Nothing Special   »   [go: up one dir, main page]

JP7320790B2 - 人工毛髪用繊維、及びその製造方法、並びに人工毛髪 - Google Patents

人工毛髪用繊維、及びその製造方法、並びに人工毛髪 Download PDF

Info

Publication number
JP7320790B2
JP7320790B2 JP2020532446A JP2020532446A JP7320790B2 JP 7320790 B2 JP7320790 B2 JP 7320790B2 JP 2020532446 A JP2020532446 A JP 2020532446A JP 2020532446 A JP2020532446 A JP 2020532446A JP 7320790 B2 JP7320790 B2 JP 7320790B2
Authority
JP
Japan
Prior art keywords
amino acid
fiber
seq
fibroin
artificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020532446A
Other languages
English (en)
Other versions
JPWO2020022395A1 (ja
Inventor
真人 松尾
秀人 石井
佑之介 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spiber Inc
Original Assignee
Spiber Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spiber Inc filed Critical Spiber Inc
Publication of JPWO2020022395A1 publication Critical patent/JPWO2020022395A1/ja
Application granted granted Critical
Publication of JP7320790B2 publication Critical patent/JP7320790B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43513Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae
    • C07K14/43518Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae from spiders
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • D01F4/02Monocomponent artificial filaments or the like of proteins; Manufacture thereof from fibroin
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41GARTIFICIAL FLOWERS; WIGS; MASKS; FEATHERS
    • A41G3/00Wigs
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41GARTIFICIAL FLOWERS; WIGS; MASKS; FEATHERS
    • A41G3/00Wigs
    • A41G3/0083Filaments for making wigs
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Insects & Arthropods (AREA)
  • Mechanical Engineering (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)
  • Artificial Filaments (AREA)

Description

本発明は、人工毛髪用繊維、及びその製造方法、並びに人工毛髪に関する。
かつら、つけ毛等の材料として、人毛の他、合成繊維等からなる人工毛髪が用いられている(例えば、特許文献1)。
特開2007-297737号公報
人毛は、風合い等の面から好適に用いられる。しかしながら、人毛は、人種若しくは性別又は個人差等によって毛質(太さ及び硬さ等)が大きく異なるため、均一な品質のものを安定的に得ることは難しい。加えて、近年では、人毛の売り手が減少していることから、人毛の大量な入手も困難となりつつある。
一方、ポリエステル繊維及びアクリル繊維等の合成繊維からなる人工毛髪用繊維は、所望の長さのものを均一な品質で且つ安定的に大量入手可能である。ところが、合成繊維は、人毛と比較して風合いが大きく異なり、また特性においても大きな違いがある。例えば、人毛は水を吸収したときに所定長さ伸長し、その後乾燥すると元の長さに戻るといった特性を有しているのに対して、合成繊維は、そのような特性を何ら有していない。それ故、合成繊維からなる人工毛髪用繊維を用いた場合、人毛との間で違和感が生ずることが避けられなかった。
本発明は、安定供給が可能で、且つ人毛との間で違和感が生ずることを抑制し得る人工毛髪用繊維を提供することを目的とする。
本発明者らが種々検討した過程において、改変フィブロインを含む人造フィブロイン繊維が、湿潤/乾燥時において人毛と同様に伸び縮みすることを見出した。そして、かかる知見に基づいて鋭意研究を重ねた結果、本発明の完成に至った。
本発明は、例えば、以下の各発明に関する。
[1]
改変フィブロインを含む人造フィブロイン繊維からなり、
湿潤状態にした際に伸長し、かつ湿潤状態から乾燥した際に収縮する、人工毛髪用繊維。
[2]
下記式(1)で定義される復元率が95%以上である、[1]に記載の人工毛髪用繊維。
復元率=(湿潤状態から乾燥した際の人造フィブロイン繊維の長さ/湿潤状態にする前の人造フィブロイン繊維の長さ)×100(%) ・・・(1)
[3]
上記人造フィブロイン繊維は、紡糸後に水と接触することで不可逆的に収縮された収縮履歴を有する繊維であり、
下記式(2)で定義される収縮率Aが2%以上である、[1]又は[2]に記載の人工毛髪用繊維。
収縮率A={1-(紡糸後に水と接触することで不可逆的に収縮された繊維の長さ/紡糸後、水と接触する前の繊維の長さ)}×100(%) ・・・(2)
[4]
上記人造フィブロイン繊維は、紡糸後に水と接触することで不可逆的に収縮された後、乾燥により更に収縮された収縮履歴を有する繊維であり、
下記式(3)で定義される収縮率Bが7%超である、[1]~[3]のいずれかに記載の人工毛髪用繊維。
収縮率B={1-(紡糸後に水と接触することで不可逆的に収縮された後、乾燥により更に収縮された繊維の長さ/紡糸後、水と接触する前の繊維の長さ)}×100(%) ・・・(3)
[5]
上記改変フィブロインが、改変クモ糸フィブロインである、[1]~[4]のいずれかに記載の人工毛髪用繊維。
[6]
繊維軸方向に延びる凹部が表面に設けられている、[1]~[5]のいずれかに記載の人工毛髪用繊維。
[7]
下記式(4)で定義される伸長率が17%以下である、[1]~[6]のいずれかに記載の人工毛髪用繊維。
伸長率={(湿潤状態にした際の人造フィブロイン繊維の長さ/湿潤状態にする前の人造フィブロイン繊維の長さ)-1}×100(%) ・・・(4)
[8]
下記式(5)で定義される収縮率Cが17%以下である、[1]~[7]のいずれかに記載の人工毛髪用繊維。
収縮率C={1-(湿潤状態から乾燥した際の人造フィブロイン繊維の長さ/湿潤状態にした際の人造フィブロイン繊維の長さ)}×100(%) ・・・(5)
[9]
下記式(6)で定義される熱収縮率が4%以下である、[1]~[8]のいずれかに記載の人工毛髪用繊維。
熱収縮率={1-(160℃まで加熱した際の人造フィブロイン繊維の長さ/加熱前の人造フィブロイン繊維の長さ)}×100(%) ・・・(6)
[10]
紡糸過程での延伸により生じる残留応力を実質的に含まない、[1]~[9]のいずれかに記載の人工毛髪用繊維。
[11]
紡糸後、水と接触する前の原料繊維を、水と接触させて不可逆的に収縮させた後、乾燥させて更に収縮させる収縮工程を備え、
上記原料繊維が、改変フィブロインを含む、人工毛髪用繊維の製造方法。
[12]
上記原料繊維は、下記式(2)で定義される収縮率Aが2%以上の繊維である、[11]に記載の製造方法。
収縮率A={1-(紡糸後に水と接触することで不可逆的に収縮された繊維の長さ/紡糸後、水と接触する前の繊維の長さ)}×100(%) ・・・(2)
[13]
上記原料繊維は、下記式(3)で定義される収縮率Bが7%超の繊維である、[11]又は[12]に記載の製造方法。
収縮率B={1-(紡糸後に水と接触することで不可逆的に収縮された後、乾燥により更に収縮された繊維の長さ/紡糸後、水と接触する前の繊維の長さ)}×100(%) ・・・(3)
[14]
上記収縮工程では、紡糸過程での延伸により生じた原料繊維中の残留応力が、実質的に全て解放される、[11]~[13]のいずれかに記載の製造方法。
[15]
上記収縮工程は、上記原料繊維を弛緩させることなく行われる、[11]~[14]のいずれかに記載の製造方法。
[16]
上記原料繊維は、上記改変フィブロインと溶媒とを含む紡糸原液を凝固液中に導入し、上記紡糸原液から上記溶媒を離脱させて凝固させることにより形成されている、[11]~[15]のいずれかに記載の製造方法。
[17]
上記改変フィブロインが、改変クモ糸フィブロインである、[11]~[16]のいずれかに記載の製造方法。
[18]
[1]~[10]のいずれかに記載の人工毛髪用繊維を含む、人工毛髪。
本発明によれば、安定供給が可能で、且つ人毛との間で違和感が生ずることを抑制し得る人工毛髪用繊維の提供が可能となる。
改変フィブロインのドメイン配列の一例を示す模式図である。 天然由来のフィブロインのz/w(%)の値の分布を示す図である。 天然由来のフィブロインのx/y(%)の値の分布を示す図である。 改変フィブロインのドメイン配列の一例を示す模式図である。 改変フィブロインのドメイン配列の一例を示す模式図である。 原料繊維を製造するための紡糸装置の一例を概略的に示す説明図である。 水との接触による原料繊維(改変フィブロインを含む繊維)の長さ変化の例を示す図である。 人工毛髪用繊維(人造フィブロイン繊維)を製造するための製造装置の一例を概略的に示す説明図である。 人工毛髪用繊維(人造フィブロイン繊維)を製造するための製造装置の一例を概略的に示す説明図である。 一実施形態に係る人工毛髪用繊維(人造フィブロイン繊維)の表面構造(スキン層)及び内部構造(切断面)の走査型電子顕微鏡(SEM)写真である。 一実施形態に係る人工毛髪用繊維(人造フィブロイン繊維)の熱収縮率を測定した結果を示す図である。
以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
本実施形態に係る人工毛髪用繊維は、改変フィブロインを含む人造フィブロイン繊維からなる。
(改変フィブロイン)
本実施形態に係る改変フィブロインは、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むタンパク質である。改変フィブロインは、ドメイン配列のN末端側及びC末端側のいずれか一方又は両方に更にアミノ酸配列(N末端配列及びC末端配列)が付加されていてもよい。N末端配列及びC末端配列は、これに限定されるものではないが、典型的には、フィブロインに特徴的なアミノ酸モチーフの反復を有さない領域であり、100残基程度のアミノ酸からなる。
本明細書において「改変フィブロイン」とは、人為的に製造されたフィブロイン(人造フィブロイン)を意味する。改変フィブロインは、そのドメイン配列が、天然由来のフィブロインのアミノ酸配列とは異なるフィブロインであってもよく、天然由来のフィブロインのアミノ酸配列と同一であるフィブロインであってもよい。本明細書でいう「天然由来のフィブロイン」もまた、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むタンパク質である。
「改変フィブロイン」は、天然由来のフィブロインのアミノ酸配列をそのまま利用したものであってもよく、天然由来のフィブロインのアミノ酸配列に依拠してそのアミノ酸配列を改変したもの(例えば、クローニングした天然由来のフィブロインの遺伝子配列を改変することによりアミノ酸配列を改変したもの)であってもよく、また天然由来のフィブロインに依らず人工的に設計及び合成したもの(例えば、設計したアミノ酸配列をコードする核酸を化学合成することにより所望のアミノ酸配列を有するもの)であってもよい。
本明細書において「ドメイン配列」とは、フィブロイン特有の結晶領域(典型的には、アミノ酸配列の(A)モチーフに相当する。)と非晶領域(典型的には、アミノ酸配列のREPに相当する。)を生じるアミノ酸配列であり、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるアミノ酸配列を意味する。ここで、(A)モチーフは、アラニン残基を主とするアミノ酸配列を示し、アミノ酸残基数は2~27である。(A)モチーフのアミノ酸残基数は、2~20、4~27、4~20、8~20、10~20、4~16、8~16、又は10~16の整数であってよい。また、(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であればよく、60%以上、70%以上、80%以上、83%以上、85%以上、86%以上、90%以上、95%以上、又は100%(アラニン残基のみで構成されることを意味する。)であってもよい。ドメイン配列中に複数存在する(A)モチーフは、少なくとも7つがアラニン残基のみで構成されてもよい。REPは2~200アミノ酸残基から構成されるアミノ酸配列を示す。REPは、10~200アミノ酸残基から構成されるアミノ酸配列であってもよい。mは2~300の整数を示し、10~300の整数であってもよい。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。
本実施形態に係る改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列に対し、例えば、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行うことで得ることができる。アミノ酸残基の置換、欠失、挿入及び/又は付加は、部分特異的突然変異誘発法等の当業者に周知の方法により行うことができる。具体的には、Nucleic Acid Res.10,6487(1982)、Methods in Enzymology,100,448(1983)等の文献に記載されている方法に準じて行うことができる。
天然由来のフィブロインは、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むタンパク質であり、具体的には、例えば、昆虫又はクモ類が産生するフィブロインが挙げられる。
昆虫が産生するフィブロインとしては、例えば、ボンビックス・モリ(Bombyx mori)、クワコ(Bombyx mandarina)、天蚕(Antheraea yamamai)、柞蚕(Anteraea pernyi)、楓蚕(Eriogyna pyretorum)、蓖蚕(Pilosamia Cynthia ricini)、樗蚕(Samia cynthia)、栗虫(Caligura japonica)、チュッサー蚕(Antheraea mylitta)、ムガ蚕(Antheraea assama)等のカイコが産生する絹タンパク質、及びスズメバチ(Vespa simillima xanthoptera)の幼虫が吐出するホーネットシルクタンパク質が挙げられる。
昆虫が産生するフィブロインのより具体的な例としては、例えば、カイコ・フィブロインL鎖(GenBankアクセッション番号M76430(塩基配列)、及びAAA27840.1(アミノ酸配列))が挙げられる。
クモ類が産生するフィブロインとしては、例えば、オニグモ、ニワオニグモ、アカオニグモ、アオオニグモ及びマメオニグモ等のオニグモ属(Araneus属)に属するクモ、ヤマシロオニグモ、イエオニグモ、ドヨウオニグモ及びサツマノミダマシ等のヒメオニグモ属(Neoscona属)に属するクモ、コオニグモモドキ等のコオニグモモドキ属(Pronus属)に属するクモ、トリノフンダマシ及びオオトリノフンダマシ等のトリノフンダマシ属(Cyrtarachne属)に属するクモ、トゲグモ及びチブサトゲグモ等のトゲグモ属(Gasteracantha属)に属するクモ、マメイタイセキグモ及びムツトゲイセキグモ等のイセキグモ属(Ordgarius属)に属するクモ、コガネグモ、コガタコガネグモ及びナガコガネグモ等のコガネグモ属(Argiope属)に属するクモ、キジロオヒキグモ等のオヒキグモ属(Arachnura属)に属するクモ、ハツリグモ等のハツリグモ属(Acusilas属)に属するクモ、スズミグモ、キヌアミグモ及びハラビロスズミグモ等のスズミグモ属(Cytophora属)に属するクモ、ゲホウグモ等のゲホウグモ属(Poltys属)に属するクモ、ゴミグモ、ヨツデゴミグモ、マルゴミグモ及びカラスゴミグモ等のゴミグモ属(Cyclosa属)に属するクモ、及びヤマトカナエグモ等のカナエグモ属(Chorizopes属)に属するクモが産生するスパイダーシルクタンパク質、並びにアシナガグモ、ヤサガタアシナガグモ、ハラビロアシダカグモ及びウロコアシナガグモ等のアシナガグモ属(Tetragnatha属)に属するクモ、オオシロカネグモ、チュウガタシロカネグモ及びコシロカネグモ等のシロカネグモ属(Leucauge属)に属するクモ、ジョロウグモ及びオオジョロウグモ等のジョロウグモ属(Nephila属)に属するクモ、キンヨウグモ等のアズミグモ属(Menosira属)に属するクモ、ヒメアシナガグモ等のヒメアシナガグモ属(Dyschiriognatha属)に属するクモ、クロゴケグモ、セアカゴケグモ、ハイイロゴケグモ及びジュウサンボシゴケグモ等のゴケグモ属(Latrodectus属)に属するクモ、及びユープロステノプス属(Euprosthenops属)に属するクモ等のアシナガグモ科(Tetragnathidae科)に属するクモが産生するスパイダーシルクタンパク質が挙げられる。スパイダーシルクタンパク質としては、例えば、MaSp(MaSp1及びMaSp2)、ADF(ADF3及びADF4)等の牽引糸タンパク質、MiSp(MiSp1及びMiSp2)等が挙げられる。
クモ類が産生するスパイダーシルクタンパク質のより具体的な例としては、例えば、fibroin-3(adf-3)[Araneus diadematus由来](GenBankアクセッション番号AAC47010(アミノ酸配列)、U47855(塩基配列))、fibroin-4(adf-4)[Araneus diadematus由来](GenBankアクセッション番号AAC47011(アミノ酸配列)、U47856(塩基配列))、dragline silk protein spidroin 1[Nephila clavipes由来](GenBankアクセッション番号AAC04504(アミノ酸配列)、U37520(塩基配列))、major ampullate spidroin 1[Latrodectus hesperus由来](GenBankアクセッション番号ABR68856(アミノ酸配列)、EF595246(塩基配列))、dragline silk protein spidroin 2[Nephila clavata由来](GenBankアクセッション番号AAL32472(アミノ酸配列)、AF441245(塩基配列))、major ampullate spidroin 1[Euprosthenops australis由来](GenBankアクセッション番号CAJ00428(アミノ酸配列)、AJ973155(塩基配列))、及びmajor ampullate spidroin 2[Euprosthenops australis](GenBankアクセッション番号CAM32249.1(アミノ酸配列)、AM490169(塩基配列))、minor ampullate silk protein 1[Nephila clavipes](GenBankアクセッション番号AAC14589.1(アミノ酸配列))、minor ampullate silk protein 2[Nephila clavipes](GenBankアクセッション番号AAC14591.1(アミノ酸配列))、minor ampullate spidroin-like protein[Nephilengys cruentata](GenBankアクセッション番号ABR37278.1(アミノ酸配列)等が挙げられる。
天然由来のフィブロインのより具体的な例としては、更に、NCBI GenBankに配列情報が登録されているフィブロインを挙げることができる。例えば、NCBI GenBankに登録されている配列情報のうちDIVISIONとしてINVを含む配列の中から、DEFINITIONにspidroin、ampullate、fibroin、「silk及びpolypeptide」、又は「silk及びprotein」がキーワードとして記載されている配列、CDSから特定のproductの文字列、SOURCEからTISSUE TYPEに特定の文字列の記載された配列を抽出することにより確認することができる。
本実施形態に係る改変フィブロインは、改変絹(シルク)フィブロイン(カイコが産生する絹タンパク質のアミノ酸配列を改変したもの)であってもよく、改変クモ糸フィブロイン(クモ類が産生するスパイダーシルクタンパク質のアミノ酸配列を改変したもの)であってもよい。改変フィブロインとしては、改変クモ糸フィブロインが好ましい。
改変フィブロインの具体的な例として、クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロイン(第1の改変フィブロイン)、グリシン残基の含有量が低減されたドメイン配列を有する改変フィブロイン(第2の改変フィブロイン)、(A)モチーフの含有量が低減されたドメイン配列を有する改変フィブロイン(第3の改変フィブロイン)、グリシン残基の含有量、及び(A)モチーフの含有量が低減された改変フィブロイン(第4の改変フィブロイン)、局所的に疎水性指標の大きい領域を含むドメイン配列を有する改変フィブロイン(第5の改変フィブロイン)、並びにグルタミン残基の含有量が低減されたドメイン配列を有する改変フィブロイン(第6の改変フィブロイン)が挙げられる。
第1の改変フィブロインとしては、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質が挙げられる。第1の改変フィブロインにおいて、(A)モチーフのアミノ酸残基数は、3~20の整数が好ましく、4~20の整数がより好ましく、8~20の整数が更に好ましく、10~20の整数が更により好ましく、4~16の整数が更によりまた好ましく、8~16の整数が特に好ましく、10~16の整数が最も好ましい。第1の改変フィブロインは、式1中、REPを構成するアミノ酸残基の数は、10~200残基であることが好ましく、10~150残基であることがより好ましく、20~100残基であることが更に好ましく、20~75残基であることが更により好ましい。第1の改変フィブロインは、式1:[(A)モチーフ-REP]で表されるアミノ酸配列中に含まれるグリシン残基、セリン残基及びアラニン残基の合計残基数がアミノ酸残基数全体に対して、40%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更に好ましい。
第1の改変フィブロインは、式1:[(A)モチーフ-REP]で表されるアミノ酸配列の単位を含み、かつC末端配列が配列番号1~3のいずれかに示されるアミノ酸配列又は配列番号1~3のいずれかに示されるアミノ酸配列と90%以上の相同性を有するアミノ酸配列であるポリペプチドであってもよい。
配列番号1に示されるアミノ酸配列は、ADF3(GI:1263287、NCBI)のアミノ酸配列のC末端の50残基のアミノ酸からなるアミノ酸配列と同一であり、配列番号2に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から20残基取り除いたアミノ酸配列と同一であり、配列番号3に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から29残基取り除いたアミノ酸配列と同一である。
第1の改変フィブロインのより具体的な例として、(1-i)配列番号4(recombinant spider silk protein ADF3KaiLargeNRSH1)で示されるアミノ酸配列、又は(1-ii)配列番号4で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列同一性は、95%以上であることが好ましい。
配列番号4で示されるアミノ酸配列は、N末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ(Human rhinovirus 3Cプロテアーゼ)認識サイトからなるアミノ酸配列(配列番号5)を付加したADF3のアミノ酸配列において、第1~13番目の反復領域をおよそ2倍になるように増やすとともに、翻訳が第1154番目アミノ酸残基で終止するように変異させたものである。配列番号4で示されるアミノ酸配列のC末端のアミノ酸配列は、配列番号3で示されるアミノ酸配列と同一である。
(1-i)の改変フィブロインは、配列番号4で示されるアミノ酸配列からなるものであってもよい。
第2の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、グリシン残基の含有量が低減されたアミノ酸配列を有する。第2の改変フィブロインは、天然由来のフィブロインと比較して、少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。
第2の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中のGGX及びGPGXX(但し、Gはグリシン残基、Pはプロリン残基、Xはグリシン以外のアミノ酸残基を示す。)から選ばれる少なくとも一つのモチーフ配列において、少なくとも1又は複数の当該モチーフ配列中の1つのグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものであってもよい。
第2の改変フィブロインは、上述のグリシン残基が別のアミノ酸残基に置換されたモチーフ配列の割合が、全モチーフ配列に対して、10%以上であってもよい。
第2の改変フィブロインは、式1:[(A)モチーフ-REP]で表されるドメイン配列を含み、上記ドメイン配列から、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を除いた配列中の全REPに含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列から、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を除いた配列中の総アミノ酸残基数をwとしたときに、z/wが30%以上、40%以上、50%以上又は50.9%以上であるアミノ酸配列を有するものであってもよい。(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
第2の改変フィブロインは、GGXモチーフの1つのグリシン残基を別のアミノ酸残基に置換することにより、XGXからなるアミノ酸配列の含有割合を高めたものであることが好ましい。第2の改変フィブロインは、ドメイン配列中のGGXからなるアミノ酸配列の含有割合が30%以下であることが好ましく、20%以下であることがより好ましく、10%以下であることが更に好ましく、6%以下であることが更により好ましく、4%以下であることが更によりまた好ましく、2%以下であることが特に好ましい。ドメイン配列中のGGXからなるアミノ酸配列の含有割合は、下記XGXからなるアミノ酸配列の含有割合(z/w)の算出方法と同様の方法で算出することができる。
z/wの算出方法を更に詳細に説明する。まず、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、ドメイン配列から、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列を除いた配列に含まれる全てのREPから、XGXからなるアミノ酸配列を抽出する。XGXを構成するアミノ酸残基の総数がzである。例えば、XGXからなるアミノ酸配列が50個抽出された場合(重複はなし)、zは50×3=150である。また、例えば、XGXGXからなるアミノ酸配列の場合のように2つのXGXに含まれるX(中央のX)が存在する場合は、重複分を控除して計算する(XGXGXの場合は5アミノ酸残基である)。wは、ドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列に含まれる総アミノ酸残基数である。例えば、図1に示したドメイン配列の場合、wは4+50+4+100+4+10+4+20+4+30=230である(最もC末端側に位置する(A)モチーフは除いている。)。次に、zをwで除すことによって、z/w(%)を算出することができる。
ここで、天然由来のフィブロインにおけるz/wについて説明する。まず、上述のように、NCBI GenBankにアミノ酸配列情報が登録されているフィブロインを例示した方法により確認したところ、663種類のフィブロイン(このうち、クモ類由来のフィブロインは415種類)が抽出された。抽出された全てのフィブロインのうち、式1:[(A)モチーフ-REP]で表されるドメイン配列を含み、フィブロイン中のGGXからなるアミノ酸配列の含有割合が6%以下である天然由来のフィブロインのアミノ酸配列から、上述の算出方法により、z/wを算出した。その結果を図2に示す。図2の横軸はz/w(%)を示し、縦軸は頻度を示す。図2から明らかなとおり、天然由来のフィブロインにおけるz/wは、いずれも50.9%未満である(最も高いもので、50.86%)。
第2の改変フィブロインにおいて、z/wは、50.9%以上であることが好ましく、56.1%以上であることがより好ましく、58.7%以上であることが更に好ましく、70%以上であることが更により好ましく、80%以上であることが更によりまた好ましい。z/wの上限に特に制限はないが、例えば、95%以下であってもよい。
第2の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列から、グリシン残基をコードする塩基配列の少なくとも一部を置換して別のアミノ酸残基をコードするように改変することにより得ることができる。このとき、改変するグリシン残基として、GGXモチーフ及びGPGXXモチーフにおける1つのグリシン残基を選択してもよいし、またz/wが50.9%以上になるように置換してもよい。また、例えば、天然由来のフィブロインのアミノ酸配列から上記態様を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列からREP中のグリシン残基を別のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
上記の別のアミノ酸残基としては、グリシン残基以外のアミノ酸残基であれば特に制限はないが、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基、メチオニン(M)残基、プロリン(P)残基、フェニルアラニン(F)残基及びトリプトファン(W)残基等の疎水性アミノ酸残基、グルタミン(Q)残基、アスパラギン(N)残基、セリン(S)残基、リシン(K)残基及びグルタミン酸(E)残基等の親水性アミノ酸残基が好ましく、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基、フェニルアラニン(F)残基及びグルタミン(Q)残基がより好ましく、グルタミン(Q)残基が更に好ましい。
第2の改変フィブロインのより具体的な例として、(2-i)配列番号6(Met-PRT380)、配列番号7(Met-PRT410)、配列番号8(Met-PRT525)若しくは配列番号9(Met-PRT799)で示されるアミノ酸配列、又は(2-ii)配列番号6、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(2-i)の改変フィブロインについて説明する。配列番号6で示されるアミノ酸配列は、天然由来のフィブロインに相当する配列番号10(Met-PRT313)で示されるアミノ酸配列のREP中の全てのGGXをGQXに置換したものである。配列番号7で示されるアミノ酸配列は、配列番号6で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)モチーフを欠失させ、更にC末端配列の手前に[(A)モチーフ-REP]を1つ挿入したものである。配列番号8で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列の各(A)モチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、配列番号7の分子量とほぼ同じとなるようにC末端側の一部のアミノ酸を欠失させたものである。配列番号9で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中に存在する20個のドメイン配列の領域(但し、当該領域のC末端側の数アミノ酸残基が置換されている。)を4回繰り返した配列のC末端に所定のヒンジ配列とHisタグ配列が付加されたものである。
配列番号10で示されるアミノ酸配列(天然由来のフィブロインに相当)におけるz/wの値は、46.8%である。配列番号6で示されるアミノ酸配列、配列番号7で示されるアミノ酸配列、配列番号8で示されるアミノ酸配列、及び配列番号9で示されるアミノ酸配列におけるz/wの値は、それぞれ58.7%、70.1%、66.1%及び70.0%である。また、配列番号10、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のギザ比率(後述する)1:1.8~11.3におけるx/yの値は、それぞれ15.0%、15.0%、93.4%、92.7%及び89.8%である。
(2-i)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列からなるものであってもよい。
(2-ii)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2-ii)の改変フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(2-ii)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
第2の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、改変フィブロインの単離、固定化、検出及び可視化等が可能となる。
タグ配列として、例えば、他の分子との特異的親和性(結合性、アフィニティ)を利用したアフィニティタグを挙げることができる。アフィニティタグの具体例として、ヒスチジンタグ(Hisタグ)を挙げることができる。Hisタグは、ヒスチジン残基が4から10個程度並んだ短いペプチドで、ニッケル等の金属イオンと特異的に結合する性質があるため、金属キレートクロマトグラフィー(chelating metal chromatography)による改変フィブロインの単離に利用することができる。タグ配列の具体例として、例えば、配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含むアミノ酸配列)が挙げられる。
また、グルタチオンに特異的に結合するグルタチオン-S-トランスフェラーゼ(GST)、マルトースに特異的に結合するマルトース結合タンパク質(MBP)等のタグ配列を利用することもできる。
さらに、抗原抗体反応を利用した「エピトープタグ」を利用することもできる。抗原性を示すペプチド(エピトープ)をタグ配列として付加することにより、当該エピトープに対する抗体を結合させることができる。エピトープタグとして、HA(インフルエンザウイルスのヘマグルチニンのペプチド配列)タグ、mycタグ、FLAGタグ等を挙げることができる。エピトープタグを利用することにより、高い特異性で容易に改変フィブロインを精製することができる。
さらにタグ配列を特定のプロテアーゼで切り離せるようにしたものも使用することができる。当該タグ配列を介して吸着したタンパク質をプロテアーゼ処理することにより、タグ配列を切り離した改変フィブロインを回収することもできる。
タグ配列を含む改変フィブロインのより具体的な例として、(2-iii)配列番号12(PRT380)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(2-iv)配列番号12、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号16(PRT313)、配列番号12、配列番号13、配列番号14及び配列番号15で示されるアミノ酸配列は、それぞれ配列番号10、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(2-iii)の改変フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列からなるものであってもよい。
(2-iv)の改変フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2-iv)の改変フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(2-iv)の改変フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
第2の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
第3の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、(A)モチーフの含有量が低減されたアミノ酸配列を有する。第3の改変フィブロインのドメイン配列は、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに相当するアミノ酸配列を有するものということができる。
第3の改変フィブロインは、天然由来のフィブロインから(A)モチーフを10~40%欠失させたことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、少なくともN末端側からC末端側に向かって1~3つの(A)モチーフ毎に1つの(A)モチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、少なくともN末端側からC末端側に向かって2つ連続した(A)モチーフの欠失、及び1つの(A)モチーフの欠失がこの順に繰り返されたことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、少なくともN末端側からC末端側に向かって2つおきに(A)モチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、式1:[(A)モチーフ-REP]で表されるドメイン配列を含み、N末端側からC末端側に向かって、隣合う2つの[(A)モチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3となる隣合う2つの[(A)モチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが20%以上、30%以上、40%以上又は50%以上であるアミノ酸配列を有するものであってもよい。(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
x/yの算出方法を図1を参照しながら更に詳細に説明する。図1には、改変フィブロインからN末端配列及びC末端配列を除いたドメイン配列を示す。当該ドメイン配列は、N末端側(左側)から(A)モチーフ-第1のREP(50アミノ酸残基)-(A)モチーフ-第2のREP(100アミノ酸残基)-(A)モチーフ-第3のREP(10アミノ酸残基)-(A)モチーフ-第4のREP(20アミノ酸残基)-(A)モチーフ-第5のREP(30アミノ酸残基)-(A)モチーフという配列を有する。
隣合う2つの[(A)モチーフ-REP]ユニットは、重複がないように、N末端側からC末端側に向かって、順次選択する。このとき、選択されない[(A)モチーフ-REP]ユニットが存在してもよい。図1には、パターン1(第1のREPと第2のREPの比較、及び第3のREPと第4のREPの比較)、パターン2(第1のREPと第2のREPの比較、及び第4のREPと第5のREPの比較)、パターン3(第2のREPと第3のREPの比較、及び第4のREPと第5のREPの比較)、パターン4(第1のREPと第2のREPの比較)を示した。なお、これ以外にも選択方法は存在する。
次に各パターンについて、選択した隣合う2つの[(A)モチーフ-REP]ユニット中の各REPのアミノ酸残基数を比較する。比較は、よりアミノ酸残基数の少ない方を1としたときの、他方のアミノ酸残基数の比を求めることによって行う。例えば、第1のREP(50アミノ酸残基)と第2のREP(100アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第1のREPを1としたとき、第2のREPのアミノ酸残基数の比は、100/50=2である。同様に、第4のREP(20アミノ酸残基)と第5のREP(30アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第4のREPを1としたとき、第5のREPのアミノ酸残基数の比は、30/20=1.5である。
図1中、よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8~11.3となる[(A)モチーフ-REP]ユニットの組を実線で示した。本明細書中、この比をギザ比率と呼ぶ。よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8未満又は11.3超となる[(A)モチーフ-REP]ユニットの組は破線で示した。
各パターンにおいて、実線で示した隣合う2つの[(A)モチーフ-REP]ユニットの全てのアミノ酸残基数を足し合わせる(REPのみではなく、(A)モチーフのアミノ酸残基数もである。)。そして、足し合わせた合計値を比較して、当該合計値が最大となるパターンの合計値(合計値の最大値)をxとする。図1に示した例では、パターン1の合計値が最大である。
次に、xをドメイン配列の総アミノ酸残基数yで除すことによって、x/y(%)を算出することができる。
第3の改変フィブロインにおいて、x/yは、50%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることが更に好ましく、70%以上であることが更により好ましく、75%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、例えば、100%以下であってよい。ギザ比率が1:1.9~11.3の場合には、x/yは89.6%以上であることが好ましく、ギザ比率が1:1.8~3.4の場合には、x/yは77.1%以上であることが好ましく、ギザ比率が1:1.9~8.4の場合には、x/yは75.9%以上であることが好ましく、ギザ比率が1:1.9~4.1の場合には、x/yは64.2%以上であることが好ましい。
第3の改変フィブロインが、ドメイン配列中に複数存在する(A)モチーフの少なくとも7つがアラニン残基のみで構成される改変フィブロインである場合、x/yは、46.4%以上であることが好ましく、50%以上であることがより好ましく、55%以上であることが更に好ましく、60%以上であることが更により好ましく、70%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、100%以下であればよい。
ここで、天然由来のフィブロインにおけるx/yについて説明する。まず、上述のように、NCBI GenBankにアミノ酸配列情報が登録されているフィブロインを例示した方法により確認したところ、663種類のフィブロイン(このうち、クモ類由来のフィブロインは415種類)が抽出された。抽出された全てのフィブロインのうち、式1:[(A)モチーフ-REP]で表されるドメイン配列で構成される天然由来のフィブロインのアミノ酸配列から、上述の算出方法により、x/yを算出した。ギザ比率が1:1.9~4.1の場合の結果を図3に示す。
図3の横軸はx/y(%)を示し、縦軸は頻度を示す。図3から明らかなとおり、天然由来のフィブロインにおけるx/yは、いずれも64.2%未満である(最も高いもので、64.14%)。
第3の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列から、x/yが64.2%以上になるように(A)モチーフをコードする配列の1又は複数を欠失させることにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列から、x/yが64.2%以上になるように1又は複数の(A)モチーフが欠失したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列から(A)モチーフが欠失したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
第3の改変フィブロインのより具体的な例として、(3-i)配列番号17(Met-PRT399)、配列番号7(Met-PRT410)、配列番号8(Met-PRT525)若しくは配列番号9(Met-PRT799)で示されるアミノ酸配列、又は(3-ii)配列番号17、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(3-i)の改変フィブロインについて説明する。配列番号17で示されるアミノ酸配列は、天然由来のフィブロインに相当する配列番号10(Met-PRT313)で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)モチーフを欠失させ、更にC末端配列の手前に[(A)モチーフ-REP]を1つ挿入したものである。配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列は、第2の改変フィブロインで説明したとおりである。
配列番号10で示されるアミノ酸配列(天然由来のフィブロインに相当)のギザ比率1:1.8~11.3におけるx/yの値は15.0%である。配列番号17で示されるアミノ酸配列、及び配列番号7で示されるアミノ酸配列におけるx/yの値は、いずれも93.4%である。配列番号8で示されるアミノ酸配列におけるx/yの値は、92.7%である。配列番号9で示されるアミノ酸配列におけるx/yの値は、89.8%である。配列番号10、配列番号17、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列におけるz/wの値は、それぞれ46.8%、56.2%、70.1%、66.1%及び70.0%である。
(3-i)の改変フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列からなるものであってもよい。
(3-ii)の改変フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3-ii)の改変フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(3-ii)の改変フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)モチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3(ギザ比率が1:1.8~11.3)となる隣合う2つの[(A)モチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
第3の改変フィブロインは、N末端及びC末端のいずれか一方又は両方に上述したタグ配列を含んでいてもよい。
タグ配列を含む改変フィブロインのより具体的な例として、(3-iii)配列番号18(PRT399)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(3-iv)配列番号18、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号18、配列番号13、配列番号14及び配列番号15で示されるアミノ酸配列は、それぞれ配列番号17、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(3-iii)の改変フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列からなるものであってもよい。
(3-iv)の改変フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3-iv)の改変フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(3-iv)の改変フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)モチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3となる隣合う2つの[(A)モチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
第3の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
第4の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、(A)モチーフの含有量が低減されたことに加え、グリシン残基の含有量が低減されたアミノ酸配列を有するものである。第4の改変フィブロインのドメイン配列は、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに加え、更に少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。すなわち、第4の改変フィブロインは、上述した第2の改変フィブロインと、第3の改変フィブロインの特徴を併せ持つ改変フィブロインである。具体的な態様等は、第2の改変フィブロイン、及び第3の改変フィブロインで説明したとおりである。
第4の改変フィブロインのより具体的な例として、(4-i)配列番号7(Met-PRT410)、配列番号8(Met-PRT525)、配列番号9(Met-PRT799)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(4-ii)配列番号7、配列番号8、配列番号9、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列番号7、配列番号8、配列番号9、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列を含む改変フィブロインの具体的な態様は上述のとおりである。
第5の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する、局所的に疎水性指標の大きい領域を含むアミノ酸配列を有するものであってよい。
局所的に疎水性指標の大きい領域は、連続する2~4アミノ酸残基で構成されていることが好ましい。
上述の疎水性指標の大きいアミノ酸残基は、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましい。
第5の改変フィブロインは、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に、天然由来のフィブロインと比較して、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。
第5の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列からREP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
第5の改変フィブロインは、式1:[(A)モチーフ-REP]で表されるドメイン配列を含み、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であるアミノ酸配列を有してもよい。
アミノ酸残基の疎水性指標については、公知の指標(Hydropathy index:Kyte J,&Doolittle R(1982)“A simple method for displaying the hydropathic character of a protein”,J.Mol.Biol.,157,pp.105-132)を使用する。具体的には、各アミノ酸の疎水性指標(ハイドロパシー・インデックス、以下「HI」とも記す。)は、下記表1に示すとおりである。
Figure 0007320790000001
p/qの算出方法を更に詳細に説明する。算出には、式1:[(A)モチーフ-REP]で表されるドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列(以下、「配列A」とする)を用いる。まず、配列Aに含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値を算出する。疎水性指標の平均値は、連続する4アミノ酸残基に含まれる各アミノ酸残基のHIの総和を4(アミノ酸残基数)で除して求める。疎水性指標の平均値は、全ての連続する4アミノ酸残基について求める(各アミノ酸残基は、1~4回平均値の算出に用いられる。)。次いで、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域を特定する。あるアミノ酸残基が、複数の「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」に該当する場合であっても、領域中には1アミノ酸残基として含まれることになる。そして、当該領域に含まれるアミノ酸残基の総数がpである。また、配列Aに含まれるアミノ酸残基の総数がqである。
例えば、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が20カ所抽出された場合(重複はなし)、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、連続する4アミノ酸残基(重複はなし)が20含まれることになり、pは20×4=80である。また、例えば、2つの「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が1アミノ酸残基だけ重複して存在する場合、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、7アミノ酸残基含まれることになる(p=2×4-1=7。「-1」は重複分の控除である。)。例えば、図4に示したドメイン配列の場合、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が重複せずに7つ存在するため、pは7×4=28となる。また、例えば、図4に示したドメイン配列の場合、qは4+50+4+40+4+10+4+20+4+30=170である(C末端側の最後に存在する(A)モチーフは含めない)。次に、pをqで除すことによって、p/q(%)を算出することができる。図4の場合28/170=16.47%となる。
第5の改変フィブロインにおいて、p/qは、6.2%以上であることが好ましく、7%以上であることがより好ましく、10%以上であることが更に好ましく、20%以上であることが更により好ましく、30%以上であることが更によりまた好ましい。p/qの上限は、特に制限されないが、例えば、45%以下であってもよい。
第5の改変フィブロインは、例えば、クローニングした天然由来のフィブロインのアミノ酸配列を、上記のp/qの条件を満たすように、REP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより、局所的に疎水性指標の大きい領域を含むアミノ酸配列に改変することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列から上記のp/qの条件を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当する改変を行ってもよい。
疎水性指標の大きいアミノ酸残基としては、特に制限はないが、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)が好ましく、バリン(V)、ロイシン(L)及びイソロイシン(I)がより好ましい。
第5の改変フィブロインのより具体的な例として、(5-i)配列番号19(Met-PRT720)、配列番号20(Met-PRT665)若しくは配列番号21(Met-PRT666)で示されるアミノ酸配列、又は(5-ii)配列番号19、配列番号20若しくは配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(5-i)の改変フィブロインについて説明する。配列番号19で示されるアミノ酸配列は、配列番号7(Met-PRT410)で示されるアミノ酸配列に対し、C末端側の端末のドメイン配列を除いて、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、かつC末端側の一部のアミノ酸を欠失させたものである。配列番号20で示されるアミノ酸配列は、配列番号8(Met-PRT525)で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を1カ所挿入したものである。配列番号21で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入したものである。
(5-i)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列からなるものであってもよい。
(5-ii)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5-ii)の改変フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(5-ii)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。
第5の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。
タグ配列を含む改変フィブロインのより具体的な例として、(5-iii)配列番号22(PRT720)、配列番号23(PRT665)若しくは配列番号24(PRT666)で示されるアミノ酸配列、又は(5-iv)配列番号22、配列番号23若しくは配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号22、配列番号23及び配列番号24で示されるアミノ酸配列は、それぞれ配列番号19、配列番号20及び配列番号21で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(5-iii)の改変フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列からなるものであってもよい。
(5-iv)の改変フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5-iv)の改変フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(5-iv)の改変フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。
第5の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
第6の改変フィブロインは、天然由来のフィブロインと比較して、グルタミン残基の含有量が低減されたアミノ酸配列を有する。
第6の改変フィブロインは、REPのアミノ酸配列中に、GGXモチーフ及びGPGXXモチーフから選ばれる少なくとも一つのモチーフが含まれていることが好ましい。
第6の改変フィブロインが、REP中にGPGXXモチーフを含む場合、GPGXXモチーフ含有率は、通常1%以上であり、5%以上であってもよく、10%以上であるのが好ましい。GPGXXモチーフ含有率の上限に特に制限はなく、50%以下であってよく、30%以下であってもよい。
本明細書において、「GPGXXモチーフ含有率」は、以下の方法により算出される値である。
式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、その領域に含まれるGPGXXモチーフの個数の総数を3倍した数(即ち、GPGXXモチーフ中のG及びPの総数に相当)をsとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、GPGXXモチーフ含有率はs/tとして算出される。
GPGXXモチーフ含有率の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としているのは、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列」(REPに相当する配列)には、フィブロインに特徴的な配列と相関性の低い配列が含まれることがあり、mが小さい場合(つまり、ドメイン配列が短い場合)、GPGXXモチーフ含有率の算出結果に影響するので、この影響を排除するためである。なお、REPのC末端に「GPGXXモチーフ」が位置する場合、「XX」が例えば「AA」の場合であっても、「GPGXXモチーフ」として扱う。
図5は、改変フィブロインのドメイン配列を示す模式図である。図5を参照しながらGPGXXモチーフ含有率の算出方法を具体的に説明する。まず、図5に示した改変フィブロインのドメイン配列(「[(A)モチーフ-REP]-(A)モチーフ」タイプである。)では、全てのREPが「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図5中、「領域A」で示した配列。)に含まれているため、sを算出するためのGPGXXモチーフの個数は7であり、sは7×3=21となる。同様に、全てのREPが「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図5中、「領域A」で示した配列。)に含まれているため、当該配列から更に(A)モチーフを除いた全REPのアミノ酸残基の総数tは50+40+10+20+30=150である。次に、sをtで除すことによって、s/t(%)を算出することができ、図5の改変フィブロインの場合21/150=14.0%となる。
第6の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましく、7%以下であることがより好ましく、4%以下であることが更に好ましく、0%であることが特に好ましい。
本明細書において、「グルタミン残基含有率」は、以下の方法により算出される値である。
式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図5の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域に含まれるグルタミン残基の総数をuとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、グルタミン残基含有率はu/tとして算出される。グルタミン残基含有率の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
第6の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、又は他のアミノ酸残基に置換したことに相当するアミノ酸配列を有するものであってよい。
「他のアミノ酸残基」は、グルタミン残基以外のアミノ酸残基であればよいが、グルタミン残基よりも疎水性指標の大きいアミノ酸残基であることが好ましい。アミノ酸残基の疎水性指標は表1に示すとおりである。
表1に示すとおり、グルタミン残基よりも疎水性指標の大きいアミノ酸残基としては、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)アラニン(A)、グリシン(G)、スレオニン(T)、セリン(S)、トリプトファン(W)、チロシン(Y)、プロリン(P)及びヒスチジン(H)から選ばれるアミノ酸残基を挙げることができる。これらの中でも、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましく、イソロイシン(I)、バリン(V)、ロイシン(L)及びフェニルアラニン(F)から選ばれるアミノ酸残基であることが更に好ましい。
第6の改変フィブロインは、REPの疎水性度が、-0.8以上であることが好ましく、-0.7以上であることがより好ましく、0以上であることが更に好ましく、0.3以上であることが更により好ましく、0.4以上であることが特に好ましい。REPの疎水性度の上限に特に制限はなく、1.0以下であってよく、0.7以下であってもよい。
本明細書において、「REPの疎水性度」は、以下の方法により算出される値である。
式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図5の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域の各アミノ酸残基の疎水性指標の総和をvとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、REPの疎水性度はv/tとして算出される。REPの疎水性度の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
第6の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。
第6の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列からREP中の1又は複数のグルタミン残基を欠失させること、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。
第6の改変フィブロインのより具体的な例として、(6-i)配列番号25(Met-PRT888)、配列番号26(Met-PRT965)、配列番号27(Met-PRT889)、配列番号28(Met-PRT916)、配列番号29(Met-PRT918)、配列番号30(Met-PRT699)、配列番号31(Met-PRT698)、配列番号32(Met-PRT966)、配列番号41(Met-PRT917)若しくは配列番号42(Met-PRT1028)で示されるアミノ酸配列を含む改変フィブロイン、又は(6-ii)配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号41若しくは配列番号42で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む改変フィブロインを挙げることができる。
(6-i)の改変フィブロインについて説明する。配列番号25で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列(Met-PRT410)中のQQを全てVLに置換したものである。配列番号26で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てTSに置換し、かつ残りのQをAに置換したものである。配列番号27で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。配列番号28で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVIに置換し、かつ残りのQをLに置換したものである。配列番号29で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。
配列番号30で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列(Met-PRT525)中のQQを全てVLに置換したものである。配列番号31で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。
配列番号32で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列(Met-PRT410)中に存在する20個のドメイン配列の領域を2回繰り返した配列中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。
配列番号41で示されるアミノ酸配列(Met-PRT917)は、配列番号7で示されるアミノ酸配列中のQQを全てLIに置換し、かつ残りのQをVに置換したものである。配列番号42で示されるアミノ酸配列(Met-PRT1028)は、配列番号7で示されるアミノ酸配列中のQQを全てIFに置換し、かつ残りのQをTに置換したものである。
配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号41及び配列番号42で示されるアミノ酸配列は、いずれもグルタミン残基含有率は9%以下である(表2)。
Figure 0007320790000002
(6-i)の改変フィブロインは、配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号41又は配列番号42で示されるアミノ酸配列からなるものであってもよい。
(6-ii)の改変フィブロインは、配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号41又は配列番号42で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6-ii)の改変フィブロインもまた、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(6-ii)の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6-ii)の改変フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。
第6の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、改変フィブロインの単離、固定化、検出及び可視化等が可能となる。
タグ配列を含む改変フィブロインのより具体的な例として、(6-iii)配列番号33(PRT888)、配列番号34(PRT965)、配列番号35(PRT889)、配列番号36(PRT916)、配列番号37(PRT918)、配列番号38(PRT699)、配列番号39(PRT698)、配列番号40(PRT966)、配列番号43(PRT917)若しくは配列番号44(PRT1028)で示されるアミノ酸配列を含む改変フィブロイン、又は(6-iv)配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号43若しくは配列番号44で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む改変フィブロインを挙げることができる。
配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号43及び配列番号44で示されるアミノ酸配列は、それぞれ配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号41及び配列番号42で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。N末端にタグ配列を付加しただけであるため、グルタミン残基含有率に変化はなく、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号43及び配列番号44で示されるアミノ酸配列は、いずれもグルタミン残基含有率が9%以下である(表3)。
Figure 0007320790000003
(6-iii)の改変フィブロインは、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号43又は配列番号44で示されるアミノ酸配列からなるものであってもよい。
(6-iv)の改変フィブロインは、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号43又は配列番号44で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6-iv)の改変フィブロインもまた、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(6-iv)の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6-iv)の改変フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。
第6の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
改変フィブロインは、第1の改変フィブロイン、第2の改変フィブロイン、第3の改変フィブロイン、第4の改変フィブロイン、第5の改変フィブロイン、及び第6の改変フィブロインが有する特徴のうち、少なくとも2つ以上の特徴を併せ持つ改変フィブロインであってもよい。
(改変フィブロインの製造方法)
上記いずれの実施形態に係る改変フィブロインも、例えば、当該改変フィブロインをコードする核酸配列と、当該核酸配列に作動可能に連結された1又は複数の調節配列とを有する発現ベクターで形質転換された宿主により、当該核酸を発現させることにより生産することができる。
改変フィブロインをコードする核酸の製造方法は、特に制限されない。例えば、天然のフィブロインをコードする遺伝子を利用して、ポリメラーゼ連鎖反応(PCR)などで増幅しクローニングし、遺伝子工学的手法により改変する方法、又は、化学的に合成する方法によって、当該核酸を製造することができる。核酸の化学的な合成方法も特に制限されず、例えば、NCBIのウェブデータベースなどより入手したフィブロインのアミノ酸配列情報をもとに、AKTA oligopilot plus 10/100(GEヘルスケア・ジャパン株式会社)などで自動合成したオリゴヌクレオチドをPCRなどで連結する方法によって遺伝子を化学的に合成することができる。この際に、改変フィブロインの精製及び/又は確認を容易にするため、上記のアミノ酸配列のN末端に開始コドン及びHis10タグからなるアミノ酸配列を付加したアミノ酸配列からなる改変フィブロインをコードする核酸を合成してもよい。
調節配列は、宿主における改変フィブロインの発現を制御する配列(例えば、プロモーター、エンハンサー、リボソーム結合配列、転写終結配列等)であり、宿主の種類に応じて適宜選択することができる。プロモーターとして、宿主細胞中で機能し、改変フィブロインを発現誘導可能な誘導性プロモーターを用いてもよい。誘導性プロモーターは、誘導物質(発現誘導剤)の存在、リプレッサー分子の非存在、又は温度、浸透圧若しくはpH値の上昇若しくは低下等の物理的要因により、転写を制御できるプロモーターである。
発現ベクターの種類は、プラスミドベクター、ウイルスベクター、コスミドベクター、フォスミドベクター、人工染色体ベクター等、宿主の種類に応じて適宜選択することができる。発現ベクターとしては、宿主細胞において自立複製が可能、又は宿主の染色体中への組込みが可能で、改変フィブロインをコードする核酸を転写できる位置にプロモーターを含有しているものが好適に用いられる。
宿主として、原核生物、並びに酵母、糸状真菌、昆虫細胞、動物細胞及び植物細胞等の真核生物のいずれも好適に用いることができる。
原核生物の宿主の好ましい例として、エシェリヒア属、ブレビバチルス属、セラチア属、バチルス属、ミクロバクテリウム属、ブレビバクテリウム属、コリネバクテリウム属及びシュードモナス属等に属する細菌を挙げることができる。エシェリヒア属に属する微生物として、例えば、エシェリヒア・コリ等を挙げることができる。ブレビバチルス属に属する微生物として、例えば、ブレビバチルス・アグリ等を挙げることができる。セラチア属に属する微生物として、例えば、セラチア・リクエファシエンス等を挙げることができる。バチルス属に属する微生物として、例えば、バチルス・サチラス等を挙げることができる。ミクロバクテリウム属に属する微生物として、例えば、ミクロバクテリウム・アンモニアフィラム等を挙げることができる。ブレビバクテリウム属に属する微生物として、例えば、ブレビバクテリウム・ディバリカタム等を挙げることができる。コリネバクテリウム属に属する微生物として、例えば、コリネバクテリウム・アンモニアゲネス等を挙げることができる。シュードモナス(Pseudomonas)属に属する微生物として、例えば、シュードモナス・プチダ等を挙げることができる。
原核生物を宿主とする場合、改変フィブロインをコードする核酸を導入するベクターとしては、例えば、pBTrp2(ベーリンガーマンハイム社製)、pGEX(Pharmacia社製)、pUC18、pBluescriptII、pSupex、pET22b、pCold、pUB110、pNCO2(特開2002-238569号公報)等を挙げることができる。
真核生物の宿主としては、例えば、酵母及び糸状真菌(カビ等)を挙げることができる。酵母としては、例えば、サッカロマイセス属、ピキア属、シゾサッカロマイセス属等に属する酵母を挙げることができる。糸状真菌としては、例えば、アスペルギルス属、ペニシリウム属、トリコデルマ(Trichoderma)属等に属する糸状真菌を挙げることができる。
真核生物を宿主とする場合、改変フィブロインをコードする核酸を導入するベクターとしては、例えば、YEP13(ATCC37115)、YEp24(ATCC37051)等を挙げることができる。上記宿主細胞への発現ベクターの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができる。例えば、カルシウムイオンを用いる方法〔Proc. Natl. Acad. Sci. USA,69,2110(1972)〕、エレクトロポレーション法、スフェロプラスト法、プロトプラスト法、酢酸リチウム法、コンピテント法等を挙げることができる。
発現ベクターで形質転換された宿主による核酸の発現方法としては、直接発現のほか、モレキュラー・クローニング第2版に記載されている方法等に準じて、分泌生産、融合タンパク質発現等を行うことができる。
改変フィブロインは、例えば、発現ベクターで形質転換された宿主を培養培地中で培養し、培養培地中に当該改変フィブロインを生成及び蓄積させ、該培養培地から採取することにより製造することができる。宿主を培養培地中で培養する方法は、宿主の培養に通常用いられる方法に従って行うことができる。
宿主が、大腸菌等の原核生物又は酵母等の真核生物である場合、培養培地として、宿主が資化し得る炭素源、窒素源及び無機塩類等を含有し、宿主の培養を効率的に行える培地であれば天然培地及び合成培地のいずれを用いてもよい。
炭素源としては、上記形質転換微生物が資化し得るものであればよく、例えば、グルコース、フラクトース、スクロース、及びこれらを含有する糖蜜、デンプン及びデンプン加水分解物等の炭水化物、酢酸及びプロピオン酸等の有機酸、並びにエタノール及びプロパノール等のアルコール類を用いることができる。窒素源としては、例えば、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム及びリン酸アンモニウム等の無機酸又は有機酸のアンモニウム塩、その他の含窒素化合物、並びにペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕及び大豆粕加水分解物、各種発酵菌体及びその消化物を用いることができる。無機塩類としては、例えば、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅及び炭酸カルシウムを用いることができる。
大腸菌等の原核生物又は酵母等の真核生物の培養は、例えば、振盪培養又は深部通気攪拌培養等の好気的条件下で行うことができる。培養温度は、例えば、15~40℃である。培養時間は、通常16時間~7日間である。培養中の培養培地のpHは3.0~9.0に保持することが好ましい。培養培地のpHの調整は、無機酸、有機酸、アルカリ溶液、尿素、炭酸カルシウム及びアンモニア等を用いて行うことができる。
また、培養中、必要に応じて、アンピシリン及びテトラサイクリン等の抗生物質を培養培地に添加してもよい。プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル-β-D-チオガラクトピラノシド等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。
発現させた改変フィブロインの単離及び精製は通常用いられている方法で行うことができる。例えば、当該改変フィブロインが、細胞内に溶解状態で発現した場合には、培養終了後、宿主細胞を遠心分離により回収し、水系緩衝液に懸濁した後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー及びダイノミル等により宿主細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られる上清から、タンパク質の単離精製に通常用いられている方法、すなわち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)-セファロース、DIAION HPA-75(三菱化成社製)等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(Pharmacia社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の方法を単独又は組み合わせて使用し、精製標品を得ることができる。
また、改変フィブロインが細胞内に不溶体を形成して発現した場合は、同様に宿主細胞を回収後、破砕し、遠心分離を行うことにより、沈殿画分として改変フィブロインの不溶体を回収する。回収した改変フィブロインの不溶体はタンパク質変性剤で可溶化することができる。該操作の後、上記と同様の単離精製法により改変フィブロインの精製標品を得ることができる。当該改変フィブロインが細胞外に分泌された場合には、培養上清から当該改変フィブロインを回収することができる。すなわち、培養物を遠心分離等の手法により処理することにより培養上清を取得し、その培養上清から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。
(原料繊維)
本実施形態に係る原料繊維は、上述した改変フィブロインを紡糸したものであり、上述した改変フィブロインを主成分として含む。本実施形態に係る原料繊維は、紡糸後、水と接触する前の繊維である。
(原料繊維の製造方法)
本実施形態に係る原料繊維は、公知の紡糸方法によって製造することができる。すなわち、例えば、改変フィブロインを主成分として含む原料繊維を製造する際には、まず、上述した方法に準じて製造した改変フィブロインをジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、ギ酸、又はヘキサフルオロイソプロパノール(HFIP)等の溶媒に、必要に応じて溶解促進剤としての無機塩と共に添加し、溶解してドープ液(紡糸原液)を作製する。次いで、このドープ液を用いて、湿式紡糸、乾式紡糸、乾湿式紡糸又は溶融紡糸等の公知の紡糸方法により紡糸して、目的とする原料繊維を得ることができる。好ましい紡糸方法としては、湿式紡糸又は乾湿式紡糸を挙げることができる。
図6は、原料繊維を製造するための紡糸装置の一例を概略的に示す説明図である。図6に示す紡糸装置10は、乾湿式紡糸用の紡糸装置の一例であり、押出し装置1と、未延伸糸製造装置2と、湿熱延伸装置3と、乾燥装置4とを有している。
紡糸装置10を使用した紡糸方法を説明する。まず、貯槽7に貯蔵されたドープ液6が、ギアポンプ8により口金9から押し出される。ラボスケールにおいては、ドープ液をシリンダーに充填し、シリンジポンプを用いてノズルから押し出してもよい。次いで、押し出されたドープ液6は、エアギャップ19を経て、凝固液槽20の凝固液11内に供給され、溶媒が除去されて、改変フィブロインが凝固し、繊維状凝固体が形成される。次いで、繊維状凝固体が、延伸浴槽21内の温水12中に供給されて、延伸される。延伸倍率は供給ニップローラ13と引き取りニップローラ14との速度比によって決まる。その後、延伸された繊維状凝固体が、乾燥装置4に供給され、糸道22内で乾燥されて、原料繊維が、巻糸体5として得られる。18a~18gは糸ガイドである。
凝固液11としては、脱溶媒できる溶媒であればよく、例えば、メタノール、エタノール及び2-プロパノール等の炭素数1~5の低級アルコール、並びにアセトン等を挙げることができる。凝固液11は、適宜水を含んでいてもよい。凝固液11の温度は、0~30℃であることが好ましい。口金9として、直径0.1~0.6mmのノズルを有するシリンジポンプを使用する場合、押出し速度は1ホール当たり、0.2~6.0ml/時間が好ましく、1.4~4.0ml/時間であることがより好ましい。凝固したタンパク質が凝固液11中を通過する距離(実質的には、糸ガイド18aから糸ガイド18bまでの距離)は、脱溶媒が効率的に行える長さがあればよく、例えば、200~500mmである。未延伸糸の引き取り速度は、例えば、1~20m/分であってよく、1~3m/分であることが好ましい。凝固液11中での滞留時間は、例えば、0.01~3分であってよく、0.05~0.15分であることが好ましい。また、凝固液11中で延伸(前延伸)をしてもよい。凝固液槽20は多段設けてもよく、また延伸は必要に応じて、各段、又は特定の段で行ってもよい。
なお、原料繊維を得る際に実施される延伸は、例えば、上記した凝固液槽20内で行う前延伸、及び延伸浴槽21内で行う湿熱延伸の他、乾熱延伸も採用される。
湿熱延伸は、温水中、温水に有機溶剤等を加えた溶液中、又はスチーム加熱中で行うことができる。温度としては、例えば、50~90℃であってよく、75~85℃が好ましい。湿熱延伸では、未延伸糸(又は前延伸糸)を、例えば、1~10倍延伸することができ、2~8倍延伸することが好ましい。
乾熱延伸は、電気管状炉、乾熱板等を使用して行うことができる。温度としては、例えば、140℃~270℃であってよく、160℃~230℃が好ましい。乾熱延伸では、未延伸糸(又は前延伸糸)を、例えば、0.5~8倍延伸することができ、1~4倍延伸することが好ましい。
湿熱延伸及び乾熱延伸はそれぞれ単独で行ってもよく、またこれらを多段で、又は組み合わせて行ってもよい。すなわち、一段目延伸を湿熱延伸で行い、二段目延伸を乾熱延伸で行う、又は一段目延伸を湿熱延伸行い、二段目延伸を湿熱延伸行い、更に三段目延伸を乾熱延伸で行う等、湿熱延伸及び乾熱延伸を適宜組み合わせて行うことができる。
最終的な延伸倍率は、その下限値が、未延伸糸(又は前延伸糸)に対して、好ましくは、1倍超、2倍以上、3倍以上、4倍以上、5倍以上、6倍以上、7倍以上、8倍以上、9倍以上のうちのいずれかであり、上限値が、好ましくは40倍以下、30倍以下、20倍以下、15倍以下、14倍以下、13倍以下、12倍以下、11倍以下、10倍以下である。原料繊維が2倍以上の延伸倍率で紡糸された繊維であると、原料繊維を水に接触させて湿潤状態にした際の収縮率は、より高くなる。
(人工毛髪用繊維(人造フィブロイン繊維)の製造方法)
本実施形態に係る人工毛髪用繊維(人造フィブロイン繊維)は、原料繊維を水により収縮させる収縮工程を備える製造方法により得ることができる。収縮工程は、例えば、上述した原料繊維(紡糸後、水と接触する前の原料繊維)を、水と接触させて不可逆的に収縮させるステップ(接触ステップ)を備えるものであってよい。収縮工程は、接触ステップの後、繊維を乾燥させて更に収縮させるステップ(乾燥ステップ)を備えるものであってもよい。
図7は、水との接触による原料繊維(改変フィブロインを含む繊維)の長さ変化の例を示す図である。本実施形態に係る原料繊維(改変フィブロインを含む繊維)は、水に接触(湿潤)させることにより収縮する(図7中、「一次収縮」で示した長さ変化)特性を有する。一次収縮後、乾燥させると更に収縮する(図7中、「二次収縮」で示した長さ変化)。二次収縮後、再度水に接触させると二次収縮前と同一又はそれに近似した長さにまで伸長し、以後乾燥と湿潤を繰り返すと、二次収縮と同程度の幅(図7中、「伸縮率」で示した幅)で、収縮と伸長を繰り返す。したがって、少なくとも接触ステップを含む収縮工程を備える製造方法により、本実施形態に係る人工毛髪用繊維を得ることができる。
接触ステップでの原料繊維(改変フィブロインを含む繊維)の不可逆的な収縮(図7中の「一次収縮」)は、例えば、以下の理由により生ずると考えられる。すなわち、一つの理由は、原料繊維(改変フィブロインを含む繊維)の二次構造や三次構造に起因すると考えられ、また別の一つの理由は、例えば、製造工程での延伸等によって残留応力を有する原料繊維(改変フィブロインを含む繊維)において、水が繊維間又は繊維内へ浸入することにより、残留応力が緩和されることで生ずると考えられる。したがって、収縮工程での原料繊維(改変フィブロインを含む繊維)の収縮率は、例えば、上記した原料繊維(改変フィブロインを含む繊維)の製造過程での延伸倍率の大きさに応じて任意にコントロールすることもできると考えられる。
接触ステップでは、紡糸後、水と接触する前の原料繊維を水と接触させて、原料繊維を湿潤状態にする。湿潤状態とは、原料繊維の少なくとも一部が水で濡れた状態を意味する。これにより、外力によらずに原料繊維を収縮させることができる。この収縮は不可逆的なものである(図7の「一次収縮」に相当する)。
接触ステップで原料繊維に接触させる水の温度は、沸点未満であってよい。これにより、取扱い性及び収縮工程の作業性等が向上する。また、収縮時間を充分に短縮するという観点からは、水の温度の下限値が、10℃以上であることが好ましく、40℃以上であることがより好ましく、70℃以上であることが更に好ましい。水の温度の上限値は90℃以下であることが好ましい。
接触ステップにおいて、水を原料繊維に接触させる方法は、特に限定されない。当該方法として、例えば、原料繊維を水中に浸漬する方法、原料繊維に対して水を常温で又は加温したスチーム等の状態で噴霧する方法、及び原料繊維を水蒸気が充満した高湿度環境下に暴露する方法等が挙げられる。これらの方法の中でも、接触ステップにおいては、収縮時間の短縮化が効果的に図れるとともに、加工設備の簡素化等が実現できることから、原料繊維を水中に浸漬する方法が好ましい。
接触ステップにおいて、原料繊維を弛緩させた状態で水に接触させると、原料繊維が、単に収縮するだけでなく、波打つように縮れてしまうことがある。このような縮れの発生を防止するために、例えば、原料繊維を繊維軸方向に緊張させ(引っ張り)ながら水と接触させるなど、原料繊維を弛緩させない状態で接触ステップを実施してもよい。
本実施形態に係る人工毛髪用繊維(人造フィブロイン繊維)の製造方法は、乾燥ステップを更に備えるものであってもよい。乾燥ステップは、接触ステップを経た原料繊維(又は接触ステップを経て得られた人工毛髪用繊維)を乾燥させて更に収縮させる工程である(図7の「二次収縮」に相当する)。乾燥は、例えば、自然乾燥でもよく、乾燥設備を使用して強制的に乾燥させてもよい。乾燥設備としては、接触型又は非接触型の公知の乾燥設備がいずれも使用可能である。また、乾燥温度も、例えば、原料繊維に含まれるタンパク質が分解したり、原料繊維が熱的損傷を受けたりする温度よりも低い温度であれば何ら限定されるものではないが、一般には、20~150℃の範囲内の温度であり、50~100℃の範囲内の温度であることが好ましい。温度がこの範囲にあることにより、繊維の熱的損傷、又は繊維に含まれるタンパク質の分解が生ずることなく、繊維が、より迅速且つ効率的に乾燥される。乾燥時間は、乾燥温度等に応じて適宜に設定され、例えば、過乾燥による人工毛髪用繊維(人造フィブロイン繊維)の品質及び物性等への影響が可及的に排除され得る時間等が採用される。
図8は、人工毛髪用繊維(人造フィブロイン繊維)を製造するための製造装置の一例を概略的に示す説明図である。図8に示す製造装置40は、原料繊維を送り出すフィードローラ42と、人工毛髪用繊維38を巻き取るワインダー44と、接触ステップを実施するウォーターバス46と、乾燥ステップを実施する乾燥機48と、を有して構成されている。
より詳細には、フィードローラ42は、原料繊維36の巻回物が装着可能とされており、図示しない電動モータ等の回転によって、原料繊維36の巻回物から原料繊維36を連続的且つ自動的に送り出し得るようになっている。ワインダー44は、フィードローラ42から送り出された後、接触ステップと乾燥ステップを経て製造された人工毛髪用繊維38を、図示しない電動モータの回転によって連続的且つ自動的に巻き取り得るようになっている。なお、ここでは、フィードローラ42による原料繊維36の送出し速度と、ワインダー44による人工毛髪用繊維38の巻取り速度とが、互いに独立して制御可能とされている。
ウォーターバス46と乾燥機48は、フィードローラ42とワインダー44との間に、原料繊維36の送り方向の上流側と下流側にそれぞれ並んで配置されている。なお、図8に示す製造装置40は、フィードローラ42からワインダー44に向かって走行する接触ステップ前及び後の原料繊維36を中継するリレーローラ50及び52を有している。
ウォーターバス46はヒータ54を有し、このヒータ54にて加温された水47が、ウォーターバス46内に収容されている。また、ウォーターバス46内には、テンションローラ56が、水47中に浸漬された状態で設置されている。これにより、フィードローラ42から送り出された原料繊維36が、ウォーターバス46内を、テンションローラ56に巻き掛けられた状態で水47中に浸漬されつつ、ワインダー44側に向かって走行するようになっている。なお、原料繊維36の水47中への浸漬時間は、原料繊維36の走行速度に応じて適宜にコントロールされる。
乾燥機48は、一対のホットローラ58を有している。一対のホットローラ58は、ウォーターバス46内から離脱してワインダー44側に向かって走行する原料繊維36が巻き掛け可能とされている。これにより、ウォーターバス46内で水47に浸漬された原料繊維36が、乾燥機48内で一対のホットローラ58にて加熱され、乾燥させられた後、ワインダー44に向かって更に送り出されるようになっている。
このような構造を有する製造装置40を用いて、人工毛髪用繊維38を製造する際には、先ず、例えば、図6に示された紡糸装置10を用いて紡糸された原料繊維36の巻回物をフィードローラ42に装着する。次に、フィードローラ42から原料繊維36を連続的に送り出して、ウォーターバス46内で水47に浸漬させる。このとき、例えば、ワインダー44の巻き取り速度をフィードローラ42の送り出し速度よりも遅くしておく。これにより、原料繊維36が、フィードローラ42とワインダー44との間で弛緩しないように緊張された状態で、水47との接触により収縮するため、縮れの発生を防止することができる。水47との接触により原料繊維36は不可逆的に収縮する(図7の「一次収縮」に相当する)。
次に、水47と接触した後の原料繊維36(又は水47との接触を経て製造された人工毛髪用繊維38)を、乾燥機48の一対のホットローラ58により加熱する。これにより、水47と接触した後の原料繊維36(又は水47との接触を経て製造された人工毛髪用繊維38)を乾燥させ、更に収縮させることができる(図7の「二次収縮」に相当する)。このとき、フィードローラ42の送出し速度とワインダー44の巻取り速度との比率をコントロールすることで、人工毛髪用繊維38を更に収縮させることもできるし、長さを変化させないこともできる。そして、得られた人工毛髪用繊維38をワインダー44にて巻き取って、人工毛髪用繊維38の巻回物を得る。
なお、一対のホットローラ58に代えて、図9(b)に示されるような乾熱板64等、単なる熱源のみからなる乾燥設備を用いて水47と接触した後の原料繊維36を乾燥させてもよい。この場合にも、フィードローラ42の送出し速度とワインダー44の巻取り速度との互いの相対速度を、乾燥設備として一対のホットローラ58を使用する場合と同様に調節することにより、人工毛髪用繊維38を更に収縮させることもできるし、長さを変化させないこともできる。ここでは、乾燥手段が乾熱板64にて構成されることとなる。また、乾燥機48は必須ではない。
上述のように、製造装置40を用いることによって、目的とする人工毛髪用繊維38を自動的且つ連続的に、しかも極めて容易に製造することができる。
図9は、人工毛髪用繊維(人造フィブロイン繊維)を製造するための製造装置の別の例を概略的に示す説明図である。図9(a)は、当該製造装置に備わる、接触ステップを実施する加工装置を示し、図9(b)は、当該製造装置に備わる、乾燥ステップを実施する乾燥装置を示す。図9に示される製造装置は、原料繊維36に対する接触ステップを実施する加工装置60と、接触ステップ後の原料繊維36(又は接触ステップを経て製造された人工毛髪用繊維38)を乾燥させる乾燥装置62とを有し、それらが互いに独立した構造とされている。
より具体的には、図9(a)に示す加工装置60は、図8に示された製造装置40から乾燥機48を省略して、フィードローラ42とウォーターバス46とワインダー44とを、原料繊維36の走行方向の上流から下流側に向かって順に並べて配置してなる構造を有している。このような加工装置60は、フィードローラ42から送り出された原料繊維36を、ウォーターバス46内の水47中に浸漬させて、収縮させるようになっている。そして、得られた人工毛髪用繊維38をワインダー44にて巻き取るように構成されている。
図9(b)に示す乾燥装置62は、フィードローラ42及びワインダー44と、乾熱板64とを有している。乾熱板64は、フィードローラ42とワインダー44との間に、乾熱面66が、人工毛髪用繊維38に接触し、且つその走行方向に沿って伸びるように配置されている。この乾燥装置62では、前述したように、例えば、フィードローラ42の送出し速度とワインダー44の巻取り速度との比率をコントロールすることで、人工毛髪用繊維38を更に収縮させることもできるし、長さを変化させないこともできる。
このような構造を有する製造装置を用いることによって、原料繊維36を加工装置60により収縮させて人工毛髪用繊維38を得た後、乾燥装置62にて人工毛髪用繊維38を乾燥させることができる。
なお、図9(a)に示された加工装置60からフィードローラ42とワインダー44とを省略して、ウォーターバス46のみで加工装置を構成してもよい。このような加工装置を有する製造装置を用いる場合には、例えば、人工毛髪用繊維が、いわゆるバッチ式で製造されることとなる。また、図9(b)に示す乾燥装置62は必須ではない。
(人工毛髪用繊維(人造フィブロイン繊維))
本実施形態に係る人工毛髪用繊維(人造フィブロイン繊維)は、例えば、上述の製造方法により得られるものであるため、湿潤状態にした際に伸長し、かつ湿潤状態から乾燥した際に収縮するものである(図7の「二次収縮」以降の伸縮に相当する。)。本実施形態に係る人工毛髪用繊維(人造フィブロイン繊維)は、例えば、上述の製造方法により得られるものであるため、紡糸過程での延伸により生じる残留応力を実質的に含まないものである。
本実施形態に係る人工毛髪用繊維は、下記式(1)で定義される復元率が95%以上であってよい。
式(1):復元率=(湿潤状態から乾燥した際の人造フィブロイン繊維の長さ/湿潤状態にする前の人造フィブロイン繊維の長さ)×100(%)
式(1)で定義される復元率が高い程、湿潤/乾燥時における挙動が人毛に近くなるため、人工毛髪と人毛との間で違和感が生ずることを抑制し得る。本実施形態に係る人工毛髪用繊維は、式(1)で定義される復元率が96%以上であることが好ましく、97%以上であることがより好ましく、98%以上であることが更に好ましく、99%以上であることが更により好ましい。
本実施形態に係る人工毛髪用繊維は、下記式(4)で定義される伸長率が17%以下であってもよい。式(4)で定義される伸長率は、人工毛髪用繊維を湿潤状態にした際の伸長特性の指標となる。
式(4):伸長率={(湿潤状態にした際の人造フィブロイン繊維の長さ/湿潤状態にする前の人造フィブロイン繊維の長さ)-1}×100(%)
本実施形態に係る人工毛髪用繊維は、式(1)で定義される復元率が高いものである限り、式(4)で定義される伸長率に特に制限はない。式(4)で定義される伸長率の上限としては、15%以下、13%以下、10%以下又は5%以下が例示され、下限としては、0%超、1%以上、2%以上、5%以上、10%以上又は13%以上が例示される。本実施形態に係る人工毛髪用繊維における、式(4)で定義される伸長率は、例えば、0%超かつ17%以下であってよく、0%超かつ15%以下であってよく、2%以上かつ15%以下であってもよく、5%以上かつ15%以下であってもよく、5%以上かつ13%以下であってもよく、5%以上かつ10%以下であってもよく、0%超かつ10%以下であってもよく、0%超かつ5%以下であってもよい。ただし、人工毛髪と人毛との間での違和感をより小さくするという観点からは、式(4)で定義される伸長率が小さいことが好ましい。
本実施形態に係る人工毛髪用繊維は、下記式(5)で定義される収縮率Cが17%以下であってもよい。式(5)で定義される収縮率Cは、人工毛髪用繊維を湿潤状態から乾燥した際の収縮特性の指標となる。
式(5):収縮率C={1-(湿潤状態から乾燥した際の人造フィブロイン繊維の長さ/湿潤状態にした際の人造フィブロイン繊維の長さ)}×100(%)
本実施形態に係る人工毛髪用繊維は、式(1)で定義される復元率が高いものである限り、式(5)で定義される収縮率Cに特に制限はない。式(5)で定義される収縮率Cの上限としては、15%以下、13%以下、10%以下又は5%以下が例示され、下限としては、0%超、1%以上、2%以上、5%以上、10%以上又は13%以上が例示される。本実施形態に係る人工毛髪用繊維における、式(5)で定義される収縮率Cは、例えば、0%超かつ17%以下であってよく、0%超かつ15%以下であってよく、2%以上かつ15%以下であってもよく、5%以上かつ15%以下であってもよく、5%以上かつ13%以下であってもよく、5%以上かつ10%以下であってもよく、0%超かつ10%以下であってもよく、0%超かつ5%以下であってもよい。ただし、人工毛髪と人毛との間での違和感をより小さくするという観点からは、式(5)で定義される収縮率Cが小さいことが好ましい。
本実施形態に係る人工毛髪用繊維は、紡糸後に水と接触することで不可逆的に収縮された収縮履歴を有する繊維であって、下記式(2)で定義される収縮率Aが2%以上であることが好ましい。式(2)で定義される収縮率Aは、原料繊維の特性を示す指標となる。式(2)で定義される収縮率Aが2%以上であることにより、湿潤/乾燥時における挙動が人毛により近い人工毛髪用繊維となる。
式(2):収縮率A={1-(紡糸後に水と接触することで不可逆的に収縮された繊維の長さ/紡糸後、水と接触する前の繊維の長さ)}×100(%)
式(2)で定義される収縮率Aは、2.5%以上、3%以上、3.5%以上、4%以上、4.5%以上、5%以上、5.5%以上、6%以上、10%以上、15%以上、20%以上又は25%以上であってよい。式(2)で定義される収縮率Aの上限は特に限定されないが、80%以下、60%以下、40%以下、20%以下、10%以下、7%以下、6%以下、5%以下、4%以下又は3%以下であってよい。
本実施形態に係る人工毛髪用繊維は、紡糸後に水と接触することで不可逆的に収縮された後、乾燥により更に収縮された収縮履歴を有する繊維であって、下記式(3)で定義される収縮率Bが7%超であることが好ましい。式(3)で定義される収縮率Bは、原料繊維の特性を示す指標となる。式(3)で定義される収縮率Bが7%超であることにより、湿潤/乾燥時における挙動が人毛により近い人工毛髪用繊維となる。
式(3):収縮率B={1-(紡糸後に水と接触することで不可逆的に収縮された後、乾燥により更に収縮された繊維の長さ/紡糸後、水と接触する前の繊維の長さ)}×100(%)
式(3)で定義される収縮率Bは、10%以上、15%以上、25%超、32%以上、40%以上、48%以上、56%以上、64%以上又は72%以上であってよい。式(3)で定義される収縮率Bの上限は特に限定されないが、通常、80%以下である。
本実施形態に係る人工毛髪用繊維は、繊維軸方向に延びる凹部が表面に設けられていることが好ましい。表面に凹部(溝部)を有することで光沢が抑制され、人毛と同様の見た目を実現することができる。人工毛髪用繊維の表面に凹部を設ける方法としては、例えば、原料繊維を紡糸する際、湿式紡糸法により紡糸する方法、脱溶媒の速度を遅くする方法(例えば、凝固液にドープ液の溶媒を添加する方法)、国際公開第2016/201369号に記載された方法(例えば、凝固浴中の滞在時間を長くする方法(60秒以上)、凝固浴中の溶媒比を変化させる方法)を採用することができる。
本実施形態に係る人工毛髪用繊維は、下記式(6)で定義される熱収縮率が4%以下であってよい。
式(6):熱収縮率={1-(160℃まで加熱した際の人造フィブロイン繊維の長さ/加熱前の人造フィブロイン繊維の長さ)}×100(%)
本実施形態に係る人工毛髪用繊維は、改変フィブロインを含む人造フィブロイン繊維からなるため、軟化点が、合成繊維よりも高く、人毛に匹敵する温度となる。このため、160℃での熱収縮率(式(6)で定義される熱収縮率)が小さいものとなっている。ヘアドライヤーの温風温度は120~140℃、ヘアアイロンの使用適温は170℃以下といわれている。式(6)で定義される熱収縮率が小さい(例えば、4%以下)ことにより、ヘアドライヤー、ヘアアイロンを使用したときのダメージを抑制することができる。式(6)で定義される熱収縮率は、3%以下であってもよく、2.5%以下であってもよい。
本実施形態に係る人工毛髪用繊維は、改変フィブロインを含む人造フィブロイン繊維からなるため、アニマルフリー(動物由来成分を含まない)素材として調製することもできる。
本実施形態に係る人工毛髪用繊維は、安定供給が可能で、且つ人毛との間で違和感が生ずることを抑制し得るため、人工毛髪(例えば、ウィッグ、かつら、エクステンション)として好適に用いられる。
以下、実施例等に基づいて本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
〔試験例1:人工毛髪用繊維の製造、及び評価(1)〕
(1)改変フィブロインの製造
配列番号18で示されるアミノ酸配列を有する改変フィブロイン(PRT399)、配列番号12で示されるアミノ酸配列を有する改変フィブロイン(PRT380)、配列番号13で示されるアミノ酸配列を有する改変フィブロイン(PRT410)、配列番号15で示されるアミノ酸配列を有する改変フィブロイン(PRT799)を設計した。
設計した4種類の改変フィブロインをコードする核酸をそれぞれ合成した。当該核酸には、5’末端にNdeIサイト、終止コドン下流にEcoRIサイトを付加した。これら4種類の核酸をクローニングベクター(pUC118)にクローニングした。その後、同核酸をNdeI及びEcoRIで制限酵素処理して切り出した後、タンパク質発現ベクターpET-22b(+)に組換えて発現ベクターを得た。
得られたpET-22b(+)発現ベクターで、大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。当該培養液を、アンピシリンを含む100mLのシード培養用培地(表4)にOD600が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまでフラスコ培養を行い(約15時間)、シード培養液を得た。
Figure 0007320790000004
当該シード培養液を500mLの生産培地(表5)を添加したジャーファーメンターにOD600が0.05となるように添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持した。
Figure 0007320790000005
生産培地中のグルコースが完全に消費された直後に、フィード液(グルコース455g/1L、Yeast Extract 120g/1L)を1mL/分の速度で添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持しながら、20時間培養を行った。その後、1Mのイソプロピル-β-チオガラクトピラノシド(IPTG)を培養液に対して終濃度1mMになるよう添加し、目的とする改変フィブロインを発現誘導させた。IPTG添加後20時間経過した時点で、培養液を遠心分離し、菌体を回収した。IPTG添加前とIPTG添加後の培養液から調製した菌体を用いてSDS-PAGEを行い、IPTG添加に依存した目的とする改変フィブロインのサイズに相当するバンドの出現により、目的とする改変フィブロインの発現を確認した。
IPTGを添加してから2時間後に回収した菌体を20mM Tris-HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mM Tris-HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mM Tris-HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8M グアニジン塩酸塩、10mM リン酸二水素ナトリウム、20mM NaCl、1mM Tris-HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質を遠心分離により回収した。回収した凝集タンパク質から凍結乾燥機で水を除き、目的とする改変フィブロインの凍結乾燥粉末を得た。
(2)原料繊維の製造
4.0質量%になるように塩化リチウムを溶解させたジメチルスルホキシド(DMSO)を溶媒として用い、そこに改変フィブロインの凍結乾燥粉末を、濃度18質量%又は24質量%となるよう添加し(表6参照)、シェーカーを使用して3時間溶解させた。その後、不溶物と泡を取り除き、改変フィブロイン溶液を得た。
得られた改変フィブロイン溶液をドープ液(紡糸原液)とし、図6に示す紡糸装置10に準じた紡糸装置を用いた乾湿式紡糸によって、紡糸及び延伸された原料繊維を製造した。用いた紡糸装置は、図6に示す紡糸装置10において、未延伸糸製造装置2(第1浴)及び湿熱延伸装置3(第3浴)の間に、更に第2の未延伸糸製造装置(第2浴)を備えるものである。乾湿式紡糸の条件は以下のとおりである。
押出しノズル直径:0.2mm
第1浴~第3浴中の液体及び温度:表6参照
総延伸倍率:表6参照
乾燥温度:60℃
Figure 0007320790000006
(3)人工毛髪用繊維の製造、並びに収縮率A及び収縮率Bの評価
製造例1~19で得た各原料繊維に対し、水に接触させる接触ステップを施すこと、又は当該接触ステップを施した後、室温で乾燥させる乾燥ステップを施すことにより、人造フィブロイン繊維(人工毛髪用繊維)を製造した。
<接触ステップにおける収縮率Aの評価>
製造例1~19で得た原料繊維の巻回物から、それぞれ、長さ30cmの複数本の原料繊維を切り出した。それら複数本の原料繊維を束ねて、繊度150デニールの原料繊維束を得た。各原料繊維束に0.8gの鉛錘を取り付け、その状態で各原料繊維束を表7~10に示す温度の水に10分間浸漬した(接触ステップ)。その後、水中で各原料繊維束の長さを測定した。水中での原料繊維束の長さ測定は、原料繊維束の縮れを無くすために、原料繊維束に0.8gの鉛錘を取り付けたまま実施した。次いで、各原料繊維に対して、収縮率A(%)を、下記式(2)に従って算出した。式(2)中、L0は、紡糸後、水と接触する前の繊維の長さを示し、ここでは30cmである。同様に、式(2)中、Lwは、紡糸後に水と接触することで不可逆的に収縮された繊維の長さを示し、ここでは水中で測定した各原料繊維束の長さである。
式(2):収縮率A={1-(Lw/L0)}×100(%)
<乾燥ステップにおける収縮率Bの評価>
接触ステップの後、原料繊維束を水中から取り出した。取り出した原料繊維束を、0.8gの鉛錘を取り付けたまま、室温で2時間おいて乾燥させて(乾燥ステップ)、人造フィブロイン繊維(人工毛髪用繊維)を得た。乾燥後、各人造フィブロイン繊維束の長さを測定した。次いで、各人造フィブロイン繊維に対して、収縮率B(%)を、下記式(3)に従って算出した。式(3)中、L0は、紡糸後、水と接触する前の繊維の長さを示し、ここでは30cmである。同様に、式(3)中、Lwdは、紡糸後に水と接触することで不可逆的に収縮された後、乾燥により更に収縮された繊維の長さを示し、ここでは乾燥後に測定した各人造フィブロイン繊維束の長さである。
式(3):収縮率B={1-(Lwd/L0)}×100(%)
結果を表7~10に示す。
Figure 0007320790000007
Figure 0007320790000008
Figure 0007320790000009
Figure 0007320790000010
〔試験例2:人工毛髪用繊維の製造、及び評価〕
(1)改変フィブロインの製造
配列番号15で示されるアミノ酸配列を有する改変フィブロイン(PRT799)、配列番号37で示されるアミノ酸配列を有する改変フィブロイン(PRT918)、配列番号43で示されるアミノ酸配列を有する改変フィブロイン(PRT917)、配列番号44で示されるアミノ酸配列を有する改変フィブロイン(PRT1028)を設計した。
設計した4種類の改変フィブロインをコードする核酸をそれぞれ合成した。当該核酸には、5’末端にNdeIサイト、終止コドン下流にEcoRIサイトを付加した。これら5種類の核酸をクローニングベクター(pUC118)にクローニングした。その後、同核酸をNdeI及びEcoRIで制限酵素処理して切り出した後、タンパク質発現ベクターpET-22b(+)に組換えて発現ベクターを得た。
得られたpET22b(+)発現ベクターで、大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。当該培養液をアンピシリンを含む100mLのシード培養用培地(表11)にOD600が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまでフラスコ培養を行い(約15時間)、シード培養液を得た。
Figure 0007320790000011
当該シード培養液を500mLの生産培地(表12)を添加したジャーファーメンターにOD600が0.05となるように添加して形質転換大腸菌を植菌した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにした。
Figure 0007320790000012
生産培地中のグルコースが完全に消費された直後に、フィード液(グルコース455g/1L、Yeast Extract 120g/1L)を1mL/分の速度で添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにし、20時間培養を行った。その後、1Mのイソプロピル-β-チオガラクトピラノシド(IPTG)を培養液に対して終濃度1mMになるよう添加し、目的のタンパク質を発現誘導させた。IPTG添加後20時間経過した時点で、培養液を遠心分離し、菌体を回収した。IPTG添加前とIPTG添加後の培養液から調製した菌体を用いてSDS-PAGEを行い、IPTG添加に依存した目的とするタンパク質サイズのバンドの出現により、目的とするタンパク質の発現を確認した。
IPTGを添加してから2時間後に回収した菌体を20mM Tris-HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mM Tris-HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mM Tris-HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8Mグアニジン塩酸塩、10mMリン酸二水素ナトリウム、20mM NaCl、1mM Tris-HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質を遠心分離により回収し、凍結乾燥機で水を除き、凍結乾燥粉末を回収した。
(2)原料繊維の製造
4質量%になるように塩化リチウムを溶解させたDMSOを溶媒として用い、そこに改変フィブロインの凍結乾燥粉末を、濃度24質量%となるように添加した。90℃のアルミブロックヒーターで1時間溶解させた後、不溶物と泡を取り除き、ドープ液(紡糸原液)とした。
ドープ液をリザーブタンクに充填し、0.3mm径のモノホールノズルからギアポンプを用い100質量%メタノール凝固浴槽中(凝固浴温度12℃)へ吐出させた。凝固後、100質量%メタノール洗浄浴槽で洗浄及び延伸を行った。洗浄及び延伸後、乾熱板を用いて乾燥させ(乾燥温度80℃)、得られた原糸(原料繊維)を巻き取った。延伸倍率は6倍であった。
(3)人工毛髪用繊維の製造
各原料繊維を、それぞれ長さ約30cmに揃えて束ね、繊度150デニールの原料繊維束とした。各原料繊維束に0.8gの鉛錘を取り付け、その状態で原料繊維束を40℃の水に10分間浸漬して収縮させた後(接触ステップ)、水中から取り出し、0.8gの鉛錘を取り付けたまま、室温で2時間おいて乾燥させて(乾燥ステップ)、互いにタンパク質の種類が異なる、実施例1~4の人造フィブロイン繊維(人工毛髪用繊維)を得た。
(4)人工毛髪用繊維の評価(水伸縮性)
(3)で得られた実施例1~4の人造フィブロイン繊維の乾燥状態での長さ(湿潤状態にする前の人造フィブロイン繊維の長さ)をそれぞれ測定した。次いで、各人造フィブロイン繊維に0.8gの鉛錘を取り付け、その状態で原料繊維束を40℃の水に10分間浸漬した。その後、水中で各人造フィブロイン繊維の長さ(湿潤状態にした際の人造フィブロイン繊維の長さ)を測定した。水中での各人造フィブロイン繊維の長さ測定は、各人造フィブロイン繊維の縮れを無くすために、各人造フィブロイン繊維に0.8gの鉛錘を取り付けたまま実施した。次いで、水中から取り出した各人造フィブロイン繊維を、0.8gの鉛錘を取り付けたまま、室温で2時間おいて乾燥させた。乾燥後、各人造フィブロイン繊維の長さ(湿潤状態から乾燥した際の人造フィブロイン繊維の長さ)を測定した。得られた測定値から、下記式(1)、式(4)及び式(5)に従って、各人造フィブロイン繊維の復元率、伸長率及び収縮率Cを算出した。
式(1):復元率=(湿潤状態から乾燥した際の人造フィブロイン繊維の長さ/湿潤状態にする前の人造フィブロイン繊維の長さ)×100(%)
式(4):伸長率={(湿潤状態にした際の人造フィブロイン繊維の長さ/湿潤状態にする前の人造フィブロイン繊維の長さ)-1}×100(%)
式(5):収縮率C={1-(湿潤状態から乾燥した際の人造フィブロイン繊維の長さ/湿潤状態にした際の人造フィブロイン繊維の長さ)}×100(%)
比較のため、合成繊維(比較例1:ナイロン、比較例2:ポリエステル)に対して、上述の操作を実施し、復元率、伸長率及び収縮率Cを算出した。
実施例1及び2の人造フィブロイン繊維に対しては、上述の操作を繰り返し、2サイクル目における復元率、伸長率及び収縮率Cを算出した。結果を併せて表13に示す。
Figure 0007320790000013
表13に示すとおり、改変フィブロインを含む人造フィブロイン繊維(実施例1~4)は、湿潤状態で伸長し、その後乾燥すると元の長さに戻る(復元率98.2~100%)という人毛と同等の特性を有している。また、湿潤と乾燥を繰り返しても、この特性は維持される(実施例1~2)。
(5)人工毛髪用繊維の評価(SEM観察)
図10は、実施例2の人造フィブロイン繊維(PRT918)の走査型電子顕微鏡(SEM)写真である。図10(A)は、表面構造(スキン層)のSEM写真である。図10(B)は、内部構造(切断面)のSEM写真である。繊維軸方向に凹部が形成されていることが分かる。
(6)人工毛髪用繊維の評価(熱収縮)
実施例2の人造フィブロイン繊維(PRT918)に対して、熱機械分析装置(型番:TMA4000SE,販売元:NETZSCH JAPAN株式会社)を用いて、160℃での熱収縮率を測定した。測定条件は、以下のとおりである。
繊維長:10mm
温度上昇速度:10℃/min
保持時間:1min
目標温度:230℃
引張荷重:0.1g
測定結果を図11に示す。下記式(6)に従って算出される熱収縮率は3%であった。
式(6):熱収縮率={1-(160℃まで加熱した際の人造フィブロイン繊維の長さ/加熱前の人造フィブロイン繊維の長さ)}×100(%)
1…押出し装置、2…未延伸糸製造装置、3…湿熱延伸装置、4…乾燥装置、6…ドープ液、10…紡糸装置、20…凝固液槽、21…延伸浴槽、36…原料繊維、38…人工毛髪用繊維、40…製造装置、42…フィードローラ、44…ワインダー、46…ウォーターバス、48…乾燥機、54…ヒータ、56…テンションローラ、58…ホットローラ、60…加工装置、62…乾燥装置、64…乾熱板。

Claims (18)

  1. 改変フィブロインを含む人造フィブロイン繊維からなり、
    湿潤状態にした際に伸長し、かつ湿潤状態から乾燥した際に収縮する、人工毛髪用繊維。
  2. 下記式(1)で定義される復元率が95%以上である、請求項1に記載の人工毛髪用繊維。
    復元率=(湿潤状態から乾燥した際の人造フィブロイン繊維の長さ/湿潤状態にする前の人造フィブロイン繊維の長さ)×100(%) ・・・(1)
  3. 前記人造フィブロイン繊維は、紡糸後に水と接触することで不可逆的に収縮された収縮履歴を有する繊維であり、
    下記式(2)で定義される収縮率Aが2%以上である、請求項1又は2に記載の人工毛髪用繊維。
    収縮率A={1-(紡糸後に水と接触することで不可逆的に収縮された繊維の長さ/紡糸後、水と接触する前の繊維の長さ)}×100(%) ・・・(2)
  4. 前記人造フィブロイン繊維は、紡糸後に水と接触することで不可逆的に収縮された後、乾燥により更に収縮された収縮履歴を有する繊維であり、
    下記式(3)で定義される収縮率Bが7%超である、請求項1~3のいずれか一項に記載の人工毛髪用繊維。
    収縮率B={1-(紡糸後に水と接触することで不可逆的に収縮された後、乾燥により更に収縮された繊維の長さ/紡糸後、水と接触する前の繊維の長さ)}×100(%) ・・・(3)
  5. 前記改変フィブロインが、改変クモ糸フィブロインである、請求項1~4のいずれか一項に記載の人工毛髪用繊維。
  6. 繊維軸方向に延びる凹部が表面に設けられている、請求項1~5のいずれか一項に記載の人工毛髪用繊維。
  7. 下記式(4)で定義される伸長率が17%以下である、請求項1~6のいずれか一項に記載の人工毛髪用繊維。
    伸長率={(湿潤状態にした際の人造フィブロイン繊維の長さ/湿潤状態にする前の人造フィブロイン繊維の長さ)-1}×100(%) ・・・(4)
  8. 下記式(5)で定義される収縮率Cが17%以下である、請求項1~7のいずれか一項に記載の人工毛髪用繊維。
    収縮率C={1-(湿潤状態から乾燥した際の人造フィブロイン繊維の長さ/湿潤状態にした際の人造フィブロイン繊維の長さ)}×100(%) ・・・(5)
  9. 下記式(6)で定義される熱収縮率が4%以下である、請求項1~8のいずれか一項に記載の人工毛髪用繊維。
    熱収縮率={1-(160℃まで加熱した際の人造フィブロイン繊維の長さ/加熱前の人造フィブロイン繊維の長さ)}×100(%) ・・・(6)
  10. 紡糸過程での延伸により生じる残留応力を実質的に含まない、請求項1~9のいずれか一項に記載の人工毛髪用繊維。
  11. 紡糸後、水と接触する前の原料繊維を、水と接触させて不可逆的に収縮させた後、乾燥させて更に収縮させる収縮工程を備え、
    前記原料繊維が、改変フィブロインを含む、人工毛髪用繊維の製造方法。
  12. 前記原料繊維は、下記式(2)で定義される収縮率Aが2%以上の繊維である、請求項11に記載の製造方法。
    収縮率A={1-(紡糸後に水と接触することで不可逆的に収縮された繊維の長さ/紡糸後、水と接触する前の繊維の長さ)}×100(%) ・・・(2)
  13. 前記原料繊維は、下記式(3)で定義される収縮率Bが7%超の繊維である、請求項11又は12に記載の製造方法。
    収縮率B={1-(紡糸後に水と接触することで不可逆的に収縮された後、乾燥により更に収縮された繊維の長さ/紡糸後、水と接触する前の繊維の長さ)}×100(%) ・・・(3)
  14. 前記収縮工程では、紡糸過程での延伸により生じた原料繊維中の残留応力が、実質的に全て解放される、請求項11~13のいずれか一項に記載の製造方法。
  15. 前記収縮工程は、前記原料繊維を弛緩させることなく行われる、請求項11~14のいずれか一項に記載の製造方法。
  16. 前記原料繊維は、前記改変フィブロインと溶媒とを含む紡糸原液を凝固液中に導入し、前記紡糸原液から前記溶媒を離脱させて凝固させることにより形成されている、請求項11~15のいずれか一項に記載の製造方法。
  17. 前記改変フィブロインが、改変クモ糸フィブロインである、請求項11~16のいずれか一項に記載の製造方法。
  18. 請求項1~10のいずれか一項に記載の人工毛髪用繊維を含む、人工毛髪。
JP2020532446A 2018-07-25 2019-07-24 人工毛髪用繊維、及びその製造方法、並びに人工毛髪 Active JP7320790B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018139563 2018-07-25
JP2018139563 2018-07-25
PCT/JP2019/029077 WO2020022395A1 (ja) 2018-07-25 2019-07-24 人工毛髪用繊維、及びその製造方法、並びに人工毛髪

Publications (2)

Publication Number Publication Date
JPWO2020022395A1 JPWO2020022395A1 (ja) 2021-08-26
JP7320790B2 true JP7320790B2 (ja) 2023-08-04

Family

ID=69182194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020532446A Active JP7320790B2 (ja) 2018-07-25 2019-07-24 人工毛髪用繊維、及びその製造方法、並びに人工毛髪

Country Status (6)

Country Link
US (1) US20210214404A1 (ja)
EP (1) EP3827682A4 (ja)
JP (1) JP7320790B2 (ja)
CN (1) CN112469298B (ja)
WO (1) WO2020022395A1 (ja)
ZA (1) ZA202101215B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3859076A4 (en) * 2018-09-28 2023-01-18 Spiber Inc. MODIFIED FIBROIN FIBERS
JP7542823B2 (ja) 2019-01-31 2024-09-02 株式会社アデランス 人工毛髪用繊維、人工毛髪、人工毛髪用繊維を製造する方法、及び人工毛髪を製造する方法
EP4036291A4 (en) * 2019-09-27 2023-08-09 Spiber Inc. PROTEIN FIBER PRODUCTION METHODS, PROTEIN FIBER PRODUCTION METHODS, AND PROTEIN FIBER SHRINKING METHODS
WO2021065851A1 (ja) * 2019-09-30 2021-04-08 Spiber株式会社 人工毛髪用保水性調節剤、及び保水性を調節する方法
CN117805164A (zh) * 2023-12-29 2024-04-02 中国人民警察大学(公安部国际执法合作学院、中国维和警察培训中心) 一种基于毛发轻微热损伤判别人员近距离接触火源的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127168A (ja) 2007-11-28 2009-06-11 Toshihiro Fujii 生体組織を安定に導入した成形品とその製造方法
JP4520028B2 (ja) 2000-12-15 2010-08-04 川崎重工業株式会社 ロケットフェアリングの防音構造
JP5407009B1 (ja) 2012-06-28 2014-02-05 スパイバー株式会社 原着タンパク質繊維の製造方法
JP2016516141A (ja) 2013-03-20 2016-06-02 エヌ.オー.エム.コーティングス エスイーアー 人工毛髪組成物及びその製造方法
WO2017127940A1 (en) 2016-01-27 2017-08-03 Dalhousie University Artificial spider aciniform silk proteins, methods of making and uses thereof
JP6337252B1 (ja) 2017-03-10 2018-06-06 Spiber株式会社 高収縮人造フィブロイン繊維及びその製造方法、並びに人造フィブロイン繊維の収縮方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4520028B1 (ja) * 1966-12-28 1970-07-08
JPS533289B2 (ja) * 1971-02-26 1978-02-04
US4141207A (en) * 1977-09-02 1979-02-27 Shigesaburo Mizushima Process for producing curl shrunk silk yarn
JP3753945B2 (ja) 2001-02-14 2006-03-08 ヒゲタ醤油株式会社 大腸菌とブレビバチルス属細菌間のプラスミドシャトルベクター
JP3809430B2 (ja) * 2002-08-21 2006-08-16 門倉メリヤス株式会社 人工毛髪用絹繊維及び人工毛髪の製造方法
JP2007297737A (ja) 2006-04-28 2007-11-15 Kaneka Corp 人工毛髪用ポリエステル系繊維
CN101597817A (zh) * 2008-07-01 2009-12-09 河南瑞贝卡发制品股份有限公司 一种人造毛发用胶原蛋白纤维的制备方法
WO2014175177A1 (ja) * 2013-04-25 2014-10-30 スパイバー株式会社 ポリペプチドヒドロゲル及びその製造方法
JP5840316B1 (ja) * 2015-03-25 2016-01-06 株式会社松風 まつげエクステンションの製造方法、まつげエクステンションおよびまつげエクステンションの取付け方法
WO2016201369A1 (en) 2015-06-11 2016-12-15 Bolt Threads, Inc. Recombinant protein fiber yarns with improved properties
JP6807089B2 (ja) * 2017-07-26 2021-01-06 Spiber株式会社 改変フィブロイン
JP7542823B2 (ja) * 2019-01-31 2024-09-02 株式会社アデランス 人工毛髪用繊維、人工毛髪、人工毛髪用繊維を製造する方法、及び人工毛髪を製造する方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520028B2 (ja) 2000-12-15 2010-08-04 川崎重工業株式会社 ロケットフェアリングの防音構造
JP2009127168A (ja) 2007-11-28 2009-06-11 Toshihiro Fujii 生体組織を安定に導入した成形品とその製造方法
JP5407009B1 (ja) 2012-06-28 2014-02-05 スパイバー株式会社 原着タンパク質繊維の製造方法
JP2016516141A (ja) 2013-03-20 2016-06-02 エヌ.オー.エム.コーティングス エスイーアー 人工毛髪組成物及びその製造方法
WO2017127940A1 (en) 2016-01-27 2017-08-03 Dalhousie University Artificial spider aciniform silk proteins, methods of making and uses thereof
JP6337252B1 (ja) 2017-03-10 2018-06-06 Spiber株式会社 高収縮人造フィブロイン繊維及びその製造方法、並びに人造フィブロイン繊維の収縮方法

Also Published As

Publication number Publication date
CN112469298A (zh) 2021-03-09
CN112469298B (zh) 2023-02-17
ZA202101215B (en) 2022-09-28
US20210214404A1 (en) 2021-07-15
JPWO2020022395A1 (ja) 2021-08-26
EP3827682A4 (en) 2022-04-27
EP3827682A1 (en) 2021-06-02
WO2020022395A1 (ja) 2020-01-30

Similar Documents

Publication Publication Date Title
JP6337252B1 (ja) 高収縮人造フィブロイン繊維及びその製造方法、並びに人造フィブロイン繊維の収縮方法
JP7320790B2 (ja) 人工毛髪用繊維、及びその製造方法、並びに人工毛髪
WO2018164234A1 (ja) タンパク質繊維の製造方法、及びタンパク質繊維の防縮方法
WO2018164190A1 (ja) 人造フィブロイン繊維
WO2018164020A1 (ja) タンパク質繊維の製造方法及び製造装置
JP7340262B2 (ja) 高収縮人造フィブロイン紡績糸及びその製造方法、並びに人造フィブロイン紡績糸及びその収縮方法
JP7542823B2 (ja) 人工毛髪用繊維、人工毛髪、人工毛髪用繊維を製造する方法、及び人工毛髪を製造する方法
WO2019044982A1 (ja) 高密度編地及び高密度編地の製造方法
JP7237314B2 (ja) タンパク質繊維の製造方法、タンパク質繊維の製造装置、およびタンパク質繊維の加工方法
WO2020158900A1 (ja) 人工毛髪用繊維を製造する方法、人工毛髪を製造する方法、人工毛髪用繊維、及び人工毛髪
JP7367977B2 (ja) タンパク質捲縮ステープルの製造方法
JP7223984B2 (ja) タンパク質紡績糸の製造方法
WO2019066053A1 (ja) タンパク質繊維の製造方法、タンパク質繊維の製造装置、およびタンパク質繊維の加工方法
JP7446578B2 (ja) 人造繊維綿
JP7287621B2 (ja) 改変フィブロイン繊維及びその製造方法
WO2019151432A1 (ja) 油剤付着タンパク質捲縮繊維の製造方法
WO2019194261A1 (ja) 人造フィブロイン繊維
WO2019194263A1 (ja) 高収縮人造フィブロイン撚糸及びその製造方法、並びに人造フィブロイン撚糸及びその収縮方法
WO2019066006A1 (ja) 撚糸の製造方法、仮撚り糸の製造方法、及び糸の撚り加工方法
WO2019194260A1 (ja) 高収縮人造フィブロイン繊維及びその製造方法、並びに人造フィブロイン繊維の収縮方法
WO2019151433A1 (ja) タンパク質フィラメントの開繊トウ及びその製造方法
JP2020122251A (ja) 賦形性付与材、賦形性繊維製品及びその製造方法、並びに、形状が付与された繊維製品及びその製造方法
JP2019183301A (ja) 人造フィブロイン繊維の防縮方法、人造フィブロイン繊維及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230714

R150 Certificate of patent or registration of utility model

Ref document number: 7320790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150