Nothing Special   »   [go: up one dir, main page]

JP7396786B2 - Photosensitive resin composition for light-shielding film, light-shielding film, liquid crystal display device, method for producing light-shielding film having spacer function, and method for producing liquid crystal display device - Google Patents

Photosensitive resin composition for light-shielding film, light-shielding film, liquid crystal display device, method for producing light-shielding film having spacer function, and method for producing liquid crystal display device Download PDF

Info

Publication number
JP7396786B2
JP7396786B2 JP2018029010A JP2018029010A JP7396786B2 JP 7396786 B2 JP7396786 B2 JP 7396786B2 JP 2018029010 A JP2018029010 A JP 2018029010A JP 2018029010 A JP2018029010 A JP 2018029010A JP 7396786 B2 JP7396786 B2 JP 7396786B2
Authority
JP
Japan
Prior art keywords
light
shielding film
group
photosensitive resin
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018029010A
Other languages
Japanese (ja)
Other versions
JP2018141968A (en
Inventor
悠樹 小野
高志 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Publication of JP2018141968A publication Critical patent/JP2018141968A/en
Priority to JP2023203162A priority Critical patent/JP2024022626A/en
Application granted granted Critical
Publication of JP7396786B2 publication Critical patent/JP7396786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Materials For Photolithography (AREA)
  • Optical Filters (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)

Description

本発明は、遮光膜用の感光性樹脂組成物、及びこれを硬化した遮光膜に関し、詳しくは、液晶表示装置のブラックマトリックス、または液晶表示装置においてスペーサー機能とブラックマトリックス機能を兼ね備えたブラックカラムスペーサーを、フォトリソグラフィー法により形成することが可能な、感光性樹脂組成物およびその硬化膜に関するものである。本発明はさらに、上記硬化させて得たブラックマトリックスまたはブラックカラムスペーサーを用いる液晶表示装置に関するものである。本発明はさらに、上記感光性樹脂組成物を用いた、遮光膜および液晶表示装置の製造方法に関するものである。 The present invention relates to a photosensitive resin composition for a light-shielding film and a light-shielding film obtained by curing the same, and more specifically, to a black matrix of a liquid crystal display device, or a black column spacer having both a spacer function and a black matrix function in a liquid crystal display device. The present invention relates to a photosensitive resin composition and a cured film thereof, which can be formed by photolithography. The present invention further relates to a liquid crystal display device using the black matrix or black column spacer obtained by the above-mentioned curing. The present invention further relates to a method for manufacturing a light-shielding film and a liquid crystal display device using the photosensitive resin composition.

ここ数年、液晶テレビ、液晶モニター、カラー液晶携帯電話など、あらゆる分野でカラー液晶表示装置(LCD)が用いられてきた。この中で、LCDの高性能化のために、視野角、コントラスト、応答速度等の特性向上を目指す改善が活発に行われており、現在多く用いられている薄膜トランジスタ(TFT)-LCDにおいても様々なパネル構造が開発されている。TFT-LCDについては、従来のTFTを形成したアレイ基板とカラーフィルター基板をそれぞれ製造し、両基板をスペーサーで一定の間隔に保った状態で貼り合せる方法が主として採用されてきたが、低コスト化、歩留まり向上を目指すLCD製造プロセスも開発されてきている。例えば、アレイ基板のTFTの上に直接カラーフィルターを形成して対向の基板としてはガラス基板を貼り合せる製造プロセスが開発されている。このようにして形成される構造は、カラーフィルターオンTFT(COT)などと呼ばれている。このCOTにおいても、TFT上に形成するカラーフィルター層の赤(R)、緑(G)、青(B)などの各画素の境界となるブラックマトリックスを、RGB画素の形成前に形成する方法や、RGB画素を形成した上に形成する方法、あるいは対向のガラス基板上に形成する方法など、様々なLCDパネル構造が検討されている。 In recent years, color liquid crystal displays (LCDs) have been used in various fields such as liquid crystal televisions, liquid crystal monitors, and color liquid crystal mobile phones. In order to improve the performance of LCDs, improvements are being actively made to improve characteristics such as viewing angle, contrast, and response speed. A new panel structure has been developed. For TFT-LCDs, the conventional method of manufacturing an array substrate on which TFTs are formed and a color filter substrate and bonding the two substrates together with a spacer keeping them at a constant distance has been adopted, but cost reduction , LCD manufacturing processes aimed at improving yields have also been developed. For example, a manufacturing process has been developed in which a color filter is directly formed on the TFT of an array substrate and a glass substrate is bonded to the TFT as an opposing substrate. The structure formed in this way is called a color filter-on-TFT (COT) or the like. In this COT as well, there is a method in which a black matrix is formed as a boundary between each pixel of red (R), green (G), blue (B), etc. of the color filter layer formed on the TFT before the RGB pixels are formed. Various LCD panel structures are being considered, such as a method in which the LCD panel is formed on top of RGB pixels, or a method in which the LCD panel is formed on an opposing glass substrate.

LCDの性能に影響する1つの因子である、液晶層の厚さ(従来法であれば、アレイ基板とカラーフィルター(CF)基板の間隔)を一定に保つ機能を果たすスペーサーについては、従来、一定粒径のボールスペーサーを挟むという方法が取られていた。しかし、この方法では、ボールスペーサーの分散状態が不均一になることにより画素毎の光の透過量が一定でなくなるという問題がある。この問題に対して、フォトリソグラフィー法によりカラムスペーサーを形成する方法が採用されている。しかし、フォトリソグラフィー法で形成されるカラムスペーサーは透明であることが多く、このようなカラムスペーサーには、斜め方向から入射するする光がTFTの電気特性に影響を及ぼして、表示品質を劣化させるという問題がある。このような問題に対して、フォトリソグラフィー法により形成したスペーサー機能を有する遮光膜である、遮光性カラムスペーサーを適用したLCDパネル構造が提案されている(特許文献1)。COTにおいても、カラムスペーサーをブラックマトリックスと同一の材料で形成するという、いわゆるブラックカラムスペーサー(BCS)を形成する方法も検討されてきている(例えば、特許文献2)。 Spacers, which function to keep the thickness of the liquid crystal layer constant (in the conventional method, the distance between the array substrate and the color filter (CF) substrate), which is one factor that affects the performance of LCDs, have traditionally been kept constant. The method used was to insert a particle-sized ball spacer. However, this method has a problem in that the amount of light transmitted from pixel to pixel is not constant due to non-uniform dispersion of the ball spacers. To solve this problem, a method of forming column spacers by photolithography has been adopted. However, column spacers formed by photolithography are often transparent, and light incident on such column spacers from oblique directions affects the electrical characteristics of TFTs, degrading display quality. There is a problem. To address these problems, an LCD panel structure has been proposed that uses a light-shielding column spacer, which is a light-shielding film having a spacer function and formed by photolithography (Patent Document 1). Also in COT, a method of forming a so-called black column spacer (BCS), in which the column spacer is formed of the same material as the black matrix, has been studied (for example, Patent Document 2).

この遮光性カラムスペーサーは、スペーサーとして機能するために2~7μm程度の膜厚が必要である。また、TFTが形成されている箇所とその他の箇所で高さの異なる遮光性カラムスペーサーが同時に形成されうることが必要である。また、遮光性カラムスペーサーには、スペーサー機能として弾性率、変形量、弾性復元率等が適正な範囲であることも要求されている(特許文献3)。さらに、遮光性カラムスペーサーには、スペーサーに遮光性成分(着色剤)を添加することによる硬化性成分の減少や、着色剤中の不純物等の影響による電気特性の損失などを改善することも要求されている(特許文献4)。 This light-shielding column spacer needs a film thickness of about 2 to 7 μm in order to function as a spacer. Furthermore, it is necessary that light-shielding column spacers having different heights can be simultaneously formed at the location where the TFT is formed and at other locations. In addition, the light-shielding column spacer is also required to have elastic modulus, deformation amount, elastic recovery rate, etc. within appropriate ranges as a spacer function (Patent Document 3). Furthermore, light-shielding column spacers are required to reduce the amount of curable components by adding a light-shielding component (coloring agent) to the spacer, and to improve the loss of electrical properties due to the effects of impurities in the colorant. (Patent Document 4).

また、実際にLCDパネルメーカーがBCSを適用しようとする場合、パネルの設計に応じて、必要とされるBCS形状には様々な形状がある。例えば、断面形状が台形あるいは矩形のBCSを用いる設計(特許文献5)があるし、断面形状が底辺の長さが異なる台形あるいは矩形の組合せ形状となるBCSを用いる設計(特許文献6)などもある。組合せ形状にする理由としては、遮光膜機能のみでよい部分とスペーサー機能を兼ね備える部分を一括形成するためである。このような断面形状を一括形成するために用いる遮光膜用感光性樹脂組成物に対する要求も出てきている。 Furthermore, when an LCD panel manufacturer actually applies BCS, there are various required BCS shapes depending on the panel design. For example, there is a design that uses a BCS with a trapezoidal or rectangular cross-sectional shape (Patent Document 5), and there is also a design that uses a BCS with a cross-sectional shape that is a combination of trapezoids or rectangles with different base lengths (Patent Document 6). be. The reason for the combination shape is to simultaneously form a portion that only functions as a light-shielding film and a portion that also functions as a spacer. There has also been a demand for photosensitive resin compositions for light-shielding films that are used to collectively form such cross-sectional shapes.

特開平08-234212号公報Japanese Patent Application Publication No. 08-234212 米国特許出願公開第2009/0303407号明細書US Patent Application Publication No. 2009/0303407 特開2009-031778号公報Japanese Patent Application Publication No. 2009-031778 国際公開第2013/062011号International Publication No. 2013/062011 韓国公開特許第10-2013-0062123号公報Korean Published Patent No. 10-2013-0062123 韓国公開特許第10-2008-0034545号公報Korean Published Patent No. 10-2008-0034545

特許文献4では、混色有機顔料が用いられているが、遮光性カラムスペーサーの光学濃度は示されていない。混色有機顔料はカーボンブラック等の無機顔料に比べて低誘電率化に効果的であるが、遮光性が低いことが多い。また、スペーサーは高さの異なるスペーサーを同時に形成することが必要であるため、遮光性カラムスペーサーには、さらに圧縮率、弾性回復率、破壊強度等の機械特性も要求される。このようなスペーサーの形状や機械特性は遮光成分の影響を大きく受けるため、遮光膜用の感光性樹脂組成物の設計を困難にしている。そのため、カーボンブラックや混色有機顔料等を用いたスペーサーの形状や機械特性はまだ十分とはいえず、さらなる改良が必要である。 In Patent Document 4, a color-mixing organic pigment is used, but the optical density of the light-shielding column spacer is not disclosed. Color-mixing organic pigments are more effective in lowering the dielectric constant than inorganic pigments such as carbon black, but they often have low light-shielding properties. Furthermore, since it is necessary to form spacers with different heights at the same time, the light-shielding column spacer is also required to have mechanical properties such as compressibility, elastic recovery rate, and breaking strength. The shape and mechanical properties of such a spacer are greatly influenced by the light-shielding component, making it difficult to design a photosensitive resin composition for a light-shielding film. Therefore, the shape and mechanical properties of spacers using carbon black, color-mixing organic pigments, etc. are still not sufficient, and further improvements are required.

また、上記したように、遮光性カラムスペーサーは1~7μm程度の膜厚で製造される。近年の液晶表示素子の小型化に伴い、遮光性カラムスペーサーにも、膜厚が1~7μm程度であっても微細なスペーサー形状を形成できることが望まれている。また、ブラックマトリックスとスペーサーの機能を具備した上で、液晶層を挟む2枚の基板(アレイ基板とCF基板、COT基板と遮光性スペーサー付ガラス基板、遮光性スペーサー付COT基板とガラス基板等種々の組合せがある)を精度よく貼りあわせる、すなわちアライメント精度を高めるために、遮光性スペーサーの高さを2種類設ける(ΔHの段差形成)必要性があり、更にはガラス基板(又はCOT基板)からの立ち上がりができるだけ垂直な遮光性スペーサーを形成するといったようなパターニング特性に対する要求も多く、すべての要求特性を満たすことは困難な状況である。 Furthermore, as described above, the light-shielding column spacer is manufactured with a film thickness of about 1 to 7 μm. With the miniaturization of liquid crystal display elements in recent years, it is desired that a light-shielding column spacer can be formed into a fine spacer shape even if the film thickness is about 1 to 7 μm. In addition, in addition to having the functions of a black matrix and a spacer, we also offer various types of substrates that sandwich the liquid crystal layer (array substrate and CF substrate, COT substrate and glass substrate with light-shielding spacer, COT substrate with light-shielding spacer and glass substrate, etc.). There is a combination of There are many demands for patterning characteristics, such as forming a light-shielding spacer with as vertical a rise as possible, and it is difficult to satisfy all required characteristics.

本発明は、上記問題点に鑑みてなされたものであり、遮光性および絶縁性が高く、更に、圧縮率、弾性回復率、破壊強度に優れた遮光膜の形成が可能であり、かつスペーサー機能を有する遮光膜を形成する際に、ΔHの段差形成が可能でより垂直に近いパターン形状を形成できる、感光性樹脂組成物およびこれを用いて形成される遮光膜及び当該の遮光膜を構成要素とする液晶表示装置を提供することにある。 The present invention has been made in view of the above-mentioned problems, and it is possible to form a light-shielding film that has high light-shielding properties and insulation properties, has excellent compressibility, elastic recovery rate, and breaking strength, and has a spacer function. When forming a light-shielding film with An object of the present invention is to provide a liquid crystal display device that achieves the following.

さらには、断面形状が底辺の長さが異なる台形あるいは矩形の組合せ形状となるBCSを一括形成することが可能な感光性樹脂組成物およびこれを用いて形成される遮光膜及び当該の遮光膜を構成要素とする液晶表示装置を提供することにある。 Furthermore, we provide a photosensitive resin composition that can collectively form a BCS whose cross-sectional shape is a combination of trapezoids or rectangles with different base lengths, a light-shielding film formed using the same, and the light-shielding film. An object of the present invention is to provide a liquid crystal display device as a component.

本発明者らは、上記のような、遮光膜用の感光性樹脂組成物における課題を解決すべく検討を行った結果、特定の着色剤が目的の遮光膜用の感光性樹脂組成物の遮光成分として好適であることを見出し、本発明を完成させた。 The present inventors conducted studies to solve the above-mentioned problems in photosensitive resin compositions for light-shielding films, and found that a specific colorant was used to block light-shielding photosensitive resin compositions for light-shielding films. They found that it is suitable as a component and completed the present invention.

(1)本発明は、(A)~(E)成分を必須成分として含むことを特徴とする、遮光膜用の感光性樹脂組成物である。
(A)一般式(1)で表されるユニットを5~90モル%、一般式(2)で表されるユニットを10~95モル%含み(一般式(1)で表されるユニットと一般式(2)で表されるユニットとの合計を100モル%とする)、重量平均分子量3000~50000、酸価30~200mg/KOHの重合体である重合性不飽和基含有アルカリ可溶性樹脂、
(1) The present invention is a photosensitive resin composition for a light-shielding film, which is characterized by containing components (A) to (E) as essential components.
(A) Contains 5 to 90 mol% of units represented by general formula (1) and 10 to 95 mol% of units represented by general formula (2) (units represented by general formula (1) and general an alkali-soluble resin containing a polymerizable unsaturated group, which is a polymer having a weight average molecular weight of 3000 to 50000 and an acid value of 30 to 200 mg/KOH;

Figure 0007396786000001
Figure 0007396786000001

Figure 0007396786000002
Figure 0007396786000002

(ただし、R、R及びRは独立に水素原子又はメチル基を表す。Rは炭素数1~20の1価の炭化水素基を示し、当該炭化水素基は内部にエーテル結合、エステル結合又はウレタン結合を含んでいてもよい。また、Rは一般式(1)で表されるユニット中40モル%以上がジシクロペンタニル基又はジシクロペンテニル基である。Rは炭素数2~10の2価の炭化水素基を示す。pは0または1の数を表す。Xは水素原子又は-OC-Y-(COOH)(但し、Yは2価又は3価カルボン酸残基を表し、qは1~2の数を表す。を表す。また、Xは重合体1分子中に2種以上含まれる。)
(B)少なくとも2個のエチレン性不飽和結合を有する光重合性モノマー、
(C)光重合開始剤、
(D)黒色有機顔料、混色有機顔料及び遮光材からなる群から選ばれる1種以上の遮光成分、及び
(E)溶剤
(2)本発明はまた、(A)成分の重合性不飽和基含有アルカリ可溶性樹脂が、一般式(1)及び一般式(2)のユニットに加え、フェニル基に置換基を有していてもよいスチレンに由来するユニット及び/又はモノマレイミド化合物に由来するユニットを含む共重合体である、(1)に記載の感光性樹脂組成物である。
(3)本発明はまた、(D)遮光成分として、黒色有機顔料及び/又は混色有機顔料を含み、前記黒色有機顔料及び/又は混色有機顔料の平均二次粒径が20~500nmであることを特徴とする、(1)又は(2)に記載の感光性樹脂組成物である。
(4)本発明はまた、(B)成分を(A)成分100質量部に対して5~400質量部、
(C)成分を(A)成分と(B)成分の合計量100質量部に対して0.1~30質量部、
光硬化後に固形分となる(B)成分を含む、(E)成分を除く成分を固形分とするとき、
(D)成分を、固形分の合計量中、5~80質量%、
それぞれ含むことを特徴とする、(1)~(3)のいずれかに記載の感光性樹脂組成物である。
(5)本発明はまた、光学濃度ODが0.5/μm以上3/μm以下である遮光膜であって、電圧10V印加時の体積抵抗率が1×10Ω・cm以上、且つ誘電率が2~10である遮光膜を形成しうることを特徴とする、(1)~(4)のいずれかに記載の感光性樹脂組成物である。
(6)本発明はまた、微小硬度計による負荷-除荷試験において、下記(i)~(iii)の少なくとも一つを満たす遮光膜を形成しうることを特徴とする、(1)~(5)のいずれかに記載の感光性樹脂組成物である。
(i)破壊強度が200mN以上であること
(ii)弾性復元率が30%以上であること
(iii)圧縮率が40%以下であること
(7)本発明はまた、(1)~(6)のいずれかに記載の感光性樹脂組成物の硬化物であることを特徴とする、遮光膜である。
(8)本発明はまた、(7)に記載の遮光膜をブラックカラムスペーサー(BCS)として有することを特徴とする、液晶表示装置である。
(9)本発明はまた、さらに薄膜トランジスタ(TFT)を有することを特徴とする、(8)に記載の液晶表示装置である。
(10)本発明はまた、(1)~(6)のいずれかに記載の感光性樹脂組成物の硬化物を、ブラックマトリックスとして有することを特徴とする、液晶表示装置である。
(11)本発明はまた、さらに薄膜トランジスタ(TFT)を有し、前記ブラックマトリックスは、前記薄膜トランジスタ(TFT)が形成されたアレイ基板に対向する基板と、液晶と、の間に配置されることを特徴とする、(10)に記載の液晶表示装置である。
(12)本発明はまた、さらに薄膜トランジスタ(TFT)を有し、前記ブラックマトリックスは、前記薄膜トランジスタ(TFT)が形成されたアレイ基板と、液晶と、の間に配置されることを特徴とする、(10)に記載の液晶表示装置である。
(13)本発明はまた、(1)~(6)のいずれかに記載の感光性樹脂組成物を基板に塗布し、光照射によって前記感光性樹脂組成物を硬化させる、基板上に形成された遮光膜の製造方法であり、遮光膜としての光学濃度を0.5/μm以上3/μm未満とするための膜厚H1と、スペーサー機能を担う遮光膜の膜厚H2について、H2が1~7μmのとき、ΔH=H2-H1が0.1~6.9である膜厚H1と膜厚H2の遮光膜を同時に形成することを特徴とする、スペーサー機能を有する遮光膜の製造方法である。
(14)本発明はまた、単一の遮光膜の中に、前記膜厚H1となる部分と、前記膜厚H2となる部分と、が含まれる遮光膜を1回の露光で形成する、(13)に記載の遮光膜の製造方法である。
(15)本発明はまた、(13)または(14)に記載の方法で製造された遮光膜をブラックカラムスペーサー(BCS)とすることを特徴とする、液晶表示装置の製造方法である。
(16)本発明はまた、前記液晶表示装置は薄膜トランジスタ(TFT)を有することを特徴とする、(15)に記載の製造方法である。
(However, R 1 , R 3 and R 4 independently represent a hydrogen atom or a methyl group. R 2 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group has an ether bond inside, It may contain an ester bond or a urethane bond.In addition, 40 mol% or more of the units represented by the general formula (1) in R2 is a dicyclopentanyl group or a dicyclopentenyl group.R5 is a carbon Represents a divalent hydrocarbon group of numbers 2 to 10. p represents a number of 0 or 1. X is a hydrogen atom or -OC-Y-(COOH) q (However, Y is a divalent or trivalent carboxylic acid Represents a residue, and q represents a number from 1 to 2.In addition, two or more types of X are contained in one molecule of the polymer.)
(B) a photopolymerizable monomer having at least two ethylenically unsaturated bonds;
(C) photopolymerization initiator,
(D) one or more light-shielding components selected from the group consisting of a black organic pigment, a color-mixing organic pigment, and a light-shielding material; and (E) a solvent. In addition to the units of general formula (1) and general formula (2), the alkali-soluble resin contains a unit derived from styrene and/or a unit derived from a monomaleimide compound, which may have a substituent on the phenyl group. The photosensitive resin composition according to (1) is a copolymer.
(3) The present invention also includes (D) a black organic pigment and/or a color-mixing organic pigment as a light-shielding component, and the average secondary particle size of the black organic pigment and/or color-mixing organic pigment is 20 to 500 nm. The photosensitive resin composition according to (1) or (2), characterized by:
(4) The present invention also provides 5 to 400 parts by mass of component (B) per 100 parts by mass of component (A),
0.1 to 30 parts by mass of component (C) per 100 parts by mass of the total amount of components (A) and (B),
When the solid content is a component including the component (B) that becomes a solid content after photocuring, but excluding the component (E),
(D) component, 5 to 80% by mass of the total solid content,
The photosensitive resin composition according to any one of (1) to (3), characterized in that it contains each of the following.
(5) The present invention also provides a light shielding film having an optical density OD of 0.5/μm or more and 3/μm or less, a volume resistivity of 1×10 9 Ω·cm or more when a voltage of 10 V is applied, and a dielectric The photosensitive resin composition according to any one of (1) to (4), which is capable of forming a light-shielding film having a light-shielding ratio of 2 to 10.
(6) The present invention is also characterized in that it can form a light-shielding film that satisfies at least one of the following (i) to (iii) in a loading-unloading test using a microhardness meter. The photosensitive resin composition according to any one of 5).
(i) Breaking strength is 200 mN or more (ii) Elastic recovery rate is 30% or more (iii) Compressibility is 40% or less (7) The present invention also provides (1) to (6) ) A light-shielding film characterized by being a cured product of the photosensitive resin composition according to any one of the above.
(8) The present invention is also a liquid crystal display device characterized by having the light shielding film described in (7) as a black column spacer (BCS).
(9) The present invention also provides the liquid crystal display device according to (8), further comprising a thin film transistor (TFT).
(10) The present invention also provides a liquid crystal display device comprising a cured product of the photosensitive resin composition according to any one of (1) to (6) as a black matrix.
(11) The present invention further includes a thin film transistor (TFT), and the black matrix is disposed between the liquid crystal and a substrate facing the array substrate on which the thin film transistor (TFT) is formed. The liquid crystal display device according to (10) is characterized in that the liquid crystal display device is characterized in that:
(12) The present invention further includes a thin film transistor (TFT), and the black matrix is disposed between the array substrate on which the thin film transistor (TFT) is formed and the liquid crystal. The liquid crystal display device according to (10).
(13) The present invention also provides a photosensitive resin composition formed on a substrate by applying the photosensitive resin composition according to any one of (1) to (6) to the substrate and curing the photosensitive resin composition by light irradiation. This is a method for producing a light shielding film, in which the film thickness H1 for making the optical density of the light shielding film 0.5/μm or more and less than 3/μm, and the film thickness H2 of the light shielding film that plays a spacer function, H2 is 1. ~7 μm, a method for producing a light shielding film having a spacer function, characterized by simultaneously forming a light shielding film with a thickness H1 and a thickness H2 in which ΔH=H2−H1 is 0.1 to 6.9. be.
(14) The present invention also provides the method of forming a light-shielding film including a portion having the thickness H1 and a portion having the thickness H2 in a single light-shielding film in one exposure. 13) is the method for producing a light-shielding film.
(15) The present invention also provides a method for manufacturing a liquid crystal display device, characterized in that the light shielding film manufactured by the method described in (13) or (14) is used as a black column spacer (BCS).
(16) The present invention also provides the manufacturing method according to (15), wherein the liquid crystal display device includes a thin film transistor (TFT).

本発明に係る遮光膜用の感光性樹脂組成物は、遮光性、絶縁性を維持したまま圧縮率、弾性回復率、破壊強度に優れた硬化物を得ることができる。さらに本発明に係る遮光膜用の感光性樹脂組成物は、膜厚が1~7μm程度であっても微細なスペーサー形状を形成することができる。 The photosensitive resin composition for a light-shielding film according to the present invention can provide a cured product with excellent compressibility, elastic recovery rate, and breaking strength while maintaining light-shielding properties and insulation properties. Further, the photosensitive resin composition for a light-shielding film according to the present invention can form a fine spacer shape even when the film thickness is about 1 to 7 μm.

図1は、実施例8の感光性樹脂組成物を用いて形成したパターンの高さプロファイルである。FIG. 1 is a height profile of a pattern formed using the photosensitive resin composition of Example 8. 図2は、実施例9の感光性樹脂組成物を用いて形成したパターンの高さプロファイルである。FIG. 2 is a height profile of a pattern formed using the photosensitive resin composition of Example 9. 図3は、比較例3の感光性樹脂組成物を用いて形成したパターンの高さプロファイルである。FIG. 3 is a height profile of a pattern formed using the photosensitive resin composition of Comparative Example 3. 図4は、比較例4の感光性樹脂組成物を用いて形成したパターンの高さプロファイルである。FIG. 4 is a height profile of a pattern formed using the photosensitive resin composition of Comparative Example 4.

以下、本発明について詳細に説明する。 The present invention will be explained in detail below.

本発明の一態様は、それぞれ以下に詳述する(A)重合性不飽和基含有アルカリ可溶性樹脂、(B)光重合性モノマー、(C)光重合開始剤、(D)遮光成分、(E)溶剤を必須成分として含む、感光性樹脂組成物に関する。 One aspect of the present invention includes (A) an alkali-soluble resin containing a polymerizable unsaturated group, (B) a photopolymerizable monomer, (C) a photopolymerization initiator, (D) a light-shielding component, and (E) each described in detail below. ) A photosensitive resin composition containing a solvent as an essential component.

(A)成分の重合性不飽和基含有アルカリ可溶性樹脂は、一般式(1)で表されるユニットと一般式(2)で表されるユニットとを含む重合体である。 The polymerizable unsaturated group-containing alkali-soluble resin of component (A) is a polymer containing a unit represented by general formula (1) and a unit represented by general formula (2).

Figure 0007396786000003
Figure 0007396786000003

Figure 0007396786000004
Figure 0007396786000004

一般式(1)および(2)において、R、R及びRは独立に水素原子又はメチル基を表す。
は炭素数1~20の1価の炭化水素基を表し、当該炭化水素基は内部にエーテル結合、エステル結合又はウレタン結合を含んでいてもよい。また、Rは一般式(1)で表されるユニット中40モル%以上がジシクロペンタニル基又はジシクロペンテニル基である。
は炭素数2~10の2価の炭化水素基を示す。pは0または1の数を表す。Xは水素原子又は-OC-Y-(COOH)(但し、Yは2価又は3価カルボン酸残基を表し、qは1~2の数を表す。また、Xは重合体1分子中に2種以上含まれる)。
In general formulas (1) and (2), R 1 , R 3 and R 4 independently represent a hydrogen atom or a methyl group.
R 2 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may contain an ether bond, an ester bond, or a urethane bond inside. Further, R 2 is a dicyclopentanyl group or a dicyclopentenyl group in a proportion of 40 mol % or more in the unit represented by the general formula (1).
R 5 represents a divalent hydrocarbon group having 2 to 10 carbon atoms. p represents the number 0 or 1. X is a hydrogen atom or -OC-Y-(COOH) q (However, Y represents a divalent or trivalent carboxylic acid residue, and q represents a number of 1 to 2. contains two or more types).

で表される炭化水素基としては、たとえば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソオクチル基、2-エチルヘキシル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基等の飽和の直鎖状炭化水素基、ビニル基、アリル基、エチニル基等の不飽和の直鎖状炭化水素基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、2-メチルシクロヘキシル基、4-メチルシクロヘキシル基、ジシクロペンタニル基、ジシクロペンテニル基、ジシクロヘキシル基、ノルボルニル基、イソボルニル基、アダマンチル基、下記一般式(3)で表される置換基(*は一般式(1)のエステル部位との結合部分を示す。)等の環状脂肪族炭化水素基、フェニル基、トリル基、メシチル基、ナフチル基、アントリル基、フェナントリル基、ベンジル基、2-フェニルエチル基、2-フェニルビニル基、デカヒドロナフチル基等の芳香環を有する炭化水素基、メトキシエチル基、2-(メトキシエトキシ)エチル基、イソアミル基等の脂肪族エーテル類、2-(エトキシカルボニルアミノ)エチル基等の脂肪族ウレタン類等が挙げられる。本発明においては、Rで表される炭化水素基は、ジシクロペンタニル基、ジシクロペンテニル基を含むことが必須である。一般式(1)で表されるユニットは、Rが異なる複数のユニットを含んでもよい。 Examples of the hydrocarbon group represented by R 2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, tert-butyl group, pentyl group, isopentyl group, and neopentyl group. , tert-pentyl group, hexyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, eicosyl group and other saturated linear hydrocarbon groups , unsaturated linear hydrocarbon groups such as vinyl group, allyl group, ethynyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, 2-methylcyclohexyl group, 4-methylcyclohexyl group, dicyclopentanyl group, Cyclopentenyl group, dicyclohexyl group, norbornyl group, isobornyl group, adamantyl group, a substituent represented by the following general formula (3) (* indicates the bonding part with the ester moiety of general formula (1)), etc. Carbohydrates having aromatic rings such as aliphatic hydrocarbon groups, phenyl groups, tolyl groups, mesityl groups, naphthyl groups, anthryl groups, phenanthryl groups, benzyl groups, 2-phenylethyl groups, 2-phenylvinyl groups, decahydronaphthyl groups, etc. Examples include aliphatic ethers such as a hydrogen group, methoxyethyl group, 2-(methoxyethoxy)ethyl group, and isoamyl group, and aliphatic urethanes such as 2-(ethoxycarbonylamino)ethyl group. In the present invention, it is essential that the hydrocarbon group represented by R 2 includes a dicyclopentanyl group or a dicyclopentenyl group. The unit represented by general formula (1) may include a plurality of units in which R 2 is different.

Figure 0007396786000005
Figure 0007396786000005

で表される炭化水素基としては、たとえば、エチレン基、1,2-プロピレン基、1,4-ブチレン基、1,6-ヘキサメチレン基等が挙げられる。Rで表される炭化水素基は、好ましくはエチレン基、1,2-プロピレン基、又は1,4-ブチレン基である。一般式(2)で表されるユニットは、Rが異なる複数のユニットを含んでもよい。 Examples of the hydrocarbon group represented by R 5 include ethylene group, 1,2-propylene group, 1,4-butylene group, and 1,6-hexamethylene group. The hydrocarbon group represented by R 5 is preferably an ethylene group, a 1,2-propylene group, or a 1,4-butylene group. The unit represented by general formula (2) may include a plurality of units in which R 5 is different.

Xが-OC-Y-(COOH)(但し、Yは2価又は3価カルボン酸残基を表し、qは1~2の数を表す。)の構造は、共重合体中のヒドロキシル基に対して、2価カルボン酸、3価カルボン酸又はそれらの酸一無水物を反応させることにより形成される。2価又は3価のカルボン酸残基とは、COOH基が2又は3個結合したカルボン酸化合物において、COOH基を除いた部分を示す。ここで使用される2価又は3価カルボン酸としては、たとえば、マレイン酸、コハク酸、イタコン酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、クロレンド酸、トリメリット酸等の2価または3価のカルボン酸を挙げることができ、それらの酸一無水物も好ましく用いることができる。より好ましくは、テトラヒドロ無水フタル酸、無水コハク酸、又は無水トリメリット酸である。 The structure where X is -OC-Y-(COOH) q (wherein, Y represents a divalent or trivalent carboxylic acid residue, and q represents a number of 1 to 2) is based on the hydroxyl group in the copolymer. It is formed by reacting a divalent carboxylic acid, a trivalent carboxylic acid, or an acid monoanhydride thereof. A divalent or trivalent carboxylic acid residue refers to a portion of a carboxylic acid compound in which two or three COOH groups are bonded, excluding the COOH group. Examples of divalent or trivalent carboxylic acids used here include maleic acid, succinic acid, itaconic acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, chlorendic acid, and trimellitic acid. Examples include carboxylic acids of various valences, and acid monoanhydrides thereof can also be preferably used. More preferred are tetrahydrophthalic anhydride, succinic anhydride, or trimellitic anhydride.

一般式(1)で表されるユニットと一般式(2)で表されるユニットとの比率は、一般式(1)で表されるユニットと一般式(2)で表されるユニットとの合計を100モル%としたときに、一般式(1)で表されるユニットが5~90モル%、好ましくは20~70モル%となる量とすればよい。また、一般式(2)で表されるユニットが10~95モル%、好ましくは30~80モル%となる量とすればよい。 The ratio of the units represented by general formula (1) and the units represented by general formula (2) is the sum of the units represented by general formula (1) and the units represented by general formula (2). The amount of units represented by general formula (1) may be 5 to 90 mol%, preferably 20 to 70 mol%, when 100 mol%. Further, the amount of units represented by general formula (2) may be 10 to 95 mol%, preferably 30 to 80 mol%.

(A)成分の重合性不飽和基含有アルカリ可溶性樹脂は、一般式(1)で表されるユニット、一般式(2)で表されるユニット以外の、その他のユニットを含んでもよい。例えば、(A)成分の重合性不飽和基含有アルカリ可溶性樹脂は、フェニル基に置換基を有してもよいスチレンまたはモノマレイミドなどに由来するユニットをさらに含んでもよい。スチレンがフェニル基に有し得る置換基としては、炭素数1~10のアルキル基などが挙げられる。モノマレイミドとしては、例えば、N-フェニルマレイミド、N-シクロヘキシルマレイミド、N-ラウリルマレイミド、N-(4-ヒドロキシフェニル)マレイミドなどが挙げられる。
これらのうち、スチレン及びN-フェニルマレイミドが好ましい。
The polymerizable unsaturated group-containing alkali-soluble resin of component (A) may contain other units than the unit represented by the general formula (1) and the unit represented by the general formula (2). For example, the polymerizable unsaturated group-containing alkali-soluble resin of component (A) may further include a unit derived from styrene or monomaleimide, which may have a substituent on the phenyl group. Examples of substituents that styrene may have on the phenyl group include alkyl groups having 1 to 10 carbon atoms. Examples of the monomaleimide include N-phenylmaleimide, N-cyclohexylmaleimide, N-laurylmaleimide, and N-(4-hydroxyphenyl)maleimide.
Among these, styrene and N-phenylmaleimide are preferred.

上述したその他のユニットの比率は、重合体全体を100モル%としたときに、20~50モル%とすることができる。 The ratio of the other units mentioned above can be 20 to 50 mol% when the entire polymer is 100 mol%.

なお、(A)の重合性不飽和基含有アルカリ可溶性樹脂は、1種のみを使用しても、重合比率が異なる2種以上の重合体の混合物を使用することもできる。 In addition, only one type of polymerizable unsaturated group-containing alkali-soluble resin (A) may be used, or a mixture of two or more types of polymers having different polymerization ratios may be used.

(A)成分の重合性不飽和基含有アルカリ可溶性樹脂の製造方法は特に限定されるものではない。例えば、第一ステップとしてRとして上述した官能基を有する(メタ)アクリル酸エステル類とグリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリル酸エステル化合物とを溶剤中でラジカル共重合させ共重合体を得た後、第二ステップとして共重合体中のグリシジル基に(メタ)アクリル酸(アルキレンオキサイド変性したものを含む)等のモノカルボン酸化合物を反応させ、それに引き続いて第三ステップとして、第二ステップで生成したヒドロキシル基にジカルボン酸化合物、トリカルボン酸化合物又はそれらカルボン酸化合物の酸一無水物を反応させる方法がある。 The method for producing component (A), a polymerizable unsaturated group-containing alkali-soluble resin, is not particularly limited. For example, as a first step, a (meth)acrylic acid ester having the above-mentioned functional group as R2 and a (meth)acrylic acid ester compound having a glycidyl group such as glycidyl (meth)acrylate are radically copolymerized in a solvent. After obtaining the copolymer, the second step is to react the glycidyl groups in the copolymer with a monocarboxylic acid compound such as (meth)acrylic acid (including those modified with alkylene oxide), followed by the third step. As a method, there is a method in which the hydroxyl group generated in the second step is reacted with a dicarboxylic acid compound, a tricarboxylic acid compound, or an acid monoanhydride of these carboxylic acid compounds.

第一ステップで使用する、一般式(1)のユニットとなる(メタ)アクリル酸エステル類としては、まずRとして本発明では必須のジシクロペンタニル基またはジシクロペンテニル基を導入するための(メタ)アクリル酸エステル類として、式(4)のジシクロペンタニル(メタ)アクリレート、式(5)のジシクロペンテニル(メタ)アクリレート、式(6)のエチレングリコール変性のジシクロペンタニル(メタ)アクリレート、式(7)のエチレングリコール変性のジシクロペンテニル(メタ)アクリレートなどを挙げることができ、これらのうち2種類以上を併用することもできる。 The (meth)acrylic acid esters serving as the unit of general formula (1) used in the first step are first used to introduce a dicyclopentanyl group or a dicyclopentenyl group, which is essential in the present invention, as R2 . Examples of (meth)acrylic acid esters include dicyclopentanyl (meth)acrylate of formula (4), dicyclopentenyl (meth)acrylate of formula (5), and ethylene glycol-modified dicyclopentanyl (formula (6)). Examples include meth)acrylate, ethylene glycol-modified dicyclopentenyl (meth)acrylate of formula (7), and two or more of these can also be used in combination.

Figure 0007396786000006
Figure 0007396786000006

Figure 0007396786000007
Figure 0007396786000007

Figure 0007396786000008
Figure 0007396786000008

Figure 0007396786000009
Figure 0007396786000009

なお、一般式(4)~(7)中のRは、一般式(1)中のRと同様に水素原子またはメチル基を表す。 Note that R 1 in the general formulas (4) to (7) represents a hydrogen atom or a methyl group similarly to R 1 in the general formula (1).

その他の一般式(1)のユニットとなる(メタ)アクリル酸エステル類としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸-n-プロピル、(メタ)アクリル酸-iso-プロピル、(メタ)アクリル酸-n-ブチル、(メタ)アクリル酸-sec-ブチル、(メタ)アクリル酸-tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ネオペンチル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-メチルシクロヘキシル、(メタ)アクリル酸ジシクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸プロパルギル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ナフチル、(メタ)アクリル酸アントラセニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェネチル、(メタ)アクリル酸クレジル、(メタ)アクリル酸トリフェニルメチル、(メタ)アクリル酸クミルなどのなど炭素数1~20の炭化水素基を有する(メタ)アクリル酸エステル類を挙げることができ、2種類以上を併用することもできる。 Other (meth)acrylic esters serving as units of general formula (1) include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and (meth)acrylic acid. -iso-propyl, n-butyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, pentyl (meth)acrylate, neopentyl (meth)acrylate, ( Isoamyl meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dodecyl (meth)acrylate, cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-(meth)acrylate Methylcyclohexyl, dicyclohexyl (meth)acrylate, isobornyl (meth)acrylate, adamantyl (meth)acrylate, propargyl (meth)acrylate, phenyl (meth)acrylate, naphthyl (meth)acrylate, (meth)acrylic acid Hydrocarbon groups having 1 to 20 carbon atoms such as anthracenyl, benzyl (meth)acrylate, phenethyl (meth)acrylate, cresyl (meth)acrylate, triphenylmethyl (meth)acrylate, cumyl (meth)acrylate, etc. Examples include (meth)acrylic esters having the following, and two or more types can also be used in combination.

上記(メタ)アクリル酸エステル類の使用量は、ジシクロペンタニル基またはジシクロペンテニル基を導入するための(メタ)アクリル酸エステル類が(メタ)アクリル酸エステル類全体に対して40モル%以上となるように調整すればよい。 The amount of the (meth)acrylic esters used is 40 mol% of the (meth)acrylic esters to introduce the dicyclopentanyl group or dicyclopentenyl group based on the total amount of the (meth)acrylic esters. Adjustment may be made so that the above value is achieved.

また、上記(メタ)アクリル酸エステル類及びグリシジル基を有する(メタ)アクリル酸エステル化合物の使用量は、共重合体中の(メタ)アクリル酸エステルに由来するユニットが5~90モル%、グリシジル基を有する(メタ)アクリル酸エステル化合物に由来するユニットが10~95モル%になるように調整すればよい。 In addition, the amount of the above-mentioned (meth)acrylic esters and (meth)acrylic ester compounds having a glycidyl group used is such that the unit derived from the (meth)acrylic ester in the copolymer is 5 to 90 mol%, glycidyl The amount of units derived from the (meth)acrylic acid ester compound having the group may be adjusted to 10 to 95 mol%.

第三ステップで使用するジカルボン酸化合物、トリカルボン酸化合物又はそれらカルボン酸化合物の酸一無水物の例としては、マレイン酸、コハク酸、イタコン酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、クロレンド酸、トリメリット酸、およびそれらの酸一無水物であり、2種類以上を併用することもできる。これらの中で、テトラヒドロ無水フタル酸、無水コハク酸、無水トリメリット酸を好ましく用いることができる。 Examples of dicarboxylic acid compounds, tricarboxylic acid compounds, or acid monoanhydrides of these carboxylic acid compounds used in the third step include maleic acid, succinic acid, itaconic acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, and chlorendo. They are acids, trimellitic acid, and acid monoanhydrides thereof, and two or more types can also be used in combination. Among these, tetrahydrophthalic anhydride, succinic anhydride, and trimellitic anhydride can be preferably used.

第一ステップのラジカル重合に際しては、アゾ化合物や過酸化物等の公知のラジカル重合開始剤を使用することができるし、公知の連鎖移動剤や重合禁止剤等を利用して重合度を制御してもよい。反応温度は、使用するラジカル重合開始剤の半減期温度を考慮して、適宜設定することができる。 In the first step of radical polymerization, known radical polymerization initiators such as azo compounds and peroxides can be used, and the degree of polymerization can be controlled using known chain transfer agents, polymerization inhibitors, etc. It's okay. The reaction temperature can be appropriately set in consideration of the half-life temperature of the radical polymerization initiator used.

第二ステップの付加反応は、例えば、トリエチルベンジルアンモニウムクロライド、2,6-イソブチルフェノール、トリスジメチルアミノメチルフェノール等の触媒の存在下、空気を吹き込みながら90~120℃に加熱、撹拌して反応させる方法がある。 The addition reaction in the second step is carried out by heating to 90 to 120°C and stirring while blowing air in the presence of a catalyst such as triethylbenzylammonium chloride, 2,6-isobutylphenol, trisdimethylaminomethylphenol, etc. There is a way.

第三ステップは、例えば、トリエチルアミン、臭化テトラエチルアンモニウム、トリフェニルフォスフィン等の触媒の存在下、90~130℃で加熱して、撹拌して反応させる方法がある。 The third step is, for example, a method of heating at 90 to 130° C. and stirring in the presence of a catalyst such as triethylamine, tetraethylammonium bromide, triphenylphosphine, and the like.

(A)成分の重合性不飽和基含有アルカリ可溶性樹脂の製造方法の他の方法としては、第一ステップとして、前記の(メタ)アクリル酸エステル類と(メタ)アクリル酸等の重合性不飽和基含有モノカルボン酸化合物とを溶剤中でラジカル共重合させ、第二ステップとして共重合体中のカルボキシル基にグリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリル酸エステル類を反応させ、第三ステップとして第二ステップで生成したヒドロキシル基に上述のジカルボン酸化合物、トリカルボン酸化合物又はそれらカルボン酸化合物の酸一無水物を反応させるという方法もある。 In another method for producing the alkali-soluble resin containing a polymerizable unsaturated group as component (A), as a first step, the above-mentioned (meth)acrylic acid ester and a polymerizable unsaturated resin such as (meth)acrylic acid are used. A group-containing monocarboxylic acid compound is radically copolymerized in a solvent, and as a second step, a (meth)acrylic acid ester having a glycidyl group such as glycidyl (meth)acrylate is reacted with the carboxyl group in the copolymer. As a third step, there is also a method in which the hydroxyl group generated in the second step is reacted with the above-mentioned dicarboxylic acid compound, tricarboxylic acid compound, or acid monoanhydride of these carboxylic acid compounds.

なお、(A)成分の重合性不飽和基含有アルカリ可溶性樹脂が上述したスチレンまたはモノマレイミドなどのその他のユニットを有するときは、いずれの方法においても、第一ステップにおいて上記スチレンまたはモノマレイミドなどを共重合させればよい。 In addition, when the polymerizable unsaturated group-containing alkali-soluble resin of component (A) has other units such as the above-mentioned styrene or monomaleimide, in any method, the above-mentioned styrene or monomaleimide is added in the first step. What is necessary is to copolymerize.

(A)のアルカリ可溶性樹脂のゲルパーミエーションクロマトグラフィー(GPC)測定によるポリスチレン換算の重量平均分子量(Mw)は、通常3000~50000であり、4000~20000であることが好ましい。本発明のユニット構成の重合性不飽和基含有アルカリ可溶性樹脂においては、重量平均分子量が3000未満の場合は、アルカリ現像時のパターンの密着性が低下する恐れがあり、重量平均分子量が50000を超える場合は現像性が著しく低下する恐れがある。 The weight average molecular weight (Mw) of the alkali-soluble resin (A) measured by gel permeation chromatography (GPC) in terms of polystyrene is usually 3,000 to 50,000, preferably 4,000 to 20,000. In the polymerizable unsaturated group-containing alkali-soluble resin having a unit structure of the present invention, if the weight average molecular weight is less than 3,000, the adhesion of the pattern during alkali development may decrease, and if the weight average molecular weight exceeds 50,000. In this case, the developability may be significantly reduced.

また、(A)のアルカリ可溶性樹脂の酸価の好ましい範囲は30~200mgKOH/gであり、50~150mgKOH/gであることがより好ましい。本発明のユニット構成の重合性不飽和基含有アルカリ可溶性樹脂においては、この値が30mgKOH/gより小さいとアルカリ現像時に残渣が残りやすくなり、200mgKOH/gを超えるとアルカリ現像液の浸透が早くなり過ぎ、剥離現像が起きるので、何れも好ましくない。酸価は、一般式(2)で表されるユニットにおいてX中に存在するカルボキシル基の量によって調整可能である。 Further, the preferred range of the acid value of the alkali-soluble resin (A) is 30 to 200 mgKOH/g, more preferably 50 to 150 mgKOH/g. In the alkali-soluble resin containing a polymerizable unsaturated group having a unit structure of the present invention, if this value is less than 30 mgKOH/g, a residue tends to remain during alkaline development, and if it exceeds 200 mgKOH/g, the alkaline developer penetrates quickly. Both are unfavorable since peeling development occurs if the film is too thick. The acid value can be adjusted by the amount of carboxyl group present in X in the unit represented by general formula (2).

本発明において、(A)の重量平均分子量は、サンプリングした溶液をテトラヒドロフランに溶解させて東ソー社製HLC-8220GPCで分子量分布測定を行い、標準ポリスチレン換算の重量平均分子量を算出した値を用いる。またA成分の酸価は、サンプリングした溶液をジオキサンに溶解させて0.1規定の水酸化カリウム水溶液で中和滴定し、当量点からサンプル溶液の固形分換算の酸価を算出した値を用いる。 In the present invention, the weight average molecular weight of (A) is the value obtained by dissolving the sampled solution in tetrahydrofuran, measuring the molecular weight distribution with HLC-8220GPC manufactured by Tosoh Corporation, and calculating the weight average molecular weight in terms of standard polystyrene. For the acid value of component A, use the value obtained by dissolving the sampled solution in dioxane, performing neutralization titration with a 0.1N aqueous potassium hydroxide solution, and calculating the acid value in terms of solid content of the sample solution from the equivalence point. .

次に、(B)少なくとも2個のエチレン性不飽和結合を有する光重合性モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、グリセロール(メタ)アクリレート、ソルビトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、又はジペンタエリスリトールヘキサ(メタ)アクリレート、ソルビトールヘキサ(メタ)アクリレート、フォスファゼンのアルキレンオキサイド変性ヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等の(メタ)アクリル酸エステル類、ペンタエリスリトール、ジペンタエリスリトール等の多価アルコール類、フェノールノボラック等の多価フェノール類のビニルベンジルエーテル化合物、ジビニルベンゼン等のジビニル化合物類の付加重合体等を挙げることができる。これらの(B)少なくとも2個のエチレン性不飽和結合を有する光重合性モノマーは、1種類の化合物のみを用いてもよく、複数を組み合わせて用いてもよい。なお、(B)少なくとも2個のエチレン性不飽和結合を有する光重合性モノマーは遊離のカルボキシ基を有しない。3官能以上がより好ましい。 Next, (B) photopolymerizable monomers having at least two ethylenically unsaturated bonds include, for example, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, Tetraethylene glycol di(meth)acrylate, tetramethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, trimethylolethane tri(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate Acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, glycerol(meth)acrylate, sorbitol penta(meth)acrylate, dipentaerythritol penta(meth)acrylate, or dipentaerythritol hexa(meth)acrylate , sorbitol hexa(meth)acrylate, alkylene oxide-modified hexa(meth)acrylate of phosphazene, (meth)acrylic acid esters such as caprolactone-modified dipentaerythritol hexa(meth)acrylate, polyhydric alcohols such as pentaerythritol, dipentaerythritol, etc. Examples include vinylbenzyl ether compounds of polyhydric phenols such as phenol novolak, and addition polymers of divinyl compounds such as divinylbenzene. As these (B) photopolymerizable monomers having at least two ethylenically unsaturated bonds, only one type of compound may be used, or a plurality of them may be used in combination. Note that (B) the photopolymerizable monomer having at least two ethylenically unsaturated bonds does not have a free carboxyl group. Trifunctional or higher functionality is more preferred.

(B)成分の配合割合は、(A)成分100質量部に対して5~400質量部であるのがよく、好ましくは10~150質量部であるのがよい。(B)成分の配合割合が(A)成分100質量部に対して400質量部より多いと、光硬化後の硬化物が脆くなり、また、未露光部において塗膜の酸価が低いためにアルカリ現像液に対する溶解性が低下し、パターンエッジがぎざつきシャープにならないといった問題が生じる。一方、(B)成分の配合割合が(A)成分100質量部に対して5質量部よりも少ないと、樹脂に占める光反応性官能基の割合が少なく架橋構造の形成が十分でなく、更に、樹脂成分における酸価が高いために、露光部におけるアルカリ現像液に対する溶解性が高くなることから、形成されたパターンが目標とする線幅より細くなったり、パターンの欠落が生じや易くなるといった問題が生じる恐れがある。 The blending ratio of component (B) is preferably 5 to 400 parts by weight, preferably 10 to 150 parts by weight, per 100 parts by weight of component (A). If the blending ratio of component (B) is more than 400 parts by mass per 100 parts by mass of component (A), the cured product after photocuring will become brittle, and the acid value of the coating film will be low in the unexposed areas. The solubility in an alkaline developer decreases, causing problems such as pattern edges becoming jagged and not sharp. On the other hand, if the blending ratio of component (B) is less than 5 parts by mass per 100 parts by mass of component (A), the proportion of photoreactive functional groups in the resin will be small and the formation of a crosslinked structure will not be sufficient, and Due to the high acid value of the resin component, the solubility in the alkaline developer in the exposed area increases, resulting in the formed pattern being thinner than the target line width or more likely to be missing. Problems may occur.

また、(C)成分の光重合開始剤としては、例えば、アセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、p-ジメチルアミノプロピオフェノン、ジクロロアセトフェノン、トリクロロアセトフェノン、p-tert-ブチルアセトフェノン等のアセトフェノン類、ベンゾフェノン、2-クロロベンゾフェノン、p,p’-ビスジメチルアミノベンゾフェノン等のベンゾフェノン類、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインエーテル類、2-(o-クロロフェニル)-4,5-フェニルビイミダゾール、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)ビイミダゾール、2-(o-フルオロフェニル)-4,5-ジフェニルビイミダゾール、2-(o-メトキシフェニル)-4,5-ジフェニルビイミダゾール、2,4,5-トリアリールビイミダゾール等のビイミダゾール系化合物類、2-トリクロロメチル-5-スチリル-1,3,4-オキサジアゾール、2-トリクロロメチル-5-(p-シアノスチリル)-1,3,4-オキサジアゾール、2-トリクロロメチル-5-(p-メトキシスチリル)-1,3,4-オキサジアゾール等のハロメチルジアゾール化合物類、2,4,6-トリス(トリクロロメチル)-1,3,5-トリアジン、2-メチル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-クロロフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシスチリル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(3,4,5-トリメトキシスチリル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メチルチオスチリル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン等のハロメチル-s-トリアジン系化合物類、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(O-ベンゾイルオキシム)、1-(4-フェニルスルファニルフェニル)ブタン-1,2-ジオン-2-オキシム-O-ベンゾアート、1-(4-メチルスルファニルフェニル)ブタン-1,2-ジオン-2-オキシム-O-アセタート、1-(4-メチルスルファニルフェニル)ブタン-1-オンオキシム-O-アセタート、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、メタノン,(9-エチル-6-ニトロ-9H-カルバゾール-3-イル)[4-(2-メトキシ-1-メチルエトキシ)-2-メチルフェニル]-,O-アセチルオキシム、メタノン,(2-メチルフェニル)(7-ニトロ-9,9-ジプロピル-9H-フルオレン-2-イル)-,アセチルオキシム、エタノン,1-[7-(2-メチルベンゾイル)-9,9-ジプロピル-9H-フルオレン-2-イル]-,1-(O-アセチルオキシム)、エタノン,1-(-9,9-ジブチル-7-ニトロ-9H-フルオレン-2-イル)-,1-O-アセチルオキシム等のO-アシルオキシム系化合物類、ベンジルジメチルケタール、チオキサンソン、2-クロロチオキサンソン、2,4-ジエチルチオキサンソン、2-メチルチオキサンソン、2-イソプロピルチオキサンソン等のイオウ化合物、2-エチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ジフェニルアントラキノン等のアントラキノン類、アゾビスイソブチルニトリル、ベンゾイルパーオキサイド、クメンパーオキシド等の有機過酸化物、2-メルカプトベンゾイミダゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾチアゾール等のチオール化合物などが挙げられる。この中でも、高感度の遮光膜用の感光性樹脂組成物を得られやすい観点から、O-アシルオキシム系化合物類を用いることが好ましい。これらの(C)光重合開始剤は、1種類の化合物のみを用いてもよく、複数を組み合わせて用いてもよい。なお、本発明でいう光重合開始剤とは、増感剤を含む意味で使用される。 In addition, as the photopolymerization initiator of component (C), for example, acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, dichloroacetophenone, trichloroacetophenone, p-tert-butyl Acetophenones such as acetophenone, benzophenones such as benzophenone, 2-chlorobenzophenone, p,p'-bisdimethylaminobenzophenone, benzoin ethers such as benzyl, benzoin, benzoin methyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2- (o-chlorophenyl)-4,5-phenylbiimidazole, 2-(o-chlorophenyl)-4,5-di(m-methoxyphenyl)biimidazole, 2-(o-fluorophenyl)-4,5-diphenyl Biimidazole compounds such as biimidazole, 2-(o-methoxyphenyl)-4,5-diphenylbiimidazole, 2,4,5-triarylbiimidazole, 2-trichloromethyl-5-styryl-1,3 ,4-oxadiazole, 2-trichloromethyl-5-(p-cyanostyryl)-1,3,4-oxadiazole, 2-trichloromethyl-5-(p-methoxystyryl)-1,3,4 -Halomethyldiazole compounds such as oxadiazole, 2,4,6-tris(trichloromethyl)-1,3,5-triazine, 2-methyl-4,6-bis(trichloromethyl)-1,3 ,5-triazine, 2-phenyl-4,6-bis(trichloromethyl)-1,3,5-triazine, 2-(4-chlorophenyl)-4,6-bis(trichloromethyl)-1,3,5 -triazine, 2-(4-methoxyphenyl)-4,6-bis(trichloromethyl)-1,3,5-triazine, 2-(4-methoxynaphthyl)-4,6-bis(trichloromethyl)-1 , 3,5-triazine, 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine, 2-(3,4,5-trimethoxystyryl)-4, Halomethyl-s-triazine systems such as 6-bis(trichloromethyl)-1,3,5-triazine and 2-(4-methylthiostyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine Compounds, 1,2-octanedione, 1-[4-(phenylthio)phenyl]-,2-(O-benzoyloxime), 1-(4-phenylsulfanylphenyl)butane-1,2-dione-2- Oxime-O-benzoate, 1-(4-methylsulfanylphenyl)butan-1,2-dione-2-oxime-O-acetate, 1-(4-methylsulfanylphenyl)butan-1-one oxime-O-acetate , ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-,1-(0-acetyloxime), methanone, (9-ethyl-6-nitro-9H -carbazol-3-yl)[4-(2-methoxy-1-methylethoxy)-2-methylphenyl]-, O-acetyloxime, methanone, (2-methylphenyl)(7-nitro-9,9- dipropyl-9H-fluoren-2-yl)-, acetyloxime, ethanone, 1-[7-(2-methylbenzoyl)-9,9-dipropyl-9H-fluoren-2-yl]-, 1-(O- acetyloxime), ethanone, O-acyloxime compounds such as 1-(-9,9-dibutyl-7-nitro-9H-fluoren-2-yl)-,1-O-acetyloxime, benzyl dimethyl ketal, Sulfur compounds such as thioxanthone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, 2-ethylanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone , anthraquinones such as 2,3-diphenylanthraquinone, organic peroxides such as azobisisobutylnitrile, benzoyl peroxide, cumene peroxide, 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzothiazole, etc. Examples include thiol compounds. Among these, it is preferable to use O-acyloxime compounds from the viewpoint of easily obtaining a photosensitive resin composition for a highly sensitive light-shielding film. These photopolymerization initiators (C) may be used alone or in combination. Note that the photopolymerization initiator as used in the present invention is used to include a sensitizer.

これらの光重合開始剤や増感剤は、その1種のみを単独で使用できるほか、2種以上を組み合わせて使用することもできる。また、それ自体では光重合開始剤や増感剤として作用しないが、組み合わせて用いることにより、光重合開始剤や増感剤の能力を増大させ得るような化合物を添加することもできる。そのような化合物としては、例えば、ベンゾフェノンと組み合わせて使用すると効果のあるトリエタノールアミン、トリエチルアミン等の第3級アミンを挙げることができる。 These photopolymerization initiators and sensitizers can be used alone or in combination of two or more. Further, it is also possible to add a compound that does not act as a photopolymerization initiator or sensitizer by itself, but can increase the ability of the photopolymerization initiator or sensitizer when used in combination. Examples of such compounds include tertiary amines such as triethanolamine and triethylamine, which are effective when used in combination with benzophenone.

(C)成分の光重合開始剤の使用量は、(A)成分と(B)成分の合計100質量部を基準として0.1~30質量部であるのがよく、好ましくは1~25質量部であるのがよい。(C)成分の配合割合が0.1質量部未満の場合には、光重合の速度が遅くなって、感度が低下し、一方、30質量部を超える場合には、感度が強すぎて、パターン線幅がパターンマスクに対して太った状態になり、マスクに対して忠実な線幅が再現できない、又は、パターンエッジがぎざつきシャープにならないといった問題が生じる恐れがある。 The amount of photopolymerization initiator used as component (C) is preferably 0.1 to 30 parts by weight, preferably 1 to 25 parts by weight based on the total of 100 parts by weight of components (A) and (B). It is better to be a member of the department. If the blending ratio of component (C) is less than 0.1 part by mass, the speed of photopolymerization will be slow and the sensitivity will decrease, while if it exceeds 30 parts by mass, the sensitivity will be too strong. The pattern line width becomes thicker than the pattern mask, which may cause problems such as the line width not being able to be reproduced faithfully to the mask, or the pattern edges being jagged and not being sharp.

(D)成分は、黒色有機顔料、混色有機顔料及び遮光材から選ばれる遮光成分であり、絶縁性、耐熱性、耐光性及び耐溶剤性に優れたものであるのがよい。ここで、黒色有機顔料としては、例えばペリレンブラック、アニリンブラック、シアニンブラック、ラクタムブラック等が挙げられる。混色有機顔料としては、赤、青、緑、紫、黄色、シアニン、マゼンタ等から選ばれる2種以上の顔料を混合して擬似黒色化されたものが挙げられる。遮光材としては、酸化クロム、酸化鉄、チタンブラック等を挙げることができる。これらの(D)遮光成分は、1種類の化合物のみを用いてもよく、複数を組み合わせて用いてもよい。 Component (D) is a light-shielding component selected from black organic pigments, color-mixing organic pigments, and light-shielding materials, and preferably has excellent insulation, heat resistance, light resistance, and solvent resistance. Here, examples of the black organic pigment include perylene black, aniline black, cyanine black, and lactam black. Examples of mixed-color organic pigments include those obtained by mixing two or more pigments selected from red, blue, green, purple, yellow, cyanine, magenta, etc. to create a pseudo-black color. Examples of the light shielding material include chromium oxide, iron oxide, titanium black, and the like. As these (D) light-shielding components, only one type of compound may be used, or a plurality of them may be used in combination.

本発明で使用する有機顔料としては、公知の化合物を特に制限なく使用することができるが、微粒化の加工がされた、BET法による比表面積が50m/g以上であるものが好ましい。具体的にはアゾ顔料、縮合アゾ顔料、アゾメチン顔料、フタロシアニン顔料、キナクリドン顔料、イソインドリノン顔料、イソインドリン顔料、ジオキサジン顔料、スレン顔料、ペリレン顔料、ペリノン顔料、キノフタロン顔料、ジケトピロロピロール顔料、チオインジゴ顔料等が挙げられ、具体的には、以下のようなC.I.名の化合物が挙げられるが、これらに限定されるわけではない。
C.I.ピグメント・レッド2、3、4、5、9、12、14、22、23、31、38、112、122、144、146、147、149、166、168、170、175、176、177、178、179、184、185、187、188、202、207、208、209、210、213、214、220、221、242、247、253、254、255、256、257、262、264、266、272、279等;
C.I.ピグメント・オレンジ5、13、16、34、36、38、43、61、62、64、67、68、71、72、73、74、81等;
C.I.ピグメント・イエロー1、3、12、13、14、16、17、55、73、74、81、83、93、95、97、109、110、111、117、120、126、127、128、129、130、136、138、139、150、151、153、154、155、173、174、175、176、180、181、183、185、191、194、199、213、214等;
C.I.ピグメント・グリーン7、36、58等;
C.I.ピグメント・ブルー15、15:1、15:2、15:3、15:4、15:6、16、60、80等;
C.I.ピグメント・バイオレット19、23、37等。
As the organic pigment used in the present invention, any known compound can be used without particular limitation, but it is preferable to use one that has been subjected to atomization processing and has a specific surface area of 50 m 2 /g or more by the BET method. Specifically, azo pigments, condensed azo pigments, azomethine pigments, phthalocyanine pigments, quinacridone pigments, isoindolinone pigments, isoindoline pigments, dioxazine pigments, threne pigments, perylene pigments, perinone pigments, quinophthalone pigments, diketopyrrolopyrrole pigments, Examples include thioindigo pigments, and specifically, the following C.I. I. Examples include, but are not limited to, compounds of the same name.
C. I. Pigment Red 2, 3, 4, 5, 9, 12, 14, 22, 23, 31, 38, 112, 122, 144, 146, 147, 149, 166, 168, 170, 175, 176, 177, 178 , 179, 184, 185, 187, 188, 202, 207, 208, 209, 210, 213, 214, 220, 221, 242, 247, 253, 254, 255, 256, 257, 262, 264, 266, 272 , 279 etc.;
C. I. Pigment Orange 5, 13, 16, 34, 36, 38, 43, 61, 62, 64, 67, 68, 71, 72, 73, 74, 81, etc.;
C. I. Pigment Yellow 1, 3, 12, 13, 14, 16, 17, 55, 73, 74, 81, 83, 93, 95, 97, 109, 110, 111, 117, 120, 126, 127, 128, 129 , 130, 136, 138, 139, 150, 151, 153, 154, 155, 173, 174, 175, 176, 180, 181, 183, 185, 191, 194, 199, 213, 214, etc.;
C. I. Pigment Green 7, 36, 58, etc.;
C. I. Pigment Blue 15, 15:1, 15:2, 15:3, 15:4, 15:6, 16, 60, 80, etc.;
C. I. Pigment violet 19, 23, 37, etc.

また、(E)成分の溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール、3-メトキシ-1-ブタノール、エチレングリコールモノブチルエーテル、3-ヒドロキシ-2-ブタノン、ジアセトンアルコール等のアルコール類、α-もしくはβ-テルピネオール等のテルペン類等、アセトン、メチルエチルケトン、シクロヘキサノン、N-メチル-2-ピロリドン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、乳酸エチル、3-メトキシブチルアセテート、3-メトキシ-3-ブチルアセテート、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル類等が挙げられ、これらを用いて溶解、混合させることにより、均一な溶液状の組成物とすることができる。これらの溶剤は、塗布性等の必要特性とするために2種類以上を用いてもよい。 Examples of the solvent for component (E) include methanol, ethanol, n-propanol, isopropanol, ethylene glycol, propylene glycol, 3-methoxy-1-butanol, ethylene glycol monobutyl ether, 3-hydroxy-2-butanone, Alcohols such as diacetone alcohol, terpenes such as α- or β-terpineol, ketones such as acetone, methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, etc., aromatic carbonization of toluene, xylene, tetramethylbenzene, etc. Hydrogens, cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, Glycol ethers such as triethylene glycol monomethyl ether and triethylene glycol monoethyl ether, ethyl acetate, butyl acetate, ethyl lactate, 3-methoxybutyl acetate, 3-methoxy-3-butyl acetate, cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve Examples include esters such as acetate, carbitol acetate, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, etc., and by dissolving and mixing them, a uniform The composition can be in the form of a solution. Two or more types of these solvents may be used in order to achieve necessary properties such as coatability.

そして、(D)遮光成分は、好ましくは、予め溶剤に(F)分散剤とともに分散させて遮光性分散液としたうえで、遮光膜用の感光性樹脂組成物として配合するのがよい。ここで、分散させる溶剤は、(E)成分の一部になるため、上記の(E)成分に挙げたものであれば使用することができるが、例えばプロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等が好適に用いられる。 The light-shielding component (D) is preferably dispersed in advance together with the dispersant (F) in a solvent to form a light-shielding dispersion, and then blended into the photosensitive resin composition for the light-shielding film. Here, the solvent for dispersion becomes a part of component (E), so any solvent listed for component (E) above can be used, such as propylene glycol monomethyl ether acetate, 3-methoxybutyl Acetate and the like are preferably used.

遮光性分散液を形成する(D)の遮光成分の配合割合については、本発明の遮光膜用の感光性樹脂組成物の全固形分に対して5~80質量%の範囲で用いられるのがよい。なお、上記固形分とは、組成物のうち(E)成分を除く成分を意味する。上記固形分には、光硬化後に固形分となる(B)成分も含まれる。5質量%より少ないと、所望の遮光性に設定できなくなる。80質量%を越えると、本来のバインダーとなる感光性樹脂の含有量が減少するため、現像特性を損なうと共に膜形成能が損なわれるという好ましくない問題が生じる。 Regarding the blending ratio of the light-shielding component (D) forming the light-shielding dispersion, it is used in the range of 5 to 80% by mass based on the total solid content of the photosensitive resin composition for the light-shielding film of the present invention. good. In addition, the solid content means components other than component (E) in the composition. The solid content also includes component (B) which becomes a solid content after photocuring. If it is less than 5% by mass, it will not be possible to set the desired light-shielding properties. If it exceeds 80% by mass, the content of the photosensitive resin that is the original binder decreases, resulting in undesirable problems such as impairing development characteristics and film-forming ability.

この遮光性分散液における遮光成分のレーザー回折・散乱式粒子径分布計で測定した平均粒径(以下「平均二次粒径」という)は、以下のようになるようにすることが好ましい。黒色有機顔料及び/若しくは混色有機顔料、並びに/又は単色の有機顔料を使用する場合には、分散粒子の平均二次粒径が20~500nmであることがよい。なお、これらの遮光性分散液を配合して調製した遮光膜用の感光性樹脂組成物においても、これらの遮光成分は、同じ平均二次粒径を有することが好ましい。 It is preferable that the average particle diameter (hereinafter referred to as "average secondary particle diameter") of the light-shielding component in this light-shielding dispersion as measured by a laser diffraction/scattering particle size distribution analyzer is as follows. When using a black organic pigment, a mixed color organic pigment, and/or a monochrome organic pigment, the average secondary particle size of the dispersed particles is preferably 20 to 500 nm. In addition, also in the photosensitive resin composition for a light-shielding film prepared by blending these light-shielding dispersions, it is preferable that these light-shielding components have the same average secondary particle size.

また、遮光性分散液には、遮光成分を安定的に分散させるために(F)分散剤を使用するが、この目的には各種高分子分散剤等の公知の分散剤を使用することができる。分散剤の例としては、従来顔料分散に用いられている公知の化合物(分散剤、分散湿潤剤、分散促進剤等の名称で市販されている化合物等)を特に制限なく使用することができるが、例えば、カチオン性高分子系分散剤、アニオン性高分子系分散剤、ノニオン性高分子系分散剤、顔料誘導体型分散剤(分散助剤)等を挙げることができる。特に、顔料への吸着点としてイミダゾリル基、ピロリル基、ピリジル基、一級、二級又は三級のアミノ基等のカチオン性の官能基を有し、アミン価が1~100mgKOH/g、数平均分子量が1千~10万の範囲にあるカチオン性高分子系分散剤は好適である。この(F)分散剤の配合量は、遮光成分に対して1~30質量%、好ましくは2~25質量%であることが好ましい。 In addition, (F) a dispersant is used in the light-shielding dispersion liquid in order to stably disperse the light-shielding component, and for this purpose, known dispersants such as various polymer dispersants can be used. . As examples of dispersants, known compounds conventionally used for pigment dispersion (compounds commercially available under the names of dispersants, dispersion wetting agents, dispersion accelerators, etc.) can be used without particular limitation. Examples of the dispersant include cationic polymer dispersants, anionic polymer dispersants, nonionic polymer dispersants, pigment derivative dispersants (dispersing aids), and the like. In particular, it has a cationic functional group such as an imidazolyl group, pyrrolyl group, pyridyl group, primary, secondary or tertiary amino group as an adsorption point to the pigment, has an amine value of 1 to 100 mgKOH/g, and has a number average molecular weight. A cationic polymer dispersant having a molecular weight in the range of 1,000 to 100,000 is suitable. The blending amount of the dispersant (F) is preferably 1 to 30% by mass, preferably 2 to 25% by mass based on the light shielding component.

さらに、遮光性分散液を調製する際に、上記(F)分散剤に加えて(A)成分の重合性不飽和基含有アルカリ可溶性樹脂の一部を共分散させることにより、遮光膜用の感光性樹脂組成物としたとき、露光感度を高感度に維持しやすくし、現像時の密着性が良好で残渣の問題も発生しにくい感光性樹脂組成物とすることができる。(A)成分の配合量は、遮光性分散液中2~20質量%であるのが好ましく、5~15質量%であることがより好ましい。(A)成分が2質量%未満であると、感度向上、密着性向上、残渣低減といった共分散させた効果を得ることができない。また、20質量%以上であると、特に遮光材の含有量が大きいときに、遮光性分散液の粘度が高く、均一に分散させることが困難あるいは非常に時間を要することになり、均一に遮光成分が分散した塗膜を得るための感光性樹脂組成物を得ることが難しくなる。 Furthermore, when preparing a light-shielding dispersion liquid, in addition to the above-mentioned (F) dispersant, a part of the alkali-soluble resin containing a polymerizable unsaturated group of component (A) is co-dispersed. When used as a photosensitive resin composition, the photosensitive resin composition can easily maintain high exposure sensitivity, has good adhesion during development, and is less likely to cause problems with residue. The blending amount of component (A) in the light-shielding dispersion is preferably 2 to 20% by mass, more preferably 5 to 15% by mass. If the amount of component (A) is less than 2% by mass, the effects of codispersion such as improved sensitivity, improved adhesion, and reduced residue cannot be obtained. In addition, if the content is 20% by mass or more, the viscosity of the light-shielding dispersion liquid will be high, especially when the content of the light-shielding material is large, and it will be difficult or very time-consuming to disperse the light-shielding material uniformly. It becomes difficult to obtain a photosensitive resin composition for obtaining a coating film in which components are dispersed.

このようにして得られた遮光性分散液は、(A)成分(遮光性分散液を調製する際に(A)成分を共分散させた場合は、残りの(A)成分)、(B)成分、(C)成分、及び残りの(E)成分と混合することで、遮光膜用の感光性樹脂組成物とすることができる。 The light-shielding dispersion thus obtained contains the (A) component (if the (A) component is co-dispersed when preparing the light-shielding dispersion, the remaining (A) component), (B) A photosensitive resin composition for a light-shielding film can be obtained by mixing the above component, the component (C), and the remaining component (E).

また、本発明の感光性樹脂組成物には、必要に応じて硬化促進剤、熱重合禁止剤および酸化防止剤、可塑剤、充填材、溶剤、レベリング剤、消泡剤、カップリング剤、界面活性剤等の(H)添加剤を配合することができる。熱重合禁止剤および酸化防止剤としては、ハイドロキノン、ハイドロキノンモノメチルエーテル、ピロガロール、tert-ブチルカテコール、フェノチアジン、ヒンダードフェノール系化合物等を挙げることができ、可塑剤としては、ジブチルフタレート、ジオクチルフタレート、リン酸トリクレジル等を挙げることができ、充填材としては、ガラスファイバー、シリカ、マイカ、アルミナ等を挙げることができ、消泡剤やレベリング剤としては、シリコーン系、フッ素系、アクリル系の化合物を挙げることができる。また、界面活性剤としてはフッ素系界面活性剤、シリコーン系界面活性剤等を挙げることができ、カップリング剤としては3-(グリシジルオキシ)プロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-イソシアナトプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン等のシランカップリング剤を挙げることができる。 In addition, the photosensitive resin composition of the present invention may optionally contain a curing accelerator, a thermal polymerization inhibitor, an antioxidant, a plasticizer, a filler, a solvent, a leveling agent, an antifoaming agent, a coupling agent, an interface. (H) additives such as activators can be blended. Examples of thermal polymerization inhibitors and antioxidants include hydroquinone, hydroquinone monomethyl ether, pyrogallol, tert-butylcatechol, phenothiazine, and hindered phenol compounds. Examples of plasticizers include dibutyl phthalate, dioctyl phthalate, and phosphorus. Examples of fillers include glass fiber, silica, mica, alumina, etc., and antifoaming agents and leveling agents include silicone-based, fluorine-based, and acrylic compounds. be able to. In addition, examples of the surfactant include fluorine-based surfactants and silicone-based surfactants, and examples of the coupling agent include 3-(glycidyloxy)propyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, Examples include silane coupling agents such as 3-isocyanatopropyltriethoxysilane and 3-ureidopropyltriethoxysilane.

本発明の感光性樹脂組成物は、熱によって重合又は硬化するその他の樹脂成分を併用してもよい。その他の樹脂成分としては、(G)2つ以上のエポキシ基を有するエポキシ樹脂又はエポキシ化合物が好ましく、3,3’,5,5’-テトラメチル-4,4’-ビフェノール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、エポキシシリコーン樹脂等が挙げられる。これらの追加の成分は、1種類の化合物のみを用いてもよく、複数を組み合わせて用いてもよい。 The photosensitive resin composition of the present invention may also contain other resin components that are polymerized or cured by heat. As other resin components, (G) epoxy resins or epoxy compounds having two or more epoxy groups are preferred, such as 3,3',5,5'-tetramethyl-4,4'-biphenol type epoxy resins, bisphenol Type A epoxy resin, bisphenol fluorene type epoxy resin, phenol novolac type epoxy resin, 3,4-epoxycyclohexenylmethyl-3',4'-epoxycyclohexenecarboxylate, 2,2-bis(hydroxymethyl)-1-butanol 1,2-epoxy-4-(2-oxiranyl)cyclohexane adducts, epoxy silicone resins, and the like. As these additional components, only one type of compound may be used, or a plurality of them may be used in combination.

本発明の感光性樹脂組成物は、上記(A)~(E)成分を主成分として含有する。上記固形分中に、(A)~(D)成分が合計で70質量%、好ましくは80質量%以上含まれることが望ましい。(E)溶剤の量は、目標とする粘度によって変化するが、感光性樹脂組成物中に60~90質量%の範囲で含まれるようにするのがよい。 The photosensitive resin composition of the present invention contains the above-mentioned components (A) to (E) as main components. It is desirable that the solid content contains components (A) to (D) in a total of 70% by mass, preferably 80% by mass or more. (E) The amount of the solvent varies depending on the target viscosity, but it is preferably contained in the photosensitive resin composition in the range of 60 to 90% by mass.

本発明における遮光膜用の感光性樹脂組成物は、例えばスペーサー機能を有する遮光膜を形成するための感光性樹脂組成物として優れるものである。スペーサー機能を有する遮光膜の形成方法としては、以下のようなフォトリソグラフィー法がある。先ず、本発明における遮光膜用の感光性樹脂組成物を基材上に塗布し、次いで溶媒を乾燥させた(プリベーク)後、このようにして得られた被膜の上にフォトマスクをあて、紫外線を照射して露光部を硬化させ、更にアルカリ水溶液を用いて未露光部を溶出させる現像を行ってパターンを形成し、更に後乾燥としてポストベーク(熱焼成)を行う方法が挙げられる。 The photosensitive resin composition for a light-shielding film in the present invention is excellent as a photosensitive resin composition for forming a light-shielding film having a spacer function, for example. As a method for forming a light-shielding film having a spacer function, there is the following photolithography method. First, the photosensitive resin composition for the light-shielding film of the present invention is applied onto a base material, and then the solvent is dried (prebaking). A photomask is applied onto the film thus obtained, and ultraviolet light is applied. An example of this method is to irradiate the pattern to harden the exposed area, perform development to elute the unexposed area using an alkaline aqueous solution to form a pattern, and then perform post-bake (thermal baking) as post-drying.

上記基材は、透明基板でもよいし、RGB等の画素を形成した後に、画素上、又は画素上の平坦化膜上、又は画素上の平坦膜上に製膜した配向膜などの、透明基板以外の基材でもよい。また、上記基板は、TFTが形成されたアレイ基板でもよい。 The above-mentioned base material may be a transparent substrate, or a transparent substrate such as an alignment film formed on the pixel, on a flattening film on the pixel, or on a flattening film on the pixel after forming pixels such as RGB. Other base materials may also be used. Furthermore, the substrate may be an array substrate on which TFTs are formed.

どのような基材上にスペーサー機能を有する遮光膜を形成するかは、液晶表示装置の設計によって異なってくる。例えば、遮光膜をBCSとする場合、ブラックマトリックスとして機能する領域をTFT上に設けるときは、上記基板としてアレイ基板を用いればよい。また、上記ブラックマトリックスとして機能する領域を、液晶表示装置においてTFTが形成された基板とは対向する基板に設けるときや、TFTを有さない液晶表示装置を製造するときは、上記基板としてガラス等の透明基板を用いることができる。 The type of base material on which a light-shielding film having a spacer function is formed depends on the design of the liquid crystal display device. For example, when the light-shielding film is BCS and a region functioning as a black matrix is provided on the TFT, an array substrate may be used as the substrate. In addition, when the region functioning as the black matrix is provided on a substrate opposite to the substrate on which TFTs are formed in a liquid crystal display device, or when manufacturing a liquid crystal display device without TFTs, the substrate may be glass or the like. A transparent substrate can be used.

感光性樹脂組成物を塗布する透明基板としては、ガラス基板のほか、透明フィルム(例えば、ポリカーボネート、ポリエチレンテレフタレート、ポリエーテルスルフォン等)上にITOや金などの透明電極が蒸着あるいはパターニングされたものなどが例示できる。透明基板上に感光性樹脂組成物の溶液を塗布する方法としては、公知の溶液浸漬法、スプレー法の他、ローラーコーター機、ランドコーター機、スリットコーター機やスピナー機を用いる方法等の何れの方法をも採用することができる。これらの方法によって、所望の厚さに塗布した後、溶剤を除去する(プリベーク)ことにより、被膜が形成される。プリベークはオーブン、ホットプレート等により加熱することによって行われる。プリベークにおける加熱温度及び加熱時間は使用する溶剤に応じて適宜選択され、例えば60~110℃の温度で1~3分間行われる。 Transparent substrates to which the photosensitive resin composition is applied include glass substrates, as well as transparent films (e.g., polycarbonate, polyethylene terephthalate, polyethersulfone, etc.) on which transparent electrodes such as ITO or gold are deposited or patterned. can be exemplified. As a method for applying the solution of the photosensitive resin composition onto the transparent substrate, in addition to the well-known solution immersion method and spray method, any method using a roller coater machine, land coater machine, slit coater machine, or spinner machine can be used. method can also be adopted. By these methods, a film is formed by applying the film to a desired thickness and then removing the solvent (prebaking). Prebaking is performed by heating with an oven, hot plate, or the like. The heating temperature and heating time in prebaking are appropriately selected depending on the solvent used, and is carried out, for example, at a temperature of 60 to 110° C. for 1 to 3 minutes.

プリベーク後に行われる露光は、紫外線露光装置によって行なわれ、フォトマスクを介して露光することによりパターンに対応した部分のレジストのみを感光させる。露光装置及びその露光照射条件は適宜選択され、超高圧水銀灯、高圧水銀ランプ、メタルハライドランプ、遠紫外線灯等の光源を用いて露光を行い、塗膜中の感光性樹脂組成物を光硬化させる。このとき、ハーフトーンマスクなどを用いて露光量が異なる領域を設けることで、高さの異なる領域(後述する膜厚H1の領域と膜厚H2の領域など)を同時に形成することができる。 Exposure performed after prebaking is performed by an ultraviolet exposure device, and by exposing through a photomask, only the portions of the resist corresponding to the pattern are exposed. The exposure device and its exposure irradiation conditions are appropriately selected, and exposure is performed using a light source such as an ultra-high-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, a far-ultraviolet lamp, etc., and the photosensitive resin composition in the coating film is photocured. At this time, by providing regions with different exposure amounts using a halftone mask or the like, regions with different heights (such as a region with a film thickness H1 and a region with a film thickness H2, which will be described later) can be formed at the same time.

露光後のアルカリ現像は、露光されない部分のレジストを除去する目的で行われ、この現像によって所望のパターンが形成される。このアルカリ現像に適した現像液としては、例えばアルカリ金属やアルカリ土類金属の炭酸塩の水溶液、アルカリ金属の水酸化物の水溶液等を挙げることができるが、特に炭酸ナトリウム、炭酸カリウム、炭酸リチウム等の炭酸塩を0.05~3質量%含有する弱アルカリ性水溶液を用いて23~28℃の温度で現像するのがよく、市販の現像機や超音波洗浄機等を用いて微細な画像を精密に形成することができる。 Alkaline development after exposure is performed for the purpose of removing the resist in unexposed areas, and a desired pattern is formed by this development. Examples of developing solutions suitable for this alkaline development include aqueous solutions of carbonates of alkali metals and alkaline earth metals, aqueous solutions of alkali metal hydroxides, and particularly sodium carbonate, potassium carbonate, lithium carbonate, etc. It is best to develop at a temperature of 23 to 28°C using a weakly alkaline aqueous solution containing 0.05 to 3% by mass of carbonates such as carbonates. Can be formed precisely.

現像後、好ましくは180~250℃の温度及び20~60分の条件で熱処理(ポストベーク)が行われる。このポストベークは、パターニングされた遮光膜と基板との密着性を高めるため等の目的で行われる。これはプリベークと同様に、オーブン、ホットプレート等により加熱することによって行われる。本発明のパターニングされた遮光膜は、以上のフォトリソグラフィー法による各工程を経て形成される。 After development, heat treatment (post-bake) is preferably performed at a temperature of 180 to 250° C. for 20 to 60 minutes. This post-baking is performed for the purpose of increasing the adhesion between the patterned light-shielding film and the substrate. Similar to pre-baking, this is done by heating with an oven, hot plate, etc. The patterned light-shielding film of the present invention is formed through the steps of the photolithography method described above.

上記方法によれば、光学濃度が0.5/μm~3/μm、好ましくは1.5/μm~2.5/μmの遮光膜を形成することができる。また、上記方法によれば、電圧10V印加時の体積抵抗率が1×10Ω・cm以上、好ましくは1×1012Ω・cm以上の遮光膜を形成することができる。また、上記方法によれば、誘電率が2~10、好ましくは2~8、さらに好ましくは3~6の遮光膜を形成することができる。また、上記方法によれば、機械的特性試験において、破壊強度が200mN以上、及び/又は弾性復元率が30%以上、及び/又は圧縮率が40%以下を満たす遮光膜を形成することができる。上記方法で形成された遮光膜は、液晶表示装置のカラムスペーサーとして使用することができ、好ましくはブラックカラムスペーサーとして使用することができる。 According to the above method, a light shielding film having an optical density of 0.5/μm to 3/μm, preferably 1.5/μm to 2.5/μm can be formed. Further, according to the above method, it is possible to form a light shielding film having a volume resistivity of 1×10 9 Ω·cm or more, preferably 1×10 12 Ω·cm or more when a voltage of 10 V is applied. Further, according to the above method, a light shielding film having a dielectric constant of 2 to 10, preferably 2 to 8, more preferably 3 to 6 can be formed. Further, according to the above method, it is possible to form a light-shielding film that has a breaking strength of 200 mN or more, an elastic recovery rate of 30% or more, and/or a compressibility of 40% or less in a mechanical property test. . The light shielding film formed by the above method can be used as a column spacer of a liquid crystal display device, and preferably can be used as a black column spacer.

上記遮光膜または硬化膜が形成された基板は、液晶層を挟んで他の基板と貼りあわせて、液晶表示装置(LCD)とすることができる。このとき、TFTが形成されたアレイ基板に上記遮光膜または硬化膜を形成し、赤(R)、緑(G)、青(B)などのカラーレジストを塗布して露光、現像およびベーキングして各色のカラーフィルターをさらに形成したものを、透明基板と貼り合わせることで、COTかつBOA(Black Matrix on Array)の液晶表示装置とすることができる。また、透明基板に上記遮光膜または硬化膜を形成し、カラーフィルターがTFT上に形成されたCOT基板と貼り合わせても、COTの液晶表示装置とすることができる。一方で、透明基板に上記遮光膜または硬化膜およびカラーフィルターを形成し、TFT基板と貼り合わせてもよい。これらのうち、BOAの液晶表示装置には、低誘電率である上記遮光膜または硬化膜を好ましく用いることができる。 The substrate on which the light-shielding film or cured film is formed can be bonded to another substrate with a liquid crystal layer interposed therebetween to form a liquid crystal display (LCD). At this time, the above-mentioned light-shielding film or cured film is formed on the array substrate on which the TFTs are formed, and color resists such as red (R), green (G), and blue (B) are applied, exposed, developed, and baked. By bonding a color filter of each color to a transparent substrate, a COT and BOA (Black Matrix on Array) liquid crystal display device can be obtained. Furthermore, a COT liquid crystal display device can be obtained by forming the above-mentioned light-shielding film or cured film on a transparent substrate and bonding it to a COT substrate on which a color filter is formed on a TFT. On the other hand, the above-described light-shielding film or cured film and color filter may be formed on a transparent substrate and bonded to the TFT substrate. Among these, the above-mentioned light-shielding film or cured film having a low dielectric constant can be preferably used in a BOA liquid crystal display device.

また、上記方法によれば、遮光膜としての光学濃度を0.5/μm以上3/μm未満とするための膜厚H1と、スペーサー機能を担う遮光膜の膜厚H2について、H2が1~7μmのとき、ΔH=H2-H1が0.1~6.9である、膜厚H1の遮光膜と膜厚H2の遮光膜を同時に形成することができる。より好ましい範囲は、H2が2~5μm、ΔHは0.1~4.9であり、さらに好ましい範囲は、H2が2~4μm、ΔHは0.1~2.9である。上記方法で形成された硬化膜は、液晶表示装置のカラムスペーサーとして使用することができ、好ましくはブラックカラムスペーサーとして使用することができる。上記ΔHが上記範囲である硬化膜によれば、高さに差があるブラックカラムスペーサーを同一の材料から一度に形成することができるため、液晶表示装置の製造をより効率よく行うことができる。このとき、たとえば、膜厚H2の硬化膜をスペーサーとして機能させ、膜厚H1の硬化膜をブラックマトリックスとして機能させることもできる。 In addition, according to the above method, the film thickness H1 for making the optical density of the light-shielding film 0.5/μm or more and less than 3/μm, and the film thickness H2 of the light-shielding film that plays a spacer function, H2 is 1 to 1. When the thickness is 7 μm, a light shielding film having a thickness H1 and a light shielding film having a thickness H2 in which ΔH=H2−H1 is 0.1 to 6.9 can be simultaneously formed. A more preferable range is H2 of 2 to 5 μm and ΔH of 0.1 to 4.9, and an even more preferable range of H2 is 2 to 4 μm and ΔH of 0.1 to 2.9. The cured film formed by the above method can be used as a column spacer of a liquid crystal display device, and preferably can be used as a black column spacer. According to the cured film in which the ΔH is within the above range, black column spacers having different heights can be formed at once from the same material, so that liquid crystal display devices can be manufactured more efficiently. At this time, for example, the cured film having a thickness of H2 may function as a spacer, and the cured film having a thickness of H1 may function as a black matrix.

また、上記方法によれば、断面形状が底辺の長さが異なる台形あるいは矩形の組合せ形状であり、より大きい幅を有する台形または矩形の上辺に、より小さい幅を有する台形または矩形の下辺であって上記上辺よりも短い長さを有する下辺が接した形状であるような、段差部を有するブラックカラムスペーサーも、同一の材料から一度に形成することができるため、液晶表示装置の製造をより効率よく行うことができる。言い換えると、上記方法によれば、同一のブラックカラムスペーサーの中に、膜厚H1の部分と膜厚H2の部分とが同一の遮光膜内に同時に含まれるようなブラックカラムスペーサーも、同一の材料から1回の露光で一度に形成することができるため、液晶表示装置の製造をより効率よく行うことができる。なお、上記組合わせ形状は、ブラックカラムスペーサーの底面から一定の高さで切断したときの切断面より高い部分の形状が、「断面形状が底辺の長さが異なる台形あるいは矩形の組合せ形状」であればよく、実際の底面は、下地となるTFTの表面が段差部や窪み部となっているときなどは、上記TFTの表面形状にあわせて、隙間なく段差部を被覆または窪み部を埋めるような形状となっていてもよい。 Further, according to the above method, the cross-sectional shape is a combination of trapezoids or rectangles with different base lengths, and the upper side of the trapezoid or rectangle having a larger width is the lower side of the trapezoid or rectangle having a smaller width. A black column spacer with a stepped portion, in which the bottom side is in contact with the top side and has a shorter length than the above-mentioned top side, can also be formed at the same time from the same material, making the manufacturing of liquid crystal display devices more efficient. can do well. In other words, according to the above method, a black column spacer in which a portion with a thickness H1 and a portion with a thickness H2 are simultaneously included in the same light-shielding film is also made of the same material. Since it can be formed at once with one exposure, it is possible to manufacture a liquid crystal display device more efficiently. In addition, in the above combination shape, when the black column spacer is cut at a certain height from the bottom surface, the shape of the part higher than the cut surface is "a combination of trapezoidal or rectangular cross-sectional shapes with different base lengths". If the surface of the underlying TFT has a step or recess, the actual bottom surface should be made to cover the step or fill the recess without any gaps, according to the surface shape of the TFT. It may be of any shape.

なお、上記高さに差があるブラックカラムスペーサーや、断面形状が底辺の長さが異なる台形あるいは矩形の組合せ形状であるブラックカラムスペーサーを形成するときは、遮光成分としては黒色有機顔料を用いることが好ましく、特には固形分中に20~50質量%の黒色有機顔料を用いることがより好ましい。なお、黒色有機顔料の一部としてカーボンブラック等の無機黒色顔料を用いて光学濃度をより高めたブラックカラムスペーサーを一括形成することも可能であるが、このときの無機黒色顔料の比率は、黒色有機顔料と無機黒色顔料の合計量の内、10~20質量%の範囲が好ましい。このとき用いるカーボンブラックは、ブラックカラムスペーサーの絶縁性を高め、同じ量を添加したときの誘電率を下げる観点から、樹脂で被覆されたカーボンブラックであることが好ましい。 In addition, when forming black column spacers with the above-mentioned height differences or black column spacers whose cross-sectional shape is a combination of trapezoids or rectangles with different base lengths, a black organic pigment should be used as the light-shielding component. is preferred, and it is particularly preferred to use 20 to 50% by mass of black organic pigment in the solid content. It is also possible to collectively form a black column spacer with a higher optical density by using an inorganic black pigment such as carbon black as a part of the black organic pigment, but in this case, the ratio of the inorganic black pigment is The total amount of organic pigment and inorganic black pigment is preferably in the range of 10 to 20% by mass. The carbon black used at this time is preferably resin-coated carbon black from the viewpoint of increasing the insulation of the black column spacer and lowering the dielectric constant when the same amount is added.

上記遮光膜または硬化膜を有する液晶表示装置は、薄膜トランジスタが設けられたTFT-LCDであることが好ましい。 The liquid crystal display device having the light shielding film or the cured film is preferably a TFT-LCD provided with a thin film transistor.

上記遮光膜または硬化膜を有する液晶表示装置は、遮光性および絶縁性が高く、更に、圧縮率、弾性回復率、破壊強度に優れたスペーサー機能を有し、かつ、膜厚が1~7μm程度であっても微細なスペーサー形状を形成できる。 The liquid crystal display device having the above-mentioned light-shielding film or cured film has high light-shielding properties and insulation properties, has a spacer function with excellent compressibility, elastic recovery rate, and breaking strength, and has a film thickness of about 1 to 7 μm. A fine spacer shape can be formed even if

以下、実施例及び比較例に基づいて、本発明の実施形態を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited thereto.

先ず、本発明の(A)重合性不飽和基含有アルカリ可溶性樹脂の合成例を示す。合成例における樹脂の評価は、以下の通りに行った。 First, a synthesis example of the (A) polymerizable unsaturated group-containing alkali-soluble resin of the present invention will be shown. Evaluation of the resin in the synthesis example was performed as follows.

[固形分濃度]
合成例中で得られた樹脂溶液1gをガラスフィルター〔重量:W0(g)〕に含浸させて秤量し〔W1(g)〕、160℃にて2hr加熱した後の重量〔W2(g)〕から次式より求めた。
固形分濃度(重量%)=100×(W2-W0)/(W1-W0)。
[Solid content concentration]
A glass filter [weight: W0 (g)] was impregnated with 1 g of the resin solution obtained in the synthesis example and weighed [W1 (g)], and the weight after heating at 160 ° C. for 2 hours [W2 (g)] It was calculated from the following formula.
Solid content concentration (wt%) = 100 x (W2-W0)/(W1-W0).

[酸価]
樹脂溶液をジオキサンに溶解させ、電位差滴定装置〔平沼産業株式会社製、商品名COM-1600〕を用いて1/10N-KOH水溶液で滴定して求めた。
[Acid value]
It was determined by dissolving a resin solution in dioxane and titrating it with a 1/10N-KOH aqueous solution using a potentiometric titration device [manufactured by Hiranuma Sangyo Co., Ltd., trade name COM-1600].

[分子量]
ゲルパーミュエーションクロマトグラフィー(GPC)[東ソー株式会社製商品名HLC-8220GPC、溶媒:テトラヒドロフラン、カラム:TSKgelSuperH-2000(2本)+TSKgelSuperH-3000(1本)+TSKgelSuperH-4000(1本)+TSKgelSuper-H5000(1本)〔東ソー株式会社製〕、温度:40℃、速度:0.6ml/min]にて測定し、標準ポリスチレン〔東ソー株式会社製PS-オリゴマーキット〕換算値として重量平均分子量(Mw)を求めた。
[Molecular weight]
Gel permeation chromatography (GPC) [trade name HLC-8220GPC manufactured by Tosoh Corporation, solvent: tetrahydrofuran, column: TSKgelSuperH-2000 (2 pieces) + TSKgelSuperH-3000 (1 piece) + TSKgelSuperH-4000 (1 piece) + TSKgelSuper-H5 000 (1 bottle) [manufactured by Tosoh Corporation], temperature: 40°C, speed: 0.6ml/min], and the weight average molecular weight (Mw) was calculated as a standard polystyrene [PS-oligomer kit manufactured by Tosoh Corporation]. I asked for

[平均二次粒径測定]
遮光性分散液を溶剤(本実施例ではPGMEA)で希釈して遮光成分の濃度が0.1質量%程度の溶液について、レーザー回折・散乱法の粒度分布計(日機装株式会社製、マイクロトラックMT-3000)を用いて、平均二次粒径を測定した。
[Average secondary particle size measurement]
The light-shielding dispersion liquid was diluted with a solvent (PGMEA in this example), and a solution with a light-shielding component concentration of about 0.1% by mass was measured using a laser diffraction/scattering particle size distribution analyzer (manufactured by Nikkiso Co., Ltd., Microtrac MT). -3000) was used to measure the average secondary particle size.

また、合成例及び比較合成例で使用する略号は次のとおりである。
BzMA:ベンジルメタクリレート
DCPMA:ジシクロペンタニルメタクリレート
GMA:グリシジルメタクリレート
St:スチレン
MMA:メチルメタクリレート
MAA:メタクリル酸
AA:アクリル酸
THPA:テトラヒドロ無水フタル酸
SA:無水コハク酸
AIBN:アゾビスイソブチロニトリル
TDMAMP:トリスジメチルアミノメチルフェノール
HQ:ハイドロキノン
TPP:トリフェニルフェノール
DTBPC:2,6-ジ-tert-ブチル-p-クレゾール
TEA:トリエチルアミン
PGMEA:プロピレングリコールモノメチルエーテルアセテート
Further, the abbreviations used in the synthesis examples and comparative synthesis examples are as follows.
BzMA: Benzyl methacrylate DCPMA: Dicyclopentanyl methacrylate GMA: Glycidyl methacrylate St: Styrene MMA: Methyl methacrylate MAA: Methacrylic acid AA: Acrylic acid THPA: Tetrahydrophthalic anhydride SA: Succinic anhydride AIBN: Azobisisobutyronitrile TDMAMP : Trisdimethylaminomethylphenol HQ: Hydroquinone TPP: Triphenylphenol DTBPC: 2,6-di-tert-butyl-p-cresol TEA: Triethylamine PGMEA: Propylene glycol monomethyl ether acetate

[合成例1]
還留冷却器付き1Lの四つ口フラスコ中に、PGMEA 300gを入れ、フラスコ系内を窒素置換した後120℃に昇温した。このフラスコ中にモノマー混合物(BzMA52.9g(0.30モル)、DCPMA77.1g(0.35モル)、GMA 49.8g(0.35モル)にAIBN10gを溶解した混合物)を滴下ロートから2時間かけて滴下し、さらに120℃で2時間撹拌し、共重合体溶液を得た。
次いで、フラスコ系内を空気に置換した後、得られた共重合体溶液にAA24.0g(グリシジル基の95%)、TDMAMP0.8g及びHQ 0.15gを添加し、120℃の加熱下で6hr撹拌し、重合性不飽和基含有共重合体溶液を得た。さらに、得られた重合性不飽和基含有共重合体溶液にTHPA45.7g(AA添加モル数の90%)、TEA 0.5gを加え120℃で4時間反応させ、重合性不飽和基含有アルカリ可溶性共重合体樹脂溶液(A)-1を得た。樹脂溶液の固形分濃度は47質量%であり、酸価(固形分換算)は62mgKOH/gであり、GPC分析によるMwは8200であった。
[Synthesis example 1]
300 g of PGMEA was placed in a 1 L four-necked flask equipped with a reflux condenser, and the temperature was raised to 120° C. after purging the inside of the flask with nitrogen. A monomer mixture (a mixture of 52.9 g (0.30 mol) of BzMA, 77.1 g (0.35 mol) of DCPMA, and 10 g of AIBN dissolved in 49.8 g (0.35 mol) of GMA) was added to this flask from the dropping funnel for 2 hours. The mixture was added dropwise, and further stirred at 120°C for 2 hours to obtain a copolymer solution.
Next, after purging the inside of the flask with air, 24.0 g of AA (95% of glycidyl groups), 0.8 g of TDMAMP, and 0.15 g of HQ were added to the obtained copolymer solution, and the mixture was heated at 120°C for 6 hours. The mixture was stirred to obtain a polymerizable unsaturated group-containing copolymer solution. Furthermore, 45.7 g of THPA (90% of the number of moles added of AA) and 0.5 g of TEA were added to the obtained copolymer solution containing a polymerizable unsaturated group, and the mixture was reacted at 120°C for 4 hours. A soluble copolymer resin solution (A)-1 was obtained. The solid content concentration of the resin solution was 47% by mass, the acid value (solid content equivalent) was 62 mgKOH/g, and the Mw by GPC analysis was 8200.

[合成例2]
還留冷却器付き1Lの四つ口フラスコ中に、PGMEA 300gを入れ、フラスコ系内を窒素置換した後120℃に昇温した。このフラスコ中にモノマー混合物(BzMA35.2g(0.20モル)、DCPMA77.1g(0.35モル)、GMA49.8g(0.35モル)、St 10.4g(0.10モル)にAIBN10gを溶解した混合物)を滴下ロートから2時間かけて滴下し、さらに120℃で2時間撹拌し、共重合体溶液を得た。
[Synthesis example 2]
300 g of PGMEA was placed in a 1 L four-necked flask equipped with a reflux condenser, and the temperature was raised to 120° C. after purging the inside of the flask with nitrogen. In this flask, 10 g of AIBN was added to a monomer mixture (35.2 g (0.20 mol) of BzMA, 77.1 g (0.35 mol) of DCPMA, 49.8 g (0.35 mol) of GMA, 10.4 g (0.10 mol) of St). The dissolved mixture) was added dropwise from the dropping funnel over 2 hours, and the mixture was further stirred at 120°C for 2 hours to obtain a copolymer solution.

次いで、フラスコ系内を空気に置換した後、得られた共重合体溶液にAA24.0g(グリシジル基の95%)、TDMAMP0.8g及びHQ 0.15gを添加し、120℃の加熱下で6hr撹拌し、重合性不飽和基含有共重合体溶液を得た。 Next, after purging the inside of the flask with air, 24.0 g of AA (95% of glycidyl groups), 0.8 g of TDMAMP, and 0.15 g of HQ were added to the obtained copolymer solution, and the mixture was heated at 120°C for 6 hours. The mixture was stirred to obtain a polymerizable unsaturated group-containing copolymer solution.

さらに、得られた重合性不飽和基含有共重合体溶液にTHPA 45.7g(AA添加モル数の90%)、TEA 0.5gを加え120℃で4時間反応させ、重合性不飽和基含有アルカリ可溶性共重合体樹脂溶液(A)-2を得た。樹脂溶液の固形分濃度は46質量%であり、酸価(固形分換算)は68mgKOH/gであり、GPC分析によるMwは7900であった。 Furthermore, 45.7 g of THPA (90% of the number of moles added of AA) and 0.5 g of TEA were added to the obtained copolymer solution containing polymerizable unsaturated groups, and the mixture was reacted at 120°C for 4 hours. An alkali-soluble copolymer resin solution (A)-2 was obtained. The solid content concentration of the resin solution was 46% by mass, the acid value (solid content equivalent) was 68 mgKOH/g, and the Mw by GPC analysis was 7900.

[合成例3]
還留冷却器付き1Lの四つ口フラスコ中に、PGMEA 300gを入れ、フラスコ系内を窒素置換した後120℃に昇温した。このフラスコ中にモノマー混合物(DCPMA77.1g(0.35モル)、GMA49.8g(0.35モル)、St31.2g(0.30モル)にAIBN 10gを溶解した混合物)を滴下ロートから2時間かけて滴下し、さらに120℃で2時間撹拌し、共重合体溶液を得た。
[Synthesis example 3]
300 g of PGMEA was placed in a 1 L four-necked flask equipped with a reflux condenser, and the temperature was raised to 120° C. after purging the inside of the flask with nitrogen. A monomer mixture (a mixture of 77.1 g (0.35 mol) of DCPMA, 49.8 g (0.35 mol) of GMA, and 10 g of AIBN dissolved in 31.2 g (0.30 mol) of St) was added to this flask from the dropping funnel for 2 hours. The mixture was added dropwise, and further stirred at 120°C for 2 hours to obtain a copolymer solution.

次いで、フラスコ系内を空気に置換した後、得られた共重合体溶液にAA24.0g(グリシジル基の95%)、TDMAMP0.8g及びHQ 0.15gを添加し、120℃の加熱下で6hr撹拌し、重合性不飽和基含有共重合体溶液を得た。 Next, after purging the inside of the flask with air, 24.0 g of AA (95% of glycidyl groups), 0.8 g of TDMAMP, and 0.15 g of HQ were added to the obtained copolymer solution, and the mixture was heated at 120°C for 6 hours. The mixture was stirred to obtain a polymerizable unsaturated group-containing copolymer solution.

さらに、得られた重合性不飽和基含有共重合体溶液にSA 30.0g(AA添加モル数の90%)、TEA 0.5gを加え120℃で4時間反応させ、重合性不飽和基含有アルカリ可溶性共重合体樹脂溶液(A)-3を得た。樹脂溶液の固形分濃度は46質量%であり、酸価(固形分換算)は76mgKOH/gであり、GPC分析によるMwは5300であった。 Furthermore, 30.0 g of SA (90% of the number of moles added of AA) and 0.5 g of TEA were added to the obtained copolymer solution containing polymerizable unsaturated groups, and the mixture was reacted at 120° C. for 4 hours. An alkali-soluble copolymer resin solution (A)-3 was obtained. The solid content concentration of the resin solution was 46% by mass, the acid value (solid content equivalent) was 76 mgKOH/g, and the Mw by GPC analysis was 5300.

[比較合成例1]
還留冷却器付き1Lの四つ口フラスコ中に、PGMEA 370gを入れ、フラスコ系内を窒素置換した後90℃に昇温した。このフラスコ中にモノマー混合物(BzMA 38.8g(0.22モル)、MMA 38.4g(0.38モル)、MAA 51.7g(0.60モル)にAIBN 6gを溶解した混合物)を滴下ロートから2時間かけて滴下し、さらに90℃で8時間撹拌し、共重合体溶液を得た。
[Comparative synthesis example 1]
370 g of PGMEA was placed in a 1 L four-necked flask equipped with a reflux condenser, and the temperature was raised to 90° C. after purging the inside of the flask with nitrogen. A monomer mixture (a mixture of 38.8 g (0.22 mol) of BzMA, 38.4 g (0.38 mol) of MMA, and 6 g of AIBN dissolved in 51.7 g (0.60 mol) of MAA) was added into this flask using a dropping funnel. The mixture was added dropwise over 2 hours, and further stirred at 90°C for 8 hours to obtain a copolymer solution.

次いで、フラスコ系内を空気に置換した後、得られた共重合体溶液にGMA 39.2g(カルボキシル基の50%)、TPP 1.4g及びDTBPC 0.06gを添加し、90℃の加熱下で6hr撹拌し、重合性不飽和基含有アルカリ可溶性共重合体樹脂溶液(A)-4を得た。樹脂溶液の固形分濃度は32質量%であり、酸価(固形分換算)は110mgKOH/gであり、GPC分析によるMwは18100であった。 Next, after purging the inside of the flask with air, 39.2 g of GMA (50% of carboxyl groups), 1.4 g of TPP, and 0.06 g of DTBPC were added to the obtained copolymer solution, and the mixture was heated at 90°C. The mixture was stirred for 6 hours to obtain a polymerizable unsaturated group-containing alkali-soluble copolymer resin solution (A)-4. The solid content concentration of the resin solution was 32% by mass, the acid value (in terms of solid content) was 110 mgKOH/g, and the Mw by GPC analysis was 18,100.

(重合性不飽和基含有アルカリ可溶性樹脂)
(A)-1成分:上記合成例1で得られたアルカリ可溶性樹脂溶液
(A)-2成分:上記合成例2で得られたアルカリ可溶性樹脂溶液
(A)-3成分:上記合成例3で得られたアルカリ可溶性樹脂溶液
(A)-4成分:上記比較合成例1で得られたアルカリ可溶性樹脂溶液
(Polymerizable unsaturated group-containing alkali-soluble resin)
(A)-1 component: The alkali-soluble resin solution obtained in the above Synthesis Example 1. (A)-2 component: The alkali-soluble resin solution obtained in the above Synthesis Example 2. (A)-3 component: The alkali-soluble resin solution obtained in the above Synthesis Example 3. Obtained alkali-soluble resin solution (A)-4 component: Alkali-soluble resin solution obtained in Comparative Synthesis Example 1 above

(光重合性モノマー)
(B):ジペンタエリスリトールヘキサアクリレートとジペンタエリスリトールペンタアクリレートとの混合物(日本化薬株式会社製、商品名DPHA)
(Photopolymerizable monomer)
(B): Mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate (manufactured by Nippon Kayaku Co., Ltd., trade name DPHA)

(光重合開始剤)
(C):エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)(BASFジャパン社製、製品名イルガキュアOXE02)
(Photopolymerization initiator)
(C): Ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-,1-(0-acetyloxime) (manufactured by BASF Japan, product name Irgacure OXE02 )

(遮光性分散顔料)
(D)-1:黒色顔料(ラクタムブラック BASF社製IrgaphorS0100CF)15.0質量%、高分子分散剤4.5質量%のPGMEA分散液(固形分19.5%、黒色顔料の平均二次粒径241nm)
(D)-2:C.I.ピグメント・オレンジ64(BASF社製)7.0質量%、C.I.ピグメント・バイオレット23(クラリアント社製)3.0質量%、C.I.ピグメント・ブルー15:6(クラリアント社製)7.0質量%、高分子分散剤濃度4.0質量%、スルホン化アゾ系分散助剤2.0質量%、ベンジルメタクリレート/メタクリル酸共重合体2.0質量%のPGMEA分散液(固形分25.0%)
(D)-3:カーボンブラック20.0質量%、高分子分散剤濃度5.0質量%のPGMEA分散液(固形分25.0%、カーボンブラックの平均二次粒径162nm)
(D)-4:樹脂被覆カーボンブラック25.0質量%、高分子分散剤濃度5.0質量%のPGMEA分散液(固形分30.0%、カーボンブラックの平均二次粒径90nm)
(Light-shielding dispersed pigment)
(D)-1: PGMEA dispersion containing 15.0% by mass of black pigment (lactam black Irgaphor S0100CF manufactured by BASF) and 4.5% by mass of polymer dispersant (solid content 19.5%, average secondary particles of black pigment) diameter 241nm)
(D)-2:C. I. Pigment Orange 64 (manufactured by BASF) 7.0% by mass, C.I. I. Pigment Violet 23 (manufactured by Clariant) 3.0% by mass, C.I. I. Pigment Blue 15:6 (manufactured by Clariant) 7.0% by mass, polymer dispersant concentration 4.0% by mass, sulfonated azo dispersion aid 2.0% by mass, benzyl methacrylate/methacrylic acid copolymer 2 .0 mass % PGMEA dispersion (25.0% solids)
(D)-3: PGMEA dispersion with carbon black 20.0% by mass and polymer dispersant concentration 5.0% by mass (solid content 25.0%, average secondary particle size of carbon black 162 nm)
(D)-4: PGMEA dispersion with resin-coated carbon black 25.0% by mass and polymer dispersant concentration 5.0% by mass (solid content 30.0%, average secondary particle size of carbon black 90 nm)

(溶剤)
(E)-1:PGMEA
(E)-2:3-メトキシ-3-メチルブチルアセテート
(solvent)
(E)-1: PGMEA
(E)-2:3-methoxy-3-methylbutyl acetate

(界面活性剤)
(H):BYK-330(ビックケミー社製)のPGMEA溶液(固形分1.0%)
(surfactant)
(H): PGMEA solution of BYK-330 (manufactured by BYK Chemie) (solid content 1.0%)

上記の配合成分を表1に示す割合で配合して、実施例1~7及び比較例1~2の感光性樹脂組成物を調製した。尚、表1中の数値はすべて配合量(g)を表す。また、溶剤の欄中の(E)-1は、不飽和基含有樹脂溶液(重合性不飽和基含有アルカリ可溶性樹脂溶液)中のPGMEA((E)-1と同じ)、及び遮光性分散液中のPGMEA((E)-1と同じ)を含まない量である。 Photosensitive resin compositions of Examples 1 to 7 and Comparative Examples 1 to 2 were prepared by blending the above ingredients in the proportions shown in Table 1. In addition, all the numerical values in Table 1 represent the compounding amount (g). In addition, (E)-1 in the solvent column refers to PGMEA (same as (E)-1) in an unsaturated group-containing resin solution (polymerizable unsaturated group-containing alkali-soluble resin solution) and a light-shielding dispersion. This is the amount that does not contain PGMEA (same as (E)-1).

Figure 0007396786000010
Figure 0007396786000010

[評価]
実施例1~7および比較例1~2の遮光膜用の感光性樹脂組成物を用いて、以下に記す評価を行った。これらの評価結果を表2に示す。
[evaluation]
The following evaluations were conducted using the photosensitive resin compositions for light-shielding films of Examples 1 to 7 and Comparative Examples 1 to 2. These evaluation results are shown in Table 2.

<現像特性>
上記で得られた各感光性樹脂組成物を、厚さ1.2mmのガラス基板上にスピンコーターを用いて熱硬化処理後の膜厚が3.0μmとなるように塗布し、90℃で1分間プリベークした。その後、フォトマスクを密着させ、波長365nmの照度30mW/cmの超高圧水銀ランプで100mJ/cmの紫外線を照射し、感光部分の光硬化反応を行った。
<Development characteristics>
Each of the photosensitive resin compositions obtained above was applied onto a glass substrate with a thickness of 1.2 mm using a spin coater so that the film thickness after thermosetting was 3.0 μm, and heated at 90°C for 1. Prebaked for a minute. Thereafter, a photomask was placed in close contact with the film, and ultraviolet rays of 100 mJ/cm 2 were irradiated with an ultra-high pressure mercury lamp having a wavelength of 365 nm and an illumination intensity of 30 mW/cm 2 to perform a photocuring reaction on the photosensitive areas.

次に、この露光後のガラス基板を0.05%水酸化カリウム水溶液を用いて、24℃、0.1MPaの圧力で60秒間現像し、塗膜の未露光部を除去した。その後、熱風乾燥機を用いて230℃で30分間加熱硬化処理を行い、感光性樹脂組成物の硬化膜を得た。得られた硬化膜パターンの細線形成を光学顕微鏡で確認し、以下の3段階で評価した。結果を表2に示す。
○:L/Sが10μm/10μm以上のパターンが残渣なく形成されているもの
△:L/Sが30μm/30μm以上のパターンが残渣なく形成されているもの
×:L/Sが50μm/50μm未満のパターンが形成されていないか、パターンの裾引きや残渣が目立つもの
Next, this exposed glass substrate was developed using a 0.05% potassium hydroxide aqueous solution at 24° C. and a pressure of 0.1 MPa for 60 seconds to remove the unexposed portion of the coating film. Thereafter, heat curing treatment was performed at 230° C. for 30 minutes using a hot air dryer to obtain a cured film of the photosensitive resin composition. Formation of fine lines in the obtained cured film pattern was confirmed using an optical microscope and evaluated on the following three scales. The results are shown in Table 2.
○: A pattern with an L/S of 10 μm/10 μm or more is formed without any residue. △: A pattern with an L/S of 30 μm/30 μm or more is formed without a residue. ×: L/S is less than 50 μm/50 μm. No pattern has been formed, or the pattern has noticeable hemming or residue.

<光学濃度>
上記で得られた各感光性樹脂組成物を、厚さ1.2mmのガラス基板上にスピンコーターを用いて熱硬化処理後の膜厚が1.1μmとなるように塗布し、90℃で1分間プリベークした。その後、熱風乾燥機を用いて230℃で30分間加熱硬化処理を行い、感光性樹脂組成物の硬化膜を得た。次に、得られた硬化膜の光学濃度はマクベス透過濃度計を用いて測定し、単位膜厚当たりの光学濃度で評価した。
<Optical density>
Each of the photosensitive resin compositions obtained above was coated onto a glass substrate with a thickness of 1.2 mm using a spin coater so that the film thickness after heat curing treatment was 1.1 μm, and the coating was heated at 90°C for 1.2 μm. Prebaked for a minute. Thereafter, heat curing treatment was performed at 230° C. for 30 minutes using a hot air dryer to obtain a cured film of the photosensitive resin composition. Next, the optical density of the obtained cured film was measured using a Macbeth transmission densitometer, and evaluated in terms of optical density per unit film thickness.

<体積抵抗率>
上記で得られた各感光性樹脂組成物を、Cr蒸着された厚さ1.2mmのガラス基板上の電極を除いた部分にスピンコーターを用いて熱硬化処理後の膜厚が3.5μmとなるように塗布し、90℃で1分間プリベークした。その後、熱風乾燥機を用いて230℃、30分間加熱硬化処理を行い、感光性樹脂組成物の硬化膜を得た。その後、硬化膜上にアルミニウム電極を形成して体積抵抗率測定用基板を作成した。次に、エレクトロメーター(ケースレー社製、「6517A型」)を用いて、印加電圧1Vから10Vにおける体積抵抗率を測定した。1Vステップで各印加電圧で60秒ずつ電圧保持する条件で測定し、10V印加時の体積抵抗率を表2に示した。
<Volume resistivity>
Each of the photosensitive resin compositions obtained above was applied onto a 1.2 mm thick Cr-deposited glass substrate, excluding the electrodes, using a spin coater so that the film thickness after heat curing was 3.5 μm. It was coated so as to have the following properties, and prebaked at 90°C for 1 minute. Thereafter, heat curing treatment was performed at 230° C. for 30 minutes using a hot air dryer to obtain a cured film of the photosensitive resin composition. Thereafter, an aluminum electrode was formed on the cured film to create a substrate for measuring volume resistivity. Next, the volume resistivity was measured at an applied voltage of 1 V to 10 V using an electrometer (manufactured by Keithley, Model 6517A). Measurement was performed under the condition that each applied voltage was held for 60 seconds in 1 V steps, and the volume resistivity when 10 V was applied is shown in Table 2.

<誘電率>
上記で得られた各感光性樹脂組成物を、Cr蒸着された厚さ1.2mmのガラス基板上の電極を除いた部分にスピンコーターを用いて熱硬化処理後の膜厚が3.5μmとなるように塗布し、90℃で1分間プリベークした。その後、熱風乾燥機を用いて230℃、30分間加熱硬化処理を行い、感光性樹脂組成物の硬化膜を得た。その後、硬化膜上にアルミニウム電極を形成して誘電率測定用基板を作成した。次に、エレクトロメーター(ケースレー社製、「6517A型」)を用いて、周波数1Hzから100000Hzにおける電気容量を測定し、電気容量から誘電率を算出した。算出した誘電率を表2に示した。
<Permittivity>
Each of the photosensitive resin compositions obtained above was applied onto a 1.2 mm thick Cr-deposited glass substrate, excluding the electrodes, using a spin coater so that the film thickness after heat curing was 3.5 μm. It was coated so as to have the following properties, and prebaked at 90°C for 1 minute. Thereafter, heat curing treatment was performed at 230° C. for 30 minutes using a hot air dryer to obtain a cured film of the photosensitive resin composition. Thereafter, an aluminum electrode was formed on the cured film to create a substrate for dielectric constant measurement. Next, the capacitance at a frequency of 1 Hz to 100,000 Hz was measured using an electrometer (manufactured by Keithley, Model 6517A), and the dielectric constant was calculated from the capacitance. The calculated dielectric constants are shown in Table 2.

<スペーサーのハーフトーン(HT)特性>
上記で得られた各感光性樹脂組成物を、厚さ1.2mmのガラス基板上にスピンコーターを用いて熱硬化処理後の膜厚が3.0μmとなるように塗布し、90℃で1分間プリベークした。その後、ドットパターンを有するフォトマスクを密着させ、波長365nmの照度30mW/cmの超高圧水銀ランプで5mJ/cmまたは100mJ/cmの紫外線を照射し、感光部分の光硬化反応を行った。
次に、この露光後のガラス基板を0.05%水酸化カリウム水溶液を用いて、24℃、0.1MPaの圧力で60秒間現像し、塗膜の未露光部を除去した。その後、熱風乾燥機を用いて230℃で30分間加熱硬化処理を行い、感光性樹脂組成物の硬化膜を得た。
<Spacer halftone (HT) characteristics>
Each of the photosensitive resin compositions obtained above was applied onto a glass substrate with a thickness of 1.2 mm using a spin coater so that the film thickness after thermosetting was 3.0 μm, and heated at 90°C for 1. Prebaked for a minute. Thereafter, a photomask with a dot pattern was placed in close contact with the photosensitive area, and ultraviolet rays of 5 mJ/cm 2 or 100 mJ/cm 2 were irradiated using an ultra-high pressure mercury lamp with a wavelength of 365 nm and an illuminance of 30 mW/cm 2 to perform a photocuring reaction on the photosensitive area. .
Next, this exposed glass substrate was developed using a 0.05% potassium hydroxide aqueous solution at 24° C. and a pressure of 0.1 MPa for 60 seconds to remove the unexposed portion of the coating film. Thereafter, heat curing treatment was performed at 230° C. for 30 minutes using a hot air dryer to obtain a cured film of the photosensitive resin composition.

スペーサーのハーフトーン特性は、露光量が5mJ/cmにおける遮光膜の膜厚(H1)および100mJ/cmにおけるスペーサーの膜厚(H2)の差(ΔH)を算出し、以下の4段階で評価した。結果を表2に示す。
○:ΔHが1.0μm~2.0μmの場合
△:ΔHが0.1μm~2.9μmの場合
×:ΔHが0.1μm未満または2.9μmより大きい場合
The halftone characteristics of the spacer are determined by calculating the difference (ΔH) between the thickness of the light-shielding film (H1) at an exposure dose of 5 mJ/ cm2 and the film thickness (H2 ) of the spacer at an exposure dose of 100 mJ/cm2, and using the following four steps. evaluated. The results are shown in Table 2.
○: When ΔH is 1.0 μm to 2.0 μm △: When ΔH is 0.1 μm to 2.9 μm ×: When ΔH is less than 0.1 μm or greater than 2.9 μm

<スペーサーの圧縮率、弾性回復率、破壊強度>
上記で得られた各感光性樹脂組成物を、厚さ1.2mmのガラス基板上にスピンコーターを用いて熱硬化処理後の膜厚が3.0μmとなるように塗布し、90℃で1分間プリベークした。その後、ドットパターンを有するフォトマスクを密着させ、波長365nmの照度30mW/cmの超高圧水銀ランプで100mJ/cmの紫外線を照射し、感光部分の光硬化反応を行った。
<Spacer compressibility, elastic recovery rate, and fracture strength>
Each of the photosensitive resin compositions obtained above was applied onto a glass substrate with a thickness of 1.2 mm using a spin coater so that the film thickness after thermosetting was 3.0 μm, and heated at 90°C for 1. Prebaked for a minute. Thereafter, a photomask having a dot pattern was placed in close contact with the film, and ultraviolet rays of 100 mJ/cm 2 were irradiated with an ultra-high pressure mercury lamp having a wavelength of 365 nm and an illuminance of 30 mW/cm 2 to perform a photocuring reaction on the photosensitive areas.

次に、この露光後のガラス基板を0.05%水酸化カリウム水溶液を用いて、24℃、0.1MPaの圧力で60秒間現像し、塗膜の未露光部を除去した。その後、熱風乾燥機を用いて230℃で30分間加熱硬化処理を行い、感光性樹脂組成物の硬化膜を得た。 Next, this exposed glass substrate was developed using a 0.05% potassium hydroxide aqueous solution at 24° C. and a pressure of 0.1 MPa for 60 seconds to remove the unexposed portion of the coating film. Thereafter, heat curing treatment was performed at 230° C. for 30 minutes using a hot air dryer to obtain a cured film of the photosensitive resin composition.

得られた硬化膜パターンのスペーサー特性は超微小硬度計(フィッシャーインスツルメンツ社製、フィッシャースコープHM2000Xyp)を用いて評価した。負荷速度5.0mN/秒で100μm角の平面圧子を押し込み、50mNまでの荷重を負荷した後、除荷速度5.0mN/秒で除荷して変位量曲線を作成した。圧縮率は、負荷時の荷重50mNでの変位量をL1として、下記式から算出した。
圧縮率(%)=L1/スペーサーの高さ×100
The spacer properties of the obtained cured film pattern were evaluated using an ultra-micro hardness meter (Fisherscope HM2000Xyp, manufactured by Fischer Instruments). A 100 μm square flat indenter was pushed in at a loading rate of 5.0 mN/sec, a load of up to 50 mN was applied, and then the load was unloaded at an unloading rate of 5.0 mN/sec to create a displacement curve. The compression ratio was calculated from the following formula, with L1 being the amount of displacement under a load of 50 mN.
Compression rate (%) = L1/spacer height x 100

弾性回復率は、負荷時の荷重50mNでの変位量をL1とし、除荷時の変位量をL2として、下記式から算出した。
弾性回復率(%)=(L1-L2)/L1×100
The elastic recovery rate was calculated from the following formula, where L1 is the amount of displacement at a load of 50 mN during loading, and L2 is the amount of displacement at unloading.
Elastic recovery rate (%) = (L1-L2)/L1×100

破壊強度は、超微小硬度計(フィッシャーインスツルメンツ社製、フィッシャースコープHM2000Xyp)を用いて評価した。負荷速度5.0mN/秒で100μm角の平面圧子を押し込み、300mNまでの荷重を負荷してスペーサーが破壊した時の荷重を測定し、以下の4段階で評価した。結果を表2に示す。
○:破壊強度が300mN以上場合
△:破壊強度が200mN以下の場合
×:破壊強度が100mN以下の場合
The breaking strength was evaluated using an ultra-microhardness meter (Fisherscope HM2000Xyp, manufactured by Fisher Instruments). A 100 μm square flat indenter was pushed in at a loading rate of 5.0 mN/sec, a load of up to 300 mN was applied, and the load at which the spacer broke was measured and evaluated on the following four levels. The results are shown in Table 2.
○: When the breaking strength is 300 mN or more △: When the breaking strength is 200 mN or less ×: When the breaking strength is 100 mN or less

<スペーサーの形状>
上記で得られた各感光性樹脂組成物を、厚さ1.2mmのガラス基板上にスピンコーターを用いて熱硬化処理後の膜厚が3.0μmとなるように塗布し、90℃で1分間プリベークした。その後、ドットパターンを有するフォトマスクを密着させ、波長365nmの照度30mW/cmの超高圧水銀ランプで100mJ/cmの紫外線を照射し、感光部分の光硬化反応を行った。
<Shape of spacer>
Each of the photosensitive resin compositions obtained above was applied onto a glass substrate with a thickness of 1.2 mm using a spin coater so that the film thickness after thermosetting was 3.0 μm, and heated at 90°C for 1. Prebaked for a minute. Thereafter, a photomask having a dot pattern was placed in close contact with the film, and ultraviolet rays of 100 mJ/cm 2 were irradiated with an ultra-high pressure mercury lamp having a wavelength of 365 nm and an illuminance of 30 mW/cm 2 to perform a photocuring reaction on the photosensitive areas.

次に、この露光後のガラス基板を0.05%水酸化カリウム水溶液を用いて、24℃、0.1MPaの圧力で60秒間現像し、塗膜の未露光部を除去した。その後、熱風乾燥機を用いて230℃で30分間加熱硬化処理を行い、感光性樹脂組成物の硬化膜を得た。 Next, this exposed glass substrate was developed using a 0.05% potassium hydroxide aqueous solution at 24° C. and a pressure of 0.1 MPa for 60 seconds to remove the unexposed portion of the coating film. Thereafter, heat curing treatment was performed at 230° C. for 30 minutes using a hot air dryer to obtain a cured film of the photosensitive resin composition.

スペーサーの形状は、走査型電子顕微鏡を用いてスペーサー端部の内角(テーパー角)で評価した。テーパー角が70°以上90°以下の場合は◎、50°以上70°未満の場合は〇、50°以下の場合は△、90°以上の場合は×とした。 The shape of the spacer was evaluated by the internal angle (taper angle) of the spacer end using a scanning electron microscope. If the taper angle is 70° or more and 90° or less, it is ◎, if it is 50° or more and less than 70°, it is ○, if it is 50° or less, it is △, and if it is 90° or more, it is marked ×.

Figure 0007396786000011
Figure 0007396786000011

実施例1~7と比較例1~2の結果から、本発明の感光性樹脂組成物の硬化物は、ブラックカラムスペーサーとすると、遮光性(光学濃度)および絶縁性(体積抵抗率)が高く、圧縮率、弾性回復率、破壊強度に優れたスペーサー機能を有する遮光膜の形成が可能であり、かつΔHの段差形成が可能でより垂直に近いパターン形状を形成できる。 From the results of Examples 1 to 7 and Comparative Examples 1 to 2, the cured products of the photosensitive resin compositions of the present invention have high light shielding properties (optical density) and insulation properties (volume resistivity) when used as black column spacers. It is possible to form a light-shielding film having a spacer function with excellent compressibility, elastic recovery rate, and breaking strength, and it is also possible to form a step of ΔH to form a pattern shape that is more nearly vertical.

次に、断面形状が底辺の長さが異なる台形あるいは矩形の組合せ形状となるように、露光、現像によるパターン形成が可能かどうかを確認するため、実施例8,9および比較例3,4の感光性樹脂組成物を表3のように配合し、感光性樹脂組成物を得た。 Next, in order to confirm whether it is possible to form a pattern by exposure and development so that the cross-sectional shape is a combination of trapezoids or rectangles with different base lengths, we tested Examples 8 and 9 and Comparative Examples 3 and 4. A photosensitive resin composition was blended as shown in Table 3 to obtain a photosensitive resin composition.

Figure 0007396786000012
Figure 0007396786000012

実施例1~7および比較例1,2の感光性樹脂組成物とスペーサーの形状以外は同様の評価を実施例8,9および比較例3,4の感光性樹脂組成物を用いて実施し、表4に評価結果をまとめた。そして、スペーサーの形状については、以下に示す別途の評価方法により、形成したパターンの断面詳細形状を観察した。 Similar evaluations were carried out using the photosensitive resin compositions of Examples 1 to 7 and Comparative Examples 1 and 2, except for the shape of the spacer, and the photosensitive resin compositions of Examples 8 and 9 and Comparative Examples 3 and 4. Table 4 summarizes the evaluation results. As for the shape of the spacer, the detailed cross-sectional shape of the formed pattern was observed using a separate evaluation method described below.

Figure 0007396786000013
Figure 0007396786000013

<スペーサーの断面詳細形状>
実施例8,9及び比較例3,4で得られた各感光性樹脂組成物を、厚さ1.2mmのガラス基板上にスピンコーターを用いて熱硬化処理後の膜厚が3.0μmとなるように塗布し、90℃で1分間プリベークした。その後、全光線透過率が20%および100%と異なるラインパターンを有するフォトマスク(ハーフトーンマスク)を膜面から200μmの間隔を空けて固定させ、波長365nmの照度30mW/cmの超高圧水銀ランプで100mJ/cmの紫外線を照射し、感光部分の光硬化反応を行った。フォトマスクは、マスク開口の中央から左右25μmの領域が全線透過率100%、その外側の中央から25μm~100μmの領域が全線透過率20%となるハーフトーンマスクだった。
<Detailed cross-sectional shape of spacer>
The photosensitive resin compositions obtained in Examples 8 and 9 and Comparative Examples 3 and 4 were coated on a glass substrate with a thickness of 1.2 mm using a spin coater so that the film thickness after thermosetting was 3.0 μm. It was coated so as to have the following properties, and prebaked at 90°C for 1 minute. After that, a photomask (halftone mask) having line patterns with different total light transmittances of 20% and 100% was fixed at a distance of 200 μm from the film surface, and ultra-high pressure mercury was used with an illuminance of 30 mW/cm 2 at a wavelength of 365 nm. Ultraviolet rays of 100 mJ/cm 2 were irradiated with a lamp to perform a photocuring reaction on the photosensitive areas. The photomask was a halftone mask in which the area 25 μm to the left and right from the center of the mask opening had a total ray transmittance of 100%, and the area outside the mask opening 25 μm to 100 μm from the center had a total ray transmittance of 20%.

次に、この露光後のガラス基板を0.05%水酸化カリウム水溶液を用いて、24℃、0.1MPaの圧力で180秒間現像し、塗膜の未露光部を除去した。その後、熱風乾燥機を用いて230℃で30分間加熱硬化処理を行い、感光性樹脂組成物の硬化膜を得た。 Next, this exposed glass substrate was developed using a 0.05% potassium hydroxide aqueous solution at 24° C. and a pressure of 0.1 MPa for 180 seconds to remove the unexposed portion of the coating film. Thereafter, heat curing treatment was performed at 230° C. for 30 minutes using a hot air dryer to obtain a cured film of the photosensitive resin composition.

スペーサーの断面形状は、3次元白色光干渉型光学顕微鏡(ブルカー社製Contour GT-K)を用いて白色型垂直走査干渉測定モード(VSI)にてパターンの高さプロファイルを取得し、2次元プロット処理されたものを断面形状として得た。図1~図4に、上記2次元プロット処理された断面形状を示す。図1は、実施例8の感光性樹脂組成物を用いて形成したパターンの高さプロファイルであり、図2は、実施例9の感光性樹脂組成物を用いて形成したパターンの高さプロファイルであり、図3は、比較例3の感光性樹脂組成物を用いて形成したパターンの高さプロファイルであり、図4は、比較例4の感光性樹脂組成物を用いて形成したパターンの高さプロファイルである。図1~図4は、横軸にマスク開口からの距離を、縦軸に膜厚を示す。なお、Mで示す線は、マスク開口の中央を示す。Rで示す線は、全線透過率20%の領域の中央部を示す。Rで示す線は、マスク開口の中央に対して両側に現れるが、図1~図4では片側のみを示す。 The cross-sectional shape of the spacer was determined by obtaining the height profile of the pattern using a three-dimensional white light interference optical microscope (Contour GT-K manufactured by Bruker) in the white vertical scanning interferometry mode (VSI), and plotting it in two dimensions. The processed material was obtained as a cross-sectional shape. 1 to 4 show cross-sectional shapes subjected to the two-dimensional plot processing. FIG. 1 is a height profile of a pattern formed using the photosensitive resin composition of Example 8, and FIG. 2 is a height profile of a pattern formed using the photosensitive resin composition of Example 9. 3 is the height profile of the pattern formed using the photosensitive resin composition of Comparative Example 3, and FIG. 4 is the height profile of the pattern formed using the photosensitive resin composition of Comparative Example 4. It is a profile. In FIGS. 1 to 4, the horizontal axis shows the distance from the mask opening, and the vertical axis shows the film thickness. Note that the line indicated by M indicates the center of the mask opening. The line indicated by R indicates the central part of the area where the total light transmittance is 20%. The line marked R appears on both sides with respect to the center of the mask opening, but only one side is shown in FIGS. 1-4.

図1および図2に示すように、本願発明の感光性樹脂組成物を用い、ハーフトーンマスクによる露光現像を行うことにより、図1,2に示すように、断面形状が底辺の長さが異なる台形あるいは矩形の組合せ形状となるBCSを一括形成することができた。 As shown in FIGS. 1 and 2, by performing exposure and development using a halftone mask using the photosensitive resin composition of the present invention, the cross-sectional shape has different base lengths as shown in FIGS. 1 and 2. BCS having a trapezoidal or rectangular combination shape could be formed all at once.

図3および図4に示すように、本願発明の重合性不飽和基含有アルカリ可溶性樹脂以外の樹脂を用いた比較例3,4では、断面形状が底辺の長さが異なる台形あるいは矩形の組合せ形状となるBCSを一括形成することができず、台形又は矩形の断面形状のパターンであったり、半円状の断面形状のパターンしか得られなかった。 As shown in FIGS. 3 and 4, in Comparative Examples 3 and 4 using resins other than the polymerizable unsaturated group-containing alkali-soluble resin of the present invention, the cross-sectional shape was a combination of trapezoids or rectangles with different base lengths. It was not possible to form the BCS at once, and only patterns with a trapezoidal or rectangular cross-section or a semicircular cross-section could be obtained.

Claims (16)

(A)~(E)成分を必須成分として含み(ただし、樹脂被覆されていないカーボンブラックを含まない)
(A)一般式(1)で表されるユニットを5~90モル%、一般式(2)で表されるユニットを10~95モル%含み(一般式(1)で表されるユニットと一般式(2)で表されるユニットとの合計を100モル%とする)、重量平均分子量3000~50000、酸価30~200mg/KOHの重合体である重合性不飽和基含有アルカリ可溶性樹脂(下記一般式(X)で示される化合物に由来する残基を有するものを除く)、
Figure 0007396786000014
Figure 0007396786000015
(ただし、R、R及びRは独立に水素原子又はメチル基を表す。Rは炭素数1~20の1価の炭化水素基を示し、当該炭化水素基は内部にエーテル結合、エステル結合又はウレタン結合を含んでいてもよい。また、Rは一般式(1)で表されるユニット中40モル%以上がジシクロペンタニル基又はジシクロペンテニル基である。Rは炭素数2~10の2価の炭化水素基を示す。pは0または1の数を表す。Xは水素原子又は-OC-Y-(COOH)q(但し、Yは2価又は3価カルボン酸残基を表し、qは1~2の数を表す。また、Xは重合体1分子中に2種以上含まれる。)
Figure 0007396786000016
(式中、Ra~Reは、それぞれ独立して、水素原子又は置換基を有していてもよい炭素数1~20の炭化水素基を示す。)
(B)少なくとも2個のエチレン性不飽和結合を有する光重合性モノマー、
(C)光重合開始剤、
(D)平均二次粒径が20~500nmである黒色有機顔料と、遮光材と、からなる群から選ばれる1種以上の遮光成分、及び
(E)溶剤、
(B)成分を(A)成分100質量部に対して10~150質量部、
(C)成分を(A)成分と(B)成分の合計量100質量部に対して0.1~30質量部、
光硬化後に固形分となる(B)成分を含む、(E)成分を除く成分を固形分とするとき、
(D)成分を、固形分の合計量中、5~80質量%、
それぞれ含み、
固形分中に、(A)~(D)成分を合計で80質量%以上含む
ことを特徴とする、遮光膜用の感光性樹脂組成物。
Contains components (A) to (E) as essential components (but does not include carbon black that is not coated with resin) ,
(A) Contains 5 to 90 mol% of units represented by general formula (1) and 10 to 95 mol% of units represented by general formula (2) (units represented by general formula (1) and general (the total with the unit represented by formula (2) is 100 mol%), a weight average molecular weight of 3000 to 50000, and an acid value of 30 to 200 mg/KOH. (excluding those having a residue derived from a compound represented by general formula (X)),
Figure 0007396786000014
Figure 0007396786000015
(However, R 1 , R 3 and R 4 independently represent a hydrogen atom or a methyl group. R 2 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group has an ether bond inside, It may contain an ester bond or a urethane bond.In addition, 40 mol% or more of the units represented by the general formula (1) in R2 is a dicyclopentanyl group or a dicyclopentenyl group.R5 is a carbon It represents a divalent hydrocarbon group of numbers 2 to 10. p represents the number 0 or 1. X is a hydrogen atom or -OC-Y-(COOH)q (however, Y is a divalent or trivalent carboxylic acid Represents a residue, and q represents a number from 1 to 2. Also, two or more types of X are contained in one molecule of the polymer.)
Figure 0007396786000016
(In the formula, Ra to Re each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms that may have a substituent.)
(B) a photopolymerizable monomer having at least two ethylenically unsaturated bonds;
(C) photopolymerization initiator,
(D) one or more light-shielding components selected from the group consisting of a black organic pigment having an average secondary particle size of 20 to 500 nm and a light-shielding material ; and (E) a solvent.
10 to 150 parts by mass of component (B) per 100 parts by mass of component (A),
0.1 to 30 parts by mass of component (C) per 100 parts by mass of the total amount of components (A) and (B),
When the solid content is a component including the component (B) that becomes a solid content after photocuring, but excluding the component (E),
(D) component, 5 to 80% by mass of the total solid content,
Each includes
A photosensitive resin composition for a light-shielding film, comprising a total of 80% by mass or more of components (A) to (D) in solid content.
(A)~(E)成分を必須成分として含み、 Contains components (A) to (E) as essential components,
(A)一般式(1)で表されるユニットを5~90モル%、一般式(2)で表されるユニットを10~95モル%含み(一般式(1)で表されるユニットと一般式(2)で表されるユニットとの合計を100モル%とする)、重量平均分子量3000~50000、酸価30~200mg/KOHの重合体である重合性不飽和基含有アルカリ可溶性樹脂(下記一般式(X)で示される化合物に由来する残基を有するものを除く)、 (A) Contains 5 to 90 mol% of units represented by general formula (1) and 10 to 95 mol% of units represented by general formula (2) (units represented by general formula (1) and general (the total with the unit represented by formula (2) is 100 mol%), a weight average molecular weight of 3000 to 50000, and an acid value of 30 to 200 mg/KOH. (excluding those having a residue derived from a compound represented by general formula (X)),
Figure 0007396786000017
Figure 0007396786000017
Figure 0007396786000018
Figure 0007396786000018
(ただし、R (However, R 1 、R,R 3 及びRand R 4 は独立に水素原子又はメチル基を表す。Rindependently represent a hydrogen atom or a methyl group. R 2 は炭素数1~20の1価の炭化水素基を示し、当該炭化水素基は内部にエーテル結合、エステル結合又はウレタン結合を含んでいてもよい。また、Rrepresents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may contain an ether bond, ester bond, or urethane bond inside. Also, R 2 は一般式(1)で表されるユニット中40モル%以上がジシクロペンタニル基又はジシクロペンテニル基である。RIn the unit represented by the general formula (1), 40 mol% or more is a dicyclopentanyl group or a dicyclopentenyl group. R 5 は炭素数2~10の2価の炭化水素基を示す。pは0または1の数を表す。Xは水素原子又は-OC-Y-(COOH)q(但し、Yは2価又は3価カルボン酸残基を表し、qは1~2の数を表す。また、Xは重合体1分子中に2種以上含まれる。)represents a divalent hydrocarbon group having 2 to 10 carbon atoms. p represents the number 0 or 1. X is a hydrogen atom or -OC-Y-(COOH)q (where, Y represents a divalent or trivalent carboxylic acid residue, and q represents a number of 1 to 2. contains two or more types.)
Figure 0007396786000019
Figure 0007396786000019
(式中、Ra~Reは、それぞれ独立して、水素原子又は置換基を有していてもよい炭素数1~20の炭化水素基を示す。)(In the formula, Ra to Re each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms that may have a substituent.)
(B)少なくとも2個のエチレン性不飽和結合を有する光重合性モノマー、 (B) a photopolymerizable monomer having at least two ethylenically unsaturated bonds;
(C)光重合開始剤、 (C) photopolymerization initiator,
(D)混色有機顔料、及び (D) mixed color organic pigment, and
(E)溶剤、 (E) solvent;
(B)成分を(A)成分100質量部に対して10~150質量部、 10 to 150 parts by mass of component (B) per 100 parts by mass of component (A),
(C)成分を(A)成分と(B)成分の合計量100質量部に対して0.1~30質量部、 0.1 to 30 parts by mass of component (C) per 100 parts by mass of the total amount of components (A) and (B),
光硬化後に固形分となる(B)成分を含む、(E)成分を除く成分を固形分とするとき、 When the solid content is a component including the component (B) that becomes a solid content after photocuring, but excluding the component (E),
(D)成分を、固形分の合計量中、5~80質量%、 (D) component, 5 to 80% by mass of the total solid content,
それぞれ含み、 Each includes
固形分中に、(A)~(D)成分を合計で80質量%以上含む Contains 80% by mass or more of components (A) to (D) in total in solid content
ことを特徴とする、遮光膜用の感光性樹脂組成物。 A photosensitive resin composition for a light-shielding film, characterized by:
前記混色有機顔料の平均二次粒径が20~500nmであることを特徴とする、請求項2に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 2, wherein the color mixing organic pigment has an average secondary particle size of 20 to 500 nm. (A)成分の重合性不飽和基含有アルカリ可溶性樹脂が、一般式(1)及び一般式(2)のユニットに加え、フェニル基に置換基を有していてもよいスチレンに由来するユニット及び/又はモノマレイミド化合物に由来するユニットを含む共重合体である、請求項1~3のいずれか1項に記載の感光性樹脂組成物。 The polymerizable unsaturated group-containing alkali-soluble resin of component (A) contains, in addition to the units of general formulas (1) and (2), units derived from styrene which may have a substituent on the phenyl group; The photosensitive resin composition according to any one of claims 1 to 3 , which is a copolymer containing a unit derived from a monomaleimide compound. 光学濃度ODが0.5/μm以上3/μm以下である遮光膜であって、電圧10V印加時の体積抵抗率が1×10Ω・cm以上、且つ誘電率が2~10である遮光膜を形成しうることを特徴とする、請求項1~4のいずれか1項に記載の感光性樹脂組成物。 A light shielding film having an optical density OD of 0.5/μm or more and 3/μm or less, a volume resistivity of 1×10 9 Ω・cm or more when a voltage of 10 V is applied, and a dielectric constant of 2 to 10. The photosensitive resin composition according to any one of claims 1 to 4 , which is capable of forming a film. 微小硬度計による負荷-除荷試験において、下記(i)~(iii)の少なくとも一つを満たす遮光膜を形成しうることを特徴とする、請求項1~5のいずれか1項に記載の感光性樹脂組成物。
(i)破壊強度が200mN以上であること
(ii)弾性復元率が30%以上であること
(iii)圧縮率が40%以下であること
The method according to any one of claims 1 to 5 , which is capable of forming a light-shielding film that satisfies at least one of the following (i) to (iii) in a loading-unloading test using a microhardness meter. Photosensitive resin composition.
(i) Breaking strength is 200 mN or more (ii) Elastic recovery rate is 30% or more (iii) Compressibility is 40% or less
請求項1~6のいずれか1項に記載の感光性樹脂組成物の硬化物であることを特徴とする、遮光膜。 A light-shielding film characterized by being a cured product of the photosensitive resin composition according to any one of claims 1 to 6 . 請求項に記載の遮光膜をブラックカラムスペーサー(BCS)として有することを特徴とする、液晶表示装置。 A liquid crystal display device comprising the light shielding film according to claim 7 as a black column spacer (BCS). さらに薄膜トランジスタ(TFT)を有することを特徴とする、請求項に記載の液晶表示装置。 9. The liquid crystal display device according to claim 8 , further comprising a thin film transistor (TFT). 請求項1~6のいずれか1項に記載の感光性樹脂組成物の硬化物を、ブラックマトリックスとして有することを特徴とする、液晶表示装置。 A liquid crystal display device comprising a cured product of the photosensitive resin composition according to any one of claims 1 to 6 as a black matrix. さらに薄膜トランジスタ(TFT)を有し、前記ブラックマトリックスは、前記薄膜トランジスタ(TFT)が形成されたアレイ基板に対向する基板と、液晶と、の間に配置されることを特徴とする、請求項10に記載の液晶表示装置。 11. The black matrix further comprises a thin film transistor (TFT), and the black matrix is disposed between the liquid crystal and a substrate facing the array substrate on which the thin film transistor (TFT) is formed. The liquid crystal display device described. さらに薄膜トランジスタ(TFT)を有し、前記ブラックマトリックスは、前記薄膜トランジスタ(TFT)が形成されたアレイ基板と、液晶と、の間に配置されることを特徴とする、請求項10に記載の液晶表示装置。 The liquid crystal display according to claim 10 , further comprising a thin film transistor (TFT), and wherein the black matrix is disposed between the array substrate on which the thin film transistor (TFT) is formed and the liquid crystal. Device. 請求項1~6のいずれか1項に記載の感光性樹脂組成物を基板に塗布し、光照射によって前記感光性樹脂組成物を硬化させる、基板上に形成された遮光膜の製造方法であり、光学濃度が0.5/μm以上3/μm未満である遮光膜として形成した前記遮光膜の膜厚H1と、スペーサー機能を担う遮光膜の膜厚H2について、H2が1~7μmのとき、ΔH=H2-H1が0.1~6.9μmである膜厚H1と膜厚H2の遮光膜を同時に形成することを特徴とする、スペーサー機能を有する遮光膜の製造方法。 A method for producing a light-shielding film formed on a substrate, comprising applying the photosensitive resin composition according to any one of claims 1 to 6 to a substrate, and curing the photosensitive resin composition by irradiation with light. Regarding the film thickness H1 of the light shielding film formed as a light shielding film having an optical density of 0.5/μm or more and less than 3/μm, and the film thickness H2 of the light shielding film serving as a spacer function, when H2 is 1 to 7 μm, A method for producing a light-shielding film having a spacer function, characterized by simultaneously forming a light-shielding film having a thickness H1 and a thickness H2 in which ΔH=H2-H1 is 0.1 to 6.9 μm. 単一の遮光膜の中に、前記膜厚H1となる部分と、前記膜厚H2となる部分と、が含まれる遮光膜を1回の露光で形成する、請求項13に記載の遮光膜の製造方法。 14. The light-shielding film according to claim 13 , wherein a light-shielding film including a portion having the thickness H1 and a portion having the thickness H2 in a single light-shielding film is formed in one exposure. Production method. 請求項13または14に記載の方法で製造された遮光膜をブラックカラムスペーサー(BCS)とすることを特徴とする、液晶表示装置の製造方法。 A method for manufacturing a liquid crystal display device, characterized in that the light shielding film manufactured by the method according to claim 13 or 14 is used as a black column spacer (BCS). 前記液晶表示装置は薄膜トランジスタ(TFT)を有することを特徴とする、請求項15に記載の液晶表示装置の製造方法。 16. The method of manufacturing a liquid crystal display device according to claim 15 , wherein the liquid crystal display device includes a thin film transistor (TFT).
JP2018029010A 2017-02-24 2018-02-21 Photosensitive resin composition for light-shielding film, light-shielding film, liquid crystal display device, method for producing light-shielding film having spacer function, and method for producing liquid crystal display device Active JP7396786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023203162A JP2024022626A (en) 2017-02-24 2023-11-30 Photosensitive resin composition for light-shielding film, light-shielding film, liquid crystal display, method for manufacturing light-shielding film having spacer function, and method for manufacturing liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017033662 2017-02-24
JP2017033662 2017-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023203162A Division JP2024022626A (en) 2017-02-24 2023-11-30 Photosensitive resin composition for light-shielding film, light-shielding film, liquid crystal display, method for manufacturing light-shielding film having spacer function, and method for manufacturing liquid crystal display

Publications (2)

Publication Number Publication Date
JP2018141968A JP2018141968A (en) 2018-09-13
JP7396786B2 true JP7396786B2 (en) 2023-12-12

Family

ID=63375158

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018029010A Active JP7396786B2 (en) 2017-02-24 2018-02-21 Photosensitive resin composition for light-shielding film, light-shielding film, liquid crystal display device, method for producing light-shielding film having spacer function, and method for producing liquid crystal display device
JP2023203162A Pending JP2024022626A (en) 2017-02-24 2023-11-30 Photosensitive resin composition for light-shielding film, light-shielding film, liquid crystal display, method for manufacturing light-shielding film having spacer function, and method for manufacturing liquid crystal display

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023203162A Pending JP2024022626A (en) 2017-02-24 2023-11-30 Photosensitive resin composition for light-shielding film, light-shielding film, liquid crystal display, method for manufacturing light-shielding film having spacer function, and method for manufacturing liquid crystal display

Country Status (4)

Country Link
JP (2) JP7396786B2 (en)
KR (1) KR102639912B1 (en)
CN (1) CN108508699A (en)
TW (1) TWI838333B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7263153B2 (en) * 2019-06-27 2023-04-24 東京応化工業株式会社 Photosensitive composition, cured product, black matrix, black bank, color filter, image display device, and method for producing patterned cured film
WO2021106221A1 (en) * 2019-11-29 2021-06-03 昭和電工マテリアルズ株式会社 Ultraviolet-curable composition for light shielding, light-shielding film, and method for manufacturing an article comprising light-shielding film
JP7464493B2 (en) 2020-10-02 2024-04-09 東京応化工業株式会社 Black photosensitive resin composition, method for producing patterned cured product, patterned cured product, and black matrix

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031778A (en) 2007-06-27 2009-02-12 Mitsubishi Chemicals Corp Photosensitive composition, method, cured product, and liquid crystal display device
JP2010230957A (en) 2009-03-27 2010-10-14 Toyo Ink Mfg Co Ltd Coloring composition for color filter and color filter
JP2011236362A (en) 2010-05-12 2011-11-24 Showa Denko Kk Photosensitive resin, and photosensitive resin composition and colored photosensitive resin composition for color filter containing the same
US20160178813A1 (en) 2014-12-19 2016-06-23 Chi Mei Corporation Photosensitive resin composition and uses thereof
WO2016143878A1 (en) 2015-03-11 2016-09-15 三菱化学株式会社 Photosensitive coloring composition for forming colored spacer, cured product, colored spacer, and image display device
JP2016167030A (en) 2015-03-10 2016-09-15 三菱化学株式会社 Photosensitive coloring composition, cured product, coloring spacer, and image display device
JP2016177190A (en) 2015-03-20 2016-10-06 三菱化学株式会社 Photosensitive coloring composition for forming colored spacer, cured product, colored spacer, and image display device
JP2016186591A (en) 2015-03-27 2016-10-27 三菱化学株式会社 Photosensitive colored composition, cured product, colored spacer, and image display device
JP2017026658A (en) 2015-07-16 2017-02-02 東洋インキScホールディングス株式会社 Colored composition for color filter and color filter
WO2017204079A1 (en) 2016-05-27 2017-11-30 昭和電工株式会社 Photosensitive resin composition for forming black column spacer, black column spacer and image display device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234212A (en) 1995-02-28 1996-09-13 Casio Comput Co Ltd Liquid crystal display element
KR101003829B1 (en) 2004-04-30 2010-12-23 엘지디스플레이 주식회사 LCD with color-filter on TFT and method of fabricating of the same
KR20080034545A (en) 2006-10-17 2008-04-22 삼성전자주식회사 Liquid crystal display apparatus and method for manufacturing thereof
JP5494479B2 (en) * 2008-04-25 2014-05-14 三菱化学株式会社 Ketoxime ester compounds and uses thereof
WO2012077770A1 (en) * 2010-12-10 2012-06-14 旭硝子株式会社 Negative-type photosensitive resin composition, partition wall for use in optical elements and manufacturing method thereof, manufacturing method of an optical element having said partition walls, and ink-repellent agent solution
WO2012141000A1 (en) * 2011-04-11 2012-10-18 昭和電工株式会社 Copolymer, resin composition and photosensitive resin composition each containing said copolymer, and color filter
JP6041571B2 (en) * 2011-09-29 2016-12-07 東京応化工業株式会社 Photosensitive resin composition for spacer formation, spacer, display device, and method for forming spacer
JP6143298B2 (en) 2011-10-25 2017-06-07 三菱ケミカル株式会社 Colored photosensitive composition, colored spacer, color filter, and liquid crystal display device
CN103946747B (en) * 2011-11-11 2018-06-05 旭硝子株式会社 Negative light-sensitive resin combination, partition wall, black matrix" and optical element
KR101848094B1 (en) 2011-12-02 2018-04-12 엘지디스플레이 주식회사 RESIN COMPOSITION FOR SPACER AND METHOD OF FABRICATING COT type Array Substrate Method USING the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031778A (en) 2007-06-27 2009-02-12 Mitsubishi Chemicals Corp Photosensitive composition, method, cured product, and liquid crystal display device
JP2010230957A (en) 2009-03-27 2010-10-14 Toyo Ink Mfg Co Ltd Coloring composition for color filter and color filter
JP2011236362A (en) 2010-05-12 2011-11-24 Showa Denko Kk Photosensitive resin, and photosensitive resin composition and colored photosensitive resin composition for color filter containing the same
US20160178813A1 (en) 2014-12-19 2016-06-23 Chi Mei Corporation Photosensitive resin composition and uses thereof
JP2016167030A (en) 2015-03-10 2016-09-15 三菱化学株式会社 Photosensitive coloring composition, cured product, coloring spacer, and image display device
WO2016143878A1 (en) 2015-03-11 2016-09-15 三菱化学株式会社 Photosensitive coloring composition for forming colored spacer, cured product, colored spacer, and image display device
JP2016177190A (en) 2015-03-20 2016-10-06 三菱化学株式会社 Photosensitive coloring composition for forming colored spacer, cured product, colored spacer, and image display device
JP2016186591A (en) 2015-03-27 2016-10-27 三菱化学株式会社 Photosensitive colored composition, cured product, colored spacer, and image display device
JP2017026658A (en) 2015-07-16 2017-02-02 東洋インキScホールディングス株式会社 Colored composition for color filter and color filter
WO2017204079A1 (en) 2016-05-27 2017-11-30 昭和電工株式会社 Photosensitive resin composition for forming black column spacer, black column spacer and image display device

Also Published As

Publication number Publication date
KR20180098169A (en) 2018-09-03
CN108508699A (en) 2018-09-07
TW201837605A (en) 2018-10-16
TWI838333B (en) 2024-04-11
JP2024022626A (en) 2024-02-16
KR102639912B1 (en) 2024-02-23
JP2018141968A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
JP4437651B2 (en) Photosensitive resin composition and color filter using the same
JP6713746B2 (en) Photosensitive resin composition for light-shielding film having spacer function, light-shielding film, liquid crystal display device, method for producing photosensitive resin composition for light-shielding film having spacer function, method for producing light-shielding film, and production of liquid crystal display device Method
CN104820342B (en) Photosensitive resin composition for light-shielding film and cured product thereof
CN110888301B (en) Photosensitive resin composition for light-shielding film, light-shielding film formed by hardening same, and color filter
JP2024022626A (en) Photosensitive resin composition for light-shielding film, light-shielding film, liquid crystal display, method for manufacturing light-shielding film having spacer function, and method for manufacturing liquid crystal display
JP4290483B2 (en) Photosensitive resin composition for black resist and light-shielding film formed using the same
KR102392964B1 (en) Photosensitive resin composition for light-shielding film, display substrate having the light-shielding film obtained by curing the same, and manufacturing method of display substrate
TWI709818B (en) Photosensitive resin composition for light-sielding film with the role of spacer, light-sielding film, liquid crystal display device, method for producing photosensitive resin composition for light-sielding film with the role of spacer, method for producing light-sielding film and method for producing liquid crystal display device
JP5108300B2 (en) Photosensitive resin composition and color filter using the same
JP7510752B2 (en) Substrate for display device, manufacturing method thereof, and resin composition solution for anti-reflection layer used therein
JP4251442B2 (en) Curable resin composition for forming photosensitive pattern, substrate for liquid crystal panel, and liquid crystal panel
TWI830897B (en) Photosensitive resin composition,cuered film thereof,and display device with that film
JP4833324B2 (en) Photosensitive resin composition and color filter using the same
JP7280017B2 (en) Photosensitive resin composition, light shielding film, liquid crystal display device, and method for manufacturing liquid crystal display device
TW202406946A (en) Photosensitive resin composition, resin cured film and image display element
KR20210083185A (en) Photosensitive resin composition for black resist, light-shielding layer cured thereof, color filter and touch panel having that layer, and display device having them

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231130

R150 Certificate of patent or registration of utility model

Ref document number: 7396786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150