Nothing Special   »   [go: up one dir, main page]

JP7443766B2 - electrical insulated cable - Google Patents

electrical insulated cable Download PDF

Info

Publication number
JP7443766B2
JP7443766B2 JP2019237286A JP2019237286A JP7443766B2 JP 7443766 B2 JP7443766 B2 JP 7443766B2 JP 2019237286 A JP2019237286 A JP 2019237286A JP 2019237286 A JP2019237286 A JP 2019237286A JP 7443766 B2 JP7443766 B2 JP 7443766B2
Authority
JP
Japan
Prior art keywords
insulating layer
conductor
electrically insulated
insulated cable
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019237286A
Other languages
Japanese (ja)
Other versions
JP2021106131A (en
Inventor
賢治 堀
遼太 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2019237286A priority Critical patent/JP7443766B2/en
Priority to TW109144432A priority patent/TW202125533A/en
Priority to KR1020200179502A priority patent/KR20210083186A/en
Priority to CN202011529064.2A priority patent/CN113053571A/en
Publication of JP2021106131A publication Critical patent/JP2021106131A/en
Application granted granted Critical
Publication of JP7443766B2 publication Critical patent/JP7443766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0225Three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/28Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/1845Sheaths comprising perforations

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本開示は、電気絶縁ケーブルに関する。 TECHNICAL FIELD This disclosure relates to electrically insulated cables.

特許文献1には、所定の成分を含有するポリ塩化ビニル樹脂組成物から構成される絶縁層を導体の外周上に有することを特徴とする絶縁電線が開示されている。 Patent Document 1 discloses an insulated wire characterized by having an insulating layer made of a polyvinyl chloride resin composition containing predetermined components on the outer periphery of a conductor.

特開2014-133856号公報Japanese Patent Application Publication No. 2014-133856

各種電気機器類において、導電部に印加する電圧に応じて、該導電部から所定の空間距離を取ることが、例えば国際規格IEC62368-1等により定められている。空間距離とは、空気を通して測定した2つの導電部間、または導電部と機器の可触面との間の最短距離を意味する。 In various electrical devices, for example, the international standard IEC62368-1 stipulates that a predetermined spatial distance from a conductive part be maintained depending on the voltage applied to the conductive part. Clearance distance means the shortest distance between two conductive parts, or between a conductive part and an accessible surface of a device, measured through the air.

このため、空間距離を確実に確保できるように、電気絶縁ケーブルにおいては、導体を覆う絶縁層について、規格で規定される空間距離以上の厚さとすることが求められる場合がある。しかしながら、絶縁層の厚さを厚くすると、電気絶縁ケーブルが重くなり、取扱い性が低下したり、設置場所が限定される等の問題があった。 For this reason, in order to ensure the spatial distance, in electrically insulated cables, the thickness of the insulating layer covering the conductor may be required to be greater than the spatial distance specified by the standard. However, when the thickness of the insulating layer is increased, the electrically insulated cable becomes heavy, resulting in problems such as reduced handling properties and limited installation locations.

そこで、本開示は、空間距離を確保しつつ、軽量性に優れた電気絶縁ケーブルを提供することを目的とする。 Therefore, an object of the present disclosure is to provide an electrically insulated cable that is lightweight while ensuring a spatial distance.

本開示の電気絶縁ケーブルは、導体と、
前記導体を覆い、外表面が露出した絶縁層とを有し、
前記絶縁層は空隙を含み、
前記導体の長手方向と垂直な断面において、前記空隙のうち、最も前記導体側に位置する最内位置空隙と、前記導体の外周との間の領域である第1充実部の厚さの平均値が0.02mm以上0.15mm以下である。
The electrically insulated cable of the present disclosure includes a conductor;
an insulating layer covering the conductor and having an exposed outer surface;
the insulating layer includes voids,
In a cross section perpendicular to the longitudinal direction of the conductor, an average value of the thickness of a first solid portion that is a region between the innermost void located closest to the conductor among the voids and the outer periphery of the conductor. is 0.02 mm or more and 0.15 mm or less.

本開示によれば、空間距離を確保しつつ、軽量性に優れた電気絶縁ケーブルを提供できる。 According to the present disclosure, it is possible to provide an electrically insulated cable that is lightweight while ensuring a spatial distance.

図1は、本開示の一態様に係る電気絶縁ケーブルにおける、導体の長手方向と垂直な面での断面図である。FIG. 1 is a cross-sectional view of an electrically insulated cable according to one embodiment of the present disclosure, taken in a plane perpendicular to the longitudinal direction of the conductor. 図2は、本開示の一態様に係る電気絶縁ケーブルの他の構成例における、導体の長手方向と垂直な面での断面図である。FIG. 2 is a cross-sectional view of another configuration example of the electrically insulated cable according to one aspect of the present disclosure, taken in a plane perpendicular to the longitudinal direction of the conductor. 図3は、本開示の一態様に係る電気絶縁ケーブルの他の構成例における、導体の長手方向と垂直な面での断面図である。FIG. 3 is a cross-sectional view of another configuration example of the electrically insulated cable according to one aspect of the present disclosure, taken in a plane perpendicular to the longitudinal direction of the conductor. 図4は、本開示の一態様に係る電気絶縁ケーブルを製造する際に用いることができる押出機の部分斜視図である。FIG. 4 is a partial perspective view of an extruder that can be used in manufacturing electrically insulated cables according to one aspect of the present disclosure. 図5は、実験例における柔軟性の評価方法の説明図である。FIG. 5 is an explanatory diagram of a flexibility evaluation method in an experimental example.

実施するための形態について、以下に説明する。 The embodiment will be described below.

[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。
[Description of embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described. In the following description, the same or corresponding elements are given the same reference numerals, and the same description will not be repeated.

(1)本開示の一態様に係る電気絶縁ケーブルは、導体と、
前記導体を覆い、外表面が露出した絶縁層とを有し、
前記絶縁層は空隙を含み、
前記導体の長手方向と垂直な断面において、前記空隙のうち、最も前記導体側に位置する最内位置空隙と、前記導体の外周との間の領域である第1充実部の厚さの平均値が0.02mm以上0.15mm以下である。
(1) An electrically insulated cable according to one aspect of the present disclosure includes a conductor;
an insulating layer covering the conductor and having an exposed outer surface;
the insulating layer includes voids,
In a cross section perpendicular to the longitudinal direction of the conductor, an average value of the thickness of a first solid portion that is a region between the innermost void located closest to the conductor among the voids and the outer periphery of the conductor. is 0.02 mm or more and 0.15 mm or less.

本発明の発明者は、空間距離を確保しつつ、軽量性を有する電気絶縁ケーブルについて鋭意検討を行った。その結果、空隙を含む絶縁層を用いることで、空間距離を確保するために絶縁層を厚くした場合でも、ケーブル全体の重量を抑制し、軽量性に優れた電気絶縁ケーブルにできることを見出した。 The inventor of the present invention conducted extensive research on electrically insulated cables that are lightweight while ensuring spatial distance. As a result, they discovered that by using an insulating layer containing voids, even when the insulating layer is made thicker to ensure spatial distance, the weight of the entire cable can be suppressed, making it possible to create an electrically insulated cable with excellent lightness.

ただし、絶縁層全体に空隙を分布させた場合に、電気絶縁ケーブルの耐電圧特性が低下する場合があった。そこで、さらなる検討を行ったところ、絶縁層のうち、導体の近傍に空隙を含まない領域を設けることで耐電圧特性を高められることを見出した。ここで、電気絶縁ケーブルの、導体の長手方向と垂直な断面において、空隙のうち最も導体側に位置する最内位置空隙と、導体の外周との間の領域を第1充実部とする。そして、本発明の発明者の検討によれば、第1充実部の厚さの平均値を0.02mm以上0.1mm以下とすることで、軽量性と耐電圧特性を備えた電気絶縁ケーブルとすることができる。 However, when voids are distributed throughout the insulating layer, the withstand voltage characteristics of the electrically insulated cable may deteriorate. Therefore, after further investigation, it was discovered that the withstand voltage characteristics could be improved by providing a region of the insulating layer that does not contain voids near the conductor. Here, in a cross section of the electrically insulated cable perpendicular to the longitudinal direction of the conductor, the region between the innermost void located closest to the conductor among the voids and the outer periphery of the conductor is defined as the first solid portion. According to the study by the inventor of the present invention, by setting the average thickness of the first solid portion to 0.02 mm or more and 0.1 mm or less, an electrically insulated cable with light weight and withstand voltage characteristics can be obtained. can do.

(2)前記導体の長手方向と垂直な断面において、前記空隙のうち、最も前記絶縁層の前記外表面側に位置する最外位置空隙と、前記絶縁層の前記外表面との間の領域である第2充実部の厚さの平均値が0.05mm以上0.15mm以下であってもよい。 (2) In a cross section perpendicular to the longitudinal direction of the conductor, a region between the outermost gap located closest to the outer surface of the insulating layer among the gaps and the outer surface of the insulating layer. The average value of the thickness of a certain second solid portion may be 0.05 mm or more and 0.15 mm or less.

(3)外径が1mm以上4mm以下であってもよい。 (3) The outer diameter may be 1 mm or more and 4 mm or less.

(4)前記絶縁層の平均空隙率が、10%以上50%以下であってもよい。 (4) The insulating layer may have an average porosity of 10% or more and 50% or less.

(5)前記絶縁層の平均空隙率が、38%以上45%以下であってもよい。 (5) The insulating layer may have an average porosity of 38% or more and 45% or less.

(6)前記空隙は、その中心軸が、前記導体の長手方向に沿って形成された柱状形状を有していてもよい。 (6) The void may have a columnar shape with a central axis extending along the longitudinal direction of the conductor.

(7)前記絶縁層が架橋フッ素ゴムを含んでいてもよい。 (7) The insulating layer may contain crosslinked fluororubber.

(8)前記絶縁層の絶縁耐力が25kV/mm以上であってもよい。 (8) The dielectric strength of the insulating layer may be 25 kV/mm or more.

(9)前記絶縁層が、材料の異なる複数の層を有していてもよい。 (9) The insulating layer may include a plurality of layers made of different materials.

(10)前記絶縁層のうち、前記導体と接する絶縁材料の絶縁耐力が25kV/mm以上であり、前記絶縁層のうち、前記外表面の絶縁材料の抗張力が8MPa以上であってもよい。 (10) The dielectric strength of the insulating material in contact with the conductor in the insulating layer may be 25 kV/mm or more, and the tensile strength of the insulating material on the outer surface of the insulating layer may be 8 MPa or more.

[本開示の実施形態の詳細]
本開示の一実施形態(以下「本実施形態」と記す)に係る電気絶縁ケーブルの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許の請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
(電気絶縁ケーブル)
図1に、本実施形態の電気絶縁ケーブルの長手方向と垂直な断面の一構成例を示す。
[Details of embodiments of the present disclosure]
A specific example of an electrically insulated cable according to an embodiment of the present disclosure (hereinafter referred to as "this embodiment") will be described below with reference to the drawings. Note that the present invention is not limited to these examples, but is indicated by the scope of the claims, and is intended to include all changes within the meaning and scope equivalent to the scope of the claims.
(electrical insulated cable)
FIG. 1 shows a configuration example of a cross section perpendicular to the longitudinal direction of the electrically insulated cable of this embodiment.

図1に示す様に、本実施形態の電気絶縁ケーブル10は、導体11と、導体11を覆い、外表面12Aが露出した絶縁層12とを有することができる。 As shown in FIG. 1, the electrically insulated cable 10 of this embodiment can include a conductor 11 and an insulating layer 12 that covers the conductor 11 and has an exposed outer surface 12A.

絶縁層12は、空隙13を含むことができる。そして、導体11の長手方向と垂直な断面において、空隙13のうち最も導体11側に位置する最内位置空隙131と、導体11の外周11Aとの間の領域である第1充実部121の厚さL1の平均値を0.02mm以上0.15mm以下とすることができる。 Insulating layer 12 may include voids 13 . In a cross section perpendicular to the longitudinal direction of the conductor 11, the thickness of the first solid portion 121, which is a region between the innermost position gap 131 located closest to the conductor 11 among the gaps 13 and the outer periphery 11A of the conductor 11. The average value of the length L1 can be 0.02 mm or more and 0.15 mm or less.

以下、本実施形態の電気絶縁ケーブルが有する各部材や、構成について図面を用いながら説明する。
(1)導体
導体11は導線であり、単線の金属素線、あるいは複数本の金属素線より構成できる。導体11が、複数本の金属素線を有する場合、該複数本の金属素線を撚り合せておくこともできる。すなわち、導体11が複数の金属素線を有する場合、導体11は、複数本の金属素線の撚り線とすることもできる。
Each member and configuration of the electrically insulated cable of this embodiment will be described below with reference to the drawings.
(1) Conductor The conductor 11 is a conducting wire, and can be composed of a single metal wire or a plurality of metal wires. When the conductor 11 has a plurality of metal wires, the plurality of metal wires may be twisted together. That is, when the conductor 11 has a plurality of metal wires, the conductor 11 can also be a twisted wire of the plurality of metal wires.

図1に示すように、導体11は、長手方向と垂直な断面において、外形を円形状とすることもできる。導体11が複数本の金属素線を撚り合せている場合、外形が円形状の導体は、導体径方向を円形圧縮することで形成できる。また、導体11は複数の金属素線の外形に沿った表面凹凸を有することもできる。 As shown in FIG. 1, the conductor 11 can also have a circular outer shape in a cross section perpendicular to the longitudinal direction. When the conductor 11 is made by twisting a plurality of metal wires, the conductor having a circular outer shape can be formed by circularly compressing the conductor in the radial direction. Further, the conductor 11 can also have surface irregularities that follow the contours of the plurality of metal wires.

導体11の材料は特に限定されないが、例えば銅、軟銅、銀めっき軟銅、ニッケルめっき軟銅、錫めっき軟銅等から選択された1種類以上の、一般に汎用されている導体材料を用いることができる。 The material of the conductor 11 is not particularly limited, but for example, one or more commonly used conductor materials selected from copper, annealed copper, silver-plated annealed copper, nickel-plated annealed copper, tin-plated annealed copper, etc. can be used.

導体11の直径は、特に限定されないが、例えば0.35mm以上2.0mm以下であることが好ましい。
(2)絶縁層、空隙
本実施形態の電気絶縁ケーブルは、導体11を覆い、外表面12Aが露出した絶縁層12を有することができる。絶縁層12は、空隙13を有することができる。
The diameter of the conductor 11 is not particularly limited, but is preferably, for example, 0.35 mm or more and 2.0 mm or less.
(2) Insulating layer, void The electrically insulated cable of this embodiment can have an insulating layer 12 that covers the conductor 11 and has an exposed outer surface 12A. The insulating layer 12 can have voids 13 .

本発明の発明者は、空間距離を確保しつつ、軽量性を有する電気絶縁ケーブルについて鋭意検討を行った。その結果、空隙13を含む絶縁層12を用いることで、空間距離を確保するために絶縁層12を厚くした場合でも、ケーブル全体の重量を抑制し、軽量性に優れた電気絶縁ケーブルにできることを見出した。 The inventor of the present invention conducted extensive research on electrically insulated cables that are lightweight while ensuring spatial distance. As a result, we found that by using the insulating layer 12 that includes voids 13, even when the insulating layer 12 is made thicker to ensure spatial distance, the weight of the entire cable can be suppressed and an electrically insulated cable with excellent lightness can be obtained. I found it.

ただし、絶縁層12全体に空隙13を分布させた場合に、電気絶縁ケーブルの耐電圧特性が低下する場合があった。そこで、さらなる検討を行ったところ、絶縁層12のうち、導体11の近傍に空隙13を含まない領域を設けることで耐電圧特性を高められることを見出した。ここで、電気絶縁ケーブルの導体11の長手方向と垂直な断面において、空隙13のうち最も導体11側に位置する最内位置空隙131と、導体11の外周11Aとの間の領域を第1充実部121とする。そして、本発明の発明者の検討によれば、第1充実部121の厚さL1の平均値を所定の範囲内とすることで、軽量性と耐電圧特性を備えた電気絶縁ケーブルとすることができる。 However, when the voids 13 are distributed throughout the insulating layer 12, the withstand voltage characteristics of the electrically insulated cable may deteriorate. Therefore, after further investigation, it was discovered that the withstand voltage characteristics could be improved by providing a region of the insulating layer 12 near the conductor 11 that does not include the void 13. Here, in a cross section perpendicular to the longitudinal direction of the conductor 11 of the electrically insulated cable, a region between the innermost position gap 131 located closest to the conductor 11 among the gaps 13 and the outer periphery 11A of the conductor 11 is first filled. Section 121. According to the study by the inventor of the present invention, by setting the average value of the thickness L1 of the first solid portion 121 within a predetermined range, an electrically insulated cable with light weight and withstand voltage characteristics can be obtained. I can do it.

以下、絶縁層12、および絶縁層12が有する空隙13について詳細に説明する。 Hereinafter, the insulating layer 12 and the voids 13 that the insulating layer 12 has will be described in detail.

既述の様に絶縁層12は、導体11の外周11Aを覆うように配置されており、導体11の長手方向と垂直な断面において、絶縁層12の外形は円形状を有することができる。ここでいう円形状とは厳密な意味の円、すなわち真円のみを意味するものではなく、楕円等の歪んだ円も含む。
(2-1)空隙の形状
絶縁層12が有する空隙13の形状は特に限定されず、例えば図1に示したように、球形状の空隙とし、絶縁層12内にランダムに配置することもできる。なお、この場合の球形状は厳密な意味の球、すなわち真球のみを意味するものではなく、楕円体等の歪んだ球も含む。
As described above, the insulating layer 12 is arranged to cover the outer periphery 11A of the conductor 11, and the outer shape of the insulating layer 12 can have a circular shape in a cross section perpendicular to the longitudinal direction of the conductor 11. The circular shape here does not mean only a circle in the strict sense, that is, a perfect circle, but also includes distorted circles such as ellipses.
(2-1) Shape of voids The shape of the voids 13 in the insulating layer 12 is not particularly limited. For example, as shown in FIG. 1, spherical voids may be arranged randomly within the insulating layer 12. . Note that the spherical shape in this case does not mean only a sphere in the strict sense, that is, a true sphere, but also includes distorted spheres such as ellipsoids.

また、例えば図2、図3に示した電気絶縁ケーブル20、30の空隙13の様に、空隙13は柱状形状を有することもできる。具体的には、空隙13は、例えば該空隙の中心軸が、導体11の長手方向に沿って形成された柱状形状を有することができる。この場合、空隙13は、導体11の長手方向に沿って連続した形状を有することになる。図2、図3では、断面が円形、すなわち円柱形状の空隙の例を示しているが、係る形態に限定されず、中心軸と垂直な断面の形状が四角形や、三角形等の多角形の柱状形状であってもよい。空隙13が、上述のように柱状形状を有する場合、絶縁層12の空隙率や、絶縁層12内の空隙13の配置をより正確に制御できるため好ましい。 Moreover, the void 13 can also have a columnar shape, for example like the void 13 of the electrically insulated cables 20, 30 shown in FIGS. 2 and 3. Specifically, the void 13 can have, for example, a columnar shape in which the central axis of the void is formed along the longitudinal direction of the conductor 11. In this case, the void 13 has a continuous shape along the longitudinal direction of the conductor 11. Although FIGS. 2 and 3 show an example of a void having a circular cross section, that is, a cylindrical shape, the shape is not limited to this, and the shape of the cross section perpendicular to the central axis may be a polygonal columnar shape such as a quadrangle or a triangle. It may be a shape. When the voids 13 have a columnar shape as described above, it is preferable because the porosity of the insulating layer 12 and the arrangement of the voids 13 within the insulating layer 12 can be controlled more accurately.

図1に示した球形状の空隙13を有し、ランダムに配置された絶縁層12は、例えば発泡剤を添加した樹脂を成形することで製造できる。 The insulating layer 12 having spherical voids 13 and randomly arranged as shown in FIG. 1 can be manufactured, for example, by molding a resin to which a foaming agent is added.

図2、図3に示した柱状形状を有する空隙13を含む絶縁層12は、例えば図4に示した、ダイス41とポイント治具42とを組み合わせた押出機40を使用して製造できる。図4を用いて図2、図3に示した柱状形状を有する空隙13を含む絶縁層12を備えた電気絶縁ケーブルの製造方法を説明する。 The insulating layer 12 including the voids 13 having a columnar shape as shown in FIGS. 2 and 3 can be manufactured using, for example, an extruder 40 shown in FIG. 4 that combines a die 41 and a point jig 42. A method of manufacturing an electrically insulated cable including an insulating layer 12 including voids 13 having a columnar shape as shown in FIGS. 2 and 3 will be described with reference to FIG. 4.

ポイント治具42には、柱状の部材43を、設ける柱状形状の空隙の数だけ設けておくことができる。図4では柱状の部材43として円柱形状を有する部材を設けた例を示しており、この場合、円柱形状の空隙13を有する絶縁層12を形成できる。 The point jig 42 can have as many columnar members 43 as the number of columnar gaps to be provided. FIG. 4 shows an example in which a member having a cylindrical shape is provided as the columnar member 43, and in this case, the insulating layer 12 having a cylindrical void 13 can be formed.

ダイス41は、円形の出口411を有しており、ポイント治具42とダイス41の間の流路44、45から樹脂を押し出す。この際、併せてポイント治具42の円筒部421の中心孔422から導体を引き出す。以上の操作を行うことで、押し出された樹脂が導体に被覆される。ダイス41の出口を出た樹脂を引き伸ばして径を小さくして被覆する引き落とし方法により樹脂を被覆してもよい。柱状の部材43の部分には樹脂が流れず、柱状の部材43に通気孔431を設けておくと、ダイス41から押し出された樹脂中に樹脂が流れない空隙が確保され、その長手方向と垂直な断面が柱状の部材43にあわせて、例えば柱状の部材43が円柱形状の場合、円形または楕円形となる。 The die 41 has a circular outlet 411 and extrudes the resin from channels 44 and 45 between the point jig 42 and the die 41. At this time, the conductor is also pulled out from the center hole 422 of the cylindrical portion 421 of the point jig 42. By performing the above operations, the extruded resin is coated on the conductor. The resin may be coated by a drawing method in which the resin exiting the exit of the die 41 is stretched to reduce its diameter and coated. The resin does not flow into the columnar member 43, and by providing ventilation holes 431 in the columnar member 43, a gap is secured in the resin extruded from the die 41 where the resin does not flow. For example, when the columnar member 43 has a cylindrical shape, the cross section becomes circular or elliptical.

上記の押出機40では、絶縁層の空隙率は、ポイント治具42に設けた柱状の部材43の径や数で容易に調整できる。
(2-2)第1充実部
既述の様に、電気絶縁ケーブルの、導体11の長手方向と垂直な断面において、空隙13のうち最も導体11側に位置する最内位置空隙131と、導体11の外周11Aとの間の領域を第1充実部121とする。具体的には、例えば図1~図3に示したように、最内位置空隙131の導体11側に接する円と、導体11の外周11Aとの間を第1充実部121とすることができる。
In the extruder 40 described above, the porosity of the insulating layer can be easily adjusted by adjusting the diameter and number of columnar members 43 provided on the point jig 42.
(2-2) First solid portion As described above, in the cross section perpendicular to the longitudinal direction of the conductor 11 of the electrically insulated cable, the innermost position gap 131 located closest to the conductor 11 among the gaps 13 and the conductor 11 and the outer periphery 11A is defined as a first solid portion 121. Specifically, as shown in FIGS. 1 to 3, for example, the first solid portion 121 can be formed between the circle in contact with the conductor 11 side of the innermost position gap 131 and the outer periphery 11A of the conductor 11. .

そして、第1充実部121の厚さL1の平均値は、0.02mm以上0.15mm以下であることが好ましく、0.04mm以上0.10mm以下であることがより好ましい。 The average value of the thickness L1 of the first solid portion 121 is preferably 0.02 mm or more and 0.15 mm or less, and more preferably 0.04 mm or more and 0.10 mm or less.

本発明の発明者の検討によれば、第1充実部121の厚さL1の平均値を0.02mm以上とすることで、電気絶縁ケーブルの耐電圧特性を高められる。また、第1充実部121の厚さL1の平均値を0.15mm以下とすることで、絶縁層12内に十分な量の空隙を配置でき、電気絶縁ケーブルの軽量性を高められる。 According to studies by the inventor of the present invention, by setting the average value of the thickness L1 of the first solid portion 121 to 0.02 mm or more, the withstand voltage characteristics of the electrically insulated cable can be improved. Further, by setting the average value of the thickness L1 of the first solid portion 121 to 0.15 mm or less, a sufficient amount of voids can be provided within the insulating layer 12, and the weight of the electrically insulated cable can be increased.

第1充実部121の厚さL1の平均値とは、導体11の長手方向と垂直な任意の4断面において測定した、第1充実部121の厚さL1の平均値を意味する。
(2-3)第2充実部
空隙13は、絶縁層12の外表面12A近傍にまで配置することもできるが、絶縁層12の外表面12Aが平滑であることが、電気絶縁ケーブルの外観を良くする観点からは好ましい。電気絶縁ケーブルの、導体11の長手方向と垂直な断面において、空隙13のうち最も絶縁層12の外表面12A側に位置する最外位置空隙132と、絶縁層12の外表面12Aとの間の領域を第2充実部122とする。具体的には、例えば図1、図2に示したように、最外位置空隙132の外表面12A側に接する円と、絶縁層12の外表面12Aとの間を第2充実部122とすることができる。
The average value of the thickness L1 of the first solid portion 121 means the average value of the thickness L1 of the first solid portion 121 measured on arbitrary four cross sections perpendicular to the longitudinal direction of the conductor 11.
(2-3) Second solid part Although the void 13 can be arranged up to the vicinity of the outer surface 12A of the insulating layer 12, the appearance of the electrically insulated cable is improved by having the outer surface 12A of the insulating layer 12 smooth. It is preferable from the viewpoint of improvement. In the cross section perpendicular to the longitudinal direction of the conductor 11 of the electrically insulated cable, the gap between the outermost gap 132 located closest to the outer surface 12A of the insulating layer 12 among the gaps 13 and the outer surface 12A of the insulating layer 12. The area is defined as the second solid portion 122. Specifically, as shown in FIGS. 1 and 2, for example, the second solid portion 122 is defined as the space between the circle in contact with the outer surface 12A of the outermost gap 132 and the outer surface 12A of the insulating layer 12. be able to.

第2充実部122を設ける場合に、第2充実部122の厚さL2の平均値が0.05mm以上0.15mm以下であることが好ましく、0.05mm以上0.12mm以下であることがより好ましい。 When the second solid portion 122 is provided, the average value of the thickness L2 of the second solid portion 122 is preferably 0.05 mm or more and 0.15 mm or less, more preferably 0.05 mm or more and 0.12 mm or less. preferable.

第2充実部122の厚さL2の平均値を0.05mm以上とすることで、絶縁層12の外表面12Aを平滑にし、外観を良くすることができる。また、第2充実部122の厚さL2の平均値を0.15mm以下とすることで、絶縁層12内に十分な量の空隙を配置でき、電気絶縁ケーブルの軽量性を特に高められる。 By setting the average value of the thickness L2 of the second solid portion 122 to 0.05 mm or more, the outer surface 12A of the insulating layer 12 can be made smooth and the appearance can be improved. Further, by setting the average value of the thickness L2 of the second solid portion 122 to 0.15 mm or less, a sufficient amount of voids can be provided within the insulating layer 12, and the weight of the electrically insulated cable can be particularly improved.

第2充実部122の厚さL2の平均値とは、導体11の長手方向と垂直な任意の4断面において測定した、第2充実部122の厚さL2の平均値を意味する。 The average value of the thickness L2 of the second solid portion 122 means the average value of the thickness L2 of the second solid portion 122 measured on arbitrary four cross sections perpendicular to the longitudinal direction of the conductor 11.

なお、図3に示した電気絶縁ケーブル30の様に、第2充実部122を設けず、空隙含有部123が絶縁層12の外表面12Aを構成することもできる。
(2-4)空隙含有部
電気絶縁ケーブルの、導体11の長手方向と垂直な断面において、空隙13を含む領域を空隙含有部123とする。
Note that, like the electrically insulated cable 30 shown in FIG. 3, the second solid portion 122 may not be provided and the void-containing portion 123 may constitute the outer surface 12A of the insulating layer 12.
(2-4) Gap Containing Portion In a cross section of the electrically insulated cable perpendicular to the longitudinal direction of the conductor 11, a region including the void 13 is defined as a void containing portion 123.

図1に示した電気絶縁ケーブル10においては、既述の様に空隙13が球形状を有している。電気絶縁ケーブル10において、空隙13は、第1充実部121と、第2充実部122との間の、空隙含有部123にランダムに分布している。 In the electrically insulated cable 10 shown in FIG. 1, the gap 13 has a spherical shape as described above. In the electrically insulated cable 10, the voids 13 are randomly distributed in the void-containing portion 123 between the first solid portion 121 and the second solid portion 122.

図1に示した電気絶縁ケーブル10において、第2充実部122を有さず、空隙含有部123が露出するように、すなわち外表面12Aを構成するように配置されていても良い。 The electrically insulated cable 10 shown in FIG. 1 may not have the second solid portion 122 and may be arranged so that the void-containing portion 123 is exposed, that is, so as to constitute the outer surface 12A.

図2に示した電気絶縁ケーブル20においては、空隙13は、中心軸が、導体11の長手方向に沿って形成された円柱形状を有している。そして、第1充実部121と、第2充実部122との間の空隙含有部123に、空隙13を1層となるように、導体11を中心とした円の円周方向に沿って配置した例を示している。この場合、任意に選択した1つの空隙13が最内位置空隙131であり、かつ最外位置空隙132となる。 In the electrically insulated cable 20 shown in FIG. 2, the gap 13 has a cylindrical shape with a central axis extending along the longitudinal direction of the conductor 11. Then, in the void-containing portion 123 between the first solid portion 121 and the second solid portion 122, the voids 13 are arranged in one layer along the circumferential direction of a circle centered on the conductor 11. An example is shown. In this case, one arbitrarily selected void 13 is the innermost void 131 and the outermost void 132.

ただし、空隙13が柱状形状を有する場合において、空隙13の配置は図2に示した形態に限定されず、例えば電気絶縁ケーブル20の長手方向と垂直な断面において、空隙13は、空隙含有部123内に、2層以上となるように、導体11を中心とした円の円周方向に沿って配置しても良く、ランダムに配置してもよい。 However, when the void 13 has a columnar shape, the arrangement of the void 13 is not limited to the form shown in FIG. They may be arranged along the circumferential direction of a circle centered on the conductor 11 so that there are two or more layers within the conductor 11, or they may be arranged randomly.

図3に示した電気絶縁ケーブル30においては、電気絶縁ケーブル20の場合と同様に、空隙13は、中心軸が、導体11の長手方向に沿って形成された円柱形状を有している。そして、空隙含有部123に、該空隙13を1層となるように、導体11を中心とした円の円周方向に沿って配置し、かつ絶縁層12の外表面12A近傍にまで空隙を配置した例を示している。この場合、任意に選択した1つの空隙13が最内位置空隙131であり、かつ最外位置空隙132となる。また、電気絶縁ケーブル30は、絶縁層12の外表面12A近傍にまで空隙13が配置されており、第2充実部122を含まない。 In the electrically insulated cable 30 shown in FIG. 3, similarly to the electrically insulated cable 20, the void 13 has a cylindrical shape with the central axis extending along the longitudinal direction of the conductor 11. Then, in the void-containing portion 123, the voids 13 are arranged in one layer along the circumferential direction of a circle centered on the conductor 11, and the voids are arranged up to the vicinity of the outer surface 12A of the insulating layer 12. An example is shown below. In this case, one arbitrarily selected void 13 is the innermost void 131 and the outermost void 132. Further, the electrically insulated cable 30 has the void 13 disposed up to the vicinity of the outer surface 12A of the insulating layer 12, and does not include the second solid portion 122.

図3に示した電気絶縁ケーブル30においても、空隙13は、空隙含有部123内に2層以上となるように、導体11を中心とした円の円周方向に沿って配置しても良く、ランダムに配置してもよい。
(2-5)絶縁層の空隙率
絶縁層12に設ける空隙の程度は特に限定されず、電気絶縁ケーブルに要求される軽量化の程度や、耐電圧特性等に応じて任意に選択することができる。例えば、絶縁層12の平均空隙率は、10%以上50%以下であることが好ましく、15%以上50%以下であることがより好ましく、20%以上50%以下であることがさらに好ましく、38%以上45%以下であることが特に好ましい。
Also in the electrically insulated cable 30 shown in FIG. 3, the voids 13 may be arranged along the circumferential direction of a circle centered on the conductor 11 so that there are two or more layers in the void-containing portion 123. They may be placed randomly.
(2-5) Porosity of insulating layer The degree of voids provided in the insulating layer 12 is not particularly limited, and can be arbitrarily selected depending on the degree of weight reduction required for the electrically insulated cable, withstand voltage characteristics, etc. can. For example, the average porosity of the insulating layer 12 is preferably 10% or more and 50% or less, more preferably 15% or more and 50% or less, even more preferably 20% or more and 50% or less, and 38 % or more and 45% or less is particularly preferable.

絶縁層12の平均空隙率を10%以上とすることで、電気絶縁ケーブルを特に軽量にできるため好ましい。また、絶縁層12の平均空隙率を50%以下とすることで、絶縁層12の外表面12A近傍にまで空隙13が配置されることを抑制し、電気絶縁ケーブルの外観を良くできるため好ましい。 It is preferable that the average porosity of the insulating layer 12 is 10% or more because the electrically insulated cable can be particularly lightweight. Further, it is preferable to set the average porosity of the insulating layer 12 to 50% or less, since this prevents the voids 13 from being disposed near the outer surface 12A of the insulating layer 12 and improves the appearance of the electrically insulated cable.

絶縁層12の平均空隙率とは、導体11の長手方向と垂直な任意の4断面において求めた絶縁層12に占める空隙の面積割合の平均値を意味する。 The average porosity of the insulating layer 12 means the average value of the area ratio of voids in the insulating layer 12 determined in four arbitrary cross sections perpendicular to the longitudinal direction of the conductor 11.

絶縁層12の平均空隙率は、絶縁層12に占める空隙の体積の割合として算出することもでき、例えば絶縁層12の質量と、体積と、絶縁層12に用いた材料の密度とから算出できる。 The average porosity of the insulating layer 12 can also be calculated as the volume ratio of voids in the insulating layer 12, and can be calculated from, for example, the mass and volume of the insulating layer 12, and the density of the material used for the insulating layer 12. .

いずれの方法で求めた場合でも、本発明の発明者の検討によれば、概ね同じ値となる。
(2-6)絶縁層の材料
絶縁層12の材料は特に限定されず、通常電気絶縁ケーブルに用いられる各種絶縁材料を用いることができる。絶縁層12は、空隙13を除いた部分において、絶縁材料を含むことができ、絶縁材料のみから構成することもできる。
According to the studies of the inventor of the present invention, no matter which method is used, the values are approximately the same.
(2-6) Material of Insulating Layer The material of the insulating layer 12 is not particularly limited, and various insulating materials commonly used for electrically insulated cables can be used. The insulating layer 12 may contain an insulating material in a portion other than the void 13, or may be composed only of an insulating material.

絶縁層12の材料としては、例えばポリ塩化ビニル(PVC)、ポリエチレン、フッ素樹脂、フッ素ゴム等から選択された1種類以上を用いることができる。 As the material for the insulating layer 12, one or more materials selected from, for example, polyvinyl chloride (PVC), polyethylene, fluororesin, fluororubber, etc. can be used.

フッ素樹脂としては、具体的には例えば、エチレン-テトラフルオロエチレン共重合体(E-TFE共重合体)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、フッ化ビニリデン樹脂(PVDF)等から選択された1種類以上を用いることができる。 Specific examples of the fluororesin include ethylene-tetrafluoroethylene copolymer (E-TFE copolymer), polytetrafluoroethylene (PTFE), and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA). , tetrafluoroethylene-hexafluoropropylene copolymer (FEP), vinylidene fluoride resin (PVDF), and the like.

フッ素ゴムとしては、具体的には例えば、フッ化ビニリデン系ゴム(FKM)、テトラフルオロエチレン-プロピレンゴム(FEPM)、テトラフルオロエチレン-パーフルオロメチルビニルエーテルゴム(FFKM)、テトラフルオロエチレン/プロピレン共重合体(TFE-P共重合体)、TFE-P共重合体とエチレン-テトラフルオロエチレン共重合体(E-TFE共重合体)との混合物、およびFKMとフッ化ビニリデン樹脂(PVDF)との混合物等から選択された1種類以上を用いることができる。 Specific examples of fluororubber include vinylidene fluoride rubber (FKM), tetrafluoroethylene-propylene rubber (FEPM), tetrafluoroethylene-perfluoromethyl vinyl ether rubber (FFKM), and tetrafluoroethylene/propylene copolymer. (TFE-P copolymer), a mixture of TFE-P copolymer and ethylene-tetrafluoroethylene copolymer (E-TFE copolymer), and a mixture of FKM and vinylidene fluoride resin (PVDF) One or more types selected from the following can be used.

絶縁層12は、押出成形等によって導体11の外面を被覆して電気的に絶縁することができる。絶縁層12は、比較的温度の高い環境下で外力を受けた際に変形して電気絶縁性が低下したりするのを防止すべく、その耐熱変形性を向上するために、導体11の外面に被覆された後に、電離放射線(γ線や電子線など)の照射や過酸化物架橋、シラン架橋などの化学架橋によって架橋処理することが好ましい。すなわち、絶縁層12に用いる材料は架橋処理されていることが好ましい。なお、絶縁層12は、架橋してもしなくてもよいが、架橋することにより抗張力、耐熱性が向上するので好ましい。 The insulating layer 12 can be electrically insulated by covering the outer surface of the conductor 11 by extrusion molding or the like. The insulating layer 12 is formed on the outer surface of the conductor 11 in order to improve its thermal deformation resistance in order to prevent deformation and deterioration of electrical insulation properties when subjected to external force in a relatively high-temperature environment. After the coating is coated, it is preferable to perform a crosslinking treatment by irradiation with ionizing radiation (gamma rays, electron beams, etc.) or chemical crosslinking such as peroxide crosslinking or silane crosslinking. That is, the material used for the insulating layer 12 is preferably crosslinked. Note that the insulating layer 12 may or may not be crosslinked, but crosslinking is preferable because it improves tensile strength and heat resistance.

特に絶縁層12は架橋フッ素ゴムを含むことが好ましい。絶縁層12が架橋フッ素ゴムを含む場合、電気絶縁ケーブルの柔軟性を特に高め、かつ耐久性を高めることができる。 In particular, it is preferable that the insulating layer 12 contains crosslinked fluororubber. When the insulating layer 12 contains crosslinked fluororubber, the flexibility and durability of the electrically insulated cable can be particularly improved.

絶縁層12は単一の材料で形成することもできるが、材料の異なる複数の層を有することもできる。絶縁層12を材料の異なる複数の層で形成することで、絶縁層12の場所に応じた材料を用い、例えば柔軟性や、耐久性、耐電圧特性等の特性を特に高められる。例えば図1に示した電気絶縁ケーブル10の場合、第1充実部121、第2充実部122、空隙含有部123の各部で材料が異なっていてもよく、全てが同じ材料であっても良い。 The insulating layer 12 can be formed of a single material, but can also have multiple layers of different materials. By forming the insulating layer 12 with a plurality of layers made of different materials, it is possible to use materials depending on the location of the insulating layer 12, and particularly improve properties such as flexibility, durability, and voltage resistance characteristics. For example, in the case of the electrically insulated cable 10 shown in FIG. 1, the first solid portion 121, the second solid portion 122, and the void-containing portion 123 may be made of different materials, or may all be made of the same material.

絶縁層12が材料の異なる複数の層を有する場合、既述の第1充実部121、第2充実部122、空隙含有部123で材料を変える必要はない。 When the insulating layer 12 has a plurality of layers made of different materials, there is no need to change the materials of the first solid portion 121, second solid portion 122, and void-containing portion 123 described above.

ここで、例えば図2に示したように、空隙含有部123の内周面123Aよりも導体11側に配置された点線Aと、導体11の外周11Aとで囲まれた領域を第1絶縁層141とする。空隙含有部123の外周面123Bよりも外周側に配置された点線Bと、絶縁層12の外表面12Aとで囲まれた領域を第2絶縁層142とする。点線Aと点線Bとで囲まれた領域を第3絶縁層143とする。 Here, as shown in FIG. 2, for example, a region surrounded by a dotted line A placed closer to the conductor 11 than the inner peripheral surface 123A of the void-containing portion 123 and the outer periphery 11A of the conductor 11 is covered with the first insulating layer. 141. A region surrounded by a dotted line B disposed on the outer peripheral side of the outer peripheral surface 123B of the void-containing portion 123 and the outer surface 12A of the insulating layer 12 is defined as a second insulating layer 142. A region surrounded by dotted line A and dotted line B is defined as a third insulating layer 143.

そして、第1絶縁層141、第2絶縁層142、第3絶縁層143とのうち、一部または全部を異なる材料の絶縁層とすることもできる。すなわち、例えば第1絶縁層141、第2絶縁層142、第3絶縁層143の3つの絶縁層を異なる材料で構成することもできる。第1絶縁層141と、第3絶縁層143とを同じ材料で構成し、第2絶縁層142を他の絶縁層とは異なる材料で構成したり、第2絶縁層142と第3絶縁層143とを同じ材料で構成し、第1絶縁層141を他の絶縁層とは異なる材料とすることもできる。また、第1絶縁層141と第2絶縁層142とを同じ材料で構成し、第3絶縁層143を異なる材料とすることもできる。 Further, some or all of the first insulating layer 141, the second insulating layer 142, and the third insulating layer 143 may be made of different materials. That is, for example, the three insulating layers, the first insulating layer 141, the second insulating layer 142, and the third insulating layer 143, can be made of different materials. The first insulating layer 141 and the third insulating layer 143 may be made of the same material, and the second insulating layer 142 may be made of a different material from the other insulating layers, or the second insulating layer 142 and the third insulating layer 143 may be made of a different material from the other insulating layers. The first insulating layer 141 may be made of a different material from the other insulating layers. Alternatively, the first insulating layer 141 and the second insulating layer 142 may be made of the same material, and the third insulating layer 143 may be made of a different material.

ここでは、図2を用い、図2にのみ点線A、点線Bを示して説明したが、図1に示した電気絶縁ケーブル10や、図3に示した電気絶縁ケーブル30の場合についても同様に、材料の異なる複数の絶縁層を有することもできる。 Here, explanation has been given using FIG. 2 and showing dotted lines A and dotted line B only in FIG. 2, but the same applies to the electrically insulated cable 10 shown in FIG. 1 and the electrically insulated cable 30 shown in FIG. 3. , it is also possible to have a plurality of insulating layers made of different materials.

上述のように、本実施形態の電気絶縁ケーブルが、材料の異なる複数の絶縁層を有する場合、例えば少なくとも電気絶縁ケーブルの絶縁層12の導体11側に架橋フッ素ゴムを配置することが好ましい。すなわち、例えば第1絶縁層141を架橋フッ素ゴムとすることが好ましい。電気絶縁ケーブルの絶縁層12の導体11側に架橋フッ素ゴムを配置することで、電気絶縁ケーブルの柔軟性や、耐電圧特性を特に高められる。 As described above, when the electrically insulated cable of this embodiment has a plurality of insulating layers made of different materials, it is preferable to arrange crosslinked fluororubber at least on the conductor 11 side of the insulating layer 12 of the electrically insulated cable, for example. That is, for example, it is preferable that the first insulating layer 141 is made of crosslinked fluororubber. By arranging crosslinked fluororubber on the conductor 11 side of the insulating layer 12 of the electrically insulated cable, the flexibility and withstand voltage characteristics of the electrically insulated cable can be particularly improved.

また、絶縁層12は、絶縁耐力が25kV/mm以上であることが好ましく、30kV/mm以上であることがより好ましい。絶縁耐力は、絶縁破壊を起こすことなく印加できる電圧を意味しており、絶縁耐力が高い程、絶縁層12が高い電圧に耐えられることを意味する。そして、絶縁層12の絶縁耐力を25kV/mm以上とすることで、特に耐電圧特性に優れた電気絶縁ケーブルとすることができるため好ましい。 Further, the dielectric strength of the insulating layer 12 is preferably 25 kV/mm or more, more preferably 30 kV/mm or more. Dielectric strength means the voltage that can be applied without causing dielectric breakdown, and the higher the dielectric strength, the higher the voltage that the insulating layer 12 can withstand. Further, it is preferable that the dielectric strength of the insulating layer 12 is 25 kV/mm or more, since it is possible to obtain an electrically insulated cable with particularly excellent withstand voltage characteristics.

絶縁耐力は、例えばJIS C 2110-1(2016)により評価を行うことができる。 The dielectric strength can be evaluated according to, for example, JIS C 2110-1 (2016).

特に絶縁層12は、絶縁層12のうち、導体11と接する絶縁材料の絶縁耐力が25kV/mm以上であり、絶縁層12のうち、外表面12Aの絶縁材料の抗張力が8MPa以上であることが好ましい。抗張力は、JIS C 3005(2014)に準じて評価を行うことができる。 In particular, in the insulating layer 12, the dielectric strength of the insulating material in contact with the conductor 11 is 25 kV/mm or more, and the tensile strength of the insulating material on the outer surface 12A of the insulating layer 12 is 8 MPa or more. preferable. Tensile strength can be evaluated according to JIS C 3005 (2014).

導体11と接する、例えば第1絶縁層141の絶縁耐力を25kV/mm以上とすることで、特に耐電圧特性に優れた電気絶縁ケーブルとすることができる。また、外表面12Aを構成する、例えば第2絶縁層142の抗張力を8MPa以上とすることで、電気絶縁ケーブルに外力が加わった際に、絶縁層12が変形、破壊されることを抑制できる。絶縁層12のうち、外表面12Aの絶縁材料の抗張力は、30MPa以上であることがより好ましく、40MPa以上であることがさらに好ましい。外表面12Aに好適に用いることができる絶縁材料の抗張力の上限は特に限定されないが、例えば50MPa以下であることが好ましい。 By setting the dielectric strength of, for example, the first insulating layer 141 in contact with the conductor 11 to 25 kV/mm or more, an electrically insulated cable with particularly excellent withstand voltage characteristics can be obtained. Furthermore, by setting the tensile strength of the second insulating layer 142, which constitutes the outer surface 12A, to 8 MPa or more, for example, the insulating layer 12 can be prevented from being deformed or destroyed when an external force is applied to the electrically insulated cable. The tensile strength of the insulating material on the outer surface 12A of the insulating layer 12 is more preferably 30 MPa or more, and even more preferably 40 MPa or more. The upper limit of the tensile strength of the insulating material that can be suitably used for the outer surface 12A is not particularly limited, but is preferably 50 MPa or less, for example.

既述の様に、絶縁層12は、単一の材料で構成することもできるため、絶縁層12全体を、例えば絶縁耐力が25kV/mm以上であり、かつ抗張力が8MPa以上の材料で構成することもできる。 As described above, the insulating layer 12 can be made of a single material, so the entire insulating layer 12 is made of a material having a dielectric strength of 25 kV/mm or more and a tensile strength of 8 MPa or more, for example. You can also do that.

絶縁層12は、必要に応じてさらに難燃剤、酸化防止剤や架橋剤等の添加剤を含有することもできる。
(3)電気絶縁ケーブル
本実施形態の電気絶縁ケーブルの外径Dは特に限定されないが、例えば1mm以上4mm以下であることが好ましい。
The insulating layer 12 may further contain additives such as a flame retardant, an antioxidant, and a crosslinking agent, if necessary.
(3) Electrically insulated cable The outer diameter D of the electrically insulated cable of this embodiment is not particularly limited, but is preferably, for example, 1 mm or more and 4 mm or less.

電気絶縁ケーブルの外径を1mm以上とすることで、導体11からの空間距離を十分に確保することができる。また、電気絶縁ケーブルの外径を4mm以下とすることで、電気絶縁ケーブルの軽量性を特に高めることができる。 By setting the outer diameter of the electrically insulated cable to 1 mm or more, a sufficient spatial distance from the conductor 11 can be ensured. Further, by setting the outer diameter of the electrically insulated cable to 4 mm or less, the lightness of the electrically insulated cable can be particularly improved.

電気絶縁ケーブルの外径Dは、例えば導体11の長手方向と垂直な断面における絶縁層12の外表面12Aを通る円の直径とすることができる。なお、導体11の長手方向と垂直な断面において、絶縁層12の外表面12Aは真円とはならない場合がある、その場合には、絶縁層12の外表面12Aに外接する最小の円を描いた場合の、該円の直径を電気絶縁ケーブルの外径とすることができる。 The outer diameter D of the electrically insulated cable can be, for example, the diameter of a circle passing through the outer surface 12A of the insulating layer 12 in a cross section perpendicular to the longitudinal direction of the conductor 11. Note that in a cross section perpendicular to the longitudinal direction of the conductor 11, the outer surface 12A of the insulating layer 12 may not be a perfect circle. In that case, draw the smallest circle circumscribing the outer surface 12A of the insulating layer 12. In this case, the diameter of the circle can be taken as the outer diameter of the electrically insulated cable.

本実施形態の電気絶縁ケーブルは、1本を単独で用いることもできるが、複数本を組み合わせて用いることもできる。 Although one electrically insulated cable of this embodiment can be used alone, a plurality of electrically insulated cables can also be used in combination.

以上、実施形態について詳述したが、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。 Although the embodiments have been described in detail above, they are not limited to specific embodiments, and various modifications and changes are possible within the scope of the claims.

以下に具体的な実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
(評価方法)
まず、以下の実験例において作製した電気絶縁ケーブルの評価方法について説明する。
(1)第1充実部、空隙含有部、第2充実部の厚さ
以下の実験例において作製した電気絶縁ケーブルについて、導体11の長手方向と垂直な任意の4断面において第1充実部、空隙含有部、第2充実部の厚さを測定し、その平均値を各部の平均厚さとした。
(2)平均空隙率
以下の実験例において作製した電気絶縁ケーブルについて、導体11の長手方向と垂直な、任意の4断面において絶縁層に占める空隙の面積の割合である空隙率を求め、その平均値を平均空隙率とした。
(3)柔軟性
柔軟性の試験方法を図5を用いて説明する。
The present invention will be described below with reference to specific examples, but the present invention is not limited to these examples.
(Evaluation method)
First, a method for evaluating electrically insulated cables produced in the following experimental examples will be described.
(1) Thickness of the first solid part, the void-containing part, and the second solid part For the electrically insulated cable produced in the following experimental example, the first solid part and the void are found in any four cross sections perpendicular to the longitudinal direction of the conductor 11. The thicknesses of the containing part and the second solid part were measured, and the average value was taken as the average thickness of each part.
(2) Average porosity For the electrically insulated cables produced in the following experimental examples, the porosity, which is the ratio of the area of voids in the insulating layer in four arbitrary cross sections perpendicular to the longitudinal direction of the conductor 11, is determined, and the average The value was taken as the average porosity.
(3) Flexibility The flexibility test method will be explained using FIG. 5.

評価を行う電気絶縁ケーブルについて、屈曲点Pにおける曲率半径R51が80mmとなるように屈曲点Pで屈曲させ、屈曲前ケーブル51とした。 The electrically insulated cable to be evaluated was bent at the bending point P so that the radius of curvature R51 at the bending point P was 80 mm, and a pre-bending cable 51 was obtained.

電気絶縁ケーブルについて、開始位置にセットされた屈曲前ケーブル51から、屈曲点Pにおける曲率半径R52が40mmとなるまで、屈曲点Pで屈曲させ、屈曲後ケーブル52とした。 The electrically insulated cable was bent at the bending point P from the pre-bending cable 51 set at the starting position until the radius of curvature R52 at the bending point P became 40 mm, resulting in a post-bending cable 52.

そして、屈曲前ケーブル51から屈曲後ケーブル52まで屈曲の程度を変化させた際の最大反発力を測定した。 Then, the maximum repulsive force was measured when the degree of bending was changed from the cable 51 before bending to the cable 52 after bending.

実験例12の結果を1として、指数で示した。 The results of Experimental Example 12 were set as 1 and expressed as an index.

指数が0.96以上1以下をD、0.9以上0.96未満をC、0.83以上0.9未満をB、0.83未満をAと評価した。Aが最も高い評価であり、B、C、Dの順に低い評価となる。A~Cの場合には合格、Dの場合には不合格となる。
(4)軽量性
以下の実験例において作製した電気絶縁ケーブルについて、長手方向に沿って10cm切り取り、その質量を測定した。実験例12の場合の質量を1として、指数で示した。
An index of 0.96 or more and 1 or less was evaluated as D, 0.9 or more and less than 0.96 as C, 0.83 or more and less than 0.9 as B, and less than 0.83 as A. A is the highest evaluation, and B, C, and D are the lowest evaluations. In the case of A to C, the test is passed, and in the case of D, the test is failed.
(4) Lightweight A 10 cm piece of the electrically insulated cable produced in the following experimental example was cut out along the longitudinal direction, and its mass was measured. The mass in Experimental Example 12 was taken as 1 and expressed as an index.

指数が0.9以上1以下をD、0.7以上0.9未満をC、0.6以上0.7未満をB、0.6未満をAと評価した。Aが最も高い評価であり、B、C、Dの順に低い評価となる。A、B、Cの場合には合格、Dの場合には不合格となる。
(5)外観評価
以下の実験例で作製した電気絶縁ケーブル10cmについて絶縁層12の外表面12Aを目視で観察し、表面の凹凸の有無を確認した。凹凸が全く確認されなかった電気絶縁ケーブルについてはA、確認された凹部の数が1個以上10個以下の場合にはB、確認された凹部の数が11個以上の場合にはCと評価した。Aが最も高い評価であり、B、Cの順に低い評価となる。
(6)寸法評価
以下の実験例で作製した電気絶縁ケーブルについて、以下に説明する外径の評価結果が、規格値±5%以内であればA、規格値±5%を超えて規格値±7%以内であればB、規格値±7%を超えている場合にはCと評価した。
(7)外径
以下の各実験例で得られた電気絶縁ケーブルの、導体11の長手方向と垂直な任意の一断面において、絶縁層12の外表面12Aに接する最小の外接円を描き、その直径を電気絶縁ケーブルの外径とした。
(8)耐電圧評価
耐電圧特性に関する評価では、規格JIS C 3005(2014)に準じて評価試験を行い、3000ACV/1min以上であるものをA、3000ACV/1min未満をBと評価した。
An index of 0.9 or more and 1 or less was evaluated as D, an index of 0.7 or more and less than 0.9 was evaluated as C, an index of 0.6 or more and less than 0.7 was evaluated as B, and an index of less than 0.6 was evaluated as A. A is the highest evaluation, and B, C, and D are the lowest evaluations. In the case of A, B, and C, the test is passed, and in the case of D, the test is failed.
(5) Appearance evaluation The outer surface 12A of the insulating layer 12 of the 10 cm electrically insulated cable produced in the following experimental example was visually observed to confirm the presence or absence of surface irregularities. An electrical insulated cable with no irregularities was evaluated as A, a rating of B if the number of recesses was 1 or more and 10 or less, and a C if the number of recesses was 11 or more. did. A is the highest evaluation, and B and C are the lowest evaluations.
(6) Dimensional evaluation Regarding the electrically insulated cable produced in the following experimental example, if the evaluation result of the outer diameter explained below is within ±5% of the standard value, it is A, and if it exceeds the standard value ±5%, it is ±5% of the standard value. If it was within 7%, it was evaluated as B, and if it exceeded the standard value ±7%, it was evaluated as C.
(7) Outer diameter In any cross section perpendicular to the longitudinal direction of the conductor 11 of the electrically insulated cable obtained in each of the following experimental examples, draw the smallest circumscribed circle that is in contact with the outer surface 12A of the insulating layer 12, and The diameter was taken as the outer diameter of the electrically insulated cable.
(8) Withstand voltage evaluation For evaluation of withstand voltage characteristics, an evaluation test was conducted according to the standard JIS C 3005 (2014), and those with 3000 ACV/1 min or more were evaluated as A, and those with less than 3000 ACV/1 min were evaluated as B.

以下に各実験例における電気絶縁ケーブルを説明する。実験例1~実験例11が実施例、実験例12が比較例となる。
(実験例1)
以下の手順により、長手方向と垂直な断面が、図2に示した構造を有する電気絶縁ケーブル20を作製した。
The electrically insulated cables in each experimental example will be explained below. Experimental Examples 1 to 11 are examples, and Experimental Example 12 is a comparative example.
(Experiment example 1)
An electrically insulated cable 20 having a cross section perpendicular to the longitudinal direction having the structure shown in FIG. 2 was manufactured by the following procedure.

具体的には、図4に示した、ダイス41とポイント治具42とを組み合わせた押出機40を使用して製造した。 Specifically, it was manufactured using an extruder 40 shown in FIG. 4, which is a combination of a die 41 and a point jig 42.

ポイント治具42には、柱状の部材43を、目標とする絶縁層12の空隙率にあわせて複数設けておいた。なお、本実験例では、柱状の部材43として円柱形状を有し、通気孔431を備えた部材を用いた。 A plurality of columnar members 43 were provided in the point jig 42 in accordance with the target porosity of the insulating layer 12. In this experimental example, a member having a cylindrical shape and provided with ventilation holes 431 was used as the columnar member 43.

ダイス41は、円形の出口411を有しており、ポイント治具42とダイス41の間の流路44、45からフッ素ゴムを押し出した。この際、併せてポイント治具42の円筒部421の中心孔422から導体を引き出した。そして、ダイス41の出口を出た樹脂を引き伸ばして径を小さくして被覆する引き落とし方法により、導体の外周を樹脂で被覆した。導体の外周を樹脂で被覆後、電子線を照射して樹脂を架橋した。 The die 41 had a circular outlet 411, and extruded fluororubber from channels 44 and 45 between the point jig 42 and the die 41. At this time, the conductor was also drawn out from the center hole 422 of the cylindrical portion 421 of the point jig 42. Then, the outer periphery of the conductor was coated with resin by a draw-down method in which the resin exiting the exit of the die 41 was stretched to reduce its diameter and then coated. After covering the outer periphery of the conductor with a resin, the resin was crosslinked by irradiation with an electron beam.

なお、導体としては、直径が0.81mmの単線の錫メッキ軟銅線を用いた。また、フッ素ゴムとしてはテトラフルオロエチレン-プロピレンゴム(FEPM)を用いた。架橋したフッ素ゴムは、抗張力が10MPa、絶縁耐力が32kV/mmであった。 Note that a single tinned annealed copper wire with a diameter of 0.81 mm was used as the conductor. Further, as the fluororubber, tetrafluoroethylene-propylene rubber (FEPM) was used. The crosslinked fluororubber had a tensile strength of 10 MPa and a dielectric strength of 32 kV/mm.

得られた電気絶縁ケーブルについて既述の評価を行った。評価結果を表1に示す。
(実験例2~実験例6)
目標とする絶縁層12の空隙率にあわせて、押出機40に設けた柱状の部材43の数を変更した点以外は、実験例1と同様にして、電気絶縁ケーブルを作製、評価した。
The obtained electrically insulated cable was evaluated as described above. The evaluation results are shown in Table 1.
(Experiment example 2 to experiment example 6)
An electrically insulated cable was produced and evaluated in the same manner as in Experimental Example 1, except that the number of columnar members 43 provided in the extruder 40 was changed in accordance with the targeted porosity of the insulating layer 12.

評価結果を表1に示す。
(実験例7~実験例9)
押出機40に設けた柱状の部材43を、ダイス41の円形の出口411の外周近傍に配置し、絶縁層12の外表面12A近傍に空隙が位置するようにした。また、柱状の部材43について、長手方向と垂直な断面での直径が異なる部材を用いることで、空隙含有部の厚みを調整した。
The evaluation results are shown in Table 1.
(Experiment example 7 to experiment example 9)
A columnar member 43 provided in the extruder 40 was arranged near the outer periphery of the circular outlet 411 of the die 41 so that a void was located near the outer surface 12A of the insulating layer 12. Furthermore, the thickness of the void-containing portion was adjusted by using members having different diameters in cross sections perpendicular to the longitudinal direction for the columnar members 43.

以上の点以外は、実験例1と同様にして、電気絶縁ケーブルを作製、評価した。 An electrically insulated cable was produced and evaluated in the same manner as in Experimental Example 1 except for the above points.

なお、実験例7~実験例9では、空隙13が、絶縁層12の外表面12A近傍に配置され、第2充実部122を有していない。このため、導体11の長手方向と垂直な断面が図3に示した電気絶縁ケーブル30となる。 Note that in Experimental Examples 7 to 9, the void 13 is arranged near the outer surface 12A of the insulating layer 12 and does not have the second solid portion 122. Therefore, a cross section perpendicular to the longitudinal direction of the conductor 11 becomes the electrically insulated cable 30 shown in FIG.

評価結果を表1に示す。
(実験例10、実験例11)
押出機40に設けた柱状の部材43について、長手方向と垂直な断面での直径が異なる部材を用いることで、空隙含有部の厚みを調整した。
The evaluation results are shown in Table 1.
(Experiment Example 10, Experiment Example 11)
Regarding the columnar member 43 provided in the extruder 40, the thickness of the void-containing portion was adjusted by using members having different diameters in the cross section perpendicular to the longitudinal direction.

以上の点以外は、実験例1と同様にして、電気絶縁ケーブルを作製、評価した。 An electrically insulated cable was produced and evaluated in the same manner as in Experimental Example 1 except for the above points.

評価結果を表1に示す。
(実験例12)
押出機40に、柱状の部材43を設けなかった点以外は、実験例1と同様にして、電気絶縁ケーブルを作製、評価した。
The evaluation results are shown in Table 1.
(Experiment example 12)
An electrically insulated cable was produced and evaluated in the same manner as in Experimental Example 1, except that the extruder 40 was not provided with the columnar member 43.

評価結果を表1に示す。 The evaluation results are shown in Table 1.

Figure 0007443766000001
表1に示した結果によると、絶縁層12に空隙を設け、第1充実部の平均厚さが0.02mm以上0.15mm以下である実験例1~実験例11の電気絶縁ケーブルでは、柔軟性、軽量性の評価がA~Cのいずれかとなることを確認できた。すなわち、実験例1~11の電気絶縁ケーブルは、絶縁層の厚さを0.5mmと厚くすることで、電気機器等に設置した場合でも十分に空間距離を確保しつつも、軽量性や、柔軟性に優れることを確認できた。
Figure 0007443766000001
According to the results shown in Table 1, the electrically insulated cables of Experimental Examples 1 to 11, in which voids are provided in the insulating layer 12 and the average thickness of the first solid portion is 0.02 mm or more and 0.15 mm or less, are flexible. It was confirmed that the evaluation of durability and lightness was one of A to C. In other words, in the electrically insulated cables of Experimental Examples 1 to 11, the thickness of the insulating layer is increased to 0.5 mm, so that even when installed in electrical equipment, a sufficient spatial distance is secured, and the cables are lightweight and It was confirmed that it has excellent flexibility.

特に、平均空隙率が20%以上である実験例1、実験例4~実験例11の電気絶縁ケーブルは、柔軟性、軽量性の評価が、共にAまたはBであり、特に軽量性、柔軟性に優れることを確認できた。 In particular, the electrically insulated cables of Experimental Examples 1 and 4 to 11, which have an average porosity of 20% or more, were evaluated as A or B for both flexibility and lightness. We were able to confirm that it was excellent.

これに対して、絶縁層12が空隙を含まない実験例12の電気絶縁ケーブルは、絶縁層12の厚さの平均値が他の実験例と同じであるにも関わらず、軽量性、柔軟性の評価がDであり、劣っていることを確認できた。 On the other hand, the electrically insulated cable of Experimental Example 12, in which the insulating layer 12 does not contain any voids, is lightweight and flexible, even though the average thickness of the insulating layer 12 is the same as the other experimental examples. It was confirmed that the evaluation was D, which was inferior.

10、20、30 電気絶縁ケーブル
11 導体
11A 外周
12 絶縁層
12A 外表面
121 第1充実部
122 第2充実部
123 空隙含有部
123A 内周面
123B 外周面
13 空隙
131 最内位置空隙
132 最外位置空隙
40 押出機
41 ダイス
411 出口
42 ポイント治具
421 円筒部
422 中心孔
43 部材
431 通気孔
44、45 流路
51 屈曲前ケーブル
52 屈曲後ケーブル
141 第1絶縁層
142 第2絶縁層
143 第3絶縁層
A、B 点線
D 外径
P 屈曲点
10, 20, 30 Electrical insulated cable 11 Conductor 11A Outer periphery 12 Insulating layer 12A Outer surface 121 First solid portion 122 Second solid portion 123 Gap-containing portion 123A Inner circumferential surface 123B Outer circumferential surface 13 Gap 131 Innermost position gap 132 Outermost position Gap 40 Extruder 41 Dice 411 Outlet 42 Point jig 421 Cylindrical portion 422 Center hole 43 Member 431 Vent holes 44, 45 Channel 51 Cable before bending 52 Cable after bending 141 First insulating layer 142 Second insulating layer 143 Third insulating Layer A, B Dotted line D Outer diameter P Bend point

Claims (7)

導体と、
前記導体を覆い、外表面が露出した絶縁層とを有し、
前記絶縁層がフッ素樹脂およびフッ素ゴムから選択された1種類以上からなり、
前記絶縁層は空隙を含み、
前記空隙は、その中心軸が、前記導体の長手方向に沿って形成された柱状形状を有し、
前記導体の長手方向と垂直な断面において、前記空隙のうち、最も前記導体側に位置する最内位置空隙と、前記導体の外周との間の領域である第1充実部の厚さの平均値が0.02mm以上0.15mm以下であり、
前記導体の長手方向と垂直な断面において、前記空隙のうち最も前記絶縁層の前記外表面側に位置する最外位置空隙と、前記絶縁層の前記外表面との間の領域である第2充実部の厚さの平均値が0.05mm以上0.15mm以下であり、
前記絶縁層の絶縁耐力が25kV/mm以上であり、
国際規格IEC62368-1により定められている空間距離を確保することができる電気絶縁ケーブル。
a conductor;
an insulating layer covering the conductor and having an exposed outer surface;
The insulating layer is made of one or more selected from fluororesin and fluororubber,
the insulating layer includes voids,
The void has a columnar shape with a central axis extending along the longitudinal direction of the conductor,
In a cross section perpendicular to the longitudinal direction of the conductor, an average value of the thickness of a first solid portion that is a region between the innermost void located closest to the conductor among the voids and the outer periphery of the conductor. is 0.02 mm or more and 0.15 mm or less,
In a cross section perpendicular to the longitudinal direction of the conductor, a second solid area is a region between the outermost gap located closest to the outer surface of the insulating layer among the gaps and the outer surface of the insulating layer. The average value of the thickness of the part is 0.05 mm or more and 0.15 mm or less,
The dielectric strength of the insulating layer is 25 kV/mm or more,
An electrically insulated cable that can secure the spatial distance specified by the international standard IEC62368-1 .
外径が1mm以上4mm以下である請求項1に記載の電気絶縁ケーブル。 The electrically insulated cable according to claim 1, having an outer diameter of 1 mm or more and 4 mm or less. 前記絶縁層の平均空隙率が、10%以上45%以下である請求項1または請求項2に記載の電気絶縁ケーブル。 The electrically insulated cable according to claim 1 or 2, wherein the insulating layer has an average porosity of 10% or more and 45 % or less. 前記絶縁層の平均空隙率が、38%以上45%以下である請求項1または請求項2に記載の電気絶縁ケーブル。 The electrically insulated cable according to claim 1 or 2, wherein the insulating layer has an average porosity of 38% or more and 45% or less. 前記絶縁層が架橋フッ素ゴムを含む請求項1から請求項のいずれか1項に記載の電気絶縁ケーブル。 The electrically insulated cable according to any one of claims 1 to 4 , wherein the insulating layer contains crosslinked fluororubber. 前記絶縁層が、材料の異なる複数の層を有する請求項1から請求項のいずれか1項に記載の電気絶縁ケーブル。 The electrically insulated cable according to any one of claims 1 to 5 , wherein the insulating layer has a plurality of layers made of different materials. 前記絶縁層のうち、前記導体と接する絶縁材料の絶縁耐力が25kV/mm以上であり、
前記絶縁層のうち、前記外表面の絶縁材料の抗張力が8MPa以上である請求項1から請求項のいずれか1項に記載の電気絶縁ケーブル。
Among the insulating layers, an insulating material in contact with the conductor has a dielectric strength of 25 kV/mm or more,
The electrically insulated cable according to any one of claims 1 to 6 , wherein the insulating material on the outer surface of the insulating layer has a tensile strength of 8 MPa or more.
JP2019237286A 2019-12-26 2019-12-26 electrical insulated cable Active JP7443766B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019237286A JP7443766B2 (en) 2019-12-26 2019-12-26 electrical insulated cable
TW109144432A TW202125533A (en) 2019-12-26 2020-12-16 Electrically insulated cable ensuring a space distance and excellence in light weight
KR1020200179502A KR20210083186A (en) 2019-12-26 2020-12-21 Electrical insulation cable
CN202011529064.2A CN113053571A (en) 2019-12-26 2020-12-22 Electric insulation cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019237286A JP7443766B2 (en) 2019-12-26 2019-12-26 electrical insulated cable

Publications (2)

Publication Number Publication Date
JP2021106131A JP2021106131A (en) 2021-07-26
JP7443766B2 true JP7443766B2 (en) 2024-03-06

Family

ID=76508066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019237286A Active JP7443766B2 (en) 2019-12-26 2019-12-26 electrical insulated cable

Country Status (4)

Country Link
JP (1) JP7443766B2 (en)
KR (1) KR20210083186A (en)
CN (1) CN113053571A (en)
TW (1) TW202125533A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203157A (en) 2004-01-14 2005-07-28 Yazaki Corp Communication cable
WO2011048974A1 (en) 2009-10-23 2011-04-28 株式会社フジクラ Foamed electric wire and transmission cable comprising same
JP2011238584A (en) 2010-04-12 2011-11-24 Yazaki Corp Insulated wire
JP2012507832A (en) 2008-10-31 2012-03-29 ダイキン アメリカ インコーポレイティッド Foam wire
WO2012074002A1 (en) 2010-12-01 2012-06-07 住友電気工業株式会社 Insulated wire, coaxial cable, and multicore cable
JP2014055249A (en) 2012-09-13 2014-03-27 Hitachi Metals Ltd Foam resin molding, foam insulation electric wire and cable, and production method of foam resin molding

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621698Y2 (en) * 1980-11-11 1987-01-16
JPH10116521A (en) * 1996-10-14 1998-05-06 Furukawa Electric Co Ltd:The Fluoro-rubber covered wire
JP6011381B2 (en) 2012-12-13 2016-10-19 日立金属株式会社 Insulated wire for connector pressure connection using polyvinyl chloride resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203157A (en) 2004-01-14 2005-07-28 Yazaki Corp Communication cable
JP2012507832A (en) 2008-10-31 2012-03-29 ダイキン アメリカ インコーポレイティッド Foam wire
WO2011048974A1 (en) 2009-10-23 2011-04-28 株式会社フジクラ Foamed electric wire and transmission cable comprising same
JP2011238584A (en) 2010-04-12 2011-11-24 Yazaki Corp Insulated wire
WO2012074002A1 (en) 2010-12-01 2012-06-07 住友電気工業株式会社 Insulated wire, coaxial cable, and multicore cable
JP2014055249A (en) 2012-09-13 2014-03-27 Hitachi Metals Ltd Foam resin molding, foam insulation electric wire and cable, and production method of foam resin molding

Also Published As

Publication number Publication date
TW202125533A (en) 2021-07-01
KR20210083186A (en) 2021-07-06
CN113053571A (en) 2021-06-29
JP2021106131A (en) 2021-07-26

Similar Documents

Publication Publication Date Title
US10217548B2 (en) Coaxial cable
JP6610819B1 (en) Coaxial cable for moving parts
JP5900275B2 (en) Cable for multi-pair differential signal transmission
US9368258B2 (en) Forward twisted profiled insulation for LAN cables
US11049630B2 (en) Multicore cable
JP2014235923A (en) Coaxial electric wire, and method for manufacturing the same
JP7443766B2 (en) electrical insulated cable
CN110828039B (en) Movable cable
JP5464080B2 (en) Coaxial cable and multi-core coaxial cable
JP6610817B1 (en) coaxial cable
JP6724096B2 (en) Insulated wire and multi-core cable
JP6645350B2 (en) Low air leak electric wire
JP2020053378A (en) Flat cable
KR20170108021A (en) Coaxial cable and medical cable
JP6979796B2 (en) Multi-core cable
JP2016100148A (en) Power transmission cable
WO2023003012A1 (en) Multicore cable
JP2021190403A (en) coaxial cable
JP2020087682A (en) Multi-core cable
JP2019091562A (en) Twisted pair cable
JP6759437B2 (en) LAN compatible curl code and LAN compatible curl code with plug
WO2021039222A1 (en) Multicore cable and harness
JP2023146624A (en) Electric wire and cable
JP7240316B2 (en) thin insulated wire
JP2017033658A (en) coaxial cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240205

R150 Certificate of patent or registration of utility model

Ref document number: 7443766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150