Nothing Special   »   [go: up one dir, main page]

JP7335997B2 - Nrにおけるprachおよびpusch分離のための異なる方法 - Google Patents

Nrにおけるprachおよびpusch分離のための異なる方法 Download PDF

Info

Publication number
JP7335997B2
JP7335997B2 JP2022055413A JP2022055413A JP7335997B2 JP 7335997 B2 JP7335997 B2 JP 7335997B2 JP 2022055413 A JP2022055413 A JP 2022055413A JP 2022055413 A JP2022055413 A JP 2022055413A JP 7335997 B2 JP7335997 B2 JP 7335997B2
Authority
JP
Japan
Prior art keywords
rach
tones
subcarrier spacing
prach
preamble sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022055413A
Other languages
English (en)
Other versions
JP2022104956A (ja
Inventor
ムハンマド・ナズムル・イスラム
ビラル・サディク
ナビド・アベディニ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2022104956A publication Critical patent/JP2022104956A/ja
Application granted granted Critical
Publication of JP7335997B2 publication Critical patent/JP7335997B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

関連出願の相互参照
[0001]本出願は、その全体が参照により本明細書に明確に組み込まれる、2017年10月9日に出願された「DIFFERENT METHODS FOR PRACH AND PUSCH SEPARATION IN NR」と題する米国仮出願第62/570,065号、および2018年9月28日に出願された「DIFFERENT METHODS FOR PRACH AND PUSCH SEPARATION IN NR」と題する米国特許出願第16/147,520号の利益を主張する。
[0002]本開示は、一般に通信システムに関し、より詳細には、アップリンク同期のためのランダムアクセスチャネル(RACH)の実装形態に関する。
序論
[0003]ワイヤレス通信システムは、電話、ビデオ、データ、メッセージング、およびブロードキャストなど、様々な電気通信サービスを提供するために広く展開されている。典型的なワイヤレス通信システムは、利用可能なシステムリソースを共有することによって複数のユーザとの通信をサポートすることが可能な多元接続技術を採用し得る。そのような多元接続技術の例は、符号分割多元接続(CDMA)システム、時分割多元接続(TDMA)システム、周波数分割多元接続(FDMA)システム、直交周波数分割多元接続(OFDMA)システム、シングルキャリア周波数分割多元接続(SC-FDMA)システム、および時分割同期符号分割多元接続(TD-SCDMA)システムを含む。
[0004]これらの多元接続技術は、異なるワイヤレスデバイスが都市、国家、地域、さらには地球規模で通信することを可能にする共通プロトコルを与えるために様々な電気通信規格において採用されている。例示的な電気通信規格は、5G新無線(NR)である。5G NRは、(たとえば、モノのインターネット(IoT)に関する)レイテンシ、信頼性、セキュリティ、スケーラビリティに関連する新しい要件、および他の要件を満たすための、第3世代パートナーシッププロジェクト(3GPP(登録商標))によって公表された継続的モバイルブロードバンド発展の一部である。5G NRのいくつかの態様は、4Gロングタームエボリューション(LTE(登録商標))規格に基づき得る。5G NR技術のさらなる改善が必要である。これらの改善はまた、他の多元接続技術と、これらの技術を採用する電気通信規格とに適用可能であり得る。
[0005]より詳細には、ユーザ機器(UE)および基地局は、UEと基地局との間のアップリンク(UL)同期を与えるためにRACHプロセスを実行するように構成される。これを行うために、RACHプリアンブルシーケンスがUEによって送信される。しかしながら、RACHプリアンブルシーケンスは、他のULチャネル中のアップリンク信号について著しい干渉の問題を提示し得る。これは、5G/NRフレーム構造のサブキャリア間隔を前提とすれば、特有の問題である。
[0006]以下は、1つまたは複数の態様の基本的理解を与えるために、そのような態様の簡略化された概要を提示する。この概要は、すべての企図された態様の包括的な概観ではなく、すべての態様の主要または重要な要素を識別するものでも、いずれかまたはすべての態様の範囲を定めるものでもない。その唯一の目的は、後に提示されるより詳細な説明の導入として、1つまたは複数の態様のいくつかの概念を簡略化された形で提示することである。
[0007]物理RACH(PRACH)のための現在のフォーマットは、他のULチャネルとの干渉を防ぐためにガードトーンの割振りを含む。しかしながら、いくつかの実装形態では、現在のPRACHフォーマットにおいて現在使用されているガードトーンは、十分なガード間隔を与えないことがある。たとえば、ガードバンドは、RACHプリアンブルシーケンスが他のULチャネルと干渉するのを防ぐために、概して、帯域幅における少なくとも1つのサブキャリアであるべきである。しかしながら、5G/NRフレーム構造は、ますます大きくなるサブキャリア間隔を伴って導入されている。したがって、RACHプリアンブルシーケンスが他のアップリンクリソース中で容認できないほど高い干渉を引き起こすのを防ぐために、追加の予防措置がとられる必要がある。
[0008]本開示の一態様では、方法、コンピュータ可読媒体、および装置が提供される。本装置は、RACHサブキャリア間隔とデータトーンサブキャリア間隔とに基づいて、RACHプリアンブルシーケンスの送信のために割り振られたRACHトーンの数を決定するように構成され得る。
[0009]一態様では、本装置は、RACHリソースのRB内のサブキャリア間隔に基づいて、およびRBの各サブキャリア内のRACHトーン間隔に基づいて、RACHリソースに割り振るべきRACHトーンの数を決定するように構成される。たとえば、本装置は、基地局からPRACHフォーマットを受信し得る。とはいえ、RBのサブキャリア間隔とRACHトーン間隔とを前提とすれば、PRACHフォーマットは適切な量のガードトーンを与えないことがある。
[0010]したがって、本装置は、RACHリソースを与えるリソースブロック(RB)のサブキャリア間隔およびRACHトーン間隔に基づいて、RACHリソースに割り振るべきRACHトーンの数を決定するように構成され得る。本装置は、決定された数のRACHトーン内でRACHリソース中のRACHプリアンブルシーケンスを送信し、それにより、UL同期のためにRACHプロセスを実装し得る。
[0011]別の態様では、本装置は、RACHリソースのRB内のサブキャリア間隔に基づいて、およびRBの各サブキャリア内のRACHトーン間隔に基づいて、RACHリソースとアップリンクデータとに関連するレートマッチングまたはパンクチャリングのためのRACHトーンの数を決定し得る。レートマッチングまたはパンクチャリングのためのRACHトーンの数は、RACHリソースのRACHトーンの数+x個の追加のRACHトーンに等しいことがあり、ここで、第1のサブキャリア間隔S1の場合にx≧96であり、第2のサブキャリア間隔S2の場合にx=0であり、ここで、S1>S2である。したがって、ガードトーンの割振りが適切である場合、xは0に等しく、追加のパンクチャリングまたはレートマッチングが与えられない。しかしながら、ガードトーンの割振りが不適切である場合、xは96に等しいかまたはそれよりも大きいことがあり、追加のパンクチャリングまたはレートマッチングが与えられる。以下で説明されるように、数96は、より大きいサブキャリア間隔がRB中で割り振られるとき、追加のRACHトーンの数が少なくとも2つのサブキャリアに等しいことを保証する。本装置は、UL同期のためにRACHリソース中のRACHプリアンブルシーケンスを送信し得る。
[0012]上記のおよび関係する目的を達成するために、1つまたは複数の態様は、以下で十分に説明され、特に特許請求の範囲で指摘される特徴を備える。以下の説明および添付の図面は、1つまたは複数の態様のいくつかの例示的な特徴を詳細に記載する。ただし、これらの特徴は、様々な態様の原理が採用され得る様々な方法のほんのいくつかを示すものであり、この説明は、すべてのそのような態様およびそれらの均等物を含むものとする。
[0013]ワイヤレス通信システムおよびアクセスネットワークの一例を示す図。 [0014]DLフレーム構造の例を示す図。 DLフレーム構造内のDLチャネルの例を示す図。 ULフレーム構造の例を示す図。 ULフレーム構造内のULチャネルの例を示す図。 [0015]アクセスネットワーク中の基地局およびユーザ機器(UE)の一例を示す図。 [0016]UEと基地局との間のコールフロー図。 [0017]物理ランダムアクセスチャネル(PRACH)の図。 [0018]別のPRACHの図。 [0019]さらに別のPRACHの図。 [0020]ワイヤレス通信の方法のフローチャート。 [0021]ワイヤレス通信の方法のフローチャート。 [0022]例示的な装置中の異なる手段/構成要素間のデータフローを示す概念データフロー図。 [0023]処理システムを採用する装置のためのハードウェア実装形態の一例を示す図。 [0024]例示的な装置中の異なる手段/構成要素間のデータフローを示す概念データフロー図。 [0025]処理システムを採用する装置のためのハードウェア実装形態の一例を示す図。
[0026]添付の図面に関して以下に記載される発明を実施するための形態は、様々な構成を説明するものであり、本明細書で説明される概念が実施され得る構成のみを表すものではない。発明を実施するための形態は、様々な概念の完全な理解を与えるための具体的な詳細を含む。ただし、これらの概念はこれらの具体的な詳細なしに実施され得ることが当業者には明らかであろう。いくつかの事例では、そのような概念を不明瞭にすることを回避するために、よく知られている構造および構成要素がブロック図の形態で示されている。
[0027]次に、様々な装置および方法に関して電気通信システムのいくつかの態様が提示される。これらの装置および方法は、以下の発明を実施するための形態において説明され、(「要素」と総称される)様々なブロック、構成要素、回路、プロセス、アルゴリズムなどによって添付の図面に示される。これらの要素は、電子ハードウェア、コンピュータソフトウェア、またはそれらの任意の組合せを使用して実装され得る。そのような要素がハードウェアとして実装されるかソフトウェアとして実装されるかは、特定の適用例および全体的なシステムに課される設計制約に依存する。
[0028]例として、要素、または要素の任意の部分、または要素の任意の組合せは、1つまたは複数のプロセッサを含む「処理システム」として実装され得る。プロセッサの例は、マイクロプロセッサ、マイクロコントローラ、グラフィックス処理ユニット(GPU)、中央処理ユニット(CPU)、アプリケーションプロセッサ、デジタル信号プロセッサ(DSP)、縮小命令セットコンピューティング(RISC)プロセッサ、システムオンチップ(SoC)、ベースバンドプロセッサ、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理デバイス(PLD)、状態機械、ゲート論理、個別ハードウェア回路、および本開示全体にわたって説明される様々な機能を実行するように構成された他の好適なハードウェアを含む。処理システム中の1つまたは複数のプロセッサはソフトウェアを実行し得る。ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語などの名称にかかわらず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェア構成要素、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行ファイル、実行スレッド、プロシージャ、関数などを意味すると広く解釈されたい。
[0029]したがって、1つまたは複数の例示的な実施形態では、説明される機能は、ハードウェア、ソフトウェア、またはそれらの任意の組合せで実装され得る。ソフトウェアで実装される場合、機能は、コンピュータ可読媒体上に記憶されるか、あるいはコンピュータ可読媒体上に1つまたは複数の命令またはコードとして符号化され得る。コンピュータ可読媒体はコンピュータ記憶媒体を含む。記憶媒体は、コンピュータによってアクセスされ得る任意の利用可能な媒体であり得る。限定ではなく例として、そのようなコンピュータ可読媒体は、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、電気的消去可能プログラマブルROM(EEPROM(登録商標))、光ディスクストレージ、磁気ディスクストレージ、他の磁気ストレージデバイス、上述のタイプのコンピュータ可読媒体の組合せ、あるいはコンピュータによってアクセスされ得る、命令またはデータ構造の形態のコンピュータ実行可能コードを記憶するために使用され得る任意の他の媒体を備えることができる。
[0030]図1は、ワイヤレス通信システムおよびアクセスネットワーク100の一例を示す図である。(ワイヤレスワイドエリアネットワーク(WWAN)とも呼ばれる)ワイヤレス通信システムは、基地局102と、UE104と、5Gコア(5GC)160とを含む。基地局102は、マクロセル(高電力セルラー基地局)および/またはスモールセル(低電力セルラー基地局)を含み得る。マクロセルは基地局を含む。スモールセルは、フェムトセル、ピコセル、およびマイクロセルを含む。
[0031](発展型ユニバーサルモバイルテレコミュニケーションズシステム(UMTS)地上波無線アクセスネットワーク(E-UTRAN)、次世代RAN(NG-RAN)と総称される)基地局102は、バックホールリンク132(たとえば、S1インターフェース)を通して5GC160とインターフェースする。他の機能に加えて、基地局102は、以下の機能、すなわち、ユーザデータの転送、無線チャネル暗号化および解読、完全性保護、ヘッダ圧縮、モビリティ制御機能(たとえば、ハンドオーバ、デュアル接続性)、セル間干渉協調、接続セットアップおよび解放、負荷分散、非アクセス層(NAS)メッセージのための分配、NASノード選択、同期、無線アクセスネットワーク(RAN)共有、マルチメディアブロードキャストマルチキャストサービス(MBMS)、加入者および機器トレース、RAN情報管理(RIM)、ページング、測位、ならびに警告メッセージの配信のうちの1つまたは複数を実行し得る。基地局102は、バックホールリンク134(たとえば、X2インターフェース)上で互いと直接または間接的に(たとえば、5GC160を通して)通信し得る。バックホールリンク134はワイヤードまたはワイヤレスであり得る。
[0032]基地局102はUE104とワイヤレス通信し得る。基地局102の各々は、それぞれの地理的カバレージエリア110に通信カバレージを与え得る。重複する地理的カバレージエリア110があり得る。たとえば、スモールセル102’は、1つまたは複数のマクロ基地局102のカバレージエリア110と重複するカバレージエリア110’を有し得る。スモールセルとマクロセルの両方を含むネットワークが、異種ネットワークとして知られ得る。異種ネットワークはまた、限定加入者グループ(CSG)として知られる限定グループにサービスを提供し得るホーム発展型ノードB(eNB)(HeNB)を含み得る。基地局102とUE104との間の通信リンク120は、UE104から基地局102への(逆方向リンクとも呼ばれる)アップリンク(UL)送信、および/または基地局102からUE104への(順方向リンクとも呼ばれる)ダウンリンク(DL)送信を含み得る。通信リンク120は、空間多重化、ビームフォーミング、および/または送信ダイバーシティを含む、多入力多出力(MIMO)アンテナ技術を使用し得る。通信リンクは、1つまたは複数のキャリアを通したものであり得る。基地局102/UE104は、各方向において送信のために使用される最高合計Yx MHz(x個のコンポーネントキャリア)のキャリアアグリゲーションにおいて割り振られた、キャリアごとの最高Y MHz(たとえば、5、10、15、20、100MHz)帯域幅のスペクトルを使用し得る。キャリアは、互いに隣接することも隣接しないこともある。キャリアの割振りは、DLとULとに対して非対称であり得る(たとえば、ULよりも多いまたは少ないキャリアがDLのために割り振られ得る)。コンポーネントキャリアは、1次コンポーネントキャリアと、1つまたは複数の2次コンポーネントキャリアとを含み得る。1次コンポーネントキャリアは1次セル(PCell)と呼ばれることがあり、2次コンポーネントキャリアは2次セル(SCell)と呼ばれることがある。
[0033]いくつかのUE104は、デバイスツーデバイス(D2D)通信リンク192を使用して互いと通信し得る。D2D通信リンク192は、DL/UL WWANスペクトルを使用し得る。D2D通信リンク192は、物理サイドリンクブロードキャストチャネル(PSBCH)、物理サイドリンク発見チャネル(PSDCH)、物理サイドリンク共有チャネル(PSSCH)、および物理サイドリンク制御チャネル(PSCCH)など、1つまたは複数のサイドリンクチャネルを使用し得る。D2D通信は、たとえば、FlashLinQ、WiMedia、Bluetooth(登録商標)、ZigBee(登録商標)、IEEE802.11規格に基づくWi-Fi(登録商標)、LTE、またはNRなど、様々なワイヤレスD2D通信システムを通したものであり得る。
[0034]ワイヤレス通信システムは、5GHz無認可周波数スペクトル中で通信リンク154を介してWi-Fi局(STA)152と通信しているWi-Fiアクセスポイント(AP)150をさらに含み得る。無認可周波数スペクトル中で通信するとき、STA152/AP150は、チャネルが利用可能であるかどうかを決定するために、通信するより前にクリアチャネルアセスメント(CCA)を実行し得る。
[0035]スモールセル102’は、認可および/または無認可周波数スペクトル中で動作し得る。無認可周波数スペクトル中で動作するとき、スモールセル102’は、NRを採用し、Wi-Fi AP150によって使用されるのと同じ5GHz無認可周波数スペクトルを使用し得る。無認可周波数スペクトル中でNRを採用するスモールセル102’は、アクセスネットワークへのカバレージをブーストし、および/またはアクセスネットワークの容量を増加させ得る。
[0036]gノードB(gNB)180は、UE104と通信しているミリメートル波(mmW)周波数および/またはほぼmmW周波数において動作し得る。gNB180がmmWまたはほぼmmW周波数において動作するとき、gNB180はmmW基地局と呼ばれることがある。極高周波(EHF)は、電磁スペクトルにおけるRFの一部である。EHFは、30GHz~300GHzのレンジと、1ミリメートルから10ミリメートルの間の波長とを有する。帯域中の電波は、ミリメートル波と呼ばれることがある。ほぼmmWは、100ミリメートルの波長をもつ、3GHzの周波数まで及び得る。センチメートル波とも呼ばれる、超高周波(SHF)帯域は、3GHzから30GHzの間に及ぶ。mmW/ほぼmmW無線周波数帯域を使用する通信は、極めて高い経路損失と短いレンジとを有する。mmW基地局180は、極めて高い経路損失と短いレンジとを補償するためにUE104とのビームフォーミング184を利用し得る。
[0037]5Gコアネットワーク(5GC)160は、アクセスおよびモビリティ管理機能(AMF)162と、他のAMF164と、セッション管理機能(SMF)166と、ユーザプレーン機能(UDP)168とを含み得る。AMF162は、統合データ管理(UDM)170と通信していることがある。AMF162は、UE104と5GC160との間のシグナリングを処理する制御ノードである。概して、AMF162は、QoSフローおよびセッション管理を与える。すべてのユーザインターネットプロトコル(IP)パケットがUPF168を通して転送される。UPF168はUEのIPアドレス割振りならびに他の機能を与える。UPF168はIPサービス172に接続される。IPサービス172は、インターネット、イントラネット、IPマルチメディアサブシステム(IMS)、PSストリーミングサービス、および/または他のIPサービスを含み得る。
[0038]基地局は、gNB、ノードB、発展型ノードB(eNB)、アクセスポイント、基地トランシーバ局、無線基地局、無線トランシーバ、トランシーバ機能、基本サービスセット(BSS)、拡張サービスセット(ESS)、または何らかの他の好適な用語で呼ばれることもある。基地局102は、UE104に5GC160へのアクセスポイントを与える。UE104の例は、セルラーフォン、スマートフォン、セッション開始プロトコル(SIP)電話、ラップトップ、携帯情報端末(PDA)、衛星無線、全地球測位システム、マルチメディアデバイス、ビデオデバイス、デジタルオーディオプレーヤ(たとえば、MP3プレーヤ)、カメラ、ゲーム機、タブレット、スマートデバイス、ウェアラブルデバイス、車両、電気メーター、ガスポンプ、大きいまたは小さいキッチン器具、ヘルスケアデバイス、インプラント、ディスプレイ、あるいは任意の他の同様の機能デバイスを含む。UE104のうちのいくつかは、IoTデバイス(たとえば、パーキングメーター、ガスポンプ、トースター、車両、心臓モニタなど)と呼ばれることがある。UE104は、局、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、または何らかの他の好適な用語で呼ばれることもある。
[0039]上述のように、UEおよび基地局は、UEと基地局との間のUL同期を与えるためにRACHプロセスを実行するように構成される。しかしながら、以下で説明されるように、PRACH中でUL同期を与えるために使用されるRACHプリアンブルシーケンスは、他のULチャネル中のアップリンク信号について著しい干渉の問題を提示し得る。したがって、PRACHのための現在のフォーマットは、他のULチャネルとの干渉を防ぐためにガードトーンの割振りを含む。しかしながら、いくつかの実装形態では、現在のPRACHフォーマットにおいて現在使用されているガードトーンは、十分なガード間隔を与えないことがある。たとえば、ガードバンドは、RACHプリアンブルシーケンスが他のULチャネルと干渉するのを防ぐために、概して、帯域幅における少なくとも1つのサブキャリアであるべきである。しかしながら、5G/NRフレーム構造は、ますます大きくなるサブキャリア間隔を伴って導入されている。したがって、RACHプロセスが容認できないほど高い干渉を引き起こすのを防ぐために、追加の予防措置がとられる必要がある。
[0040]再び図1を参照すると、いくつかの態様では、UE104は、たとえば、図2A~図13のいずれかに関して以下で説明されるように、各サブキャリア内のRACHトーン間隔に基づいて、RACHリソースに割り振るべきRACHトーンの数および/またはアップリンクデータをレートマッチングまたはパンクチャするためのRACHトーンの数を決定する(198)ように構成され得る。
[0041]一態様では、UE104は、RACHリソースのRB内のサブキャリア間隔に基づいて、およびRBの各サブキャリア内のRACHトーン間隔に基づいて、RACHリソースに割り振るべきRACHトーンの数を決定するように構成される。たとえば、UE104は、基地局180からPRACHフォーマットを受信し得る。しかしながら、RBのサブキャリア間隔とRACHトーン間隔とを前提とすれば、割り振られたガードトーンは、PRACH中のRACHプリアンブルシーケンスと、隣接するRB中のアップリンクデータとの間の干渉を防ぐのに十分な間隔を与えないことがある。
[0042]したがって、UE402は、RACHリソースに割り振るべきRACHトーンの数を決定するように構成され得る。たとえば、ガードトーンの数は、RACHトーンの決定された数-RACHプリアンブルシーケンスに等しいことがあり、RACHリソース内のガードトーンの数は、サブキャリア間隔が増加するにつれて増加し得る。一態様では、RACHトーンの決定された数は、サブキャリア間隔がS1であるとき、N1であり、サブキャリア間隔がS2であるとき、N2であり、ここで、N1>N2であり、S1>S2である。
[0043]上述のように、RACHトーンの決定された数は、RACHリソースを与えるRBのサブキャリア間隔およびRACHトーン間隔に基づき得る。一実装形態では、サブキャリア間隔はSsであり、RACHトーン間隔Stであり、ここで、Ss>Stである。たとえば、RACHトーン間隔Stは、1.25kHzまたは5kHzに等しくなり得る。5G/NRによって与えられる、いくつかのサブフレームのサブキャリア間隔は、15kHz、30kHz、60kHz、および120kHzに等しくなり得る。RACHリソースのために割り振られたRACHトーンの決定された数は、12*NRB*Ss/Stにほぼ等しく、ここで、NRBは、割り振られたRACHリソース内のRBの数であり、12はRBごとのサブキャリアの数である。一態様では、NRB≦5であり、整数であり得る。したがって、RACHリソースは、上記で説明された構成とは異なり、6つ未満のRB内に収まるように与えられる。UE104は、UL同期のためにRACHプロセスを実装するために、決定された数のRACHトーン内でRACHリソース中のRACHプリアンブルシーケンスを送信し得る。
[0044]別の態様では、割り振られたRACHトーンの数は、サブキャリア間隔にかかわらず同じであり得る。したがって、ガードトーンの数とRACHプリアンブルシーケンスの両方が、サブキャリア間隔にかかわらず同じままであり得る。しかしながら、ガードトーンの数は、いくつかのサブキャリア間隔を前提とすれば、十分に大きいガードバンドを与えないことがある。UE104は、したがって、RACHリソースのRB内のサブキャリア間隔に基づいて、およびRBの各サブキャリア内のRACHトーン間隔に基づいて、RACHリソースとアップリンクデータとに関連するレートマッチングまたはパンクチャリングのためのRACHトーンの数を決定し得る。特に、RACHリソースのRACHトーンの数+x個の追加のRACHトーンに等しいレートマッチングまたはパンクチャリングのためのRACHトーンの数。このようにして、レートマッチングまたはパンクチャリングによって与えられるx個の追加のRACHトーンは、適切な間隔を与え得る。
[0045]たとえば、RACHリソースに割り振られた上記数のRACHトーンは、適切な数のガードトーンを有し得、したがってx=0である。しかしながら、より大きいサブキャリア間隔(たとえば、60kHz)の場合、ガードトーンの上記数は不適切であり得る。したがって、これらのより大きいサブキャリア間隔の場合、x≧96である。以下でさらに詳細に説明されるように、96個のRACHトーンは、1.25kHzのRACHトーン間隔と60kHzのサブキャリア間隔とを前提として、ガード間隔に値する2つのサブキャリアを与えるために必要とされる数のRACHトーンである。
[0046]図2Aは、5G/NRフレーム構造内のDLサブフレームの一例を示す図200である。図2Bは、DLサブフレーム内のチャネルの一例を示す図230である。図2Cは、5G/NRフレーム構造内のULサブフレームの一例を示す図250である。図2Dは、ULサブフレーム内のチャネルの一例を示す図280である。5G/NRフレーム構造は、サブキャリアの特定のセット(キャリアシステム帯域幅)についてサブキャリアのセット内のサブフレームがDLまたはULのいずれかに専用であるFDDであり得るか、あるいは、サブキャリアの特定のセット(キャリアシステム帯域幅)についてサブキャリアのセット内のサブフレームがDLとULの両方に専用であるTDDであり得る。図2A、図2Cによって与えられる例では、5G/NRフレーム構造は、サブフレーム4がDLサブフレームであり、サブフレーム7がULサブフレームである、TDDであると仮定される。サブフレーム4はただDLを与えるものとして示され、サブフレーム7はただULを与えるものとして示されるが、任意の特定のサブフレームは、ULとDLの両方を与える異なるサブセットにスプリットされ得る。以下の説明が、FDDである5G/NRフレーム構造にも適用されることに留意されたい。
[0047]他のワイヤレス通信技術は、異なるフレーム構造および/または異なるチャネルを有し得る。フレーム(10ms)は、等しいサイズの10個のサブフレーム(1ms)に分割され得る。各サブフレームは、1つまたは複数のタイムスロットを含み得る。各スロットは、スロット構成に応じて、7つまたは14個のシンボルを含み得る。スロット構成0の場合、各スロットは14個のシンボルを含み得、スロット構成1の場合、各スロットは7つのシンボルを含み得る。サブフレーム内のスロットの数は、スロット構成とヌメロロジーとに基づく。スロット構成0の場合、異なるヌメロロジー0~5が、サブフレームごとに、それぞれ、1つ、2つ、4つ、8つ、16個、および32個のスロットを可能にする。スロット構成1の場合、異なるヌメロロジー0~2が、サブフレームごとに、それぞれ、2つ、4つ、および8つのスロットを可能にする。サブキャリア間隔とシンボル長/持続時間とは、ヌメロロジーの関数である。サブキャリア間隔は2μ*15kKzに等しくなり得、ここで、μはヌメロロジー0~5である。シンボル長/持続時間は、サブキャリア間隔と逆関係にある。図2A、図2Cは、スロットごとに7つのシンボルをもつスロット構成1およびサブフレームごとに2つのスロットをもつヌメロロジー0の一例を与える。サブキャリア間隔は15kHzであり、シンボル持続時間は約66.7μsである。
[0048]フレーム構造を表すためにリソースグリッドが使用され得る。各タイムスロットは、12個の連続するサブキャリアを拡張する(物理リソースブロック(RB)(PRB)とも呼ばれる)RBを含む。リソースグリッドは複数のリソース要素(RE)に分割される。各REによって搬送されるビット数は変調方式に依存する。
[0049]図2Aに示されているように、REのうちのいくつかが、(Rとして示された)UEのための基準(パイロット)信号(RS)を搬送する。RSは、UEにおけるチャネル推定のために復調RS(DM-RS)とチャネル状態情報基準信号(CSI-RS)とを含み得る。RSは、ビーム測定RS(BRS)と、ビーム改良RS(BRRS)と、位相追跡RS(PT-RS)とをも含み得る。
[0050]図2Bは、フレームのDLサブフレーム内の様々なチャネルの一例を示す。物理制御フォーマットインジケータチャネル(PCFICH)は、スロット0のシンボル0内にあり、物理ダウンリンク制御チャネル(PDCCH)が1つのシンボルを占有するのか、2つのシンボルを占有するのか、3つのシンボルを占有するのかを示す制御フォーマットインジケータ(CFI)を搬送する(図2Bは、3つのシンボルを占有するPDCCHを示す)。PDCCHは、1つまたは複数の制御チャネル要素(CCE)内でダウンリンク制御情報(DCI)を搬送し、各CCEは9つのREグループ(REG)を含み、各REGは、OFDMシンボル中に4つの連続するREを含む。UEは、DCIをも搬送するUE固有拡張PDCCH(ePDCCH)で構成され得る。ePDCCHは、2つ、4つ、または8つのRBペアを有し得る(図2Bは2つのRBペアを示し、各サブセットは1つのRBペアを含む)。物理ハイブリッド自動再送要求(ARQ)(HARQ)インジケータチャネル(PHICH)もスロット0のシンボル0内にあり、物理アップリンク共有チャネル(PUSCH)に基づいて、HARQ肯定応答(ACK)/否定ACK(NACK)フィードバックを示すHARQインジケータ(HI)を搬送する。1次同期チャネル(PSCH)は、フレームのサブフレーム0および5内のスロット0のシンボル6内にあり得る。PSCHは、サブフレーム/シンボルタイミングと物理レイヤ識別情報とを決定するためにUE104によって使用される1次同期信号(PSS)を搬送する。2次同期チャネル(SSCH)は、フレームのサブフレーム0および5内のスロット0のシンボル5内にあり得る。SSCHは、物理レイヤセル識別情報グループ番号と無線フレームタイミングとを決定するためにUEによって使用される2次同期信号(SSS)を搬送する。物理レイヤ識別情報と物理レイヤセル識別情報グループ番号とに基づいて、UEは物理セル識別子(PCI)を決定することができる。PCIに基づいて、UEは、上述のDL-RSのロケーションを決定することができる。マスタ情報ブロック(MIB)を搬送する物理ブロードキャストチャネル(PBCH)は、同期信号(SS)/PBCHブロックを形成するために、PSCHおよびSSCHとともに論理的にグループ化され得る。MIBは、DLシステム帯域幅中のRBの数と、PHICH構成と、システムフレーム番号(SFN)とを与える。物理ダウンリンク共有チャネル(PDSCH)は、ユーザデータと、システム情報ブロック(SIB)などのPBCHを通して送信されないブロードキャストシステム情報と、ページングメッセージとを搬送する。
[0051]図2Cに示されているように、REのうちのいくつかが、基地局におけるチャネル推定のための復調基準信号(DM-RS)を搬送する。UEは、サブフレームの最後のシンボル中でサウンディング基準信号(SRS)をさらに送信し得る。SRSはコム構造を有し得、UEはコムのうちの1つの上でSRSを送信し得る。SRSは、基地局によって、UL上での周波数依存スケジューリングを可能にするために、チャネル品質推定のために使用され得る。
[0052]図2Dは、フレームのULサブフレーム内の様々なチャネルの一例を示す。物理ランダムアクセスチャネル(PRACH)が、PRACH構成に基づいてフレーム内の1つまたは複数のサブフレーム内にあり得る。PRACHは、サブフレーム内に6つの連続するRBペアを含み得る。PRACHは、UEが初期システムアクセスを実行し、UL同期を達成することを可能にする。物理アップリンク制御チャネル(PUCCH)は、ULシステム帯域幅のエッジ上に位置し得る。PUCCHは、スケジューリング要求、チャネル品質インジケータ(CQI)、プリコーディング行列インジケータ(PMI)、ランクインジケータ(RI)、およびHARQ ACK/NACKフィードバックなど、アップリンク制御情報(UCI)を搬送する。PUSCHは、データを搬送し、バッファステータス報告(BSR)、パワーヘッドルーム報告(PHR)、および/またはUCIを搬送するためにさらに使用され得る。
[0053]図3は、アクセスネットワーク中でUE350と通信している基地局310のブロック図である。DLでは、EPC160からのIPパケットがコントローラ/プロセッサ375に与えられ得る。コントローラ/プロセッサ375はレイヤ3およびレイヤ2機能を実装する。レイヤ3は無線リソース制御(RRC)レイヤを含み、レイヤ2は、パケットデータコンバージェンスプロトコル(PDCP)レイヤと、無線リンク制御(RLC)レイヤと、媒体アクセス制御(MAC)レイヤとを含む。コントローラ/プロセッサ375は、システム情報(たとえば、MIB、SIB)のブロードキャスティングと、RRC接続制御(たとえば、RRC接続ページング、RRC接続確立、RRC接続変更、およびRRC接続解放)と、無線アクセス技術(RAT)間モビリティと、UE測定報告のための測定構成とに関連するRRCレイヤ機能、ならびにヘッダ圧縮/復元と、セキュリティ(暗号化、解読、完全性保護、完全性検証)と、ハンドオーバサポート機能とに関連するPDCPレイヤ機能、ならびに上位レイヤパケットデータユニット(PDU)の転送と、ARQを介した誤り訂正と、RLCサービスデータユニット(SDU)の連結、セグメンテーション、およびリアセンブリと、RLCデータPDUの再セグメンテーションと、RLCデータPDUの並べ替えとに関連するRLCレイヤ機能、ならびに論理チャネルとトランスポートチャネルとの間のマッピングと、トランスポートブロック(TB)上へのMAC SDUの多重化と、TBからのMAC SDUの多重分離と、スケジューリング情報報告と、HARQを介した誤り訂正と、優先度処理と、論理チャネル優先度付けとに関連するMACレイヤ機能を与える。
[0054]送信(TX)プロセッサ316および受信(RX)プロセッサ370は、様々な信号処理機能に関連するレイヤ1機能を実装する。物理(PHY)レイヤを含むレイヤ1は、トランスポートチャネル上の誤り検出と、トランスポートチャネルの前方誤り訂正(FEC)コーディング/復号と、インターリービングと、レートマッチングと、物理チャネル上へのマッピングと、物理チャネルの変調/復調と、MIMOアンテナ処理とを含み得る。TXプロセッサ316は、様々な変調方式(たとえば、2位相シフトキーイング(BPSK)、4位相シフトキーイング(QPSK)、M位相シフトキーイング(M-PSK)、多値直交振幅変調(M-QAM))に基づく信号コンスタレーションへのマッピングを扱う。コーディングされ、変調されたシンボルは、次いで、並列ストリームにスプリットされ得る。各ストリームは、次いで、時間領域OFDMシンボルストリームを搬送する物理チャネルを生成するために、OFDMサブキャリアにマッピングされ、時間領域および/または周波数領域中で基準信号(たとえば、パイロット)と多重化され、次いで逆高速フーリエ変換(IFFT)を使用して互いに合成され得る。OFDMストリームは、複数の空間ストリームを生成するために空間的にプリコーディングされる。チャネル推定器374からのチャネル推定値は、コーディングおよび変調方式を決定するために、ならびに空間処理のために使用され得る。チャネル推定値は、UE350によって送信される基準信号および/またはチャネル状態フィードバックから導出され得る。各空間ストリームは、次いで、別個の送信機318TXを介して異なるアンテナ320に与えられ得る。各送信機318TXは、送信のためにそれぞれの空間ストリームでRFキャリアを変調し得る。
[0055]UE350において、各受信機354RXは、それのそれぞれのアンテナ352を通して信号を受信する。各受信機354RXは、RFキャリア上に変調された情報を復元し、その情報を受信(RX)プロセッサ356に与える。TXプロセッサ368およびRXプロセッサ356は、様々な信号処理機能に関連するレイヤ1機能を実装する。RXプロセッサ356は、UE350に宛てられた任意の空間ストリームを復元するために、情報に対して空間処理を実行し得る。複数の空間ストリームがUE350に宛てられた場合、それらはRXプロセッサ356によって単一のOFDMシンボルストリームに合成され得る。RXプロセッサ356は、次いで、高速フーリエ変換(FFT)を使用して、OFDMシンボルストリームを時間領域から周波数領域に変換する。周波数領域信号は、OFDM信号のサブキャリアごとに別個のOFDMシンボルストリームを備える。各サブキャリア上のシンボルと、基準信号とは、基地局310によって送信された可能性が最も高い信号コンスタレーションポイントを決定することによって復元され、復調される。これらの軟判定は、チャネル推定器358によって計算されるチャネル推定値に基づき得る。軟判定は、次いで、物理チャネル上で基地局310によって最初に送信されたデータと制御信号とを復元するために復号され、デインターリーブされる。データおよび制御信号は、次いで、レイヤ3およびレイヤ2機能を実装するコントローラ/プロセッサ359に与えられる。
[0056]コントローラ/プロセッサ359は、プログラムコードとデータとを記憶するメモリ360に関連し得る。メモリ360はコンピュータ可読媒体と呼ばれることがある。ULでは、コントローラ/プロセッサ359は、EPC160からのIPパケットを復元するために、トランスポートチャネルと論理チャネルとの間の多重分離と、パケットリアセンブリと、解読と、ヘッダ復元と、制御信号処理とを行う。コントローラ/プロセッサ359はまた、HARQ動作をサポートするためにACKおよび/またはNACKプロトコルを使用する誤り検出を担当する。
[0057]基地局310によるDL送信に関して説明された機能と同様に、コントローラ/プロセッサ359は、システム情報(たとえば、MIB、SIB)獲得と、RRC接続と、測定報告とに関連するRRCレイヤ機能、ならびにヘッダ圧縮/復元と、セキュリティ(暗号化、解読、完全性保護、完全性検証)とに関連するPDCPレイヤ機能、ならびに上位レイヤPDUの転送と、ARQを介した誤り訂正と、RLC SDUの連結、セグメンテーション、およびリアセンブリと、RLCデータPDUの再セグメンテーションと、RLCデータPDUの並べ替えとに関連するRLCレイヤ機能、ならびに論理チャネルとトランスポートチャネルとの間のマッピングと、TB上へのMAC SDUの多重化と、TBからのMAC SDUの多重分離と、スケジューリング情報報告と、HARQを介した誤り訂正と、優先度処理と、論理チャネル優先度付けとに関連するMACレイヤ機能を与える。
[0058]基地局310によって送信される基準信号またはフィードバックからの、チャネル推定器358によって導出されるチャネル推定値は、適切なコーディングおよび変調方式を選択することと、空間処理を可能にすることとを行うために、TXプロセッサ368によって使用され得る。TXプロセッサ368によって生成される空間ストリームは、別個の送信機354TXを介して異なるアンテナ352に与えられ得る。各送信機354TXは、送信のためにそれぞれの空間ストリームでRFキャリアを変調し得る。
[0059]UL送信は、UE350における受信機機能に関して説明された様式と同様の様式で基地局310において処理される。各受信機318RXは、それのそれぞれのアンテナ320を通して信号を受信する。各受信機318RXは、RFキャリア上に変調された情報を復元し、その情報をRXプロセッサ370に与える。
[0060]コントローラ/プロセッサ375は、プログラムコードとデータとを記憶するメモリ376に関連し得る。メモリ376はコンピュータ可読媒体と呼ばれることがある。ULでは、コントローラ/プロセッサ375は、UE350からのIPパケットを復元するために、トランスポートチャネルと論理チャネルとの間の多重分離と、パケットリアセンブリと、解読と、ヘッダ復元と、制御信号処理とを行う。コントローラ/プロセッサ375からのIPパケットは、EPC160に与えられ得る。コントローラ/プロセッサ375はまた、HARQ動作をサポートするためにACKおよび/またはNACKプロトコルを使用する誤り検出を担当する。
[0061]図4は、UE402(たとえば、UE104、350、装置1002/1002’、装置1202/1202’)と基地局404(たとえば、UE102、180、310、1050、1250)との間のUL同期の一例を示すコールフロー図400を示すである。いくつかの態様では、UE402および基地局404は、RACHプロセスの一部としてプロシージャを実行し得る。たとえば、以下で説明されるプロシージャの異なる実装形態は、競合ベースであるのか競合なしであるのかにかかわらず、RACHプロセスのメッセージ1、メッセージ2、あるいはメッセージ3またはメッセージ4中に実行され得る。
[0062]以下でさらに詳細に説明されるように、UE402および基地局404は、5G NRにおいて利用され得る様々なフレーム構造を前提としたRACHプロセスを実行するように構成され得る。図4に示されているように、406において、基地局404は、RACHリソースに割り振られるべきRACHトーンの数を示すDL情報を送信し得、UE402は、その情報を受信し得る。たとえば、基地局404は、セルにおいて実装されている現在のフレーム構造を前提として、UEによって使用されるべきであるPRACHフォーマットを決定し、PRACHフォーマットを識別するPRACHフォーマット番号をUE402に送信し得る。以下でさらに詳細に説明されるように、次いで、基地局404は、PRACHフォーマット番号を示すDL情報を送信し得、UE402は、その情報を受信し得、UE402は、次いで、RACHリソースに割り振られたRACHトーンの数を決定するためにその情報を使用し得る。
[0063]一実装形態では、基地局404は、PRACHフォーマットを示すために、セル無線ネットワーク一時識別子(RNTI)(C-RNTI)など、RNTI内の1つまたは複数のビットを使用し得る。DL情報は、基地局404によってサービスされるセル中で利用可能なRACHプリアンブルシーケンスを示すルートシーケンスインデックスをも含み得る。いくつかの実装形態では、基地局404はDL情報を送信し得、UE402は、PSS、SSS、PBCH、PBCHのDMRS、残存最小システム情報(RMSI:remaining minimum system information)、他のシステム情報(OSI)、PDCCH、RRCメッセージ、ハンドオーバメッセージ、またはSIBのうちの1つまたは複数を通してDL情報を受信し得る。
[0064]DL情報を受信すると、UE402は、408において、RACHリソースのRB内のサブキャリア間隔に基づいて、およびRBの各サブキャリア内のRACHトーン間隔に基づいて、RACHリソースに割り振るべきRACHトーンの数を決定し得る。UE402は、基地局404への送信のために、セル内で利用可能なRACHプリアンブルシーケンスのうちの1つを選択し得る。シーケンス長は、PRACH中でRACHプリアンブルシーケンスを送信するために使用されるRACHトーンの第1の数と対応し得る。ただし、5G NR内で利用可能な様々なフレーム構造を前提として、UE402はまた、RACHトーンがPRACHに隣接する他のRB内で送信される他のアップリンクデータに干渉するのを防ぐために、十分な予防措置をとり得る。以下でさらに詳細に説明されるように、5G NRにおいて、15kHz、30kHz、60kHz、および120kHzのサブキャリア間隔をもつフレーム構造が利用可能であり得る。ただし、RACHプリアンブルシーケンスは、概して、所与のサイズのセル内の複数のUE間の直交性を維持する、Zadoff-Chuシーケンスなど、循環シーケンス(cyclical sequence)である。したがって、RACHプリアンブルシーケンスのためのシーケンス長は、様々なサブキャリア間隔について固定のままであり得る。
[0065]いくつかの実装形態では、UE402は、RACHトーン間隔とRBのサブキャリア間隔とに基づいて、RACHガードトーンとして含めるべきRACHトーンの第2の数を決定し得る。第2の数のガードRACHトーンは、隣接する帯域中の(図示されていない)他のUEによって送信される他のアップリンクデータとの干渉を防ぐために、PRACHの上側エッジおよび下側エッジにおいて与えられ得る。したがって、PRACHは、RACHプリアンブルシーケンスとRACHガードトーンとを含み得る。RBのサブキャリア間隔が増加するにつれて、より多くのガードトーンが与えられ得る。N1は、サブキャリア間隔がS1であるときのRACHトーンの決定された数を表し得、N2は、サブキャリア間隔がS2であるときのRACHトーンの決定された数を表し得、ここで、N1>N2であり、S1>S2である。
[0066]ガード間隔の量は、PRACHのUL帯域幅が整数(whole number)個のRBに収まるように決定され得る。たとえば、RACHガードトーンは、以下でさらに詳細に説明されるように、サブキャリア間隔がS1(たとえば、60kHz)であるとき、RACHリソースのRB内に少なくとも6.5個のサブキャリアを提供され得、サブキャリア間隔がS2(たとえば、15kHz)であるとき、RACHリソースのRB内に少なくとも2つのサブキャリアを備え得る。
[0067]しかしながら、いくつかの実装形態では、ガードトーンは、十分なガード間隔を与えないことがある。干渉を低減するために、追加の技法が実装される必要があり得る。また、さらに他の実装形態では、UE402は、RACHトーンの数がRACH間隔にかかわらず、任意の特定のPRACHフォーマットについて固定であり得るので、408において示された決定とは異なる決定を実行し得る。さらに、いくつかの実装形態では、基地局404は、RB中でアップリンクデータを割り振り、RBにPRACHを単に動的にパンクチャまたはレートマッチングし得る。したがって、追加または代替として、UE402は、410において、RACHリソースのRB内のサブキャリア間隔に基づいて、およびRBの各サブキャリア内のRACHトーン間隔に基づいて、RACHリソースとアップリンクデータとに関連するレートマッチングまたはパンクチャリングのためのRACHトーンの数を決定し得る。
[0068]5G/NRが、増加されたサブキャリア間隔をもつフレーム構造を与えるとき、レートマッチングまたはパンクチャリングは、以下でさらに詳細に説明されるようにPRACHとPUCCHとPUSCHとの間の干渉を防ぐためにUE402によって使用され得る。一実装形態では、基地局404は、RB中でPUCCHおよび/またはPUSCHからアップリンクデータを割り振り、RBにPRACHを用いてアップリンクデータを動的にパンクチャまたはレートマッチングし得る。
[0069]レートマッチングまたはパンクチャリングのためのRACHトーンの数は、RACHリソースのRACHトーンの数+x個の追加のRACHトーンに等しくなり得る。したがって、一態様では、レートマッチングまたはパンクチャリングは、PRACH中のRACHトーンのすべて+PRACH外のx個の追加のRACHトーンの間隔を含めるために、アップリンクデータ中で与えられ得る。
[0070]たとえば、いくつかの実装形態では、PRACH中のRACHトーンの数は、サブキャリア間隔にかかわらず固定であり得る。しかしながら、PRACHは、サブキャリア間隔S2(たとえば、15kHz)を前提として、RB内に適切な量のRACHガードトーンを収め、与えるために、与えられ得る。この場合、UE402は、追加のトーンが必要とされないので、x=0であると決定する。しかしながら、PRACHは、パンクチャリングまたはレートマッチングが与えられた後でもアップリンクデータが1つまたは複数のRBのサブキャリアのうちのいくつかの中にとどまるように、サブキャリア間隔S1(たとえば、60kHz)を前提とすれば、RB内に部分的に収まるにすぎないことがある。
[0071]S2のサブキャリア間隔の場合、固定数のRACHガードトーンは不十分な間隔を与え得る。概して、PRACHとアップリンクデータとの間の干渉は、PRACHのエッジにおけるガードバンドの各々が少なくとも1つのサブキャリア間隔だけ(RACHプリアンブルシーケンスを備えた)RACHトーンを分離するとき、許容できるレベル内に維持される。したがって、一緒にするとそれらのガードバンドは、約2つのサブキャリアのサブキャリア間隔に等しくなるべきである。したがって、UE402はRACHトーンの追加のx個のトーンを決定し得、ここで、サブキャリア間隔S2を前提とすれば、x≧96である(たとえば、60kHzのサブキャリア間隔と1.25kHzのRACHトーン間隔とを前提とすれば、96個の追加のRACHトーン)。
[0072]412において、UE402は、RACHリソース中のRACHプリアンブルシーケンスとアップリンクデータとを基地局404に送信し得る。たとえば、RACHプリアンブルシーケンスは、上記で説明されたように、PRACH内で基地局に送信され得る。したがって、UL同期は、5G/NRのためのRACHプロシージャに従って、RACHプリアンブルシーケンスを使用して基地局404とUE402との間で与えられ得る。レートマッチングまたはパンクチャされたアップリンクデータは、RACHプリアンブルシーケンスと同時に送信され得る。たとえば、PRACHは、PRACHがRBに動的に割り振られるように、PUSCHおよび/またはPUCCH中でアップリンクデータをパンクチャまたはレートマッチングし得る。
[0073]図5は、周波数領域に沿った6つの連続するRBのUL帯域幅内に与えられた例示的なPRACH502の図500を示す。上記で説明されたように、各RBは、周波数領域中で12個のサブキャリアにわたって延在し得る。したがって、PRACH502のUL帯域幅は、72個のサブキャリアを備え得る。この例では、サブキャリア間隔は15kHzに等しい。したがって、PRACH502のUL帯域幅は1.08MHzに等しい。
[0074]図5に示されているように、PRACH502はRACHトーン504のリソース割振りを有し、6つのRBの各サブキャリアについてRACHトーン504のうちの12個が与えられる。さらに、RACHトーン504のRACHトーン間隔は1.25kHzである。しかしながら、PRACH502に割り振られたRACHトーン504のサブセットのみが実際にRACHプリアンブルシーケンス506を含む。この例では、RACHプリアンブルシーケンス506は、RACHトーン504のうちの839個によって与えられる。
[0075]UE402は、RACHプリアンブルシーケンス506を生成し、RACHプリアンブルシーケンス506を基地局404に送信するように構成される。RACHプリアンブルシーケンス506は、基地局404とUE402との間のUL同期のために与えられる。さらに、PRACH502は、最高周波数におけるガードトーン510の割振りと、最低周波数におけるガードトーン512の割振りとを含み、それらの割振りはRACHプリアンブルシーケンス506を含まない。これは、RACHプリアンブルシーケンス506と他のULチャネル中の隣接するサブキャリアとの間の干渉を低減するのを助ける。
[0076]概して、RACHプリアンブルシーケンス506と隣接するサブキャリアとの間の干渉は、ガードトーン510によって与えられた周波数間隔とガードトーン512によって与えられた周波数間隔とが各々1つのサブキャリアのサブキャリア間隔に等しいとき、許容できるレベルにおいて与えられる。下記の表は、異なるPRACHフォーマットの、トーン間隔と、RACHプリアンブルシーケンス506のシーケンス長と、トーン504の割り振られた数とについて説明する。
[0077]図5において上記で説明された例は、PRACHフォーマット番号0の場合のものである。ガードトーン510、512の総数は、PRACHが6つのRBに正確に収まるように与えられた。したがって、PRACHに割り振られたRACHトーン504の決定された数は、12*NRB*Ss/Stにほぼ等しく、ここで、NRBはPRACH内のRBの数であり、データトーンサブキャリア間隔はSsであり、RACHトーン間隔はStである。この例では、NRB=6であり、Ss=15kHzであり、St=1.25kHzである。したがって、864個のRACHトーン504がPRACH502中で与えられる。
[0078]1.25kHzのRACHトーン間隔を有する864個のRACHトーン504のRACHトーン間隔がPRACH502中で与えられるので、RACHトーン504の総帯域幅は1.08MHzに等しく、これは、PRACH502を与える6つのRBのUL帯域幅に正確に適合する。上述のように、RACHプリアンブルシーケンス506のシーケンス長は839に等しく、これは、UE402が、RACHプロセス中に、64個の直交Zadoff-Chuシーケンスから選択し、RACHプリアンブルシーケンス506を生成することができるように必要とされるRACHトーンの数である。しかしながら、上記で説明されたPRACHフォーマットは、フレームのフレーム構造が15kHzのサブキャリア間隔を有することを前提とする。より詳細には、15kHzの1つのサブキャリアは、1.25kHzのRACHトーン間隔をもつRACHトーン504のうちの12個に等しい。この例では、(総数25個のガードトーン510、512を与えるために)ガードトーン510の数は13に等しく、ガードトーン512の数は12に等しい。したがって、ガードトーン510、512各々によって与えられたガードバンドの各々は、長さが少なくとも1つのサブキャリアである。したがって、UE402は、RACHプリアンブルシーケンス506と他のチャネルとの間の干渉がLTEのための許容できるレベル内に維持されるように、選択されたRACHプリアンブルシーケンスをもつRACHプリアンブルシーケンス506を生成する。アップリンクデータは、ガードトーン510、512が十分なガード間隔を与えるので、PRACH502だけによってパンクチャまたはレートマッチングされ得ることに留意されたい。したがって、PRACH502の外でパンクチャまたはレートマッチングされる必要がある追加のトーンの数xは0に等しい。
[0079]ただし、5G NR規格は、6GHzを下回る周波数帯域について15kHz、30kHzおよび60kHzのサブキャリア間隔を有し、6GHzを上回る周波数帯域について60kHzおよび120kHzのサブキャリア間隔を有するフレーム構造を伴って提案された。
[0080]本開示では、UE(たとえば、UE402)および基地局(たとえば、基地局404)は、5G NR規格のために提案された新しいフレーム構造を前提として、これらのPRACHフォーマットのためのRACHプロシージャを実装するように与えられる。本開示にとって有意性があることは、新しいフレーム構造を前提として、UE402が、他のULおよびDLチャネルに干渉することなしに、上記で説明されたPRACHフォーマットに従ってPRACHを与えるように構成されることである。
[0081]特に、PRACHのRACHトーンの信号特性がPUCCHおよびPUSCHの信号特性とは著しく異なり得るとき、PRACHとPUCCHまたはPUSCHのいずれかとの間の直交性を与えることは困難であり得る。したがって、概して、衝突を防ぐために周波数および/または時間間隔が与えられる。しかしながら、新しい5G NRフレーム構造は、ますます密になる持続時間に大きいサブキャリア間隔(たとえば、60kHz、120kHz)が詰め込まれたフレーム構造を定義し得る。したがって、UE402および基地局404は、PRACHとPUSCHとPUCCHとの間の衝突および容認できないほど高い干渉を防ぐ技法を実装する。
[0082]図6は、周波数領域に沿った2つの連続するRBのUL帯域幅内に与えられた例示的なPRACH602の図600を示す。上記で説明されたように、各RBは、周波数領域中で12個のサブキャリアにわたって延在する。したがって、PRACH602のUL帯域幅は、24個のサブキャリアによって与えられる。この例では、サブキャリア間隔は60kHzに等しい。したがって、PRACH602のUL帯域幅は1.44MHzに等しい。
[0083]図6に示されているように、PRACH602は、2つのRB中の24個のサブキャリアの各々についてRACHトーン604のうちの48個が与えられるような、RACHトーン604のリソース割振りを有する。より詳細には、RACHトーン604のRACHトーン間隔は1.25kHzである。しかしながら、PRACH602に割り振られたRACHトーン604のサブセットのみが実際にRACHプリアンブルシーケンス606を含む。この例では、RACHプリアンブルシーケンスは、RACHトーン604のうちの839個によって与えられる。
[0084]図6に示されている例では、UE402は、RACHプリアンブルシーケンス606を基地局404に送信するためにRACHプリアンブルシーケンス606を生成するように構成される。RACHプリアンブルシーケンス606は、上記で説明された上述の帯域幅とサブキャリアとをもつPRACH602を与えるフレーム構造を前提として、基地局404とUE402との間のUL同期のために与えられる。最高周波数におけるガードトーン610の割振りと最低周波数におけるガードトーン612の割振りとは、RACHプリアンブルシーケンス606を含まない。これは、RACHプリアンブルシーケンス606と他のULチャネル中の隣接するサブキャリアとの間の干渉を低減するのを助ける。
[0085]概して、RACHプリアンブルシーケンス606と隣接するサブキャリアとの間の干渉は、ガードトーン610によって与えられた周波数間隔とガードトーン612によって与えられた周波数間隔とが各々1つのサブキャリアのサブキャリア間隔に等しいとき、許容可能に小さくなり得る。ガードトーン610、612の総数は、PRACHが2つのRBに正確に収まるように与えられた。したがって、PRACH602に割り振られたRACHトーン604の決定された数は、12*NRB*Ss/Stにほぼ等しく、ここで、NRBは、PRACH602に割り振られたRBの数であり、データトーンサブキャリア間隔はSsであり、RACHトーン間隔はStである。この例では、NRB=2であり、Ss=60kHzであり、St=1.25kHzである。したがって、1152個のRACHトーン604がPRACH602中で与えられる。
[0086]RACHトーン604が1.25kHzのRACHトーン間隔を有するので、RACHトーン604は1.44MHzのUL帯域幅を有する、上述のように、RACHプリアンブルシーケンス606のシーケンス長は839に等しく、これは、UE402が、RACHプロセス中に、64個の直交Zadoff-Chuシーケンスから選択し、RACHプリアンブルシーケンス606を生成することができるように必要とされるRACHトーンの数である。しかしながら、上記のPRACHフォーマットは、フレームのフレーム構造が60kHzのサブキャリア間隔を有することを前提とする。さらに、60kHzの1つのサブキャリアは、1.25kHzのトーン間隔をもつRACHトーン504のうちの48個に等しい。各々について1.25kHzトーン間隔の48個のRACHトーンがあることを前提とすれば、25個のガードトーンは60kHz間隔の.52のサブキャリア間隔に等しい。したがって、ガードバンドごとに.26のサブキャリア間隔のみがあり、これは、十分なガードバンド保護でないことがある。
[0087]この場合、PRACH602中のRACHトーン604のうちの313個がガードトーン610、612として与えられる。これは、両方のガードバンドが組み合わせられたとき、約6.52個の総サブキャリアの間隔に対応する(すなわち、ガードトーン610、612の各々について約3.51個のサブキャリア)。したがって、UE402は、RACHプリアンブルシーケンス606と他のチャネルとの間の干渉が、たとえばLTEのための、許容できるレベル内に維持されるように、選択されたRACHプリアンブルシーケンス606をもつRACHプリアンブルシーケンス506を生成し得る。アップリンクデータは、ガードトーン610、612が十分なガード間隔を与えるので、PRACH602だけによってパンクチャまたはレートマッチングされ得ることに留意されたい。したがって、PRACH602の外でパンクチャまたはレートマッチングされる必要がある追加のトーンの数xは0に等しい。
[0088]図7は、周波数領域に沿った2つの連続するRBのUL帯域幅内に、図5に関して上記で説明されたPRACH502と同じシーケンス長および同じ数の割り振られたトーンを与えられた例示的なPRACH702の図700を示す。RBは、周波数領域中の12個のサブキャリアを含む。この例では、サブキャリアのサブキャリア間隔は、図6と同様に、60kHzである。したがって、PRACH702は1.08MHzのUL帯域幅を有し、2つのRBは1.44MHzのUL帯域幅を有する。したがって、PRACH702のUL帯域幅は、2つのRBの24個のサブキャリアのうちの18個のサブキャリア間隔内に与えられる。この例では、PRACH702は、サブキャリア間隔の任意の値において図5の場合と同様の様式で与えられるように固定される。
[0089]図7は、2つのRBの各々の9つのサブキャリア内の例示的なPRACH702を示し、したがって、2つのRBによって与えられる、合計24個のサブキャリアのうちの18個のサブキャリア内に与えられる。この例では、サブキャリア間隔は60kHzに等しい。したがって、PRACH702のUL帯域幅は1.44MHzに等しい。
[0090]図7に示されているように、PRACH702は、2つのRBの18個のサブキャリアの各々についてRACHトーン704のうちの48個が与えられるような、RACHトーン704のリソース割振りを有する。より詳細には、RACHトーン704のRACHトーン間隔は1.25kHzである。しかしながら、PRACH702に割り振られたRACHトーン704のサブセットのみが実際にRACHプリアンブルシーケンス706を含む。この例では、RACHプリアンブルシーケンスは、RACHトーン704のうちの839個によって与えられる。
[0091]UE402は、RACHプリアンブルシーケンス706を基地局404に送信するように、RACHプリアンブルシーケンス706を生成するように構成される。RACHプリアンブルシーケンス706は、上述の帯域幅をもつおよび上記で説明されたサブキャリアをもつRBを与えるフレーム構造を前提として、基地局404とUE402との間のUL同期のために与えられる。PRACH702の最高周波数におけるガードトーン710の割振りとPRACH702の最低周波数におけるガードトーン712の割振りとは、図5のように、25個のガードトーン710、712を与える。しかしながら、60kHzのサブキャリア間隔と1.25kHzのRACHトーン間隔とを前提とすれば、単一のサブキャリアは48個のRACHトーンである。したがって、96個のRACHトーンが必要とされる。
[0092]ガードトーン710、712の総数は、PRACHが2つのRBに正確に収まるように与えられなかった。したがって、PRACH702に割り振られたRACHトーン704の決定された数は、12*NRB*Ss/Stにほぼ等しく、ここで、NRBは、PRACH702内のRBの数であり、サブキャリア間隔はSsであり、RACHトーン間隔はStである。この例では、NRB=1.5であり、Ss=60kHzであり、St=1.25kHzである。したがって、864個のRACHトーン704がPRACH702中で与えられる。
[0093]上述のように、RACHプリアンブルシーケンス706のシーケンス長は839に等しく、これは、UE402が、RACHプロセス中に、64個の直交Zadoff-Chuシーケンスから選択し、RACHプリアンブルシーケンス706を生成することができるように必要とされるRACHトーンの数である。しかしながら、上記のPRACHフォーマットは、フレームのフレーム構造が図5の実装形態のようなサブキャリア間隔を有することを前提とする。
[0094]この場合、アップリンクデータは、PRACH702と、PRACH702の最高および最低周波数に直接隣接する48個の追加のRACHトーンを用いてパンクチャされる。したがって、アップリンクデータをパンクチャまたはレートマッチングし、アップリンクデータとPRACH702との間の十分な間隔を与えるために、追加のRACHトーンの総数x=96が使用される。したがって、アップリンクデータは、合計20個のサブキャリア、PRACHの18個のサブキャリア+2つの追加のサブキャリアによってレートマッチングまたはパンクチャされる。したがって、アップリンクデータの合計960(すなわち、864+96)個のRACHトーン間隔がレートマッチングまたはパンクチャされる。一層大きいサブキャリア間隔の場合、より大きいサブキャリア間隔をカバーするためにより多くのRACHトーンが必要とされるので、追加のRACHトーンの数xは96よりも大きくなるであろう。
[0095]図8は、ワイヤレス通信の方法のフローチャート800である。本方法は、UE(たとえば、UE104、350、402、装置1002/1002’、装置1202/1202’)によって実行され得る。802において、UEは、RACHリソースに割り振るべきRACHトーンの数を示す情報を基地局から受信する。一態様では、情報は、PSS、SSS、PBCH、PBCHのDMRS、RMSI、OSI、PDCCH、RRCメッセージ、ハンドオーバメッセージ、またはSIBのうちの1つまたは複数を通して受信され得る。
[0096]804において、UEは、ランダムアクセスチャネル(RACH)サブキャリア間隔とデータトーンサブキャリア間隔とに基づいて、RACHプリアンブルシーケンスの送信のために割り振られたRACHトーンの数を決定し得る。RACHプリアンブルシーケンスのためのRACHプリアンブルシーケンス長(たとえば、839)は、様々なサブキャリア間隔について固定であり得る。一態様では、RACHトーンの決定された数は、RACHサブキャリア間隔がS1であるとき、N1であり、RACHサブキャリア間隔がS2であるとき、N2であり、ここで、N1>N2であり、S1>S2である。たとえば、S1は60kHzに等しいことがあり、N1は1152に等しいことがあり、S2は15kHzに等しいことがあり、N2は864に等しいことがある。さらに、RACHリソースは、RACHプリアンブルシーケンスとRACHガードトーンとを含み得る。RACHガードトーンは、RACHサブキャリア間隔がS1であるとき、RACHリソースのRB内に少なくとも6.5個のサブキャリアを備え、RACHサブキャリア間隔がS2であるとき、RACHリソースのRB内に少なくとも2つのサブキャリアを備える。また、一態様では、データトーンサブキャリア間隔はSsであり、RACHトーン間隔Stであり、ここで、Ss>Stであり、RACHリソースのために割り振られたRACHトーンの決定された数は、12*NRB*Ss/Stにほぼ等しく、ここで、NRBは、割り振られたRACHリソース内のRBの数であり、NRB≦5であり、整数である。RACHリソース内のガードトーンの数は、RACHサブキャリア間隔が増加するにつれて増加し得、ここで、ガードトーンの数は、RACHトーンの決定された数-RACHプリアンブルシーケンス長に等しい。たとえば、1.25kHzのRACHトーン間隔を前提とすれば、15kHzのRACHサブキャリア間隔について25個のRACHガードトーン(すなわち、864-839)が与えられ、60kHzのサブキャリア間隔について313個のRACHガードトーン(すなわち、1152-839)が与えられる。
[0097]806において、UEは、決定された数のRACHトーン内でRACHリソース中のRACHプリアンブルシーケンスを送信し得る。このようにして、UEおよび基地局は、RACHプリアンブルシーケンスを用いて同期され得る。追加のガードトーンを与えるために、UEは、808において、割り振られたRACHリソースの周りのアップリンクデータをレートマッチングし得る。レートマッチングされたアップリンクデータは、RACHプリアンブルシーケンスと同時に送信され得る。別の態様では、UEは、810において、RACHプリアンブルシーケンスとRACHガードトーンとを含むRACHリソースを用いてアップリンクデータをパンクチャし得る。パンクチャされたアップリンクデータは、RACHプリアンブルシーケンスと同時に送信され得る。
[0098]図9は、ワイヤレス通信の方法のフローチャート900である。本方法は、UE(たとえば、UE104、350、402、装置1002/1002’、装置1202/1202’)によって実行され得る。
[0099]902において、UEは、902において、RACHリソースのRB内のサブキャリア間隔に基づいて、およびRBの各サブキャリア内のRACHトーン間隔に基づいて、RACHリソースとアップリンクデータとに関連するレートマッチングまたはパンクチャリングのためのRACHトーンの数を決定し得る。レートマッチングまたはパンクチャリングのためのRACHトーンの数は、RACHリソースのRACHトーンの数+x個の追加のRACHトーンに等しく、ここで、第1のサブキャリア間隔S1の場合にx≧96であり、第2のサブキャリア間隔S2の場合にx=0であり、ここで、S1(たとえば、60kHz)>S2(たとえば、15kHz)である。一態様では、レートマッチングまたはパンクチャリングのためのRACHトーンの決定された数は、第1のサブキャリア間隔S1の場合に960であり、第2のサブキャリア間隔S2の場合に864である。別の態様では、RACHトーン間隔は1.25kHzまたは5kHzのうちの1つであり、サブキャリア間隔は15kHzまたは60kHzのうちの1つである。RACHプリアンブルシーケンスのためのRACHプリアンブルシーケンス長(たとえば、839)は、様々なサブキャリア間隔について固定である。
[00100]904において、UEは、RACHリソース中のRACHプリアンブルシーケンスを送信する。
[00101]図10は、例示的な装置1002中の異なる手段/構成要素間のデータフローを示す概念データフロー図1000である。本装置は、基地局1050(たとえば、基地局102、180、310、404、1250)と通信しているUE(たとえば、UE104、350、402、装置1002’、装置1202/1202’)であり得る。本装置は、受信構成要素1004、サブキャリア間隔構成要素1006、割振り構成要素1008、レートマッチング構成要素1010、パンクチャリング構成要素1012、RACHプリアンブル構成要素1014、および/または送信構成要素1016を含み得る。
[00102]受信構成要素1004は、RACHリソースに割り振るべきRACHトーンの数を示す情報を基地局1050から受信するように構成され得る。一態様では、情報は、PSS、SSS、PBCH、PBCHのDMRS、RMSI、OSI、PDCCH、RRCメッセージ、ハンドオーバメッセージ、またはSIBのうちの1つまたは複数を通して受信される。受信構成要素1004は、情報をサブキャリア間隔構成要素1006に送るように構成され得る。
[00103]サブキャリア間隔構成要素1006は、基地局1050から受信された情報に少なくとも部分的に基づいてRACHサブキャリア間隔またはデータトーンサブキャリア間隔を決定するように構成され得る。サブキャリア間隔構成要素1006は、RACHサブキャリア間隔および/またはデータトーンサブキャリア間隔に関連する情報を割振り構成要素1008に送るように構成され得る。
[00104]割振り構成要素1008は、たとえば、図8中の動作804に関してさらに詳細に上記で説明されたように、RACHサブキャリア間隔とデータトーンサブキャリア間隔とに基づいて、RACHプリアンブルシーケンスの送信のために割り振られたRACHトーンの数を決定するように構成され得る。割振り構成要素1008は、RACHリソースに割り振られたRACHトーンの数に関連する情報を、レートマッチング構成要素1010、パンクチャリング構成要素1012、および/またはRACHプリアンブル構成要素1014のうちの1つまたは複数に送るように構成され得る。
[00105]レートマッチング構成要素1010は、追加のガードトーンを与えるために、割り振られたRACHリソースの周りのアップリンクデータをレートマッチングするように構成され得る。レートマッチング構成要素1010は、レートマッチングに関連する情報をRACHプリアンブル構成要素1014に送るように構成され得る。
[00106]パンクチャリング構成要素1012は、RACHプリアンブルシーケンスとRACHガードトーンとを含むRACHリソースを用いてアップリンクデータをパンクチャするように構成され得る。パンクチャリング構成要素1012は、情報および/またはRACHリソースを伴うパンクチャされたアップリンクデータをRACHプリアンブル構成要素1014に送るように構成され得る。
[00107]RACHプリアンブル構成要素1014は、RACHリソースに割り振られたRACHトーン、レートマッチング情報、および/またはパンクチャリング情報に基づいてRACHプリアンブルシーケンスを生成するように構成され得る。RACHプリアンブル構成要素1014は、RACHプリアンブルを送信構成要素1016に送るように構成され得る。
[00108]送信構成要素1016は、決定された数のRACHトーン内でRACHリソース中のRACHプリアンブルシーケンスを基地局1050に送信するように構成され得る。
[00109]本装置は、図9の上述のフローチャート中のアルゴリズムのブロックの各々を実行する追加の構成要素を含み得る。したがって、図9の上述のフローチャート中の各ブロックは、1つの構成要素によって実行され得、本装置は、それらの構成要素のうちの1つまたは複数を含み得る。構成要素は、述べられたプロセス/アルゴリズムを行うように特に構成された1つまたは複数のハードウェア構成要素であるか、述べられたプロセス/アルゴリズムを実行するように構成されたプロセッサによって実装されるか、プロセッサによる実装のためにコンピュータ可読媒体内に記憶されるか、またはそれらの何らかの組合せであり得る。
[00110]図11は、処理システム1114を採用する装置1002’のためのハードウェア実装形態の一例を示す図1100である。処理システム1114は、バス1124によって概略的に表される、バスアーキテクチャを用いて実装され得る。バス1124は、処理システム1114の特定の適用例および全体的な設計制約に応じて、任意の数の相互接続バスおよびブリッジを含み得る。バス1124は、プロセッサ1104によって表される1つまたは複数のプロセッサおよび/またはハードウェア構成要素と、構成要素1004、1006、1008、1010、1012、1014、1016と、コンピュータ可読媒体/メモリ1106とを含む様々な回路を互いにリンクする。バス1124はまた、タイミングソース、周辺機器、電圧調節器、および電力管理回路など、様々な他の回路をリンクし得るが、これらの回路は当技術分野においてよく知られており、したがって、これ以上説明されない。
[00111]処理システム1114はトランシーバ1110に結合され得る。トランシーバ1110は1つまたは複数のアンテナ1120に結合される。トランシーバ1110は、伝送媒体を介して様々な他の装置と通信するための手段を与える。トランシーバ1110は、1つまたは複数のアンテナ1120から信号を受信し、受信された信号から情報を抽出し、抽出された情報を処理システム1114、特に受信構成要素1004に与える。さらに、トランシーバ1110は、処理システム1114、特に送信構成要素1016から情報を受信し、受信された情報に基づいて、1つまたは複数のアンテナ1120に適用されるべき信号を生成する。処理システム1114は、コンピュータ可読媒体/メモリ1106に結合されたプロセッサ1104を含む。プロセッサ1104は、コンピュータ可読媒体/メモリ1106に記憶されたソフトウェアの実行を含む一般的な処理を担当する。ソフトウェアは、プロセッサ1104によって実行されたとき、処理システム1114に、特定の装置のための上記で説明された様々な機能を実行させる。コンピュータ可読媒体/メモリ1106はまた、ソフトウェアを実行するときにプロセッサ1104によって操作されるデータを記憶するために使用され得る。処理システム1114は、構成要素1004、1006、1008、1010、1012、1014、1016のうちの少なくとも1つをさらに含む。それらの構成要素は、プロセッサ1104中で動作し、コンピュータ可読媒体/メモリ1106中に常駐する/記憶されたソフトウェア構成要素であるか、プロセッサ1104に結合された1つまたは複数のハードウェア構成要素であるか、またはそれらの何らかの組合せであり得る。処理システム1114は、UE350の構成要素であり得、メモリ360、および/またはTXプロセッサ368と、RXプロセッサ356と、コントローラ/プロセッサ359とのうちの少なくとも1つを含み得る。
[00112]一構成では、ワイヤレス通信のための装置1002/1002’は、RACHリソースに割り振るべきRACHトーンの数を示す情報を基地局1050から受信するための手段を含み得る。一態様では、情報は、PSS、SSS、PBCH、PBCHのDMRS、RMSI、OSI、PDCCH、RRCメッセージ、ハンドオーバメッセージ、またはSIBのうちの1つまたは複数を通して受信される。いくつかの他の構成では、ワイヤレス通信のための装置1002/1002’は、基地局から受信された情報に少なくとも部分的に基づいてRACHサブキャリア間隔および/またはデータトーンサブキャリア間隔を決定するための手段を含み得る。いくつかの他の構成では、ワイヤレス通信のための装置1002/1002’は、たとえば、図8中の動作804に関してさらに詳細に上記で説明されたように、RACHサブキャリア間隔とデータトーンサブキャリア間隔とに基づいて、RACHプリアンブルシーケンスの送信のために割り振られたRACHトーンの数を決定するための手段を含み得る。いくつかの他の構成では、ワイヤレス通信のための装置1002/1002’は、追加のガードトーンを与えるために、割り振られたRACHリソースの周りのアップリンクデータをレートマッチングするための手段を含み得る。いくつかの他の構成では、ワイヤレス通信のための装置1002/1002’は、RACHプリアンブルシーケンスとRACHガードトーンとを含むRACHリソースを用いてアップリンクデータをパンクチャするための手段を含み得る。いくつかの他の構成では、ワイヤレス通信のための装置1002/1002’は、RACHリソースに割り振られたRACHトーン、レートマッチング情報、および/またはパンクチャリング情報に基づいてRACHプリアンブルシーケンスを生成するための手段を含み得る。いくつかの他の構成では、ワイヤレス通信のための装置1002/1002’は、決定された数のRACHトーン内でRACHリソース中のRACHプリアンブルシーケンスを基地局に送信するための手段を含み得る。上述の手段は、上述の手段によって具陳された機能を実行するように構成された、装置1002、および/または装置1002’の処理システム1114の上述の構成要素のうちの1つまたは複数であり得る。上記で説明されたように、処理システム1114は、TXプロセッサ368と、RXプロセッサ356と、コントローラ/プロセッサ359とを含み得る。したがって、一構成では、上述の手段は、上述の手段によって具陳された機能を実行するように構成された、TXプロセッサ368、RXプロセッサ356、およびコントローラ/プロセッサ359であり得る。
[00113]図12は、例示的な装置1202中の異なる手段/構成要素間のデータフローを示す概念データフロー図1200である。本装置は、基地局1250(たとえば、基地局102、180、310、404、1050)と通信しているUE(たとえば、UE104、350、402、装置1002’、装置1202/1202’)であり得る。本装置は、受信構成要素1204、サブキャリア間隔構成要素1206、割振り構成要素1208、RACHプリアンブル構成要素1210、および/または送信構成要素1212を含み得る。
[00114]受信構成要素1204は、RACHリソースに割り振るべきRACHトーンの数を示す情報を基地局1050から受信するように構成され得る。一態様では、情報は、PSS、SSS、PBCH、PBCHのDMRS、RMSI、OSI、PDCCH、RRCメッセージ、ハンドオーバメッセージ、またはSIBのうちの1つまたは複数を通して受信される。受信構成要素1204は、情報をサブキャリア間隔構成要素1206に送るように構成され得る。
[00115]サブキャリア間隔構成要素1206は、基地局1250から受信された情報に少なくとも部分的に基づいてサブキャリア間隔を決定するように構成され得る。サブキャリア間隔構成要素1206は、サブキャリア間隔に関連する情報を割振り構成要素1208に送るように構成され得る。
[00116]割振り構成要素1208は、たとえば、図9中の動作902に関してさらに詳細に上記で説明されたように、RACHリソースのRB内のサブキャリア間隔に基づいて、およびRBの各サブキャリア内のRACHトーン間隔に基づいて、RACHリソースに割り振るべきRACHトーンの数を決定するように構成され得る。割振り構成要素1208は、RACHリソースに割り振られたRACHトーンの数に関連する情報をRACHプリアンブル構成要素1210に送るように構成され得る。
[00117]RACHプリアンブル構成要素1210は、RACHリソースに割り振られたRACHトーン、レートマッチング情報、および/またはパンクチャリング情報に基づいてRACHプリアンブルシーケンスを生成するように構成され得る。RACHプリアンブル構成要素1210は、RACHプリアンブルを送信構成要素1212に送るように構成され得る。
[00118]送信構成要素1212は、決定された数のRACHトーン内でRACHリソース中のRACHプリアンブルシーケンスを基地局1250に送信するように構成され得る。
[00119]本装置は、図9の上述のフローチャート中のアルゴリズムのブロックの各々を実行する追加の構成要素を含み得る。したがって、図9の上述のフローチャート中の各ブロックは、1つの構成要素によって実行され得、本装置は、それらの構成要素のうちの1つまたは複数を含み得る。構成要素は、述べられたプロセス/アルゴリズムを行うように特に構成された1つまたは複数のハードウェア構成要素であるか、述べられたプロセス/アルゴリズムを実行するように構成されたプロセッサによって実装されるか、プロセッサによる実装のためにコンピュータ可読媒体内に記憶されるか、またはそれらの何らかの組合せであり得る。
[00120]図13は、処理システム1314を採用する装置1202’のためのハードウェア実装形態の一例を示す図1300である。処理システム1314は、バス1324によって概略的に表される、バスアーキテクチャを用いて実装され得る。バス1324は、処理システム1314の特定の適用例および全体的な設計制約に応じて、任意の数の相互接続バスおよびブリッジを含み得る。バス1324は、プロセッサ1304によって表される1つまたは複数のプロセッサおよび/またはハードウェア構成要素と、構成要素1204、1206、1208、1210、1212と、コンピュータ可読媒体/メモリ1306とを含む様々な回路を互いにリンクする。バス1324はまた、タイミングソース、周辺機器、電圧調節器、および電力管理回路など、様々な他の回路をリンクし得るが、これらの回路は当技術分野においてよく知られており、したがって、これ以上説明されない。
[00121]処理システム1314はトランシーバ1310に結合され得る。トランシーバ1310は1つまたは複数のアンテナ1320に結合される。トランシーバ1310は、伝送媒体を介して様々な他の装置と通信するための手段を与える。トランシーバ1310は、1つまたは複数のアンテナ1320から信号を受信し、受信された信号から情報を抽出し、抽出された情報を処理システム1314、特に受信構成要素1204に与える。さらに、トランシーバ1310は、処理システム1314、特に送信構成要素1212から情報を受信し、受信された情報に基づいて、1つまたは複数のアンテナ1320に適用されるべき信号を生成する。処理システム1314は、コンピュータ可読媒体/メモリ1306に結合されたプロセッサ1304を含む。プロセッサ1304は、コンピュータ可読媒体/メモリ1306に記憶されたソフトウェアの実行を含む一般的な処理を担当する。ソフトウェアは、プロセッサ1304によって実行されたとき、処理システム1314に、特定の装置のための上記で説明された様々な機能を実行させる。コンピュータ可読媒体/メモリ1306はまた、ソフトウェアを実行するときにプロセッサ1304によって操作されるデータを記憶するために使用され得る。処理システム1314は、構成要素1204、1206、1208、1210、1212のうちの少なくとも1つをさらに含む。それらの構成要素は、プロセッサ1304中で動作し、コンピュータ可読媒体/メモリ1306中に常駐する/記憶されたソフトウェア構成要素であるか、プロセッサ1304に結合された1つまたは複数のハードウェア構成要素であるか、またはそれらの何らかの組合せであり得る。処理システム1314は、UE350の構成要素であり得、メモリ360、および/またはTXプロセッサ368と、RXプロセッサ356と、コントローラ/プロセッサ359とのうちの少なくとも1つを含み得る。
[00122]一構成では、ワイヤレス通信のための装置1202/1202’は、RACHリソースに割り振るべきRACHトーンの数を示す情報を基地局1050から受信するための手段を含み得る。一態様では、情報は、PSS、SSS、PBCH、PBCHのDMRS、RMSI、OSI、PDCCH、RRCメッセージ、ハンドオーバメッセージ、またはSIBのうちの1つまたは複数を通して受信される。いくつかの他の構成では、ワイヤレス通信のための装置1202/1202’は、基地局から受信された情報に少なくとも部分的に基づいてサブキャリア間隔を決定するための手段を含み得る。いくつかの他の構成では、ワイヤレス通信のための装置1202/1202’は、たとえば、図9中の動作902に関してさらに詳細に上記で説明されたように、RACHリソースのRB内のサブキャリア間隔に基づいて、およびRBの各サブキャリア内のRACHトーン間隔に基づいて、RACHリソースに割り振るべきRACHトーンの数を決定するための手段を含み得る。いくつかの他の構成では、ワイヤレス通信のための装置1202/1202’は、RACHリソースに割り振られたRACHトーン、レートマッチング情報、および/またはパンクチャリング情報に基づいてRACHプリアンブルシーケンスを生成するための手段を含み得る。いくつかの他の構成では、ワイヤレス通信のための装置1202/1202’は、決定された数のRACHトーン内でRACHリソース中のRACHプリアンブルシーケンスを基地局に送信するための手段を含み得る。上述の手段は、上述の手段によって具陳された機能を実行するように構成された、装置1202、および/または装置1202’の処理システム1314の上述の構成要素のうちの1つまたは複数であり得る。上記で説明されたように、処理システム1314は、TXプロセッサ368と、RXプロセッサ356と、コントローラ/プロセッサ359とを含み得る。したがって、一構成では、上述の手段は、上述の手段によって具陳された機能を実行するように構成された、TXプロセッサ368、RXプロセッサ356、およびコントローラ/プロセッサ359であり得る。
[00123]再び図1~図13のいずれかを参照すると、いくつかの実装形態では、上記で説明されたステップがUE(たとえば、UE104、350、402、装置1002/1002’、装置1202/1202’)の代わりに基地局(たとえば、基地局102、180、310、404、1050、1250)によって実行され得ることに留意されたい。特に、RACHトーン間隔とサブキャリア間隔とを前提としたRACHトーンの数の決定に関して上記でとられたプロシージャは、あらかじめ計算され、基地局(たとえば、基地局102、180、310、404、1050、1250)からUE104/402にテーブル中で特定のPRACH割振りとして与えられ得る。基地局(たとえば、基地局102、180、310、404、1050、1250)は、次いで、単に、そのテーブルをDL情報の一部としてUE(たとえば、UE104、350、402、装置1002/1002’、装置1202/1202’)に与え得、次いで、UE(たとえば、UE104、350、402、装置1002/1002’、装置1202/1202’)は、単に、あらかじめ計算されたテーブルに従って適切なパンクチャリングまたはレートマッチング挙動を実行する。
[00124]開示されるプロセス/フローチャート中のブロックの特定の順序または階層は、例示的な手法の一例であることを理解されたい。設計選好に基づいて、プロセス/フローチャート中のブロックの特定の順序または階層は再構成され得ることを理解されたい。さらに、いくつかのブロックは組み合わせられるかまたは省略され得る。添付の方法クレームは、様々なブロックの要素を例示的な順序で提示したものであり、提示された特定の順序または階層に限定されるものではない。
[00125]以上の説明は、当業者が本明細書で説明された様々な態様を実施できるようにするために与えられた。これらの態様への様々な変更は当業者には容易に明らかであり、本明細書で定義された一般原理は他の態様に適用され得る。したがって、特許請求の範囲は、本明細書で示された態様に限定されるものではなく、クレーム文言に矛盾しない全範囲を与えられるべきであり、ここにおいて、単数形の要素への言及は、そのように明記されていない限り、「唯一無二の」を意味するものではなく、「1つまたは複数の」を意味するものである。「例示的」という単語は、本明細書では「例、事例、または例示の働きをすること」を意味するために使用される。「例示的」として本明細書で説明されたいかなる態様も、必ずしも他の態様よりも好適または有利であると解釈されるべきであるとは限らない。別段に明記されていない限り、「いくつか(some)」という用語は1つまたは複数を指す。「A、B、またはCのうちの少なくとも1つ」、「A、B、またはCのうちの1つまたは複数」、「A、B、およびCのうちの少なくとも1つ」、「A、B、およびCのうちの1つまたは複数」、および「A、B、C、またはそれらの任意の組合せ」などの組合せは、A、B、および/またはCの任意の組合せを含み、複数のA、複数のB、または複数のCを含み得る。詳細には、「A、B、またはCのうちの少なくとも1つ」、「A、B、またはCのうちの1つまたは複数」、「A、B、およびCのうちの少なくとも1つ」、「A、B、およびCのうちの1つまたは複数」、および「A、B、C、またはそれらの任意の組合せ」などの組合せは、Aのみ、Bのみ、Cのみ、AおよびB、AおよびC、BおよびC、またはAおよびBおよびCであり得、ここで、いかなるそのような組合せも、A、B、またはCのうちの1つまたは複数のメンバーを含んでいることがある。当業者に知られている、または後に知られることになる、本開示全体にわたって説明された様々な態様の要素のすべての構造的および機能的均等物は、参照により本明細書に明確に組み込まれ、特許請求の範囲に包含されるものである。その上、本明細書で開示されるいかなることも、そのような開示が特許請求の範囲に明示的に具陳されているかどうかにかかわらず、公に供するものではない。「モジュール」、「機構」、「要素」、「デバイス」などという単語は、「手段」という単語の代用でないことがある。したがって、いかなるクレーム要素も、その要素が「ための手段」という句を使用して明確に具陳されていない限り、ミーンズプラスファンクションとして解釈されるべきではない。
以下に本願の出願当初の特許請求の範囲に記載された発明を付記する。
[C1]
ユーザ機器(UE)のワイヤレス通信の方法であって、
ランダムアクセスチャネル(RACH)サブキャリア間隔とデータトーンサブキャリア間隔とに基づいて、RACHプリアンブルシーケンスの送信のために割り振られたRACHトーンの数を決定することと、
前記決定された数のRACHトーン内でRACHリソース中の前記RACHプリアンブルシーケンスを送信することと
を備える、方法。
[C2]
前記RACHリソースが前記RACHプリアンブルシーケンスとRACHガードトーンとを含む、C1に記載の方法。
[C3]
前記RACHガードトーンは、前記サブキャリア間隔がS1であるとき、前記RACHリソースのRB内に少なくとも6.5個のサブキャリアを備え、前記サブキャリア間隔がS2であるとき、前記RACHリソースの前記RB内に少なくとも2つのサブキャリアを備える、C2に記載の方法。
[C4]
RACHトーンの前記決定された数は、前記RACHサブキャリア間隔がS1であるとき、N1であり、前記RACHサブキャリア間隔がS2であるとき、N2であり、ここで、N1>N2であり、S1>S2である、C1に記載の方法。
[C5]
前記データトーンサブキャリア間隔がSsであり、RACHトーン間隔Stであり、ここで、Ss>Stであり、前記RACHリソースのために割り振られたRACHトーンの前記決定された数が、12*NRB*Ss/Stにほぼ等しく、ここで、NRBが、前記割り振られたRACHリソース内のRBの数であり、NRB≦5であり、整数である、C1に記載の方法。
[C6]
前記割り振られたRACHリソースの周りのアップリンクデータをレートマッチングすることをさらに備え、ここにおいて、前記レートマッチングされたアップリンクデータが前記RACHプリアンブルシーケンスと同時に送信される、C1に記載の方法。
[C7]
前記RACHプリアンブルシーケンスとRACHガードトーンとを含む前記RACHリソースを用いてアップリンクデータをパンクチャすることをさらに備え、ここにおいて、前記パンクチャされたアップリンクデータが前記RACHプリアンブルシーケンスと同時に送信される、C1に記載の方法。
[C8]
前記RACHプリアンブルシーケンスのためのRACHプリアンブルシーケンス長が様々なRACHサブキャリア間隔について固定である、C1に記載の方法。
[C9]
前記RACHリソース内のガードトーンの数が、前記RACHサブキャリア間隔が増加するにつれて増加し、ガードトーンの前記数が、RACHトーンの前記決定された数-前記RACHプリアンブルシーケンス長に等しい、C7に記載の方法。
[C10]
前記RACHリソースに割り振るべきRACHトーンの数を示す情報を基地局から受信することをさらに備える、C1に記載の方法。
[C11]
前記情報が、1次同期信号(PSS)、2次同期信号(SSS)、物理ブロードキャストチャネル(PBCH)、前記PBCHの復調基準信号(DMRS)、残存最小システム情報(RMSI)、他のシステム情報(OSI)、物理ダウンリンク制御チャネル(PDCCH)、無線リソース制御(RRC)メッセージ、ハンドオーバメッセージ、またはシステム情報ブロック(SIB)のうちの1つまたは複数を通して受信される、C10に記載の方法。
[C12]
ユーザ機器(UE)のワイヤレス通信の方法であって、
ランダムアクセスチャネル(RACH)リソースのリソースブロック(RB)内のサブキャリア間隔に基づいて、および前記RBの各サブキャリア内のRACHトーン間隔に基づいて、前記RACHリソースとアップリンクデータとに関連するレートマッチングまたはパンクチャリングのためのRACHトーンの数を決定することと、レートマッチングまたはパンクチャリングのためのRACHトーンの前記数が、前記RACHリソースのRACHトーンの数+x個の追加のRACHトーンに等しく、ここで、第1のサブキャリア間隔S1の場合にx≧96であり、第2のサブキャリア間隔S2の場合にx=0であり、ここで、S1>S2である、
前記RACHリソース中のRACHプリアンブルシーケンスを送信することと
を備える、方法。
[C13]
レートマッチングまたはパンクチャリングのためのRACHトーンの前記決定された数が、前記第1のサブキャリア間隔S1の場合に960であり、前記第2のサブキャリア間隔S2の場合に864である、C12に記載の方法。
[C14]
前記RACHトーン間隔が1.25kHzまたは5kHzのうちの1つであり、前記サブキャリア間隔が15kHzまたは60kHzのうちの1つである、C12に記載の方法。
[C15]
前記RACHプリアンブルシーケンスのためのRACHプリアンブルシーケンス長が様々なRACHサブキャリア間隔について固定である、C12に記載の方法。
[C16]
ワイヤレス通信のための装置であって、
ランダムアクセスチャネル(RACH)サブキャリア間隔とデータトーンサブキャリア間隔とに基づいて、RACHプリアンブルシーケンスの送信のために割り振られたRACHトーンの数を決定するための手段と、
前記決定された数のRACHトーン内でRACHリソース中の前記RACHプリアンブルシーケンスを送信するための手段と
を備える、装置。
[C17]
前記RACHリソースが前記RACHプリアンブルシーケンスとRACHガードトーンとを含む、C16に記載の装置。
[C18]
前記RACHガードトーンは、前記RACHサブキャリア間隔がS1であるとき、前記RACHリソースのRB内に少なくとも6.5個のサブキャリアを備え、前記RACHサブキャリア間隔がS2であるとき、前記RACHリソースの前記RB内に少なくとも2つのサブキャリアを備える、C17に記載の装置。
[C19]
RACHトーンの前記決定された数は、前記RACHサブキャリア間隔がS1であるとき、N1であり、前記RACHサブキャリア間隔がS2であるとき、N2であり、ここで、N1>N2であり、S1>S2である、C16に記載の装置。
[C20]
前記データトーンサブキャリア間隔がSsであり、RACHトーン間隔Stであり、ここで、Ss>Stであり、前記RACHリソースのために割り振られたRACHトーンの前記決定された数が、12*NRB*Ss/Stにほぼ等しく、ここで、NRBが、前記割り振られたRACHリソース内のRBの数であり、NRB≦5であり、整数である、C16に記載の装置。
[C21]
前記割り振られたRACHリソースの周りのアップリンクデータをレートマッチングすることをさらに備え、ここにおいて、前記レートマッチングされたアップリンクデータが前記RACHプリアンブルシーケンスと同時に送信される、C16に記載の装置。
[C22]
前記RACHプリアンブルシーケンスとRACHガードトーンとを含む前記RACHリソースを用いてアップリンクデータをパンクチャすることをさらに備え、ここにおいて、前記パンクチャされたアップリンクデータが前記RACHプリアンブルシーケンスと同時に送信される、C16に記載の装置。
[C23]
前記RACHプリアンブルシーケンスのためのRACHプリアンブルシーケンス長が様々なRACHサブキャリア間隔について固定である、C16に記載の装置。
[C24]
前記RACHリソース内のガードトーンの数が、前記RACHサブキャリア間隔が増加するにつれて増加し、ガードトーンの前記数が、RACHトーンの前記決定された数-前記RACHプリアンブルシーケンス長に等しい、C23に記載の装置。
[C25]
前記RACHリソースに割り振るべきRACHトーンの数を示す情報を基地局から受信することをさらに備える、C16に記載の装置。
[C26]
前記情報が、1次同期信号(PSS)、2次同期信号(SSS)、物理ブロードキャストチャネル(PBCH)、前記PBCHの復調基準信号(DMRS)、残存最小システム情報(RMSI)、他のシステム情報(OSI)、物理ダウンリンク制御チャネル(PDCCH)、無線リソース制御(RRC)メッセージ、ハンドオーバメッセージ、またはシステム情報ブロック(SIB)のうちの1つまたは複数を通して受信される、C25に記載の装置。
[C27]
ワイヤレス通信のための装置であって、
メモリと、
前記メモリに結合された少なくとも1つのプロセッサと
を備え、前記少なくとも1つのプロセッサが、
ランダムアクセスチャネル(RACH)サブキャリア間隔とデータトーンサブキャリア間隔とに基づいて、RACHプリアンブルシーケンスの送信のために割り振られたRACHトーンの数を決定することと、
前記決定された数のRACHトーン内でRACHリソース中の前記RACHプリアンブルシーケンスを送信することと
を行うように構成された、装置。
[C28]
前記RACHリソースが前記RACHプリアンブルシーケンスとRACHガードトーンとを含む、C27に記載の装置。
[C29]
前記RACHガードトーンは、前記RACHサブキャリア間隔がS1であるとき、前記RACHリソースのRB内に少なくとも6.5個のサブキャリアを備え、前記RACHサブキャリア間隔がS2であるとき、前記RACHリソースの前記RB内に少なくとも2つのサブキャリアを備える、C28に記載の装置。
[C30]
RACHトーンの前記決定された数は、前記RACHサブキャリア間隔がS1であるとき、N1であり、前記RACHサブキャリア間隔がS2であるとき、N2であり、ここで、N1>N2であり、S1>S2である、C27に記載の装置。
[C31]
前記データトーンサブキャリア間隔がSsであり、RACHトーン間隔Stであり、ここで、Ss>Stであり、前記RACHリソースのために割り振られたRACHトーンの前記決定された数が、12*NRB*Ss/Stにほぼ等しく、ここで、NRBが、前記割り振られたRACHリソース内のRBの数であり、NRB≦5であり、整数である、C27に記載の装置。
[C32]
前記割り振られたRACHリソースの周りのアップリンクデータをレートマッチングすることをさらに備え、ここにおいて、前記レートマッチングされたアップリンクデータが前記RACHプリアンブルシーケンスと同時に送信される、C27に記載の装置。
[C33]
前記少なくとも1つのプロセッサおよびメモリが、前記RACHプリアンブルシーケンスとRACHガードトーンとを含む前記RACHリソースを用いてアップリンクデータをパンクチャするようにさらに構成され、ここにおいて、前記パンクチャされたアップリンクデータが前記RACHプリアンブルシーケンスと同時に送信される、C27に記載の装置。
[C34]
前記RACHプリアンブルシーケンスのためのRACHプリアンブルシーケンス長が様々なRACHサブキャリア間隔について固定である、C27に記載の装置。
[C35]
前記RACHリソース内のガードトーンの数が、前記RACHサブキャリア間隔が増加するにつれて増加し、ガードトーンの前記数が、RACHトーンの前記決定された数-前記RACHプリアンブルシーケンス長に等しい、C34に記載の装置。
[C36]
前記少なくとも1つのプロセッサが、前記RACHリソースに割り振るべきRACHトーンの数を示す情報を基地局から受信するようにさらに構成された、C27に記載の装置。
[C37]
前記情報が、1次同期信号(PSS)、2次同期信号(SSS)、物理ブロードキャストチャネル(PBCH)、前記PBCHの復調基準信号(DMRS)、残存最小システム情報(RMSI)、他のシステム情報(OSI)、物理ダウンリンク制御チャネル(PDCCH)、無線リソース制御(RRC)メッセージ、ハンドオーバメッセージ、またはシステム情報ブロック(SIB)のうちの1つまたは複数を通して受信される、C36に記載の装置。
[C38]
ランダムアクセスチャネル(RACH)サブキャリア間隔とデータトーンサブキャリア間隔とに基づいて、RACHプリアンブルシーケンスの送信のために割り振られたRACHトーンの数を決定することと、
前記決定された数のRACHトーン内でRACHリソース中の前記RACHプリアンブルシーケンスを送信することと
を行うためのコードを備える、コンピュータ実行可能コードを記憶するコンピュータ可読媒体(CRM)。
[C39]
前記RACHリソースが前記RACHプリアンブルシーケンスとRACHガードトーンとを含む、C38に記載のCRM。
[C40]
前記RACHガードトーンは、前記RACHサブキャリア間隔がS1であるとき、前記RACHリソースのRB内に少なくとも6.5個のサブキャリアを備え、前記サブキャリア間隔がS2であるとき、前記RACHリソースの前記RB内に少なくとも2つのサブキャリアを備える、C39に記載のCRM。
[C41]
RACHトーンの前記決定された数は、前記RACHサブキャリア間隔がS1であるとき、N1であり、前記RACHサブキャリア間隔がS2であるとき、N2であり、ここで、N1>N2であり、S1>S2である、C38に記載のCRM。
[C42]
前記データトーンサブキャリア間隔がSsであり、RACHトーン間隔Stであり、ここで、Ss>Stであり、前記RACHリソースのために割り振られたRACHトーンの前記決定された数が、12*NRB*Ss/Stにほぼ等しく、ここで、NRBが、前記割り振られたRACHリソース内のRBの数であり、NRB≦5であり、整数である、C37に記載のCRM。
[C43]
前記割り振られたRACHリソースの周りのアップリンクデータをレートマッチングするためのコードをさらに備え、ここにおいて、前記レートマッチングされたアップリンクデータが前記RACHプリアンブルシーケンスと同時に送信される、C37に記載のCRM。
[C44]
前記RACHプリアンブルシーケンスとRACHガードトーンとを含む前記RACHリソースを用いてアップリンクデータをパンクチャするためのコードをさらに備え、ここにおいて、前記パンクチャされたアップリンクデータが前記RACHプリアンブルシーケンスと同時に送信される、C37に記載のCRM。
[C45]
前記RACHプリアンブルシーケンスのためのRACHプリアンブルシーケンス長が様々なRACHサブキャリア間隔について固定である、C37に記載のCRM。
[C46]
前記RACHリソース内のガードトーンの数が、前記RACHサブキャリア間隔が増加するにつれて増加し、ガードトーンの前記数が、RACHトーンの前記決定された数-前記RACHプリアンブルシーケンス長に等しい、C45に記載のCRM。
[C47]
前記RACHリソースに割り振るべきRACHトーンの数を示す情報を基地局から受信するためのコードをさらに備える、C37に記載のCRM。
[C48]
前記情報が、1次同期信号(PSS)、2次同期信号(SSS)、物理ブロードキャストチャネル(PBCH)、前記PBCHの復調基準信号(DMRS)、残存最小システム情報(RMSI)、他のシステム情報(OSI)、物理ダウンリンク制御チャネル(PDCCH)、無線リソース制御(RRC)メッセージ、ハンドオーバメッセージ、またはシステム情報ブロック(SIB)のうちの1つまたは複数を通して受信される、C47に記載のCRM。

Claims (4)

  1. ユーザ機器(UE)のワイヤレス通信の方法であって、
    ランダムアクセスチャネル(RACH)プリアンブルシーケンスとRACHガードトーンを含むRACHリソースのリソースブロック(RB)内のサブキャリア間隔に基づいて、および前記RBの各サブキャリア内のRACHトーン間隔に基づいて、前記RACHリソースとアップリンクデータとに関連するレートマッチングまたはパンクチャリングのためのRACHトーンの数を決定することと、レートマッチングまたはパンクチャリングのためのRACHトーンの前記数が、前記RACHリソースのRACHトーンの数+x個の追加のRACHトーンに等し
    前記RACHリソース中の前記RACHプリアンブルシーケンスを送信することと
    を備える、方法。
  2. レートマッチングまたはパンクチャリングのためのRACHトーンの前記決定された数が、第1のサブキャリア間隔Sの場合に960であり、第2のサブキャリア間隔Sの場合に864である、請求項1に記載の方法。
  3. 前記RACHトーン間隔が1.25kHzまたは5kHzのうちの1つであり、前記サブキャリア間隔が15kHzまたは60kHzのうちの1つである、請求項1に記載の方法。
  4. 前記RACHプリアンブルシーケンスのためのRACHプリアンブルシーケンス長が複数のRACHサブキャリア間隔について固定である、請求項1に記載の方法。
JP2022055413A 2017-10-09 2022-03-30 Nrにおけるprachおよびpusch分離のための異なる方法 Active JP7335997B2 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762570065P 2017-10-09 2017-10-09
US62/570,065 2017-10-09
US16/147,520 US11039469B2 (en) 2017-10-09 2018-09-28 Different methods for PRACH and PUSCH separation in NR
US16/147,520 2018-09-28
PCT/US2018/053769 WO2019074707A1 (en) 2017-10-09 2018-10-01 DIFFERENT METHODS FOR THE SEPARATION OF PRACH AND PUSCH IN NR
JP2020519994A JP2020537410A (ja) 2017-10-09 2018-10-01 Nrにおけるprachおよびpusch分離のための異なる方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020519994A Division JP2020537410A (ja) 2017-10-09 2018-10-01 Nrにおけるprachおよびpusch分離のための異なる方法

Publications (2)

Publication Number Publication Date
JP2022104956A JP2022104956A (ja) 2022-07-12
JP7335997B2 true JP7335997B2 (ja) 2023-08-30

Family

ID=65993635

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020519994A Pending JP2020537410A (ja) 2017-10-09 2018-10-01 Nrにおけるprachおよびpusch分離のための異なる方法
JP2022055413A Active JP7335997B2 (ja) 2017-10-09 2022-03-30 Nrにおけるprachおよびpusch分離のための異なる方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020519994A Pending JP2020537410A (ja) 2017-10-09 2018-10-01 Nrにおけるprachおよびpusch分離のための異なる方法

Country Status (9)

Country Link
US (1) US11039469B2 (ja)
EP (1) EP3695548A1 (ja)
JP (2) JP2020537410A (ja)
KR (1) KR102313328B1 (ja)
CN (1) CN111201740B (ja)
BR (1) BR112020006565A2 (ja)
SG (1) SG11202001866SA (ja)
TW (1) TWI753204B (ja)
WO (1) WO2019074707A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102489733B1 (ko) * 2017-11-17 2023-01-18 삼성전자주식회사 무선 통신 시스템에서 랜덤 억세스 채널을 전송하기 위한 방법 및 장치
US10681691B1 (en) 2019-02-15 2020-06-09 Dish Wireless L.L.C. Coexistence of multiple air interface side-links on a channel
US10750337B1 (en) * 2019-02-15 2020-08-18 Dish Wireless L.L.C. Coexistence of multiple air interface side-links on adjacent channels
WO2020237573A1 (en) * 2019-05-30 2020-12-03 Qualcomm Incorporated Mapping one preamble to multiple physical uplink shared channel resource units for two-step random access procedure
CN114424665B (zh) * 2020-07-17 2024-04-12 北京小米移动软件有限公司 频分复用方法、频分复用装置及存储介质
CN116803192A (zh) * 2021-01-15 2023-09-22 华为技术有限公司 一种随机接入方法及其装置
US11956110B2 (en) * 2021-06-21 2024-04-09 Qualcomm Incorporated Tone reservation for sets of consecutive subcarriers
US11930539B2 (en) * 2021-09-29 2024-03-12 Qualcomm Incorporated Active interference cancellation for random-access channel
CN118451675A (zh) * 2021-12-31 2024-08-06 中兴通讯股份有限公司 确定用于传输的预留子载波的方法和系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017583A1 (en) 2015-07-27 2017-02-02 Telefonaktiebolaget Lm Ericsson (Publ) Nb lte prach design
WO2017031725A1 (en) 2015-08-26 2017-03-02 Panasonic Intellectual Property Corporation Of America Improved random access procedure for unlicensed cells

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101216751B1 (ko) * 2006-02-07 2012-12-28 엘지전자 주식회사 이동 통신 시스템에서 식별자를 이용한 충돌 회피 방법
EP1876730A1 (en) * 2006-07-05 2008-01-09 Koninklijke Philips Electronics N.V. Bandwidth asymmetric communication system
US8457039B2 (en) * 2006-10-24 2013-06-04 Texas Instruments Incorporated Random access channel design with hybrid CDM and FDM multiplexing of access
WO2008156321A2 (en) * 2007-06-19 2008-12-24 Lg Electronics Inc. Enhancement of lte random access procedure
US9357564B2 (en) * 2007-06-19 2016-05-31 Texas Instruments Incorporated Signaling of random access preamble parameters in wireless networks
US8773968B2 (en) * 2007-08-06 2014-07-08 Texas Instruments Incorporated Signaling of random access preamble sequences in wireless networks
US20110159867A1 (en) * 2009-12-24 2011-06-30 Richard Lee-Chee Kuo Method and apparatus to allocate random access channel (rach) resources for carrier aggregation in a wireless communication network
US9025428B2 (en) * 2010-04-14 2015-05-05 Qualcomm Incorporated Allocating and receiving tones for a frame
CN106664170B (zh) * 2014-08-18 2020-09-29 瑞典爱立信有限公司 在蜂窝通信网络中执行随机接入的方法和无线装置
US10050750B2 (en) * 2014-12-09 2018-08-14 Qualcomm Incorporated Training field tone plans for mixed-rate wireless communication networks
US9954633B2 (en) * 2015-06-18 2018-04-24 Nxp Usa, Inc. Apparatus and method of performing a decimation on a signal for pattern detection
US10383151B2 (en) 2015-07-17 2019-08-13 Intel IP Corporation Narrowband-physical random access channel techniques
HUE046686T2 (hu) * 2015-09-28 2020-03-30 Ericsson Telefon Ab L M Véletlen hozzáférésû bekezdõ jelszakasz PA visszatartás minimalizálására
CN108476539B (zh) * 2016-01-29 2022-08-19 成均馆大学校产学协力团 在物联网环境中考虑覆盖等级和子载波间隔配置和/或多频配置的随机接入方法
JP2020510373A (ja) * 2017-03-22 2020-04-02 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてランダムアクセスプリアンブルを送受信する方法及びこのための装置
WO2018203628A1 (ko) * 2017-05-03 2018-11-08 엘지전자 주식회사 임의 접속 채널 신호를 전송하는 방법과 사용자기기, 및 임의 접속 채널 신호를 수신하는 방법 및 기지국
WO2018203696A1 (ko) * 2017-05-04 2018-11-08 엘지전자 주식회사 랜덤 접속 과정을 수행하는 방법 및 이를 위한 장치
CN109150464B (zh) * 2017-06-16 2020-09-29 华为技术有限公司 无线通信方法和无线通信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017583A1 (en) 2015-07-27 2017-02-02 Telefonaktiebolaget Lm Ericsson (Publ) Nb lte prach design
WO2017031725A1 (en) 2015-08-26 2017-03-02 Panasonic Intellectual Property Corporation Of America Improved random access procedure for unlicensed cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ericsson, Alcatel-Lucent, Alcatel-Lucent Shanghai Bell, Nokia, Intel, ZTE, Samsung, LGE,NB LTE - Concept Description L1[online], 3GPP TSG-RAN#69 RP-151397,インターネット<URL:http://www.3gpp.org/ftp/tsg_ran/TSG_RAN/TSGR_69/Docs/RP-151397.zip>,2015年09月08日,pp.1-24

Also Published As

Publication number Publication date
JP2022104956A (ja) 2022-07-12
US20190110313A1 (en) 2019-04-11
EP3695548A1 (en) 2020-08-19
WO2019074707A1 (en) 2019-04-18
BR112020006565A2 (pt) 2020-10-13
CN111201740B (zh) 2022-05-24
TW201924455A (zh) 2019-06-16
US11039469B2 (en) 2021-06-15
KR20200060408A (ko) 2020-05-29
KR102313328B1 (ko) 2021-10-14
TWI753204B (zh) 2022-01-21
JP2020537410A (ja) 2020-12-17
CN111201740A (zh) 2020-05-26
SG11202001866SA (en) 2020-04-29

Similar Documents

Publication Publication Date Title
JP7240396B2 (ja) 早期データ送信のための物理レイヤ拡張
US10819495B2 (en) Time-division duplex frame structure for narrowband communications
JP7225092B2 (ja) 混合ヌメロロジーをサポートするシステムのためのシーケンス生成
CN110495129B (zh) 跨多个用户装备共享单个coreset带宽
JP7335997B2 (ja) Nrにおけるprachおよびpusch分離のための異なる方法
EP3937416B1 (en) Systems and methods to select or transmitting frequency domain patterns for phase tracking reference signals
US11528110B2 (en) Methods and apparatus related to demodulation reference signal design and related signaling
KR102628930B1 (ko) 슬롯내 주파수 홉핑에 대한 지원을 갖는 단일 슬롯 숏 pucch
CN114450911B (zh) 具有减少的开销的解调参考信号
JP7200239B2 (ja) 位相トラッキング基準信号
JP7499275B2 (ja) 2段階rachリソース構成のための基準座標
JP2020505828A (ja) 同じofdmシンボルの異なるサブバンド内への基準信号の配置
US11695530B2 (en) DMRS design for DFT-s-OFDM with increased subcarrier spacing
WO2022000475A1 (en) Supplementary uplink configuration update for serving cell set
WO2022225640A1 (en) Sib pdsch beam clustering for initial access information
WO2022155040A1 (en) Modulation and coding scheme capability for high band wireless communication
EP4179679A1 (en) Multi-slot blind detection limits
CN117157935A (zh) 用于初始接入信息的ssb、coreset、sib信号块

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220428

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230818

R150 Certificate of patent or registration of utility model

Ref document number: 7335997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150