長手状の遮蔽部材42n、42mは外周側の隙間に設けられているが、外周側の隙間と内周側の隙間との両方に設けられていてもよい。 As shown in FIGS. 3 and 4, the outer circumference of the gap between the end 22a of the upstream expansion bag 22 and the folding groove 24f into which it is inserted, and the gap between the downstream expansion bag 26 Longitudinal shielding members 42n and 42m are respectively interposed in the outer peripheral side of the gap between the end portion 26a and the folding groove 24g into which it is inserted. In this embodiment, the shielding effect is greater in the gap on the outer circumference side than in the gap on the inner circumference side, so the longitudinal shielding members 42n and 42m are provided in the gap on the outer circumference side. and the gap on the inner peripheral side.

遮蔽部材42n、42mは、上腕16の長手方向(すなわち圧迫帯12の幅方向)に平行な樹脂製の複数本の可撓性中空管44が互いに平行な状態で、上腕16の周方向(すなわち圧迫帯12の長手方向)に連ねて配列されるとともに、それら可撓性中空管44が型成形或いは接着により直接に或いは粘着テープなどの可撓性シート等の他の部材を介して間接的に相互に連結されることにより構成されている。遮蔽部材42nは、上流側膨張袋22の中間膨張袋24側の端部22aの外周側の複数箇所に設けられた複数の掛止シート46に掛け止められている。同様に、遮蔽部材42mは、下流側膨張袋26の中間膨張袋24側の端部26aの外周側の複数箇所に設けられた複数の掛止シート46に掛け止められている。 The shielding members 42n and 42m are arranged so that the plurality of flexible hollow tubes 44 made of resin are parallel to each other in the longitudinal direction of the upper arm 16 (that is, the width direction of the compression band 12), and In other words, the flexible hollow tubes 44 are arranged in series (in the longitudinal direction of the compression band 12), and the flexible hollow tubes 44 are connected directly by molding or adhesive, or indirectly through another member such as a flexible sheet such as an adhesive tape. It is constructed by interconnecting each other. The shielding member 42n is hung on a plurality of hanging sheets 46 provided at a plurality of locations on the outer circumferential side of the end 22a of the upstream inflation bag 22 on the intermediate inflation bag 24 side. Similarly, the shielding member 42m is hung on a plurality of hanging sheets 46 provided at a plurality of locations on the outer circumferential side of the end 26a of the downstream inflation bag 26 on the intermediate inflation bag 24 side.

図1に戻って、自動血圧測定装置10においては、空気ポンプ50、急速排気弁52、及び、排気制御弁54が主配管56にそれぞれ接続されている。その主配管56からは、上流側膨張袋22に接続された第1分岐管58、中間膨張袋24に接続された第2分岐管62、及び、下流側膨張袋26に接続された第3分岐管64がそれぞれ分岐させられている。第1分岐管58は、空気ポンプ50と上流側膨張袋22との間を直接開閉するための第1開閉弁E1を備えている。第2分岐管62は、空気ポンプ50と中間膨張袋24との間を直接開閉するための第2開閉弁E2を備えている。第3分岐管64は、空気ポンプ50と下流側膨張袋26との間を直接開閉するための第3開閉弁E3を備えている。 Returning to FIG. 1, in the automatic blood pressure measuring device 10, an air pump 50, a rapid exhaust valve 52, and an exhaust control valve 54 are each connected to a main pipe 56. From the main pipe 56, there is a first branch pipe 58 connected to the upstream expansion bag 22, a second branch pipe 62 connected to the intermediate expansion bag 24, and a third branch pipe connected to the downstream expansion bag 26. The tubes 64 are each branched. The first branch pipe 58 includes a first on-off valve E1 for directly opening and closing between the air pump 50 and the upstream expansion bag 22. The second branch pipe 62 includes a second on-off valve E2 for directly opening and closing between the air pump 50 and the intermediate expansion bag 24. The third branch pipe 64 includes a third on-off valve E3 for directly opening and closing between the air pump 50 and the downstream expansion bag 26.

第1分岐管58には、上流側膨張袋22内の圧力値を検出するための第1圧力センサT1が接続され、第2分岐管62には、中間膨張袋24内の圧力値を検出するための第2圧力センサT2が接続され、第3分岐管64には、下流側膨張袋26内の圧力値を検出するための第3圧力センサT3が接続され、主配管56には、圧迫帯12の圧迫圧力PCを検出するための第4圧力センサT4が接続されている。電子制御装置70には、第1圧力センサT1から上流側膨張袋22内の圧力値すなわち上流側膨張袋22の圧迫圧力PC1を示す出力信号が供給され、第2圧力センサT2から中間膨張袋24内の圧力値すなわち中間膨張袋24の圧迫圧力PC2を示す出力信号が供給され、第3圧力センサT3から下流側膨張袋26内の圧力値すなわち下流側膨張袋26の圧迫圧力PC3を示す出力信号が供給され、第4圧力センサT4から圧迫帯12の圧迫圧力PCを示す出力信号が供給される。 A first pressure sensor T1 for detecting the pressure value inside the upstream expansion bag 22 is connected to the first branch pipe 58, and a first pressure sensor T1 for detecting the pressure value inside the intermediate expansion bag 24 is connected to the second branch pipe 62. A second pressure sensor T2 is connected to the third branch pipe 64, a third pressure sensor T3 is connected to the third branch pipe 64, and a third pressure sensor T3 is connected to the main pipe 56, for detecting the pressure value inside the downstream inflation bag 26. A fourth pressure sensor T4 for detecting twelve compression pressures PC is connected. The electronic control device 70 is supplied with an output signal indicating the pressure value inside the upstream inflation bag 22, that is, the compression pressure PC1 of the upstream inflation bag 22, from the first pressure sensor T1, and an output signal indicating the pressure value PC1 of the upstream inflation bag 22 from the second pressure sensor T2. An output signal indicating the pressure value within the downstream inflation bag 26, that is, the compression pressure PC2 of the intermediate inflation bag 24 is supplied from the third pressure sensor T3, and an output signal indicating the pressure value within the downstream inflation bladder 26, that is, the compression pressure PC3 of the downstream inflation bladder 26. is supplied, and an output signal indicating the compression pressure PC of the compression band 12 is supplied from the fourth pressure sensor T4.

電子制御装置70は、CPU72、RAM74、ROM76、表示装置78、及び図示しないI/Oポートなどを含む所謂マイクロコンピュータである。この電子制御装置70は、CPU72がRAM74の記憶機能を利用しつつ予めROM76に記憶されたプログラムにしたがって入力信号を処理し、血圧測定開始操作釦80の操作に応答して、電動式の空気ポンプ50、急速排気弁52、排気制御弁54、第1開閉弁E1、第2開閉弁E2、及び第3開閉弁E3をそれぞれ制御することにより、自動血圧測定制御を実行し、測定結果を表示装置78に表示させる。 The electronic control device 70 is a so-called microcomputer including a CPU 72, a RAM 74, a ROM 76, a display device 78, an I/O port (not shown), and the like. This electronic control device 70 processes an input signal in accordance with a program stored in advance in a ROM 76 while a CPU 72 utilizes the storage function of a RAM 74, and in response to an operation of a blood pressure measurement start operation button 80, an electric air pump is activated. 50, by controlling the rapid exhaust valve 52, the exhaust control valve 54, the first on-off valve E1, the second on-off valve E2, and the third on-off valve E3, automatic blood pressure measurement control is executed, and the measurement results are displayed on the display device. 78.

図5は、電子制御装置70に備えられた制御機能の要部を説明するための機能ブロック線図である。図5において、電子制御装置70は、カフ圧制御部82、脈波抽出部84、一次微分波形算出部86、最高血圧値決定部88、最低血圧値決定部90等を、機能的に備えている。図6は、カフ圧制御部82による圧迫帯12の圧迫圧力制御作動の要部を説明するタイムチャートである。 FIG. 5 is a functional block diagram for explaining main parts of the control functions provided in the electronic control device 70. In FIG. 5, the electronic control device 70 functionally includes a cuff pressure control section 82, a pulse wave extraction section 84, a first-order differential waveform calculation section 86, a systolic blood pressure value determination section 88, a diastolic blood pressure value determination section 90, etc. There is. FIG. 6 is a time chart illustrating the main part of the compression pressure control operation of the compression band 12 by the cuff pressure control unit 82.

カフ圧制御部82は、図5に示す血圧測定開始操作釦80の操作に応答して、急速排気弁52及び排気制御弁54を閉じ、第1開閉弁E1、第2開閉弁E2、及び第3開閉弁E3を開き、空気ポンプ50を作動させることにより、生体14の最高血圧値SBPよりも充分に高い圧、例えば180mmHgに予め設定された昇圧目標圧力値PCMとなるまで圧迫帯12の生体14に対する圧迫圧力PCを急速昇圧させる。 The cuff pressure control unit 82 closes the rapid exhaust valve 52 and the exhaust control valve 54 in response to the operation of the blood pressure measurement start operation button 80 shown in FIG. 3 by opening the on-off valve E3 and operating the air pump 50, the pressure of the compression cuff 12 is increased until the pressure reaches a target pressure value PCM that is sufficiently higher than the systolic blood pressure value SBP of the living body 14, for example, 180 mmHg. The compression pressure PC for 14 is rapidly increased.

次いで、カフ圧制御部82は、排気制御弁54を所定の周期で所定の期間繰り返し開くことで、圧迫帯12の圧迫圧力PCが生体14の最低血圧値よりも充分に低い圧、例えば30mmHgに予め設定された測定終了圧力値PCEに到達するまでの間で複数のステップ圧P1、P2、P3、・・・Pxが順次形成されるように、予め設定された降圧速度で圧迫帯12の圧迫圧力PCをステップ状に徐速降圧させる。 Next, the cuff pressure control unit 82 repeatedly opens the exhaust control valve 54 at a predetermined cycle for a predetermined period of time, so that the compression pressure PC of the compression cuff 12 becomes a pressure sufficiently lower than the diastolic blood pressure value of the living body 14, for example, 30 mmHg. The compression cuff 12 is compressed at a preset pressure lowering rate so that a plurality of step pressures P1, P2, P3, ... Px are sequentially formed until the preset measurement end pressure value PCE is reached. The pressure PC is gradually lowered in steps.

カフ圧制御部82は、圧迫帯12の圧迫圧力PCが測定終了圧力値PCEよりも小さくなったときに、急速排気弁52を用いて上流側膨張袋22、中間膨張袋24、及び下流側膨張袋26内の圧力をそれぞれ大気圧まで排圧する。このように制御された圧迫帯12では、上流側膨張袋22、中間膨張袋24、及び下流側膨張袋26は同じ圧迫圧力PCで生体14に対して圧迫するが、図6では第4圧力センサにより検出された圧迫帯12の圧迫圧力PCが示されている。 The cuff pressure control unit 82 uses the rapid exhaust valve 52 to inflate the upstream inflation bag 22, the intermediate inflation bladder 24, and the downstream inflation bag when the compression pressure PC of the compression band 12 becomes smaller than the measurement end pressure value PCE. The pressure inside each bag 26 is evacuated to atmospheric pressure. In the compression band 12 controlled in this way, the upstream inflation bag 22, the intermediate inflation bag 24, and the downstream inflation bag 26 compress the living body 14 with the same compression pressure PC, but in FIG. 6, the fourth pressure sensor The compression pressure PC of the compression band 12 detected by is shown.

脈波抽出部84は、圧迫帯12の圧迫圧力PCが上記徐速降圧中の各ステップ圧P1、P2、P3、・・・Pxに維持された状態において、第1圧力センサT1、第2圧力センサT2及び第3圧力センサT3からの出力信号に基づき上流側膨張袋22、中間膨張袋24及び下流側膨張袋26の各圧迫圧力PC1、PC2及びPC3に重畳する、生体の心拍に同期した圧力変動である脈波を示す脈波信号SM1、SM2及びSM3を逐次抽出し、記憶させる。 The pulse wave extraction unit 84 detects the first pressure sensor T1 and the second pressure in a state where the compression pressure PC of the compression band 12 is maintained at each step pressure P1, P2, P3, ... Pressure synchronized with the heartbeat of the living body that is superimposed on each compression pressure PC1, PC2, and PC3 of the upstream inflation bag 22, intermediate inflation bag 24, and downstream inflation bag 26 based on output signals from the sensor T2 and the third pressure sensor T3. Pulse wave signals SM1, SM2, and SM3 indicating pulse waves that are fluctuations are sequentially extracted and stored.

具体的には、第1圧力センサT1、第2圧力センサT2、及び第3圧力センサT3からの出力信号に対して、例えば45Hz、好適には30Hz、さらに好適には25Hz、またさらに好適には20Hz以上の周波数成分を除去する上限遮断周波数(-3dBのカットオフ周波数)を有するローパスフィルタ処理をそれぞれ行なうことにより脈波信号SM1、SM2及びSM3を抽出する。これら脈波信号SM1、SM2及びSM3は、RAM74等の所定の記憶領域に逐次記憶される。脈波信号SM1、SM2及びSM3は、例えば図7から図11に示されるものであり、それぞれ上流側脈波、中間脈波、及び下流側脈波を表している。 Specifically, the frequency of the output signals from the first pressure sensor T1, the second pressure sensor T2, and the third pressure sensor T3 is, for example, 45 Hz, preferably 30 Hz, more preferably 25 Hz, and even more preferably Pulse wave signals SM1, SM2, and SM3 are extracted by performing low-pass filter processing each having an upper limit cutoff frequency (-3 dB cutoff frequency) that removes frequency components of 20 Hz or higher. These pulse wave signals SM1, SM2, and SM3 are sequentially stored in a predetermined storage area such as the RAM 74. Pulse wave signals SM1, SM2, and SM3 are shown in FIGS. 7 to 11, for example, and represent an upstream pulse wave, an intermediate pulse wave, and a downstream pulse wave, respectively.

一次微分波形算出部86は、脈波信号SM1、SM2及びSM3に対してよく知られた1階微分処理を行なうことで、脈波信号SM1、SM2及びSM3の一次微分波形dSM1/dt、dSM2/dt及びdSM3/dtをそれぞれ算出する。図7から図11は、脈波抽出部84により、上流側膨張袋22の圧迫圧力PC1、中間膨張袋24の圧迫圧力PC2及び下流側膨張袋26の圧迫圧力PC3から、それらに重畳する圧力振動をそれぞれ抽出した脈波信号SM1、SM2、SM3の波形と、脈波信号SM1、SM2及びSM3の一次微分波形dSM1/dt、dSM2/dt及びdSM3/dtとを、たとえば複数段階のステップ圧P1、P2、P3、・・・Px毎にそれぞれ例示する図である。 The first-order differential waveform calculation unit 86 performs well-known first-order differential processing on the pulse wave signals SM1, SM2, and SM3 to form first-order differential waveforms dSM1/dt, dSM2/ Calculate dt and dSM3/dt, respectively. 7 to 11 show pressure vibrations superimposed on the compression pressure PC1 of the upstream inflation bag 22, the compression pressure PC2 of the intermediate inflation bag 24, and the compression pressure PC3 of the downstream inflation bag 26, using the pulse wave extraction unit 84. The waveforms of the pulse wave signals SM1, SM2, and SM3 extracted respectively and the first-order differential waveforms dSM1/dt, dSM2/dt, and dSM3/dt of the pulse wave signals SM1, SM2, and SM3 are combined, for example, with multiple step pressures P1, It is a diagram illustrating each of P2, P3, . . . Px.

図7は、圧迫帯12の圧迫圧力PCが生体の最高血圧値SBPよりも高く、上腕16の動脈18が上流側膨張袋22、中間膨張袋24及び下流側膨張袋26閉じられている状態を示している。この状態では、動脈18内の圧力変動は専ら上流側膨張袋22の容積変化を発生させる一方で、中間膨張袋24及び下流側膨張袋26は容積変化が少なく、脈波信号SM1の振幅は脈波信号SM2及びSM3よりも大きい。脈波信号SM2及びSM3は、上流側膨張袋22から中間膨張袋24及び下流側膨張袋26へ順次伝達される小さな容積変化(クロストーク)に基づいて順に小さな振幅を示す。 FIG. 7 shows a state in which the compression pressure PC of the compression band 12 is higher than the systolic blood pressure value SBP of the living body, and the artery 18 of the upper arm 16 is closed with the upstream inflation bag 22, intermediate inflation bag 24, and downstream inflation bag 26. It shows. In this state, pressure fluctuations within the artery 18 cause only changes in the volume of the upstream inflation bag 22, while volume changes in the intermediate inflation bag 24 and the downstream inflation bag 26 are small, and the amplitude of the pulse wave signal SM1 changes. wave signals SM2 and SM3. The pulse wave signals SM2 and SM3 exhibit smaller amplitudes based on small volume changes (crosstalk) that are sequentially transmitted from the upstream inflation bag 22 to the intermediate inflation bladder 24 and the downstream inflation bladder 26.

図8は、圧迫帯12の圧迫圧力PCが生体の最高血圧値SBPよりも低くなって血流が開始された後の状態を示している。この状態では、その血流によって、上流側膨張袋22、中間膨張袋24及び下流側膨張袋26の容積変化が共に発生し、脈波信号SM1、中間膨張袋24及び下流側膨張袋26の振幅は相互に同様となる。この状態における、一次微分波形dSM1/dt、dSM2/dt及びdSM3/dtには、脈波信号SM1、SM2及びSM3の立ち上がりの傾斜に対応する一次ピーク波P1SM1、P1SM2、P1SM3が、形成され、図9のような二次ピーク波P2SM1、P2SM2、P2SM3が形成されていない。動脈18内において、血流が図1に示す下流側膨張袋26の下流側端部26cの直下へ到達したときには、上流側膨張袋22および中間膨張袋24の直下の動脈18は閉じていて、下流側膨張袋26の下流側端部26c直下に発生する反射波が到達しないからであると推定される。ここで、ピーク波とは、一つの頂点を有する一つの独立峰状の波形を示している。 FIG. 8 shows the state after the compression pressure PC of the compression band 12 becomes lower than the systolic blood pressure value SBP of the living body and blood flow starts. In this state, the blood flow causes changes in the volumes of the upstream inflation bag 22, intermediate inflation bag 24, and downstream inflation bag 26, and the pulse wave signal SM1, the amplitude of the intermediate inflation bag 24, and the downstream inflation bag 26 change. are similar to each other. In this state, first-order differential waveforms dSM1/dt, dSM2/dt, and dSM3/dt include first-order peak waves P1 SM1 , P1 SM2 , and P1 SM3 corresponding to the rising slopes of pulse wave signals SM1, SM2 , and SM3 . Therefore, secondary peak waves P2 SM1 , P2 SM2 , and P2 SM3 as shown in FIG. 9 are not formed. In the artery 18, when the blood flow reaches just below the downstream end 26c of the downstream inflation bag 26 shown in FIG. 1, the artery 18 directly below the upstream inflation bag 22 and the intermediate inflation bag 24 is closed. It is presumed that this is because the reflected waves generated directly below the downstream end 26c of the downstream expansion bag 26 do not reach there. Here, the peak wave indicates one independent peak-like waveform having one apex.

図9は、圧迫帯12の圧迫圧力PCが図8の状態よりも更に低くなった状態を示している。この状態における、一次微分波形dSM1/dt、dSM2/dt及びdSM3/dtには、脈波信号SM1、SM2及びSM3の立ち上がりの傾斜に対応する一次ピーク波P1SM1、P1SM2、P1SM3と、それに続く二次ピーク波P2SM1、P2SM2、P2SM3とが、それぞれ形成されている。二次ピーク波P2SM3は、P1SM3に重畳していて認識できない。二次ピーク波P2SM1、P2SM2、P2SM3は、下流側膨張袋26の下流側端部26c直下に発生する反射波の到達を示している。反射波は、動脈18内において血流の流通抵抗(インピーダンス)が急変した点、すなわち下流側膨張袋26の下流側端部26c直下において動脈18の断面積が急増した点において発生する。このような動脈18の断面積が急増した点は、所謂コロトコフ音の発生要因であるとされている。 FIG. 9 shows a state in which the compression pressure PC of the compression band 12 is lower than that in FIG. 8. In this state, the primary differential waveforms dSM1/dt, dSM2/dt, and dSM3/dt include primary peak waves P1 SM1 , P1 SM2 , P1 SM3 corresponding to the rising slopes of the pulse wave signals SM1 , SM2 , and SM3 , and Subsequent secondary peak waves P2 SM1 , P2 SM2 , and P2 SM3 are formed, respectively. The secondary peak wave P2 SM3 is superimposed on P1 SM3 and cannot be recognized. The secondary peak waves P2 SM1 , P2 SM2 , and P2 SM3 indicate the arrival of reflected waves generated just below the downstream end 26 c of the downstream expansion bag 26 . The reflected wave is generated at a point where the flow resistance (impedance) of blood flow suddenly changes within the artery 18, that is, at a point where the cross-sectional area of the artery 18 suddenly increases immediately below the downstream end 26c of the downstream inflation bag 26. This sudden increase in the cross-sectional area of the artery 18 is said to be a cause of so-called Korotkoff sounds.

図10は、圧迫帯12の圧迫圧力PCが図9の状態よりも更に低くなり、生体14の最低血圧値DBPに到達した状態を示している。この状態では、一次微分波形dSM1/dt、dSM2/dt及びdSM3/dtにおいて、二次ピーク波P2SM1、P2SM2、P2SM3が殆ど消失しており、図10のA1に示すように、特に中間膨張袋24内の圧迫圧力PC2から抽出した脈波信号SM2の一次微分波形dSM2/dtでは、二次ピーク波P2SM2の痕跡すら見当たらない。このような最低血圧値DBPに到達した圧迫圧力PCでは、下流側膨張袋26の下流側端部26c直下において動脈18の断面積の変化が小さいため、反射波が殆ど発生しないと推定される。 FIG. 10 shows a state in which the compression pressure PC of the compression band 12 has become even lower than the state shown in FIG. 9 and has reached the diastolic blood pressure value DBP of the living body 14. In this state, in the first-order differential waveforms dSM1/dt, dSM2/dt, and dSM3/dt, the second-order peak waves P2 SM1 , P2 SM2 , and P2 SM3 have almost disappeared, and as shown in A1 in FIG. In the first-order differential waveform dSM2/dt of the pulse wave signal SM2 extracted from the compression pressure PC2 in the expansion bag 24, not even a trace of the secondary peak wave P2 SM2 is found. At the compression pressure PC that has reached such a diastolic blood pressure value DBP, it is estimated that almost no reflected waves are generated because the change in the cross-sectional area of the artery 18 is small just below the downstream end 26c of the downstream inflation bag 26.

図11は、圧迫帯12の圧迫圧力PCが図10の状態よりも更に低くなり、生体14の最低血圧値DBPを下回った状態を示している。この状態では、反射波が生じないため、一次微分波形dSM1/dt、dSM2/dt及びdSM3/dtにおいて、二次ピーク波P2SM1、P2SM2、P2SM3が全く消失している。 FIG. 11 shows a state in which the compression pressure PC of the compression band 12 has become even lower than the state shown in FIG. 10, and has fallen below the diastolic blood pressure value DBP of the living body 14. In this state, since no reflected waves are generated, the secondary peak waves P2 SM1 , P2 SM2 , and P2 SM3 completely disappear in the first-order differential waveforms dSM1/dt, dSM2/dt, and dSM3/dt.

最高血圧値決定部88は、例えば、よく知られたオシロメトリック式血圧値決定アルゴリズムを用いて最高血圧値SBPを決定する。すなわち、例えば圧迫帯12の圧迫圧力PCを示す軸と脈波振幅を示す軸との二次元座標において脈波信号SM2の振幅値を結ぶ包絡線(エンベロープ)を生成し、その包絡線のエンベロープが急激に増加したときすなわちエンベロープの微分波形の極大点に対応する圧迫帯12の圧迫圧力PCを、最高血圧値SBPとして決定する。 The systolic blood pressure value determination unit 88 determines the systolic blood pressure value SBP using, for example, a well-known oscillometric blood pressure value determination algorithm. That is, for example, an envelope connecting the amplitude values of the pulse wave signal SM2 in the two-dimensional coordinates of the axis indicating the compression pressure PC of the compression band 12 and the axis indicating the pulse wave amplitude is generated, and the envelope of the envelope is The compression pressure PC of the compression band 12 that corresponds to a sudden increase, that is, the maximum point of the differential waveform of the envelope, is determined as the systolic blood pressure value SBP.

最低血圧値決定部90は、圧迫帯12の圧迫圧力PCが最高血圧値SBPよりも充分に高い予め設定された昇圧目標圧力値PCMから下降させられる過程で、下流側膨張袋26の下流側端部26c直下において動脈18の断面積が変化する点から上流側へ反射して脈波信号SM2に重畳する反射波が所定値未満に減衰したときの圧迫帯12の圧迫圧力PCに基づいて、生体14の最低血圧値DBPを決定する。最低血圧値決定部90は、圧迫帯12の圧迫圧力PCが最高血圧値SBPよりも充分に高い予め設定された昇圧目標圧力値PCMから下降させられる過程で、たとえば、脈波信号SM2の一次微分波形dSM2/dtの二次ピーク波P2SM2が消滅したとき、具体的には二次ピーク波P2SM2の大きさ(振幅)が予め実験的に設定された判定閾値Tdia1未満となったときの圧迫帯12の圧迫圧力PCに基づいて、生体14の最低血圧値DBPを決定する。 The diastolic blood pressure value determining unit 90 determines the downstream end of the downstream inflation bag 26 in the process of lowering the compression pressure PC of the compression cuff 12 from a preset boost target pressure value PCM that is sufficiently higher than the systolic blood pressure value SBP. Based on the compression pressure PC of the compression band 12 when the reflected wave that is reflected upstream from the point where the cross-sectional area of the artery 18 changes just below the portion 26c and is superimposed on the pulse wave signal SM2 is attenuated to less than a predetermined value, 14 diastolic blood pressure value DBP is determined. The diastolic blood pressure value determination unit 90 calculates, for example, the first derivative of the pulse wave signal SM2 in the process of lowering the compression pressure PC of the compression cuff 12 from a preset boost target pressure value PCM that is sufficiently higher than the systolic blood pressure value SBP. Compression when the secondary peak wave P2 SM2 of the waveform dSM2/dt disappears, specifically when the magnitude (amplitude) of the secondary peak wave P2 SM2 becomes less than the determination threshold Tdia1 set experimentally in advance. Based on the compression pressure PC of the band 12, the diastolic blood pressure value DBP of the living body 14 is determined.

図12は、電子制御装置70の制御作動の要部を説明するフローチャートである。血圧測定開始操作釦80が操作されると、カフ圧制御部82に対応するステップ(以下、「ステップ」を省略する)S1では、圧迫帯12の圧迫圧力PCが昇圧される。具体的には、図6に示すように、急速排気弁52が閉状態とされるとともに、空気ポンプ50が作動状態とされてその空気ポンプ50から圧送される圧縮空気により主配管56内及びそれに連通された上流側膨張袋22、中間膨張袋24、及び下流側膨張袋26内の圧力が急速に高められる。そして、圧迫帯12による上腕16の圧迫が開始される。 FIG. 12 is a flowchart illustrating the main part of the control operation of the electronic control device 70. When the blood pressure measurement start operation button 80 is operated, the compression pressure PC of the compression cuff 12 is increased in step S1 (hereinafter, "step" is omitted) corresponding to the cuff pressure control section 82. Specifically, as shown in FIG. 6, the quick exhaust valve 52 is closed, the air pump 50 is activated, and the compressed air pumped from the air pump 50 pumps the inside of the main pipe 56 and the air. The pressure within the upstream inflation bladder 22, intermediate inflation bladder 24, and downstream inflation bladder 26, which are communicated with each other, is rapidly increased. Then, compression of the upper arm 16 by the compression band 12 is started.

次いで、カフ圧制御部82に対応するS2では、圧迫帯12の圧迫圧力PCを示す第4圧力センサT4の出力信号に基づいて、その圧迫圧力PCが予め設定された昇圧目標圧力値PCM(例えば180mmHg)以上であるか否かが判定される。図6の時間t2より前の時点では、上記S2の判定が否定されて図12のS1以下が繰り返し実行される。 Next, in S2 corresponding to the cuff pressure control unit 82, based on the output signal of the fourth pressure sensor T4 indicating the compression pressure PC of the compression cuff 12, the compression pressure PC is set to a preset boost target pressure value PCM (e.g. 180 mmHg) or more is determined. At a time point before time t2 in FIG. 6, the determination in S2 is negative, and steps S1 and subsequent steps in FIG. 12 are repeatedly executed.

圧迫圧力PCが昇圧目標圧力値PCMに到達してS2の判定が肯定されると、カフ圧制御部82に対応するS3では、空気ポンプ50の作動が停止され、上流側膨張袋22、圧迫帯12の圧迫圧力PCが例えば3~5mmHg/sec毎に予め設定されたステップ圧P1、P2、P3、・・・Pxが順次形成されるステップ降圧で徐速排気するように排気制御弁54、第1開閉弁E1、第2開閉弁E2及び第3開閉弁E3が作動させられる。 When the compression pressure PC reaches the boost target pressure value PCM and the determination in S2 is affirmed, in S3 corresponding to the cuff pressure control section 82, the operation of the air pump 50 is stopped, and the upstream inflation bag 22 and the compression band The exhaust control valve 54 is configured to gradually exhaust the 12 compression pressures PC by step pressure reduction in which step pressures P1, P2, P3, . . . The first on-off valve E1, the second on-off valve E2, and the third on-off valve E3 are operated.

上記ステップ圧P1、P2、P3、・・・Pxを保持する場合には第1開閉弁E1、第2開閉弁E2、及び第3開閉弁E3がそれぞれ閉状態とされる。図6の時間t2は上記徐速排気の開始時点であり、また時間t3~t4の間は圧迫帯12の圧迫圧力PCがステップ圧P1に所定時間例えば2拍が発生する間保持されている時間である。 When maintaining the step pressures P1, P2, P3, . . . Px, the first on-off valve E1, the second on-off valve E2, and the third on-off valve E3 are each closed. Time t2 in FIG. 6 is the start point of the slow evacuation, and time t3 to t4 is the time during which the compression pressure PC of the compression cuff 12 is maintained at the step pressure P1 for a predetermined period of time, for example, while two beats occur. It is.

次いで、脈波抽出部84に対応するS4では、圧迫圧力PC1、PC2及びPC3がそれぞれ所定時間保持される間に、第1圧力センサT1、第2圧力センサT2及び第3圧力センサT3からの出力信号に対して、たとえば25Hz未満の波長帯の信号を弁別するローパスフィルタ処理がそれぞれ為されることにより上流側膨張袋22、中間膨張袋24及び下流側膨張袋26からの脈波を示す脈波信号SM1、SM2及びSM3が抽出されるとともに、第4圧力センサT4からの出力信号に対してローパスフィルタ処理が為されることにより交流成分が除去された圧迫帯12の圧迫圧力PCが抽出される。そして、それらが互いに関連付けられて記憶される。 Next, in S4 corresponding to the pulse wave extraction section 84, the outputs from the first pressure sensor T1, the second pressure sensor T2, and the third pressure sensor T3 are output while the compression pressures PC1, PC2, and PC3 are each held for a predetermined time. Pulse waves representing pulse waves from the upstream expansion bag 22, intermediate expansion bag 24, and downstream expansion bag 26 are generated by performing low-pass filter processing on the signals to discriminate signals in a wavelength band of less than 25 Hz, respectively. The signals SM1, SM2, and SM3 are extracted, and the output signal from the fourth pressure sensor T4 is subjected to low-pass filter processing to extract the compression pressure PC of the compression band 12 from which the alternating current component has been removed. . Then, they are stored in association with each other.

カフ圧制御部82に対応するS5では、圧迫圧力PCが予め設定された測定終了圧力値PCE(例えば30mmHg)以下であるか否かが判定される。図6の時間t11より前の時点では、上記S5の判定が否定されてS3以下が繰り返し実行される。 In S5 corresponding to the cuff pressure control section 82, it is determined whether the compression pressure PC is equal to or less than a preset measurement end pressure value PCE (for example, 30 mmHg). At a time point before time t11 in FIG. 6, the determination in S5 is negative, and S3 and subsequent steps are repeatedly executed.

圧迫圧力PCが測定終了圧力値PCE以下となってS5の判定が肯定されると、カフ圧制御部82に対応するS6では、上流側膨張袋22、中間膨張袋24及び下流側膨張袋26内の圧力がそれぞれ大気圧まで排圧させられるように急速排気弁52が作動させられる。図6の時間t11以降はこの状態を示す。 When the compression pressure PC becomes equal to or less than the measurement end pressure value PCE and the determination in S5 is affirmed, in S6 corresponding to the cuff pressure control section 82, the upstream inflation bag 22, the intermediate inflation bag 24, and the downstream inflation bag 26 are The quick exhaust valves 52 are operated so that the pressures of the respective pressures are exhausted to atmospheric pressure. This state is shown after time t11 in FIG.

次いで、一次微分波形算出部86に対応するS7では、脈波信号SM1、SM2及びSM3のそれぞれの一次微分波形dSM1/dt、dSM2/dt及びdSM3/dtが算出される。 Next, in S7 corresponding to the first-order differential waveform calculating section 86, first-order differential waveforms dSM1/dt, dSM2/dt, and dSM3/dt of the pulse wave signals SM1, SM2, and SM3 are calculated.

次いで、一次微分波形算出部に対応するS8では、一次微分波形dSM1/dt、dSM2/dt及びdSM3/dtにおいて、脈波信号SM1、SM2及びSM3の立ち上がりの傾斜に対応する一次ピーク波P1SM1、P1SM2、P1SM3に続いて発生する二次ピーク波P2SM1、P2SM2、P2SM3の大きさ(振幅)が算出される。 Next, in S8 corresponding to the first-order differential waveform calculating section, first-order peak waves P1 SM1 , corresponding to the rising slopes of the pulse wave signals SM1, SM2, and SM3 are calculated in the first-order differential waveforms dSM1/dt, dSM2/dt, and dSM3 /dt. The magnitudes (amplitudes) of secondary peak waves P2 SM1 , P2 SM2 , and P2 SM3 that occur following P1 SM2 and P1 SM3 are calculated.

次に、最低血圧値決定部90に対応するS9では、圧迫帯12の圧迫圧力PCが最高血圧値SBPよりも充分に高い予め設定された昇圧目標圧力値PCMから下降させられる過程で、脈波信号SM2(中間脈波)の一次微分波形dSM2/dtの二次ピーク波P2SM2の大きさ(振幅)が、その消滅を判定するために予め設定された判定閾値Tdia1を下回ったか否かが判定される。その判定が否定された場合はS7以下が繰り返し実行されるが、肯定された場合は、最低血圧値決定部90に対応するS10において、その肯定されたときの圧迫帯12の圧迫圧力PCに基づいて、生体14の最低血圧値DBPが決定される。脈波信号SM2(中間脈波)に重畳する反射波は脈波信号SM2からの認識が難しく、その反射波の存在は一次微分波形dSM2/dtの二次ピーク波P2SM2の大きさ(振幅)で示される。このため、上記二次ピーク波P2SM2の大きさ(振幅)が、その消滅を判定するために予め設定された判定閾値Tdia1を下回ったか否かが判定は、反射波の減衰の有無を判定している。 Next, in S9 corresponding to the diastolic blood pressure value determination unit 90, in the process of lowering the compression pressure PC of the compression cuff 12 from the preset boost target pressure value PCM which is sufficiently higher than the systolic blood pressure value SBP, the pulse wave It is determined whether the magnitude (amplitude) of the secondary peak wave P2 of the first-order differential waveform dSM2/dt of the signal SM2 (intermediate pulse wave) SM2 has fallen below the determination threshold Tdia1 set in advance to determine its extinction. be done. If the determination is negative, steps S7 and subsequent steps are repeatedly executed, but if the determination is affirmative, in S10 corresponding to the diastolic blood pressure value determination unit 90, based on the compression pressure PC of the compression band 12 at the time of the determination, Accordingly, the diastolic blood pressure value DBP of the living body 14 is determined. The reflected wave superimposed on the pulse wave signal SM2 (intermediate pulse wave) is difficult to recognize from the pulse wave signal SM2, and the existence of the reflected wave is determined by the secondary peak wave P2 of the first derivative waveform dSM2/dt and the magnitude (amplitude) of SM2 . It is indicated by. Therefore, the determination as to whether or not the magnitude (amplitude) of the secondary peak wave P2 SM2 has fallen below the determination threshold Tdia1 set in advance to determine its extinction is the determination of the presence or absence of attenuation of the reflected wave. ing.

そして、最高血圧値決定部88に対応するS11では、圧迫圧力PCを示す軸と脈波振幅を示す軸との二次元座標において脈波信号SM2の振幅値を結ぶ包絡線(エンベロープ)が生成され、圧迫帯12の圧迫圧力PCが最高血圧値SBPよりも充分に高い予め設定された昇圧目標圧力値PCMから下降させられる過程で、その包絡線のエンベロープが急激に増加したときすなわちエンベロープの微分波形の極大点に対応する圧迫帯12の圧迫圧力PCが、最高血圧値SBPとして決定される。S11において決定された最高血圧値SBP、およびS10において決定された最低血圧値DBPは、表示装置78に表示される。 Then, in S11 corresponding to the systolic blood pressure value determination unit 88, an envelope is generated that connects the amplitude values of the pulse wave signal SM2 in the two-dimensional coordinates of the axis indicating the compression pressure PC and the axis indicating the pulse wave amplitude. , when the envelope of the compression band 12 suddenly increases in the process of being lowered from the preset boost target pressure value PCM which is sufficiently higher than the systolic blood pressure value SBP, that is, the differential waveform of the envelope. The compression pressure PC of the compression band 12 corresponding to the maximum point of is determined as the systolic blood pressure value SBP. The systolic blood pressure value SBP determined in S11 and the diastolic blood pressure value DBP determined in S10 are displayed on the display device 78.

上述のように、本実施例の自動血圧測定装置10によれば、圧迫帯12による被圧迫部位16に対する圧迫圧力PCを変化させる過程で、中間膨張袋24内の圧迫圧力PC2に含まれる生体14の心拍に同期した圧力振動である中間脈波(脈波信号SM2)を抽出する脈波抽出部84と、圧迫帯12の圧迫圧力PCが最高血圧値SBPよりも充分に高い昇圧目標圧力値PCMから下降させられる過程で、下流側膨張袋26の下流側端部26c下において動脈(動脈血管)18の断面積が変化する点から上流側へ反射して中間脈波(脈波信号SM2)に重畳する反射波の大きさが所定値未満に減衰したときの圧迫帯12の圧迫圧力PCに基づいて、生体14の最低血圧値DBPを決定する最低血圧値決定部90と、を含む。これにより、圧迫圧力PCの変化に伴い、最低血圧値DBP付近において中間脈波(脈波信号SM2)に重畳する反射波の減衰に基づいて安定的に判定できるので、生体14の最低血圧値DBPの決定精度が高められる。 As described above, according to the automatic blood pressure measuring device 10 of the present embodiment, in the process of changing the compression pressure PC on the compressed site 16 by the compression band 12, the living body 14 contained in the compression pressure PC2 in the intermediate inflation bag 24 a pulse wave extraction unit 84 that extracts an intermediate pulse wave (pulse wave signal SM2) that is a pressure oscillation synchronized with the heartbeat of In the process of being lowered from the downstream end 26c of the downstream inflation bag 26, it is reflected upstream from the point where the cross-sectional area of the artery (arterial blood vessel) 18 changes and becomes an intermediate pulse wave (pulse wave signal SM2). It includes a diastolic blood pressure value determination unit 90 that determines the diastolic blood pressure value DBP of the living body 14 based on the compression pressure PC of the compression cuff 12 when the magnitude of the superimposed reflected wave attenuates below a predetermined value. As a result, as the compression pressure PC changes, the diastolic blood pressure value DBP of the living body 14 can be stably determined based on the attenuation of the reflected wave superimposed on the intermediate pulse wave (pulse wave signal SM2) near the diastolic blood pressure value DBP. The decision accuracy is improved.

また、本実施例の自動血圧測定装置10によれば、最低血圧値決定部90は、圧迫帯12の圧迫圧力PCが生体14の最高血圧値SBPよりも充分に高い昇圧目標圧力値PCMから下降させられる過程で、中間脈波(脈波信号SM2)の一次微分波形dSM2/dtの二次ピーク波P2SM2が予め設定された判定閾値Tdia1未満となったときの圧迫帯12の圧迫圧力PCに基づいて、生体14の最低血圧値DBPを決定する。このように中間脈波(脈波信号SM2)の一次微分波形dSM2/dtの二次ピーク波P2SM2が判定閾値Tdia1未満となったことにより、下流側膨張袋26の下流側端部26c下において動脈18の断面積が変化する点から上流側へ反射して中間脈波(脈波信号SM2)に重畳する反射波が所定値未満に減衰したことが安定的に判定されるので、生体14の最低血圧値DBPの決定精度が高められる。 Further, according to the automatic blood pressure measurement device 10 of the present embodiment, the diastolic blood pressure value determining unit 90 causes the compression pressure PC of the compression cuff 12 to decrease from the boost target pressure value PCM which is sufficiently higher than the systolic blood pressure value SBP of the living body 14. In the process, the compression pressure PC of the compression band 12 when the secondary peak wave P2 SM2 of the first differential waveform dSM2/dt of the intermediate pulse wave (pulse wave signal SM2) becomes less than the preset determination threshold Tdia1. Based on this, the diastolic blood pressure value DBP of the living body 14 is determined. In this way, since the secondary peak wave P2 SM2 of the first differential waveform dSM2/dt of the intermediate pulse wave (pulse wave signal SM2) has become less than the determination threshold Tdia1, the It is stably determined that the reflected wave reflected upstream from the point where the cross-sectional area of the artery 18 changes and is superimposed on the intermediate pulse wave (pulse wave signal SM2) has attenuated to less than a predetermined value. The accuracy of determining the diastolic blood pressure value DBP is improved.

また、本実施例の自動血圧測定装置10によれば、脈波抽出部84は、中間膨張袋24内の圧迫圧力PC2を表す信号を、少なくとも45Hz以上の周数数成分を除去する上限遮断周波数を有するローパスフィルタ処理を施すことで、中間膨張袋24内の圧迫圧力PC2に含まれる圧力振動である中間脈波(脈波信号SM2)を抽出する。これにより、反射波の影響を示す特徴を明確に含む中間脈波(脈波信号SM2)が得られるので、生体14の最低血圧値DBPの決定精度が高められる。 Further, according to the automatic blood pressure measuring device 10 of the present embodiment, the pulse wave extraction unit 84 converts the signal representing the compression pressure PC2 in the intermediate inflation bag 24 into an upper limit cutoff frequency that removes frequency components of at least 45 Hz or more. By performing a low-pass filter process having the following, an intermediate pulse wave (pulse wave signal SM2), which is a pressure vibration included in the compression pressure PC2 in the intermediate inflation bag 24, is extracted. As a result, an intermediate pulse wave (pulse wave signal SM2) that clearly includes features indicating the influence of reflected waves is obtained, so that the accuracy of determining the diastolic blood pressure value DBP of the living body 14 is improved.

次に、本発明の他の実施例について説明する。なお、以下の実施例の説明において、実施例相互に重複する部分については、同一の符号を付してその説明を省略する。 Next, other embodiments of the present invention will be described. In the following description of the embodiments, parts that overlap with each other in the embodiments will be designated by the same reference numerals and the description thereof will be omitted.

図13は、電子制御装置70の他の実施例の機能を説明する機能ブロック線図である。図13に示す電子制御装置70においては、前述の実施例の図5に示す電子制御装置70に比較して、二次微分波形算出部92および最低血圧値決定部94が備えられている点で、相違する。二次微分波形算出部92は、脈波信号SM1、SM2及びSM3に対してよく知られた2階微分処理を行なうことで、脈波信号SM1、SM2及びSM3の二次微分波形dSM1/dt、dSM2/dt及びdSM3/dtをそれぞれ算出する。また、二次微分波形算出部92は、中間脈波SM2の二次微分波形dSM2/dtにおける一次極大極小波W1SM2に続く部分である所定期間の波形Δdwを算出する。図14から図18は、脈波抽出部84により、上流側膨張袋22の圧迫圧力PC1、中間膨張袋24の圧迫圧力PC2及び下流側膨張袋26の圧迫圧力PC3から、それらに重畳する圧力振動をそれぞれ抽出した脈波信号SM1、SM2、SM3の波形と、脈波信号SM1、SM2及びSM3の二次微分波形dSM1/dt、dSM2/dt及びdSM3/dtとを、たとえば複数段階のステップ圧P1、P2、P3、・・・Px毎に例示する図である。 FIG. 13 is a functional block diagram illustrating the functions of another embodiment of the electronic control device 70. The electronic control device 70 shown in FIG. 13 is different from the electronic control device 70 shown in FIG. , differ. The second-order differential waveform calculation unit 92 performs well-known second-order differential processing on the pulse wave signals SM1, SM2, and SM3 to calculate the second-order differential waveforms d 2 SM1/ of the pulse wave signals SM1, SM2, and SM3. dt 2 , d 2 SM2/dt 2 and d 2 SM3/dt 2 are calculated, respectively. Further, the second-order differential waveform calculation unit 92 calculates a waveform Δdw for a predetermined period, which is a portion of the second-order differential waveform d 2 SM2/dt 2 of the intermediate pulse wave SM2 following the first maximum minimum wave W1 SM2. 14 to 18 show the pressure vibrations superimposed on the compression pressure PC1 of the upstream inflation bag 22, the compression pressure PC2 of the intermediate inflation bag 24, and the compression pressure PC3 of the downstream inflation bag 26, using the pulse wave extraction unit 84. The waveforms of the pulse wave signals SM1, SM2, and SM3 extracted respectively, and the second-order differential waveforms d 2 SM1/dt 2 , d 2 SM2/dt 2 , and d 2 SM3/dt 2 of the pulse wave signals SM1, SM2, and SM3. 2 is a diagram illustrating, for example, each step pressure P1, P2, P3, . . . Px in multiple stages.

図14は、圧迫帯12の圧迫圧力PCが生体の最高血圧値SBPよりも高く、上腕16の動脈18が上流側膨張袋22、中間膨張袋24及び下流側膨張袋26閉じられている状態を示している。この状態では、動脈18内の圧力変動は専ら上流側膨張袋22の容積変化を発生させる一方で、中間膨張袋24及び下流側膨張袋26は容積変化が少なく、脈波信号SM1の振幅は脈波信号SM2及びSM3よりも大きい。脈波信号SM2及びSM3は、上流側膨張袋22から中間膨張袋24及び下流側膨張袋26へ順次伝達される小さな容積変化(クロストーク)に基づいて順に小さな振幅を示す。 FIG. 14 shows a state in which the compression pressure PC of the compression band 12 is higher than the systolic blood pressure value SBP of the living body, and the artery 18 of the upper arm 16 is closed with the upstream inflation bag 22, intermediate inflation bag 24, and downstream inflation bag 26. It shows. In this state, pressure fluctuations within the artery 18 cause only changes in the volume of the upstream inflation bag 22, while volume changes in the intermediate inflation bag 24 and the downstream inflation bag 26 are small, and the amplitude of the pulse wave signal SM1 changes. wave signals SM2 and SM3. The pulse wave signals SM2 and SM3 exhibit smaller amplitudes based on small volume changes (crosstalk) that are sequentially transmitted from the upstream inflation bag 22 to the intermediate inflation bladder 24 and the downstream inflation bladder 26.

図15は、圧迫帯12の圧迫圧力PCが生体の最高血圧値よりも低くなって血流が開始された後の状態を示している。この状態では、その血流によって、上流側膨張袋22、中間膨張袋24及び下流側膨張袋26の容積変化が共に発生し、脈波信号SM1、中間膨張袋24及び下流側膨張袋26の振幅は相互に同様となる。この状態における、二次微分波形dSM1/dt、dSM2/dt及びdSM3/dtは、一次微分波形dSM1/dt、dSM2/dt及びdSM3/dtの傾斜をそれぞれ示す一次極大極小波W1SM1、W1SM2、W1SM3を示していて、零を示す基線(零ライン)ZLに対して上下方向にそれぞれ交差している。動脈18内において、血流が下流側膨張袋26の下流側端部26c直下へ到達したときには、上流側膨張袋22および中間膨張袋24の直下の動脈18は閉じていて、下流側膨張袋26の下流側端部26c直下に発生する反射波が到達しないので、反射波の影響が見られない。ここで、極大極小波とは、一つの極大点を有する山と一つの極小点を有する谷とを含む1周期の波形を示している。 FIG. 15 shows the state after the compression pressure PC of the compression band 12 becomes lower than the systolic blood pressure value of the living body and blood flow starts. In this state, the blood flow causes changes in the volumes of the upstream inflation bag 22, intermediate inflation bag 24, and downstream inflation bag 26, and the pulse wave signal SM1, the amplitude of the intermediate inflation bag 24, and the downstream inflation bag 26 change. are similar to each other. In this state, the second-order differential waveforms d 2 SM1/dt 2 , d 2 SM2/dt 2 and d 2 SM3/dt 2 are the first-order differential waveforms dSM1/dt, dSM2/dt and dSM3/dt, which respectively show the slopes. Maximum and minimum waves W1 SM1 , W1 SM2 , and W1 SM3 are shown, and they each intersect in the vertical direction with respect to the baseline (zero line) ZL indicating zero. When the blood flow reaches the downstream end 26c of the downstream inflation bag 26 in the artery 18, the artery 18 directly below the upstream inflation bag 22 and the intermediate inflation bag 24 is closed, and the downstream inflation bag 26 Since the reflected waves generated directly below the downstream end portion 26c do not reach the downstream end portion 26c, the influence of the reflected waves is not observed. Here, the maximum and minimum wave refers to a waveform of one period including a peak having one maximum point and a trough having one minimum point.

図16は、圧迫帯12の圧迫圧力PCが図15の状態よりも更に低くなった状態を示している。この状態における、二次微分波形dSM1/dt、dSM2/dt及びdSM3/dtには、前述の一次微分波形dSM1/dt、dSM2/dt及びdSM3/dtの一次ピーク波P1SM1、P1SM2、P1SM3、および、それに続く二次ピーク波P2SM1、P2SM2、P2SM3に対応して、一次極大極小波W1SM1、W1SM2、W1SM3および二次極大極小波W2SM1、W2SM2、W2SM3がそれぞれ形成されている。それら二次極大極小波W2SM1、W2SM2、W2SM3は、基線(零ライン)ZLに対して上下方向にそれぞれ交差している。 FIG. 16 shows a state in which the compression pressure PC of the compression band 12 is lower than that in FIG. 15. In this state, the second-order differential waveforms d 2 SM1/dt 2 , d 2 SM2/dt 2 and d 2 SM3/dt 2 have the first-order peaks of the above-mentioned first-order differential waveforms dSM1/dt, dSM2/dt and dSM3/dt. Corresponding to the waves P1 SM1 , P1 SM2 , P1 SM3 and the subsequent secondary peak waves P2 SM1 , P2 SM2 , P2 SM3 , the primary maximum and minimum waves W1 SM1 , W1 SM2 , W1 SM3 and the secondary maximum and minimum waves W2 SM1 , W2 SM2 , and W2 SM3 are formed, respectively. These secondary maximum and minimum waves W2 SM1 , W2 SM2 , and W2 SM3 intersect the base line (zero line) ZL in the vertical direction, respectively.

図17は、圧迫帯12の圧迫圧力PCが図16の状態よりも更に低くなり、生体14の最低血圧値DBPに到達した状態を示している。この状態における二次微分波形dSM1/dt、dSM2/dt及びdSM3/dtには、前述の一次微分波形dSM1/dt、dSM2/dt及びdSM3/dtの二次ピーク波P2SM1、P2SM2、P2SM3に対応する二次極大極小波W2SM1、W2SM2、W2SM3が抑制されている。特に、二次微分波形dSM2/dtでは、図17のB1に示すように、二次ピーク波P2SM2に対応する二次極大極小波W2SM2が無いため、二次微分波形dSM2/dtのうちの一次極大極小波W1SM2を除いた波形、すなわち、一次極大極小波W1SM2後の所定期間の波形Δdwは基線(零ライン)ZLと交差していない。前述の図10のA1に示すように、一次微分波形dSM2/dtに、二次ピーク波P2SM2の痕跡が見当たらないからである。このような最低血圧値DBPに到達した圧迫圧力PCでは、下流側膨張袋26の下流側端部26c下において動脈18の断面積の変化が小さいため、反射波が殆ど発生しないと推定される。 FIG. 17 shows a state in which the compression pressure PC of the compression band 12 has become even lower than the state shown in FIG. 16 and has reached the diastolic blood pressure value DBP of the living body 14. In this state, the second-order differential waveforms d 2 SM1/dt 2 , d 2 SM2/dt 2 and d 2 SM3/dt 2 include the second-order peaks of the first-order differential waveforms dSM1/dt, dSM2/dt and dSM3/dt described above. Secondary maximum and minimum waves W2 SM1 , W2 SM2 and W2 SM3 corresponding to waves P2 SM1 , P2 SM2 and P2 SM3 are suppressed. In particular, in the second-order differential waveform d 2 SM2/dt 2 , as shown in B1 of FIG. 17, since there is no second-order maximum and minimum wave W2 SM2 corresponding to the second-order peak wave P2 SM2 , the second-order differential waveform d 2 SM2 /dt 2 excluding the primary maximum and minimum waves W1 SM2 , that is, the waveform Δdw for a predetermined period after the primary maximum and minimum waves W1 and SM2 does not intersect the baseline (zero line) ZL. This is because, as shown in A1 of FIG. 10, no trace of the secondary peak wave P2 SM2 is found in the first-order differential waveform dSM2/dt. At the compression pressure PC that has reached such a diastolic blood pressure value DBP, it is estimated that almost no reflected waves are generated because the change in the cross-sectional area of the artery 18 is small below the downstream end 26c of the downstream inflation bag 26.

図18は、圧迫帯12の圧迫圧力PCが図17の状態よりも更に低くなり、生体14の最低血圧値DBPを下回った状態を示している。この状態では、反射波が生じないため、二次微分波形dSM1/dt、dSM2/dt及びdSM3/dtにおいて、一次微分波形dSM1/dt、dSM2/dt及びdSM3/dtの二次ピーク波P2SM1、P2SM2、P2SM3に対応する二次極大極小波W2SM1、W2SM2、W2SM3が全く消失している。 FIG. 18 shows a state in which the compression pressure PC of the compression band 12 has become even lower than the state shown in FIG. 17, and has fallen below the diastolic blood pressure value DBP of the living body 14. In this state, since no reflected waves occur, the first-order differential waveforms dSM1 / dt , dSM2 / dt and dSM3 / The secondary maximum and minimum waves W2 SM1 , W2 SM2 , W2 SM3 corresponding to the secondary peak waves P2 SM1 , P2 SM2 , P2 SM3 of dt have completely disappeared.

最低血圧値決定部94は、圧迫帯12の圧迫圧力PCが最高血圧値SBPよりも充分に高い予め設定された昇圧目標圧力値PCMから下降させられる過程で、下流側膨張袋26の下流側端部26c下において動脈18の断面積が変化する点から上流側へ反射して中間脈波(脈波信号SM2)に重畳する反射波が所定値未満に減衰したときの圧迫帯12の圧迫圧力PCに基づいて、生体14の最低血圧値DBPを決定する。すなわち、最低血圧値決定部94は、圧迫圧力PCが最高血圧値SBPよりも充分に高い予め設定された昇圧目標圧力値PCMから下降させられる過程で、たとえば、中間脈波SM2(脈波信号SM2)の二次微分波形dSM2/dtにおける一次極大極小波W1SM2に続く部分である所定期間の波形Δdwが基線(零ライン)ZLと交差しなくなったときの圧迫帯12の圧迫圧力PCに基づいて、生体14の最低血圧値DBPを決定する。 The diastolic blood pressure value determination unit 94 determines the downstream end of the downstream inflation bag 26 in the process of lowering the compression pressure PC of the compression cuff 12 from a preset elevated target pressure value PCM that is sufficiently higher than the systolic blood pressure value SBP. The compression pressure PC of the compression band 12 when the reflected wave that is reflected upstream from the point where the cross-sectional area of the artery 18 changes under the section 26c and is superimposed on the intermediate pulse wave (pulse wave signal SM2) is attenuated to less than a predetermined value. Based on this, the diastolic blood pressure value DBP of the living body 14 is determined. That is, the diastolic blood pressure value determination unit 94 determines, for example, the intermediate pulse wave SM2 (pulse wave signal SM2 ) The compression pressure PC of the compression band 12 when the waveform Δdw for a predetermined period, which is the part following SM2 , no longer intersects the base line (zero line) ZL. Based on this, the diastolic blood pressure value DBP of the living body 14 is determined.

図19は、電子制御装置70の他の作動例を説明するフローチャートである。図19において、S1~S6、S11は図12と共通しているので、説明を省略する。図19において、図12のS7~S10は、S17~S20に置き換えられている。 FIG. 19 is a flowchart illustrating another example of the operation of the electronic control device 70. In FIG. 19, S1 to S6 and S11 are the same as those in FIG. 12, so their explanation will be omitted. In FIG. 19, S7 to S10 in FIG. 12 are replaced with S17 to S20.

二次微分波形算出部92に対応するS17では、脈波信号SM1、SM2及びSM3のそれぞれの二次微分波形dSM1/dt、dSM2/dt及びdSM3/dtが算出される。次いで、二次微分波形算出部92に対応するS18では、二次微分波形dSM2/dtの一次極大極小波W1SM2後の部分すなわち一次極大極小波W1SM2を除いた所定期間の波形Δdwが算出される。 In S17 corresponding to the second-order differential waveform calculation unit 92, second-order differential waveforms d 2 SM1/dt 2 , d 2 SM2/dt 2 and d 2 SM3/dt 2 of the pulse wave signals SM1, SM2 and SM3 are calculated. be done. Next, in S18 corresponding to the second-order differential waveform calculation unit 92, the second-order differential waveform d 2 SM2/dt 2 is calculated as a waveform Δdw for a predetermined period excluding the portion after the first-order maximum and minimum waves W1 and SM2 , that is, the first-order maximum and minimum waves W1 and SM2 . is calculated.

次に、最低血圧値決定部94に対応するS19では、圧迫帯12の圧迫圧力PCが最高血圧値SBPよりも充分に高い予め設定された昇圧目標圧力値PCMから下降させられる過程で、二次微分波形dSM2/dtの一次極大極小波W1SM2後の部分すなわち一次極大極小波W1SM2を除いた所定期間の波形Δdwが、基線(零ライン)ZLよりも低くなったか否かが、判断される。このS19の判断が否定される場合はS17以後が繰り返し実行されるが、肯定された場合は、最低血圧値決定部94に対応するS20において、S19の判断が肯定されたときの圧迫帯12の圧迫圧力PCに基づいて、生体14の最低血圧値DBPが決定される。 Next, in S19 corresponding to the diastolic blood pressure value determination unit 94, in the process of lowering the compression pressure PC of the compression cuff 12 from the preset boost target pressure value PCM which is sufficiently higher than the systolic blood pressure value SBP, a secondary Differential waveform d 2 SM2/dt 2 Primary maximum minimum wave W1 SM2 The part after the primary maximum minimum wave W1 SM2, that is, the waveform Δdw for a predetermined period excluding the primary maximum minimum wave W1 SM2 , is determined to be lower than the baseline (zero line) ZL. be judged. If the judgment in S19 is negative, the steps from S17 onward are repeatedly executed, but if the judgment is affirmative, in S20 corresponding to the diastolic blood pressure value determining section 94, the pressure band 12 is Based on the compression pressure PC, the diastolic blood pressure value DBP of the living body 14 is determined.

本実施例の自動血圧測定装置10によれば、最低血圧値決定部94は、圧迫帯12による圧迫圧力PCが生体14の最高血圧値SBPよりも充分に高く設定された昇圧目標圧力値PCMから下降させられる過程で、中間脈波(脈波信号SM2)の二次微分波形dSM2/dtの一次極大極小波W1SM2後の所定期間の波形Δdwが、基線(零ライン)ZLと交差しなくなったときの圧迫帯12の圧迫圧力PCに基づいて、生体14の最低血圧値DBPが決定される。これにより、中間脈波(脈波信号SM2)の二次微分波形dSM2/dtの一次極大極小波W1SM2後の所定期間の波形Δdwが、基線ZLと交差しなくなったことが安定的に判定されるので、生体14の最低血圧値DBPの決定精度が高められる。 According to the automatic blood pressure measuring device 10 of the present embodiment, the diastolic blood pressure value determining unit 94 determines that the compression pressure PC by the compression cuff 12 is determined from the boost target pressure value PCM which is set sufficiently higher than the systolic blood pressure value SBP of the living body 14. In the process of being lowered, the second-order differential waveform d2 SM2 / dt of the intermediate pulse wave (pulse wave signal SM2), the first-order maximum minimum wave W1 of 2, and the waveform Δdw for a predetermined period after SM2 intersects the baseline (zero line) ZL. The diastolic blood pressure value DBP of the living body 14 is determined based on the compression pressure PC of the compression band 12 when the compression band 12 stops. As a result, it is stable that the waveform Δdw of the second-order differential waveform d 2 SM2/dt 2 of the intermediate pulse wave (pulse wave signal SM2), the first-order maximum minimum wave W1, and the waveform Δdw for a predetermined period after SM2 no longer intersects the baseline ZL. Therefore, the accuracy of determining the diastolic blood pressure value DBP of the living body 14 is improved.

以上、本発明の一実施例を図面を参照して詳細に説明したが、本発明はこの実施例に限定されるものではなく、別の態様でも実施され得る。 Although one embodiment of the present invention has been described above in detail with reference to the drawings, the present invention is not limited to this embodiment and may be implemented in other forms.

例えば、実施例1の最低血圧値決定部90により決定された最低血圧値DBPおよび実施例2の最低血圧値決定部94により決定された最低血圧値DBPのうちの一方が、表示装置78に最低血圧値として表示されてもよいし、両方の平均値が最低血圧値として表示装置78に表示されるようにしてもよい。 For example, one of the diastolic blood pressure value DBP determined by the diastolic blood pressure value determination unit 90 of the first embodiment and the diastolic blood pressure value DBP determined by the diastolic blood pressure value determination unit 94 of the second embodiment is displayed on the display device 78. It may be displayed as a blood pressure value, or the average value of both may be displayed on the display device 78 as a diastolic blood pressure value.

また、実施例1及び実施例2において、圧迫帯12による上腕16に対する圧迫圧力PCとして、上流側膨張袋22内の圧迫圧力PC1、中間膨張袋24の圧迫圧力PC2、下流側膨張袋26内の圧迫圧力PC3、または、それらの平均圧力が用いられてもよい。 In Examples 1 and 2, the compression pressure PC on the upper arm 16 by the compression band 12 is the compression pressure PC1 in the upstream inflation bag 22, the compression pressure PC2 in the intermediate inflation bag 24, and the compression pressure PC2 in the downstream inflation bag 26. The compression pressure PC3 or the average pressure thereof may be used.

また、実施例1の図12或いは実施例2の図19では、圧迫帯12による上腕16への圧迫が終了したS6の後において、一次微分波形dSM1/dt、dSM2/dt、dSM3/dtおよび二次ピーク波P2SM2の算出、二次微分波形dSM1/dt、dSM2/dt、dSM3/dtおよび二次微分波形dSM2/dtにおける一次極大極小波W1SM2後の所定期間の波形Δdwの算出処理が行なわれていたが、例えばステップ圧P1、P2、P3、・・・Pxが形成されている間にそれらの算出処理が順次実行されるものであってもよい。 In addition, in FIG. 12 of the first embodiment or FIG. 19 of the second embodiment, after S6 when the compression band 12 finishes compressing the upper arm 16, the first-order differential waveforms dSM1/dt, dSM2/dt, dSM3/dt and second-order differential waveforms dSM1/dt, dSM2/dt, dSM3/dt and Calculation of secondary peak wave P2 SM2 , secondary differential waveform d 2 SM1/dt 2 , d 2 SM2/dt 2 , d 2 SM3/dt 2 and primary maximum and minimum wave W1 SM2 in secondary differential waveform d 2 SM2/dt 2 The calculation process of the waveform Δdw for a later predetermined period was performed, but for example, these calculation processes were performed sequentially while the step pressures P1, P2, P3, . . . Px were being formed. Good too.

また、実施例1及び実施例2では、圧迫帯12が上腕16を圧迫するものであったが、生体14の一部、例えば手首、下肢を圧迫するものであってもよい。 Further, in Examples 1 and 2, the compression band 12 presses the upper arm 16, but it may also press a part of the living body 14, such as a wrist or a lower limb.

また、実施例1及び実施例2では、圧迫帯12による血圧測定のための圧迫方法として、ステップ降圧が採用されていたが、連続降圧であってもよいし、連続昇圧であってもよい。 Further, in Examples 1 and 2, step pressure reduction was employed as the compression method for measuring blood pressure using the compression cuff 12, but continuous pressure reduction or continuous pressure increase may be used.

また、実施例1及び実施例2において、圧迫帯12に備えられる膨張袋は3つに限らず、4つ以上であってもよい。上流側膨張袋22及び下流側膨張袋26と、それらの間に設けられた中間膨張袋24とが、相対的に存在するものであればよい。 Furthermore, in the first and second embodiments, the number of inflation bags provided in the compression band 12 is not limited to three, but may be four or more. It is sufficient that the upstream expansion bag 22, the downstream expansion bag 26, and the intermediate expansion bag 24 provided therebetween are relatively present.

なお、上述したのはあくまでも一実施形態であり、その他一々例示はしないが、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づいて種々変更、改良を加えた態様で実施することができる。 The above-mentioned embodiment is merely one embodiment, and although no other examples are given, the present invention can be implemented with various changes and improvements based on the knowledge of those skilled in the art without departing from the spirit thereof. Can be done.

10:自動血圧測定装置
12:圧迫帯
14:生体
16:上腕(被圧迫部位)
22:上流側膨張袋
24:中間膨張袋
26:下流側膨張袋
26c:下流側端部
84:脈波抽出部
90,94:最低血圧値決定部
92:二次微分波形算出部
SBP:最高血圧値
DBP:最低血圧値
dSM2/dt:一次微分波形
SM2/dt:二次微分波形
PC:圧迫帯の圧迫圧力
PC2:中間膨張袋内の圧迫圧力
PCM:昇圧目標圧力値(最高血圧値よりも高い値)
P2SM2:二次ピーク波
SM2:脈波信号(中間脈波)
W1SM2:一次極大極小波
Δdw:所定期間の波形
10: Automatic blood pressure measuring device 12: Compression band 14: Living body 16: Upper arm (compressed area)
22: Upstream expansion bag 24: Intermediate expansion bag 26: Downstream expansion bag 26c: Downstream end 84: Pulse wave extraction section 90, 94: Diastolic blood pressure value determination section 92: Second differential waveform calculation section SBP: Systolic blood pressure Value DBP: Diastolic blood pressure value dSM2/dt: First-order differential waveform d2 SM2/ dt2 : Second-order differential waveform PC: Compression pressure of compression cuff PC2: Compression pressure in intermediate inflation bag PCM: Boost target pressure value (systolic blood pressure value (value higher than)
P2 SM2 : Secondary peak wave SM2: Pulse wave signal (intermediate pulse wave)
W1 SM2 : Primary maximum minimum wave Δdw: Waveform for a predetermined period

Claims (3)

生体の被圧迫部位に巻き付けられ、幅方向に連ねられて前記生体の被圧迫部位を各々圧迫する独立した上流側膨張袋、中間膨張袋、および下流側膨張袋を有し、前記上流側膨張袋、前記中間膨張袋、および前記下流側膨張袋によりそれぞれ同じ圧迫圧力で前記被圧迫部位内の動脈血管を圧迫する圧迫帯を、備える自動血圧測定装置であって、
前記圧迫帯による前記被圧迫部位に対する圧迫圧力を変化させる過程で、前記中間膨張袋内の圧迫圧力に含まれる前記生体の心拍に同期した圧力振動である中間脈波を抽出する脈波抽出部と、
前記圧迫帯の圧迫圧力が最高血圧値よりも高い値から下降させられる過程で、前記下流側膨張袋の下流側端部下において前記動脈血管の断面積が変化する点から上流側へ反射した反射波が重畳する前記中間脈波の一次微分波形の二次ピーク波の大きさ又は振幅が予め設定された判定閾値未満となったときの前記圧迫帯の圧迫圧力に基づいて、前記生体の最低血圧値を決定する最低血圧値決定部と、を含む
ことを特徴とする自動血圧測定装置。
The upstream inflation bag has an independent upstream inflation bag, an intermediate inflation bag, and a downstream inflation bag that are wrapped around a compressed part of a living body and are connected in the width direction to compress the compressed part of the living body, respectively. , an automatic blood pressure measuring device comprising a compression band that compresses the arterial blood vessel in the compressed region with the same compression pressure by the intermediate expansion bag and the downstream expansion bag,
a pulse wave extraction unit that extracts an intermediate pulse wave that is a pressure vibration synchronized with the heartbeat of the living body contained in the compression pressure in the intermediate expansion bag in the process of changing the compression pressure on the compressed region by the compression band; ,
A reflection reflected toward the upstream side from a point where the cross-sectional area of the arterial blood vessel changes under the downstream end of the downstream inflation bag during the process in which the compression pressure of the compression band is lowered from a value higher than the systolic blood pressure value. The diastolic blood pressure of the living body is determined based on the compression pressure of the compression band when the magnitude or amplitude of the secondary peak wave of the first derivative waveform of the intermediate pulse wave on which the waves are superimposed is less than a preset determination threshold. An automatic blood pressure measuring device comprising: a diastolic blood pressure value determination unit that determines a diastolic blood pressure value.
生体の被圧迫部位に巻き付けられ、幅方向に連ねられて前記生体の被圧迫部位を各々圧迫する独立した上流側膨張袋、中間膨張袋、および下流側膨張袋を有し、前記上流側膨張袋、前記中間膨張袋、および前記下流側膨張袋によりそれぞれ同じ圧迫圧力で前記被圧迫部位内の動脈血管を圧迫する圧迫帯を、備える自動血圧測定装置であって、
前記圧迫帯による前記被圧迫部位に対する圧迫圧力を変化させる過程で、前記中間膨張袋内の圧迫圧力に含まれる前記生体の心拍に同期した圧力振動である中間脈波を抽出する脈波抽出部と、
前記圧迫帯の圧迫圧力が最高血圧値よりも高い値から下降させられる過程で、前記下流側膨張袋の下流側端部下において前記動脈血管の断面積が変化する点から上流側へ反射した反射波が重畳する前記中間脈波の二次微分波形における一次極大極小波後の所定期間の波形が零を示す基線と交差しなくなったときの前記圧迫帯の圧迫圧力に基づいて、前記生体の最低血圧値を決定する最低血圧値決定部と、を含む
ことを特徴とする自動血圧測定装置。
The upstream inflation bag has an independent upstream inflation bag, an intermediate inflation bag, and a downstream inflation bag that are wrapped around a compressed part of a living body and are connected in the width direction to compress the compressed part of the living body, respectively. , an automatic blood pressure measuring device comprising a compression band that compresses the arterial blood vessel in the compressed region with the same compression pressure by the intermediate expansion bag and the downstream expansion bag,
a pulse wave extraction unit that extracts an intermediate pulse wave that is a pressure vibration synchronized with the heartbeat of the living body contained in the compression pressure in the intermediate expansion bag in the process of changing the compression pressure on the compressed region by the compression band; ,
Reflected waves reflected toward the upstream side from a point where the cross-sectional area of the arterial blood vessel changes under the downstream end of the downstream inflation bag during the process in which the compression pressure of the compression band is lowered from a value higher than the systolic blood pressure value. The diastolic blood pressure of the living body is determined based on the compression pressure of the compression band when the waveform for a predetermined period after the first maximum minimum wave in the second-order differential waveform of the intermediate pulse wave superimposed on the waveform no longer intersects the baseline indicating zero. a diastolic blood pressure value determination unit that determines the value;
An automatic blood pressure measuring device characterized by:
前記脈波抽出部は、前記中間膨張袋内の圧迫圧力を表す信号を、45Hz以上の周波数成分を除去する上限遮断周波数を有するローパスフィルタ処理を施すことで、前記中間膨張袋内の圧迫圧力に含まれる圧力振動である前記中間脈波を抽出する
ことを特徴とする請求項1又は2の自動血圧測定装置。
The pulse wave extraction unit performs low-pass filter processing on the signal representing the compression pressure in the intermediate inflation bag, which has an upper limit cutoff frequency that removes frequency components of 45 Hz or higher, thereby determining the compression pressure in the intermediate inflation bag. The automatic blood pressure measuring device according to claim 1 or 2, wherein the intermediate pulse wave that is included in the pressure vibration is extracted.
JP2020092610A 2020-05-27 2020-05-27 automatic blood pressure measuring device Active JP7445518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020092610A JP7445518B2 (en) 2020-05-27 2020-05-27 automatic blood pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020092610A JP7445518B2 (en) 2020-05-27 2020-05-27 automatic blood pressure measuring device

Publications (2)

Publication Number Publication Date
JP2021186091A JP2021186091A (en) 2021-12-13
JP7445518B2 true JP7445518B2 (en) 2024-03-07

Family

ID=78850133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020092610A Active JP7445518B2 (en) 2020-05-27 2020-05-27 automatic blood pressure measuring device

Country Status (1)

Country Link
JP (1) JP7445518B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004223044A (en) 2003-01-24 2004-08-12 Colin Medical Technology Corp Filter for pulse wave sensor and pulse wave analyzer
JP2006043146A (en) 2004-08-04 2006-02-16 Sony Corp Pulse wave analysis method and apparatus
WO2011045806A1 (en) 2009-10-14 2011-04-21 Genesis Medical Systems Pvt. Ltd. Apparatus and methods for the non-invasive measurement of aortic pressure parameters and cardiovascular system parameters.
JP2012071059A (en) 2010-09-29 2012-04-12 A & D Co Ltd Automatic blood pressure measuring apparatus
JP2015198740A (en) 2014-04-07 2015-11-12 株式会社エー・アンド・デイ Automatic blood pressure measuring apparatus
JP2016516503A (en) 2013-03-22 2016-06-09 株式会社村田製作所 Improved blood pressure monitoring method
US20170209055A1 (en) 2016-01-22 2017-07-27 Fitbit, Inc. Photoplethysmography-based pulse wave analysis using a wearable device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004223044A (en) 2003-01-24 2004-08-12 Colin Medical Technology Corp Filter for pulse wave sensor and pulse wave analyzer
JP2006043146A (en) 2004-08-04 2006-02-16 Sony Corp Pulse wave analysis method and apparatus
WO2011045806A1 (en) 2009-10-14 2011-04-21 Genesis Medical Systems Pvt. Ltd. Apparatus and methods for the non-invasive measurement of aortic pressure parameters and cardiovascular system parameters.
JP2012071059A (en) 2010-09-29 2012-04-12 A & D Co Ltd Automatic blood pressure measuring apparatus
JP2016516503A (en) 2013-03-22 2016-06-09 株式会社村田製作所 Improved blood pressure monitoring method
JP2015198740A (en) 2014-04-07 2015-11-12 株式会社エー・アンド・デイ Automatic blood pressure measuring apparatus
US20170209055A1 (en) 2016-01-22 2017-07-27 Fitbit, Inc. Photoplethysmography-based pulse wave analysis using a wearable device

Also Published As

Publication number Publication date
JP2021186091A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
JP6086647B2 (en) Automatic blood pressure measurement device
JP5584077B2 (en) Automatic blood pressure measurement device
JP5584076B2 (en) Automatic blood pressure measurement device
TW491697B (en) Blood-pressure measuring apparatus
JP6027767B2 (en) Automatic blood pressure measurement device.
JP6340152B2 (en) Automatic blood pressure measurement device
JP3213296B2 (en) Pulse wave velocity information measurement device
JP2001070262A (en) Sphygmomanometer
JP5619593B2 (en) Arterial blood vessel inspection device
JP7445518B2 (en) automatic blood pressure measuring device
JP5801660B2 (en) Automatic blood pressure measurement device
JP3740501B2 (en) Pulse wave analyzer
TW200932193A (en) Blood pressure measuring apparatus
JP5049097B2 (en) Pulse wave detection compression band, and automatic blood pressure measurement device, blood vessel flexibility measurement device, and pulse wave propagation velocity measurement device including the same.
JP7397754B2 (en) automatic blood pressure measuring device
JP3790212B2 (en) Blood pressure measurement device
JP7527837B2 (en) Automatic blood pressure measuring device
WO2023199990A1 (en) Blood pressure measurement device
JP6247735B2 (en) Automatic blood pressure measurement device
JP2009112429A (en) Cuff for pulse wave detection
JP5146997B2 (en) Electronic blood pressure monitor and signal processing method thereof
JP2004166845A (en) Upper-extremity arteriostenosis evaluating apparatus
JP4879038B2 (en) Blood pressure measurement device capable of pulse wave detection
JP2023158983A (en) Blood pressure measuring apparatus
JP2003245256A (en) Dicrotic notch detector and pulsation propagation speed information detector

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230612

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240226

R150 Certificate of patent or registration of utility model

Ref document number: 7445518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150