Nothing Special   »   [go: up one dir, main page]

JP7310655B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP7310655B2
JP7310655B2 JP2020036310A JP2020036310A JP7310655B2 JP 7310655 B2 JP7310655 B2 JP 7310655B2 JP 2020036310 A JP2020036310 A JP 2020036310A JP 2020036310 A JP2020036310 A JP 2020036310A JP 7310655 B2 JP7310655 B2 JP 7310655B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tubes
flat heat
circulation path
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020036310A
Other languages
Japanese (ja)
Other versions
JP2021139532A (en
Inventor
昇平 仲田
慶成 前間
孝多郎 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2020036310A priority Critical patent/JP7310655B2/en
Publication of JP2021139532A publication Critical patent/JP2021139532A/en
Application granted granted Critical
Publication of JP7310655B2 publication Critical patent/JP7310655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱交換器に関する。 The present invention relates to heat exchangers.

従来、複数の流路を有する扁平伝熱管の両端が左右のヘッダにそれぞれ挿入、接続され、一方のヘッダから扁平伝熱管に冷媒の分流を行う構造を有する熱交換器が知られている。このような熱交換器を用いた空気調和機において、冷媒と外部の空気の熱交換を行う際、風上側の流路内の冷媒には多くの熱負荷がかかるため、同じ扁平伝熱管の流路でも風上側に位置する流路に風下側に位置する流路より多くの冷媒を流通させる技術が提案されている(例えば、特許文献1および2を参照)。 2. Description of the Related Art Conventionally, there is known a heat exchanger having a structure in which both ends of a flat heat transfer tube having a plurality of flow paths are inserted and connected to left and right headers, respectively, and refrigerant is split from one of the headers to the flat heat transfer tube. In an air conditioner using such a heat exchanger, when heat is exchanged between the refrigerant and the outside air, a large heat load is applied to the refrigerant in the flow path on the windward side. Techniques have been proposed for circulating a larger amount of refrigerant in a flow path located on the windward side than in a flow path located on the leeward side (see Patent Documents 1 and 2, for example).

特開2006-266521号公報JP 2006-266521 A 特開2018-100800号公報Japanese Patent Application Laid-Open No. 2018-100800

上述した技術では、ヘッダ内を風上側の空間と風下側の空間に分け、風上側の空間から風下側の空間へ冷媒を流入させる。図9は、特許文献1のヘッダ60内の断面図であり、(a)は冷媒の流量が少ない場合、(b)が多い場合を示している。ヘッダ60内には、扁平伝熱管63が接続される側と対向する側から延出する壁61が設けられ、壁61によりヘッダ60の内部が風上側空間62aと風下側空間62bとに仕切られている。冷媒の流量が少ない場合は、図9(a)に示すように、配管50から風上側空間62aに流入した冷媒のうち液相冷媒の多くは、壁61に到達することなく(風下側空間62bには流入せず)、扁平伝熱管63の風上側流路63aに流入する。一方、冷媒の流量が大きい場合は、図9(b)に示すように、液相冷媒は慣性力によって壁61の方向に押しやられ、壁61に衝突した後、壁61に沿って風下側空間62bに多く流入し、扁平伝熱管63の風下側流路63bに流入する。かかる場合、熱負荷の小さい風下側の扁平伝熱管の流路に流入する熱交換量の大きい液相冷媒の量が多くなり、熱負荷の大きい扁平伝熱管の風上側の流路に流入する熱交換量の小さい気相冷媒の量が多くなってしまい、目標とする熱交換器の熱交換能力が得られないことがあった。 In the technique described above, the inside of the header is divided into a windward space and a leeward space, and the refrigerant flows from the windward space to the leeward space. FIG. 9 is a cross-sectional view of the inside of the header 60 of Patent Document 1, in which (a) shows a case where the flow rate of the refrigerant is small and (b) shows a case where the flow rate is large. A wall 61 is provided in the header 60 and extends from the side opposite to the side to which the flat heat transfer tubes 63 are connected. ing. When the flow rate of the refrigerant is small, as shown in FIG. 9A, most of the liquid-phase refrigerant among the refrigerant that has flowed into the windward space 62a from the pipe 50 does not reach the wall 61 (the leeward space 62b ), and flows into the windward flow path 63 a of the flat heat transfer tube 63 . On the other hand, when the flow rate of the refrigerant is large, as shown in FIG. 9B, the liquid-phase refrigerant is pushed toward the wall 61 by inertial force, collides with the wall 61, and then flows along the wall 61 into the leeward space. 62 b and flows into the leeward flow path 63 b of the flat heat transfer tube 63 . In this case, the amount of liquid-phase refrigerant with a large amount of heat exchange flowing into the flow path of the flat heat transfer tubes on the leeward side with a small heat load increases, and the amount of heat flowing into the flow path on the upwind side of the flat heat transfer tubes with a large heat load increases. In some cases, the amount of gas-phase refrigerant with a small exchange amount becomes large, and the target heat exchange capacity of the heat exchanger cannot be obtained.

本発明は、上記に鑑みてなされたものであって、冷媒の流量によらず目標とする熱交換能力が得られる熱交換器を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat exchanger capable of obtaining a target heat exchange capacity regardless of the flow rate of refrigerant.

上述した課題を解決し、目的を達成するために、本発明に係る熱交換器は、幅広な面が対向するように積層された複数の扁平伝熱管と、前記複数の扁平伝熱管の端部が接続され、前記複数の扁平伝熱管に冷媒を分流する管状のヘッダと、を備え、前記ヘッダは、管状の本体部を前記複数の扁平伝熱管の積層方向に並ぶ二つの空間に区画する第1の仕切り部材と、前記第1の仕切り部材により区画された前記管状の本体部の上部側の空間を前記複数の扁平伝熱管が接続される側の空間である循環復路と前記複数の扁平伝熱管が接続されない側の空間である循環往路に区画し、上部に上部連通口、下部に下部連通口が設けられる第2の仕切り部材と、を有し、管状の本体部が前記第1の仕切り部材により区画された上部側の空間は、冷媒流入部であり、前記第1の仕切り部材には、前記循環往路に冷媒を流入する冷媒流入口が設けられ、前記第2の仕切り部材の下部連通口は、前記複数の扁平伝熱管の幅方向の一方側に設けられ、当該一方側が前記外部の空気の流れ方向の風下側とする。 In order to solve the above-described problems and achieve the object, a heat exchanger according to the present invention includes a plurality of flat heat transfer tubes stacked so that wide surfaces face each other, and end portions of the plurality of flat heat transfer tubes. and a tubular header for branching the refrigerant to the plurality of flat heat transfer tubes, the header partitioning the tubular main body into two spaces aligned in the stacking direction of the plurality of flat heat transfer tubes. 1 partition member, and the space on the upper side of the tubular main body partitioned by the first partition member is divided into a circulation return path, which is a space on the side to which the plurality of flat heat transfer tubes are connected, and the plurality of flat heat transfer tubes. a second partition member that divides the space into an outward circulation path, which is a space to which the heat pipe is not connected, and is provided with an upper communication port at an upper portion and a lower communication port at a lower portion, and the tubular body portion is the first partition The space on the upper side partitioned by the member is a refrigerant inflow portion, and the first partition member is provided with a refrigerant inflow port through which the refrigerant flows into the outward circulation path, and communicates with the lower portion of the second partition member. The opening is provided on one side in the width direction of the plurality of flat heat transfer tubes, and the one side is the leeward side in the direction of flow of the external air.

本発明によれば、冷媒の流量によらず目標とする熱交換能力を得ることができる。 According to the present invention, it is possible to obtain the target heat exchange capacity regardless of the flow rate of the refrigerant.

図1は、本発明の実施の形態1に係る熱交換器が適用される空気調和機の構成を説明する図である。FIG. 1 is a diagram illustrating the configuration of an air conditioner to which a heat exchanger according to Embodiment 1 of the present invention is applied. 図2は、本発明の実施の形態1に係る熱交換器を説明する図であって、(a)は熱交換器の平面図、(b)は熱交換器の正面図である。2A and 2B are diagrams illustrating the heat exchanger according to Embodiment 1 of the present invention, in which FIG. 2A is a plan view of the heat exchanger and FIG. 2B is a front view of the heat exchanger. 図3は、本発明の実施の形態1に係る熱交換器のヘッダの斜視図である。FIG. 3 is a perspective view of the header of the heat exchanger according to Embodiment 1 of the present invention. 図4は、図3のヘッダの(a)中間部の水平断面図、(b)上部の水平断面図、(c)下部の水平断面図である。4 is (a) a horizontal sectional view of the middle portion, (b) a horizontal sectional view of the upper portion, and (c) a horizontal sectional view of the lower portion of the header of FIG. 図5は、本発明の実施の形態2に係る熱交換器のヘッダの斜視図である。FIG. 5 is a perspective view of a header of a heat exchanger according to Embodiment 2 of the present invention. 図6は、本発明の実施の形態2に係る熱交換器のヘッダの(a)中間部の水平断面図、(b)上部の水平断面図、(c)下部の水平断面図である。FIG. 6 shows (a) a horizontal cross-sectional view of an intermediate portion, (b) a horizontal cross-sectional view of an upper portion, and (c) a horizontal cross-sectional view of a lower portion of a header of a heat exchanger according to Embodiment 2 of the present invention. 図7は、本発明の実施の形態3に係る熱交換器のヘッダの斜視図である。FIG. 7 is a perspective view of a header of a heat exchanger according to Embodiment 3 of the present invention. 図8は、本発明の実施の形態3に係る熱交換器のヘッダの(a)中間部の水平断面図、(b)上部の水平断面図、(c)下部の水平断面図である。FIG. 8 shows (a) a horizontal cross-sectional view of an intermediate portion, (b) a horizontal cross-sectional view of an upper portion, and (c) a horizontal cross-sectional view of a lower portion of a header of a heat exchanger according to Embodiment 3 of the present invention. 図9は、従来技術のヘッダの(a)は冷媒の流量が少ない場合の断面図、(b)は流量が多い場合の断面図である。9A and 9B are cross-sectional views of the header of the prior art when the flow rate of the refrigerant is small, and FIG.

以下、添付図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)について、添付図面を参照して説明する。なお、実施の形態の説明の全体を通して同じ構成には同じ番号を付している。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as "embodiments") will be described with reference to the accompanying drawings. The same numbers are assigned to the same configurations throughout the description of the embodiments.

[実施の形態1]
(空気調和機)
図1は、本発明の実施の形態1に係る熱交換器4および熱交換器5が適用される空気調和機1の構成を説明する図である。図1に示すように、空気調和機1は、室内機2と、室外機3とを備える。室内機2は、室内用の熱交換器4が設けられ、室外機3には、室外用の熱交換器5のほかに、圧縮機6、膨張弁7、四方弁8が設けられている。
[Embodiment 1]
(air conditioner)
FIG. 1 is a diagram illustrating the configuration of an air conditioner 1 to which a heat exchanger 4 and a heat exchanger 5 according to Embodiment 1 of the present invention are applied. As shown in FIG. 1 , the air conditioner 1 includes an indoor unit 2 and an outdoor unit 3 . The indoor unit 2 is provided with an indoor heat exchanger 4 , and the outdoor unit 3 is provided with a compressor 6 , an expansion valve 7 and a four-way valve 8 in addition to the outdoor heat exchanger 5 .

暖房運転時には、室外機3の圧縮機6から吐出された高温高圧のガス冷媒が四方弁8を介して凝縮器として機能する熱交換器4に流入する。暖房運転時には、図1において黒矢印で示す方向に冷媒が流れている。熱交換器4では、外部の空気と熱交換した冷媒が液化する。液化した高圧の冷媒は、膨張弁7を通過して減圧され、低温低圧の気液二相冷媒として蒸発器として機能する熱交換器5に流入する。熱交換器5では、外部の空気と熱交換した冷媒はガス化する。ガス化した低圧の冷媒は、四方弁8を介して圧縮機6に吸入される。 During heating operation, high-temperature, high-pressure gas refrigerant discharged from the compressor 6 of the outdoor unit 3 flows through the four-way valve 8 into the heat exchanger 4 functioning as a condenser. During heating operation, the refrigerant flows in the direction indicated by the black arrow in FIG. In the heat exchanger 4, the refrigerant that has exchanged heat with the outside air is liquefied. The liquefied high-pressure refrigerant passes through the expansion valve 7, is decompressed, and flows into the heat exchanger 5 functioning as an evaporator as a low-temperature, low-pressure gas-liquid two-phase refrigerant. In the heat exchanger 5, the refrigerant that has exchanged heat with the outside air is gasified. The gasified low-pressure refrigerant is sucked into the compressor 6 via the four-way valve 8 .

冷房運転時には、室外機3の圧縮機6から吐出された高温高圧のガス冷媒が四方弁8を介して凝縮器として機能する熱交換器5に流入する。冷房運転時には、図1において白矢印で示す方向に冷媒が流れている。熱交換器5では、外部の空気と熱交換した冷媒が液化する。液化した高圧の冷媒は、膨張弁7を通過して減圧され、低温低圧の気液二相冷媒として蒸発器として機能する熱交換器4に流入する。熱交換器4では、外部の空気と熱交換した冷媒はガス化する。ガス化した低圧の冷媒は、四方弁8を介して圧縮機6に吸入される。 During cooling operation, high-temperature and high-pressure gas refrigerant discharged from the compressor 6 of the outdoor unit 3 flows through the four-way valve 8 into the heat exchanger 5 functioning as a condenser. During cooling operation, the refrigerant flows in the direction indicated by the white arrow in FIG. In the heat exchanger 5, the refrigerant that has exchanged heat with the outside air is liquefied. The liquefied high-pressure refrigerant passes through the expansion valve 7, is decompressed, and flows into the heat exchanger 4 functioning as an evaporator as a low-temperature, low-pressure gas-liquid two-phase refrigerant. In the heat exchanger 4, the refrigerant that has exchanged heat with the outside air is gasified. The gasified low-pressure refrigerant is sucked into the compressor 6 via the four-way valve 8 .

(熱交換器)
本発明の実施の形態1に係る熱交換器は、熱交換器4および熱交換器5のいずれにも適用可能であるが、暖房運転時に蒸発器として機能する熱交換器5に適用するものとして説明する。図2は、本発明の実施の形態1に係る熱交換器5を説明する図であって、(a)は熱交換器5の平面図、(b)は熱交換器5の正面図である。
(Heat exchanger)
The heat exchanger according to Embodiment 1 of the present invention can be applied to both the heat exchanger 4 and the heat exchanger 5. However, it is assumed that the heat exchanger 5 functions as an evaporator during heating operation. explain. 2A and 2B are diagrams illustrating the heat exchanger 5 according to Embodiment 1 of the present invention, in which (a) is a plan view of the heat exchanger 5 and (b) is a front view of the heat exchanger 5. .

熱交換器5は、冷媒が流通する複数の扁平伝熱管11と、複数の扁平伝熱管11の端部が接続され、扁平伝熱管11に冷媒を分流する管状のヘッダ12と、複数の扁平伝熱管11の他端が接続され、扁平伝熱管11から流出した冷媒を合流する管状のヘッダ13と、扁平伝熱管11に接合される複数の平板形状のフィン14と、を備える。扁平伝熱管11は、図2(a)において矢印で示す、外部の空気の流れ方向と直交する方向に延び、断面は扁平形状をなしている。扁平伝熱管11の内部には、扁平伝熱管が伸びる方向と同じ方向に延びる複数の流路を有している。本実施例では、外部の空気が流通する方向を扁平伝熱管11の幅方向、扁平伝熱管11が延びる方向である外部の空気が流通する方向と直交する方向を扁平伝熱管11の長さ方向とする。図2(b)に示すように、扁平伝熱管11は、側面のうちの扁平面(幅広の面)が対向するように上下方向に積層され、左右の端部がヘッダ12およびヘッダ13と接続されている。また、ヘッダ12およびヘッダ13の間には、扁平伝熱管11と直交するように複数のフィン14が配置されている。膨張弁7を通過して減圧された低温低圧の気液二相冷媒は、配管15によりヘッダ12に供給され、各扁平伝熱管11に分流される。扁平伝熱管11を流通する際に、フィン14を介して空気と熱交換した気液二相冷媒はガス化してヘッダ13に流出し、ヘッダ13で合流した冷媒は、配管16、四方弁8を介して圧縮機6に吸入される。 The heat exchanger 5 includes a plurality of flat heat transfer tubes 11 through which a refrigerant flows, a tubular header 12 to which end portions of the plurality of flat heat transfer tubes 11 are connected, and a plurality of flat heat transfer tubes 11 to distribute the refrigerant to the flat heat transfer tubes 11 . It includes a tubular header 13 to which the other ends of the heat tubes 11 are connected and which joins the refrigerant flowing out from the flat heat transfer tubes 11 , and a plurality of flat plate-shaped fins 14 joined to the flat heat transfer tubes 11 . The flat heat transfer tube 11 extends in a direction perpendicular to the flow direction of the external air, as indicated by the arrow in FIG. 2(a), and has a flat cross section. The inside of the flat heat transfer tube 11 has a plurality of flow paths extending in the same direction as the direction in which the flat heat transfer tube extends. In this embodiment, the direction in which the outside air circulates is the width direction of the flat heat transfer tubes 11, and the direction in which the flat heat transfer tubes 11 extend, which is perpendicular to the direction in which the outside air circulates, is the length direction of the flat heat transfer tubes 11. and As shown in FIG. 2B, the flat heat transfer tubes 11 are stacked vertically so that the flat surfaces (wide surfaces) of the side surfaces face each other, and the left and right ends are connected to the headers 12 and 13. It is A plurality of fins 14 are arranged between the headers 12 and 13 so as to be perpendicular to the flat heat transfer tubes 11 . The low-temperature, low-pressure gas-liquid two-phase refrigerant decompressed by passing through the expansion valve 7 is supplied to the header 12 through the pipe 15 and branched to the flat heat transfer tubes 11 . When flowing through the flat heat transfer tubes 11, the gas-liquid two-phase refrigerant that has exchanged heat with the air through the fins 14 is gasified and flows out to the header 13. is sucked into the compressor 6 via the

(ヘッダ)
次に、本発明の実施の形態1に係るヘッダ12について、図3および図4を参照して説明する。なお、本明細書では、ヘッダ12の扁平伝熱管11側を内側、ヘッダ12の扁平伝熱管11と対向する側を外側という。また、熱交換器5は、扁平伝熱管11の長さ方向および幅方向、すなわち、扁平伝熱管11の扁平面と平行な方向が水平方向となるように配置される。更に、熱交換器5は、扁平伝熱管11の積層方向、すなわち、扁平伝熱管11の扁平面と直交する方向が鉛直方向となるように配置される。なお、熱交換器5の近傍には、図示しない送風ファンが設けられており、送風ファンは熱交換器5に外部の空気を送る。図3では、フィン14の図示を省略している。
(header)
Next, the header 12 according to Embodiment 1 of the present invention will be described with reference to FIGS. 3 and 4. FIG. In this specification, the side of the header 12 facing the flat heat transfer tubes 11 is referred to as the inside, and the side of the header 12 facing the flat heat transfer tubes 11 is referred to as the outside. The heat exchanger 5 is arranged so that the length direction and width direction of the flat heat transfer tubes 11, that is, the direction parallel to the flat surface of the flat heat transfer tubes 11, is the horizontal direction. Furthermore, the heat exchanger 5 is arranged such that the stacking direction of the flat heat transfer tubes 11, that is, the direction orthogonal to the flat surfaces of the flat heat transfer tubes 11 is the vertical direction. A blower fan (not shown) is provided in the vicinity of the heat exchanger 5 , and blows outside air to the heat exchanger 5 . In FIG. 3, illustration of the fins 14 is omitted.

ヘッダ12は、図3および図4に示すように、扁平伝熱管11の積層方向(鉛直方向)において、管状の本体部20を、積層方向に並ぶ二つの空間である上部側の空間と下部側の空間に区画する第1の仕切り部材21と、第1の仕切り部材21により区画された上部側の空間に設けられた第2の仕切り部材22を有する。第1の仕切り部材21により区画された上部の空間は、扁平伝熱管11に接続された空間である循環復路25と、第2仕切り部材22により循環復路25と隔てられた循環往路24を有する。第1の仕切り部材21は、本体部20の水平方向の全体にわたり設けられている。第2の仕切り部材22は、本体部20の第1の仕切り部材21の上部側の空間の鉛直方向の全体にわたり設けられている。なお、熱交換器5は、他方の空間が外部の空気の上流側(風上側)、一方の空間が外部の空気の下流側(風下側)となるように配置される。第2の仕切り部材22は、扁平伝熱管11の積層方向および幅方向に平行な面の第2の仕切り部材風上面22aと、扁平伝熱管11の長さ方向および幅方向に平行な面の第2の仕切り部材風下面22bを有する。図3および図4に示すように、ヘッダ12は円筒形状のものを使用しているが、円筒形状に限定されるものではなく、内部空洞の角柱形状等であってもよい。 3 and 4, in the stacking direction (vertical direction) of the flat heat transfer tubes 11, the header 12 is configured such that the tubular body portion 20 is divided into two spaces, an upper space and a lower space, arranged in the stacking direction. and a second partition member 22 provided in the upper space partitioned by the first partition member 21 . The upper space partitioned by the first partition member 21 has a return circulation path 25 which is a space connected to the flat heat transfer tubes 11 and an outward circulation path 24 separated from the return circulation path 25 by the second partition member 22. The first partition member 21 is provided over the entire body portion 20 in the horizontal direction. The second partition member 22 is provided over the entire vertical direction of the space above the first partition member 21 of the main body 20 . The heat exchanger 5 is arranged such that the other space is on the upstream side (windward side) of the external air, and the other space is on the downstream side (leeward side) of the external air. The second partition member 22 includes a second partition member airflow surface 22 a that is parallel to the stacking direction and width direction of the flat heat transfer tubes 11 and a second partition member wind surface 22 a that is parallel to the length direction and width direction of the flat heat transfer tubes 11 . There are two partition member leeward surfaces 22b. As shown in FIGS. 3 and 4, the header 12 has a cylindrical shape, but is not limited to a cylindrical shape, and may have a prismatic shape with an internal cavity.

本体部20が第1の仕切り部材21により区画された下部側の空間は、配管15を介し膨張弁7から低温低圧の気液二相冷媒が流入する冷媒流入部23である。循環往路24は、本体部20の風上側となるようにして用いられる。 A space on the lower side of the body portion 20 partitioned by the first partition member 21 is a refrigerant inflow portion 23 into which a low-temperature, low-pressure gas-liquid two-phase refrigerant flows from the expansion valve 7 via the pipe 15 . The outward circulation path 24 is used so as to be on the windward side of the main body 20 .

本体部20の内部において、第1の仕切り部材21の風上側、かつ外側、すなわち循環往路24の底面となる第1の仕切り部材21上には、冷媒流入口26が設けられている。循環往路24には、冷媒流入口26を介して冷媒流入部23から冷媒が流入する。 Inside the main body 20 , a coolant inlet 26 is provided on the windward side and outside of the first partition member 21 , that is, on the first partition member 21 that serves as the bottom surface of the outward circulation path 24 . Refrigerant flows into the outward circulation path 24 from the refrigerant inflow portion 23 via the refrigerant inlet 26 .

第2の仕切り部材22の上部、かつ外部の空気の流れ方向の風上側、すなわち第2の仕切り部材22aの上部に、上部連通口27が設けられ、第2の仕切り部材22の下部、かつ外部の空気の流れ方向の風下側、すなわち第2の仕切り部材風下面22bの下部に、下部連通口28が設けられている。冷媒流入口26から循環往路24に流入した冷媒は、循環往路24内を上昇し、上部連通口27を介して循環復路25に流入する。循環復路25に流入した冷媒は、下降しながら循環復路25内に接続されている複数の扁平伝熱管11内に分流され、一部が下部連通口28から循環往路24内に流入する。ヘッダ12では、循環往路24、上部連通口27、循環復路25および下部連通口28により循環流を形成することにより、ヘッダ12に接続される扁平伝熱管11の配置位置の違い(上部に配置された扁平伝熱管11と下部に配置された扁平伝熱管11)による冷媒の流量の偏りを低減することができる。 An upper communication port 27 is provided above the second partition member 22 and on the windward side in the direction of external air flow, i.e., above the second partition member 22a. A lower communication port 28 is provided on the leeward side of the air flow direction, that is, on the lower portion of the leeward surface 22b of the second partition member. The refrigerant that has flowed into the outward circulation path 24 from the refrigerant inlet 26 rises in the outward circulation path 24 and flows into the return circulation path 25 via the upper communication port 27 . The refrigerant that has flowed into the return circulation path 25 descends and is split into a plurality of flat heat transfer tubes 11 connected to the return circulation path 25 , and part of the refrigerant flows into the outward circulation path 24 through the lower communication port 28 . In the header 12, by forming a circulating flow with the forward circulation path 24, the upper communication port 27, the return circulation path 25, and the lower communication port 28, the flat heat transfer tubes 11 connected to the header 12 are arranged at different positions (arranged at the top). It is possible to reduce unevenness in the flow rate of the refrigerant due to the flat heat transfer tubes 11 and the flat heat transfer tubes 11 arranged at the bottom.

第2の仕切り部材22は、循環往路24の水平方向の断面積が、循環復路25の水平方向の断面積よりも小さくなるように配置される。これにより、循環往路24中を流れる冷媒の流速は大きくなるため、冷媒が上昇しやすくなる。また、循環往路24の水平方向の断面積は、後述する下部連通口28の開口面積の和よりも大きく形成されている。これにより、冷媒の逆流(循環復路25が往路となり、循環往路24が復路となる)を防止することができ、循環流の形成が容易となる。 The second partition member 22 is arranged so that the horizontal cross-sectional area of the outward circulation path 24 is smaller than the horizontal cross-sectional area of the return circulation path 25 . As a result, the flow velocity of the refrigerant flowing through the forward circulation path 24 increases, so that the refrigerant rises easily. Further, the horizontal cross-sectional area of the forward circulation path 24 is formed to be larger than the sum of the opening areas of the lower communication ports 28, which will be described later. As a result, it is possible to prevent reverse flow of the refrigerant (the return circulation path 25 is the outward path and the outward circulation path 24 is the return path), thereby facilitating the formation of the circulation flow.

ヘッダ12において、上部連通口27は、扁平伝熱管11の幅方向(水平方向)の一方側に設けられている。熱交換器5は、当該一方側が外部の空気の流れ方向の風上側に位置するようにして用いられる。これにより、ヘッダ12に接続されている扁平伝熱管11の風上側の流路と上部連通口27の距離は、ヘッダ12に接続されている扁平伝熱管11の風下側の流路と上部連通口27の距離より短くなる。扁平伝熱管11の風上側の流路と上部連通口27の距離が、風下側の流路と上部連通口27の距離より短くなることにより、扁平伝熱管11の風上側の流路により多くの冷媒を流入させることができ、比較的熱負荷の大きい風上側でより多くの熱交換を行うことが可能となる。 In the header 12 , the upper communication port 27 is provided on one side of the flat heat transfer tubes 11 in the width direction (horizontal direction). The heat exchanger 5 is used such that the one side thereof is positioned on the windward side in the direction of flow of the external air. As a result, the distance between the flow path on the windward side of the flat heat transfer tubes 11 connected to the header 12 and the upper communication port 27 is Shorter than 27 distances. The distance between the flow path on the windward side of the flat heat transfer tubes 11 and the upper communication port 27 is shorter than the distance between the flow path on the leeward side and the upper communication port 27, so that the flow path on the windward side of the flat heat transfer tubes 11 has more air flow. Refrigerant can flow in, and more heat can be exchanged on the windward side where the heat load is relatively large.

また、ヘッダ12は、下部連通口28が外部の空気の流れ方向の風下側に位置するようにして用いられる。下部連通口28が風下側に位置することにより、循環復路25における風上側を流れる冷媒より、風下側を流れる冷媒が下部連通口28に吸引されやすくなる。これにより、扁平伝熱管11の風上側に位置する流路に冷媒が流れやすくなり、冷媒の流量を増加させることができる。 Further, the header 12 is used so that the lower communication port 28 is positioned on the leeward side in the direction of the flow of the outside air. Since the lower communication port 28 is positioned on the leeward side, the refrigerant flowing on the leeward side of the return circulation path 25 is more likely to be drawn into the lower communication port 28 than the refrigerant flowing on the windward side. This makes it easier for the refrigerant to flow through the flow path located on the windward side of the flat heat transfer tubes 11, and the flow rate of the refrigerant can be increased.

本実施の形態1では、循環往路24をヘッダ12の外側かつ外部の空気の流れの風上側に設け、下部連通口28が外部の空気の流れの風下側に位置することにより、扁平伝熱管11内の風上側の流路により多くの冷媒を流入させることが可能となる。 In the first embodiment, the outward circulation path 24 is provided outside the header 12 and on the windward side of the external air flow, and the lower communication port 28 is positioned on the leeward side of the external air flow. It is possible to allow more refrigerant to flow into the flow path on the windward side of the inside.

実施の形態1では、上部連通口27を外部の空気の流れの風上側に位置することにより、扁平伝熱管11の風上側の流路と上部連通口27との距離が、風下側の流路と上部連通口27との距離よりも短くなるため、扁平伝熱管11内の風上側の流路により多くの冷媒を流入させることが可能となる。 In Embodiment 1, by positioning the upper communication port 27 on the windward side of the flow of the external air, the distance between the flow path on the windward side of the flat heat transfer tube 11 and the upper communication port 27 is the flow path on the leeward side. and the upper communication port 27 , more refrigerant can flow into the flow path on the windward side in the flat heat transfer tube 11 .

[実施の形態2]
図5は、本発明の実施の形態2に係る熱交換器のヘッダ12Aの斜視図である。また、実施の形態1と同様に、熱交換器5は、扁平伝熱管11の長さ方向および幅方向、すなわち、扁平伝熱管11の扁平面と平行な方向が水平方向となるように配置される。更に、熱交換器5は、扁平伝熱管11の積層方向、すなわち、扁平伝熱管11の扁平面と直交する方向が鉛直方向となるように配置される。なお、熱交換器5の近傍には、図示しない送風ファンが設けられており、送風ファンは熱交換器5に外部の空気を送る。図6は、本発明の実施の形態2に係る熱交換器のヘッダ12Aの(a)は中間部の水平断面図、(b)は上部の水平断面図、(c)は下部の水平断面図である。
[Embodiment 2]
FIG. 5 is a perspective view of a header 12A of a heat exchanger according to Embodiment 2 of the present invention. Further, as in the first embodiment, the heat exchanger 5 is arranged such that the length direction and the width direction of the flat heat transfer tubes 11, that is, the direction parallel to the flat surface of the flat heat transfer tubes 11 is the horizontal direction. be. Furthermore, the heat exchanger 5 is arranged such that the stacking direction of the flat heat transfer tubes 11, that is, the direction orthogonal to the flat surfaces of the flat heat transfer tubes 11 is the vertical direction. A blower fan (not shown) is provided in the vicinity of the heat exchanger 5 , and blows outside air to the heat exchanger 5 . FIG. 6 shows (a) a horizontal cross-sectional view of an intermediate portion, (b) a horizontal cross-sectional view of an upper portion, and (c) a horizontal cross-sectional view of a lower portion of a header 12A of a heat exchanger according to Embodiment 2 of the present invention. is.

ヘッダ12Aにおいて、第1の仕切り部材21により区画された上部側の空間に設けられた第2の仕切り部材22Aは、扁平伝熱管11の積層方向および幅方向に平行な面の第2の仕切り部材風下面22aと、扁平伝熱管11の長さ方向および幅方向に平行な面の第2の仕切り部材風上面22bを有する。なお、熱交換器5は、他方側が外部の空気の上流側(風上側)、一方側が外部の空気の下流側(風下側)となるように配置される。 In the header 12A, the second partition member 22A provided in the space on the upper side partitioned by the first partition member 21 is a second partition member having a surface parallel to the stacking direction and the width direction of the flat heat transfer tubes 11. It has a leeward surface 22a and a second partition member leeward surface 22b parallel to the lengthwise direction and the widthwise direction of the flat heat transfer tube 11 . The heat exchanger 5 is arranged such that the other side is the upstream side (windward side) of the external air, and the one side is the downstream side (leeward side) of the external air.

本体部20の内部において、第1の仕切り部材21により区画された上部側の空間は、扁平伝熱管11に接続された空間である循環復路25Aと、第2仕切り部材22Aにおy理循環復路25Aと隔てられた循環往路24Aを有する。循環往路24Aは、本体部20の風下側、かつ外側に設けられている。 Inside the main body 20, the space on the upper side partitioned by the first partition member 21 is divided into a return circulation path 25A, which is a space connected to the flat heat transfer tubes 11, and a return circulation path 22A, which is a space connected to the flat heat transfer tube 11. 25A and a separate outbound circulation path 24A. Outward circulation path 24A is provided on the leeward side and outside of main body 20 .

第2の仕切り部材22Aの上部、かつ扁平伝熱管11の幅方向(水平方向)の一方側、すなわち第2の仕切り部材風上面22bの上部に、上部連通口27Aが設けられ、第2の仕切り部材22の下部、かつ外部の空気の流れ方向の風下側、すなわち第2の仕切り部材風下面22aの下部に、下部連通口28Aが設けられている。冷媒流入口26から循環往路24Aに流入した冷媒は、循環往路24A内を上昇し、上部連通口27Aを介して循環復路25Aに流入する。循環復路25Aに流入した冷媒は、下降しながら循環復路25A内に接続されている複数の扁平伝熱管11内に分流され、一部が下部連通口28Aから循環往路24A内に流入する。ヘッダ12Aでは、循環往路24A、上部連通口27A、循環復路25Aおよび下部連通口28Aにより循環流を形成することにより、ヘッダ12Aに接続される扁平伝熱管11の配置位置の違い(上部に配置された扁平伝熱管11と下部に配置された扁平伝熱管11)による冷媒の流量の偏りを低減することができる。 An upper communication port 27A is provided above the second partition member 22A and on one side in the width direction (horizontal direction) of the flat heat transfer tube 11, that is, above the second partition member windward surface 22b. A lower communication port 28A is provided in the lower part of the member 22 and on the leeward side in the direction of flow of external air, that is, in the lower part of the leeward surface 22a of the second partition member. The refrigerant that has flowed into the outward circulation path 24A from the refrigerant inlet 26 rises in the outward circulation path 24A and flows into the return circulation path 25A via the upper communication port 27A. The refrigerant that has flowed into the return circulation path 25A is divided into a plurality of flat heat transfer tubes 11 connected to the return circulation path 25A while descending, and part of the refrigerant flows into the outward circulation path 24A through the lower communication port 28A. In the header 12A, a circulating flow is formed by the forward circulation path 24A, the upper communication port 27A, the return circulation path 25A, and the lower communication port 28A. It is possible to reduce unevenness in the flow rate of the refrigerant due to the flat heat transfer tubes 11 and the flat heat transfer tubes 11 arranged at the bottom.

ヘッダ12Aでは、実施の形態1と同様に、循環往路24Aの水平方向の断面積は、循環復路25Aの水平方向の断面積よりも小さくなるよう第2の仕切り部材22Aを配置している。これにより、循環往路24A中で冷媒が上昇しやすくなる。また、循環往路24Aの水平方向の断面積は、後述する下部連通口28Aの開口面積の和よりも大きく形成されている。これにより、冷媒の逆流(循環復路25Aが往路となり、循環往路24Aが復路となる)を防止することができ、循環流の形成が容易となる。 In the header 12A, as in the first embodiment, the second partition member 22A is arranged so that the horizontal cross-sectional area of the outward circulation path 24A is smaller than the horizontal cross-sectional area of the return circulation path 25A. This makes it easier for the refrigerant to rise in the forward circulation path 24A. Further, the horizontal cross-sectional area of the forward circulation path 24A is formed to be larger than the sum of the opening areas of the lower communication ports 28A, which will be described later. As a result, it is possible to prevent reverse flow of the refrigerant (the return circulation path 25A is the outward path and the outward circulation path 24A is the return path), thereby facilitating the formation of the circulation flow.

ヘッダ12Aでは、下部連通口28Aを扁平伝熱管11の幅方向(水平方向)の他方側(外部の空気の流れ方向の風下側)に設けている。下部連通口28Aを風下側に設けることにより、循環復路25Aの風上側を流れる冷媒より、風下側を流れる冷媒が下部連通口28Aに吸引されやすくなる。これにより、扁平伝熱管11の風上側に位置する流路に冷媒が流れやすくなる。 In the header 12A, the lower communication port 28A is provided on the other side in the width direction (horizontal direction) of the flat heat transfer tubes 11 (downwind side in the flow direction of the external air). By providing the lower communication port 28A on the leeward side, the refrigerant flowing on the leeward side is more likely to be drawn into the lower communication port 28A than the refrigerant flowing on the windward side of the return circulation path 25A. This makes it easier for the refrigerant to flow through the flow path located on the windward side of the flat heat transfer tubes 11 .

また、ヘッダ12Aでは、上部連通口27Aを扁平伝熱管11の幅方向(水平方向)の一方側(外部の空気の流れ方向の風上側)に設けている。これにより、ヘッダ12Aに接続されている扁平伝熱管11の風上側の流路と上部連通口27Aの距離は、ヘッダ12Aに接続されている扁平伝熱管11の風下側の流路と上部連通口27Aの距離より短くなる。風上側の流路と上部連通口27Aの距離および風下側の流路と上部連通口27Aの距離は、実施の形態1より大きくなるものの、上部連通口27Aからの扁平伝熱管11の流路への急激な流れ込みを防止でき、扁平伝熱管11の風上側の流路により多くの冷媒を分流することができる。 Further, in the header 12A, the upper communication port 27A is provided on one side (upwind side in the direction of flow of external air) of the flat heat transfer tubes 11 in the width direction (horizontal direction). Accordingly, the distance between the flow path on the windward side of the flat heat transfer tubes 11 connected to the header 12A and the upper communication port 27A is It becomes shorter than the distance of 27A. Although the distance between the flow path on the windward side and the upper communication port 27A and the distance between the flow path on the leeward side and the upper communication port 27A are larger than those in the first embodiment, the distance from the upper communication port 27A to the flow path of the flat heat transfer tubes 11 can be prevented, and a large amount of refrigerant can be diverted to the flow path on the windward side of the flat heat transfer tube 11 .

本実施の形態2では、循環往路24Aをヘッダ12Aの外側かつ扁平伝熱管11の幅方向(水平方向)の一方側(外部の空気の流れの風下側)に設け、下部連通口28Aを扁平伝熱管11の幅方向(水平方向)の他方側(外部の空気の流れの風下側)に設けることにより、扁平伝熱管11内の風上側の流路により多くの冷媒を流入させることが可能となる。 In the second embodiment, the outward circulation path 24A is provided outside the header 12A and on one side in the width direction (horizontal direction) of the flat heat transfer tubes 11 (downwind side of the external air flow), and the lower communication port 28A is provided in the flat heat transfer tube. By providing it on the other side (downwind side of the external air flow) in the width direction (horizontal direction) of the heat tube 11 , it is possible to allow more refrigerant to flow into the flow path on the windward side in the flat heat transfer tube 11 . .

[実施の形態3]
図7は、本発明の実施の形態3に係る熱交換器のヘッダ12Bの斜視図である。また、実施の形態1と同様に、熱交換器5は、扁平伝熱管11の長さ方向および幅方向、すなわち、扁平伝熱管11の扁平面と平行な方向が水平方向となるように配置される。更に、熱交換器5は、扁平伝熱管11の積層方向、すなわち、扁平伝熱管11の扁平面と直交する方向が鉛直方向となるように配置される。なお、熱交換器5の近傍には、図示しない送風ファンが設けられており、送風ファンは熱交換器5に外部の空気を送る。図8は、本発明の実施の形態3に係る熱交換器のヘッダ12Bの(a)は中間部の水平断面図、(b)は上部の水平断面図、(c)は下部の水平断面図である。
[Embodiment 3]
FIG. 7 is a perspective view of a header 12B of a heat exchanger according to Embodiment 3 of the present invention. Further, as in the first embodiment, the heat exchanger 5 is arranged such that the length direction and the width direction of the flat heat transfer tubes 11, that is, the direction parallel to the flat surface of the flat heat transfer tubes 11 is the horizontal direction. be. Furthermore, the heat exchanger 5 is arranged such that the stacking direction of the flat heat transfer tubes 11, that is, the direction orthogonal to the flat surfaces of the flat heat transfer tubes 11 is the vertical direction. A blower fan (not shown) is provided in the vicinity of the heat exchanger 5 , and blows outside air to the heat exchanger 5 . FIG. 8 shows (a) a horizontal cross-sectional view of an intermediate portion, (b) a horizontal cross-sectional view of an upper portion, and (c) a horizontal cross-sectional view of a lower portion of a header 12B of a heat exchanger according to Embodiment 3 of the present invention. is.

ヘッダ12Bにおいて、第1の仕切り部材21により区画された上部側の空間に設けられた第2の仕切り部材22Bは、互いに直交するように配置される第2の仕切り部材風下面22cおよび第2の仕切り部材風上面22dから構成され、本体部20の第1の仕切り部材21の上部側の鉛直方向の全体にわたり設けられている。 In the header 12B, the second partition member 22B provided in the upper space partitioned by the first partition member 21 has a second partition member leeward surface 22c and a second partition member leeward surface 22c arranged orthogonal to each other. It is composed of the partition member windward surface 22 d and is provided over the entire vertical direction on the upper side of the first partition member 21 of the main body 20 .

本体部20の内部において、第1の仕切り部材21により区画された上部側の空間は、扁平伝熱管11に接続された空間である循環復路25Bと、第2仕切り部材22Bにより循環復路25Bと隔てられた循環往路24Bを有する。循環往路24Bは、本体部20の外側に設けられている。 Inside the main body 20, the space on the upper side partitioned by the first partition member 21 is separated from the return circulation path 25B, which is a space connected to the flat heat transfer tubes 11, and the return circulation path 25B by the second partition member 22B. It has a circulating outbound route 24B. The outward circulation path 24B is provided outside the body portion 20 .

第2の仕切り部材22Bの上部、かつ扁平伝熱管11の幅方向(水平方向)の一方側(外部の空気の流れ方向の風上側)、すなわち第2の仕切り部材風上面22dの上部に、上部連通口27Bが設けられ、第2の仕切り部材22の下部、かつ扁平伝熱管11の幅方向(水平方向)の他方側(外部の空気の流れ方向の風下側)、すなわち第2の仕切り部材風下面22cの下部に、下部連通口28Bが設けられている。冷媒流入口26から循環往路24Bに流入した冷媒は、循環往路24B内を上昇し、上部連通口27Bを介して循環復路25Bに流入する。循環復路25Bに流入した冷媒は、下降しながら循環復路25B内に接続されている複数の扁平伝熱管11内に分流され、一部が下部連通口28Bから循環往路24B内に流入する。ヘッダ12Bでは、循環往路24B、上部連通口27B、循環復路25Bおよび下部連通口28Bにより循環流を形成することにより、ヘッダ12Bに接続される扁平伝熱管11の配置位置の違い(上部に配置された扁平伝熱管11と下部に配置された扁平伝熱管11)による冷媒の流量の偏りを低減することができる。 Above the second partition member 22B and on one side in the width direction (horizontal direction) of the flat heat transfer tube 11 (windward side in the direction of external air flow), that is, above the second partition member windward surface 22d. A communication port 27B is provided, and is connected to the lower portion of the second partition member 22 and the other side in the width direction (horizontal direction) of the flat heat transfer tube 11 (downwind side in the direction of flow of the external air), that is, the second partition member wind. A lower communication port 28B is provided in the lower portion of the lower surface 22c. The refrigerant that has flowed into the outward circulation path 24B from the refrigerant inlet 26 rises in the outward circulation path 24B and flows into the return circulation path 25B via the upper communication port 27B. The refrigerant that has flowed into the return circulation path 25B is divided into a plurality of flat heat transfer tubes 11 connected to the return circulation path 25B while descending, and part of the refrigerant flows into the outward circulation path 24B through the lower communication port 28B. In the header 12B, a circulating flow is formed by the forward circulation path 24B, the upper communication port 27B, the return circulation path 25B, and the lower communication port 28B. It is possible to reduce unevenness in the flow rate of the refrigerant due to the flat heat transfer tubes 11 and the flat heat transfer tubes 11 arranged at the bottom.

ヘッダ12Bでは、実施の形態1と同様に、循環往路24Bの水平方向の断面積は、循環復路25Bの水平方向の断面積よりも小さくなるよう第2の仕切り部材22Bを配置している。これにより、循環往路24B中で冷媒が上昇しやすくなる。また、循環往路24Bの水平方向の断面積は、後述する下部連通口28Bの開口面積の和よりも大きく形成されている。これにより、冷媒の逆流(循環復路25Bが往路となり、循環往路24Bが復路となる)を防止することができ、循環流の形成が容易となる。 In the header 12B, as in the first embodiment, the second partition member 22B is arranged so that the horizontal cross-sectional area of the outward circulation path 24B is smaller than the horizontal cross-sectional area of the return circulation path 25B. This makes it easier for the refrigerant to rise in the forward circulation path 24B. Further, the horizontal cross-sectional area of the forward circulation path 24B is formed to be larger than the sum of the opening areas of the lower communication ports 28B, which will be described later. As a result, it is possible to prevent reverse flow of the refrigerant (the return circulation path 25B is the outward path and the outward circulation path 24B is the return path), making it easy to form a circulation flow.

ヘッダ12Bでは、下部連通口28Bを扁平伝熱管11の幅方向(水平方向)の他方側(外部の空気の流れ方向の風下側)に設けている。下部連通口28Bを風下側に設けることにより、循環復路25Bの風上側を流れる冷媒より、風下側を流れる冷媒が下部連通口28Bに吸引されやすくなる。これにより、扁平伝熱管11の風上側に位置する流路に冷媒が流れやすくなり、冷媒の流量を増加させることができる。 In the header 12B, the lower communication port 28B is provided on the other side in the width direction (horizontal direction) of the flat heat transfer tubes 11 (downwind side in the flow direction of the external air). By providing the lower communication port 28B on the leeward side, the refrigerant flowing on the leeward side is more likely to be drawn into the lower communication port 28B than the refrigerant flowing on the windward side of the return circulation path 25B. This makes it easier for the refrigerant to flow into the flow path located on the windward side of the flat heat transfer tubes 11, and the flow rate of the refrigerant can be increased.

また、ヘッダ12Bにおいて、上部連通口27Bを扁平伝熱管11の幅方向(水平方向)の一方側(外部の空気の流れ方向の風上側)に設けている。これにより、ヘッダ12Bに接続されている扁平伝熱管11の風上側の流路と上部連通口27Bの距離は、ヘッダ12Bに接続されている扁平伝熱管11の風下側の流路と上部連通口27Bの距離より短くなる。風上側の流路と上部連通口27Bの距離および風下側の流路と上部連通口27Bの距離は、実施の形態1より大きくなるものの、上部連通口27Bからの扁平伝熱管11の流路への急激な流れ込みを防止でき、扁平伝熱管11の風上側の流路により多くの冷媒を分流することができる。 Further, in the header 12B, the upper communication port 27B is provided on one side in the width direction (horizontal direction) of the flat heat transfer tubes 11 (upwind side in the flow direction of the external air). As a result, the distance between the flow path on the windward side of the flat heat transfer tubes 11 connected to the header 12B and the upper communication port 27B is It becomes shorter than the distance of 27B. Although the distance between the flow path on the windward side and the upper communication port 27B and the distance between the flow path on the leeward side and the upper communication port 27B are larger than those in the first embodiment, the distance from the upper communication port 27B to the flow path of the flat heat transfer tubes 11 is increased. can be prevented, and a large amount of refrigerant can be diverted to the flow path on the windward side of the flat heat transfer tube 11 .

本実施の形態3では、循環往路24Bをヘッダ12Bの外側に設け、下部連通口28Bを扁平伝熱管11の幅方向(水平方向)の他方側(外部の空気の流れの風下側に設ける)ことにより、扁平伝熱管11内の風上側の流路により多くの冷媒を流入させることが可能となる。 In the third embodiment, the forward circulation path 24B is provided outside the header 12B, and the lower communication port 28B is provided on the other side in the width direction (horizontal direction) of the flat heat transfer tubes 11 (on the leeward side of the external air flow). As a result, more refrigerant can flow into the windward flow path in the flat heat transfer tube 11 .

以上、本発明の実施の形態について説明したが、本発明はこれに限定されるものではなく、ここでは記載していない様々な実施の形態等を含み得るものである。 Although the embodiment of the present invention has been described above, the present invention is not limited to this, and may include various embodiments and the like not described here.

1 空気調和機
2 室内機
3 室外機
4、5 熱交換器
6 圧縮機
7 膨張弁
8 四方弁
11 扁平伝熱管
12、13 ヘッダ
14 フィン
15、16 配管
20 本体部
21 第1の仕切り部材
22、22A、22B 第2の仕切り部材
23 冷媒流入部
24、24A、24B 循環往路
25、25A、25B 循環復路
26 冷媒流入口
27、27A、27B 上部連通口
28、28A、28B 下部連通口
1 air conditioner 2 indoor unit 3 outdoor units 4, 5 heat exchanger 6 compressor 7 expansion valve 8 four-way valve 11 flat heat transfer tubes 12, 13 header 14 fins 15, 16 piping 20 main body 21 first partition member 22, 22A, 22B Second partition member 23 Refrigerant inflow portions 24, 24A, 24B Circulation outward passages 25, 25A, 25B Circulation return passage 26 Refrigerant inflow ports 27, 27A, 27B Upper communication ports 28, 28A, 28B Lower communication ports

Claims (5)

幅広な面が対向するように積層された複数の扁平伝熱管と、
前記複数の扁平伝熱管の端部が接続され、前記複数の扁平伝熱管に冷媒を分流する管状のヘッダと、を備え、
前記ヘッダは、
管状の本体部を前記複数の扁平伝熱管の積層方向に並ぶ二つの空間に区画する第1の仕切り部材と、
前記第1の仕切り部材により区画された前記管状の本体部の上部側の空間を、前記複数の扁平伝熱管が接続される側の空間である循環復路と前記複数の扁平伝熱管が接続されない側の空間である循環往路に区画し、上部に上部連通口、下部に下部連通口が設けられる第2の仕切り部材と、を有し、
管状の本体部が前記第1の仕切り部材により区画された下部側の空間は、冷媒流入部であり、
前記第1の仕切り部材には、前記循環往路に冷媒を流入する冷媒流入口が設けられ、
前記第2の仕切り部材の下部連通口は、前記複数の扁平伝熱管の幅方向の一方側に設けられ、当該一方側が前記外部の空気の流れ方向の風下側とする熱交換器。
a plurality of flat heat transfer tubes stacked so that their wide surfaces face each other;
a tubular header to which the ends of the plurality of flat heat transfer tubes are connected and which distributes the refrigerant to the plurality of flat heat transfer tubes;
The header is
a first partition member that partitions the tubular main body into two spaces aligned in the stacking direction of the plurality of flat heat transfer tubes;
The space on the upper side of the tubular main body sectioned by the first partition member is a circulation return path that is the space on the side where the plurality of flat heat transfer tubes are connected, and the side where the plurality of flat heat transfer tubes are not connected. and a second partition member that partitions into an outward circulation path that is a space of and has an upper communication port at the top and a lower communication port at the bottom,
The space on the lower side of the tubular main body sectioned by the first partition member is a coolant inlet,
The first partition member is provided with a coolant inlet port through which coolant flows into the forward circulation path,
A heat exchanger in which the lower communication port of the second partition member is provided on one side in the width direction of the plurality of flat heat transfer tubes, and the one side is the leeward side in the flow direction of the external air.
前記循環往路の水平方向の断面積は、前記循環復路の水平方向の断面積より小さい請求項1に記載の熱交換器。 2. The heat exchanger according to claim 1, wherein the horizontal cross-sectional area of the outward circulation path is smaller than the horizontal cross-sectional area of the return circulation path. 前記循環往路の水平方向の断面積は、前記下部連通口の面積の和より小さい請求項1または2に記載の熱交換器。 3. The heat exchanger according to claim 1, wherein the horizontal cross-sectional area of the forward circulation path is smaller than the sum of the areas of the lower communication ports. 前記循環往路は、かつ外部の空気の流れの風上側に設けられている請求項1~3のいずれか一つに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3, wherein the outward circulation path is provided on the windward side of the flow of external air. 前記上部連通口は、外部の空気の流れの風上側に設けられている請求項1~4のいずれか一つに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein the upper communication port is provided on the windward side of the external air flow.
JP2020036310A 2020-03-03 2020-03-03 Heat exchanger Active JP7310655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020036310A JP7310655B2 (en) 2020-03-03 2020-03-03 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020036310A JP7310655B2 (en) 2020-03-03 2020-03-03 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2021139532A JP2021139532A (en) 2021-09-16
JP7310655B2 true JP7310655B2 (en) 2023-07-19

Family

ID=77668178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020036310A Active JP7310655B2 (en) 2020-03-03 2020-03-03 Heat exchanger

Country Status (1)

Country Link
JP (1) JP7310655B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137193A (en) 2011-11-22 2013-07-11 Daikin Industries Ltd Heat exchanger
JP2015127619A (en) 2013-12-27 2015-07-09 ダイキン工業株式会社 Heat exchanger and air conditioning device
JP2017155992A (en) 2016-02-29 2017-09-07 三菱重工業株式会社 Heat exchanger and air conditioner
JP2019178804A (en) 2018-03-30 2019-10-17 ダイキン工業株式会社 Heat exchanger and air conditioning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137193A (en) 2011-11-22 2013-07-11 Daikin Industries Ltd Heat exchanger
JP2015127619A (en) 2013-12-27 2015-07-09 ダイキン工業株式会社 Heat exchanger and air conditioning device
JP2017155992A (en) 2016-02-29 2017-09-07 三菱重工業株式会社 Heat exchanger and air conditioner
JP2019178804A (en) 2018-03-30 2019-10-17 ダイキン工業株式会社 Heat exchanger and air conditioning device

Also Published As

Publication number Publication date
JP2021139532A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US9651317B2 (en) Heat exchanger and air conditioner
CN113330268B (en) Heat exchanger and air conditioner provided with same
JPH09170850A (en) Refrigerant evaporator
US10041710B2 (en) Heat exchanger and air conditioner
JP6927352B1 (en) Heat exchanger
US6431264B2 (en) Heat exchanger with fluid-phase change
JP7097986B2 (en) Heat exchanger and refrigeration cycle equipment
TWI768340B (en) Heat Exchangers and Refrigeration Cycle Devices
JP2014037899A (en) Heat exchanger
JP6927353B1 (en) Heat exchanger
US11913689B2 (en) Heat exchanger and heat pump device
US7013952B2 (en) Stack type heat exchanger
JP5716496B2 (en) Heat exchanger and air conditioner
WO2021182161A1 (en) Heat exchanger
JPH03140795A (en) Lamination type heat exchanger
JP7310655B2 (en) Heat exchanger
JP7327214B2 (en) Heat exchanger
JP7327213B2 (en) Heat exchanger
JP2022043207A (en) Heat exchanger, outdoor machine, and refrigeration cycle device
JP5238408B2 (en) Heat exchanger
JP2020148346A (en) Heat exchanger and air conditioner
WO2023199466A1 (en) Heat exchanger, and air conditioning device including same
JP7146139B1 (en) heat exchangers and air conditioners
WO2023119468A1 (en) Heat exchanger and air conditioner
JP2010127511A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R151 Written notification of patent or utility model registration

Ref document number: 7310655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151