Nothing Special   »   [go: up one dir, main page]

JP7396327B2 - Steel pipe workability evaluation method - Google Patents

Steel pipe workability evaluation method Download PDF

Info

Publication number
JP7396327B2
JP7396327B2 JP2021075682A JP2021075682A JP7396327B2 JP 7396327 B2 JP7396327 B2 JP 7396327B2 JP 2021075682 A JP2021075682 A JP 2021075682A JP 2021075682 A JP2021075682 A JP 2021075682A JP 7396327 B2 JP7396327 B2 JP 7396327B2
Authority
JP
Japan
Prior art keywords
steel pipe
acoustic emission
flattening
signal
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021075682A
Other languages
Japanese (ja)
Other versions
JP2022169937A (en
Inventor
稜 仲澤
健五 鈴木
一也 笹田
信介 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2021075682A priority Critical patent/JP7396327B2/en
Publication of JP2022169937A publication Critical patent/JP2022169937A/en
Application granted granted Critical
Publication of JP7396327B2 publication Critical patent/JP7396327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、鋼管の加工性評価方法に関する。 The present invention relates to a method for evaluating the workability of steel pipes.

鋼管は、様々な方法で製造された後、曲げ、へん平といった加工を施して使用される。こうした鋼管の加工性評価方法として、へん平試験がある。この試験では、鋼管を2枚の平板で押しつぶしていき、鋼管表面に割れが生じるまでの平板間距離D’とへん平前の鋼管の外径Dの比(D’/D、へん平率とも記す)で鋼管の加工性を評価する(特許文献1参照)。 Steel pipes are manufactured by various methods and then subjected to processing such as bending and flattening before use. A flattening test is a method for evaluating the workability of such steel pipes. In this test, a steel pipe is crushed between two flat plates, and the ratio of the distance D' between the flat plates until a crack appears on the surface of the steel pipe to the outer diameter D of the steel pipe before flattening (D'/D, also known as the flattening ratio). (described below) evaluates the workability of steel pipes (see Patent Document 1).

特許第5732999号公報Patent No. 5732999

上記のへん平試験では、試験中に割れが生じた段階で試験機を停止させ、平板間距離D’を記録するが、従来、鋼管表面に生じた割れの発生の有無は、試験者の目視により判断されていた。 In the above-mentioned flattening test, the testing machine is stopped when a crack occurs during the test, and the distance D' between the flat plates is recorded.However, conventionally, the presence or absence of cracks on the surface of the steel pipe can be determined visually by the tester. It was judged by.

しかしながら、この判断方法では、試験者によって割れの判断基準が異なる。例えば、同一の鋼管に対してへん平試験を行っても、試験者によって測定されるへん平率が大きく異なる場合があるといった問題があった。また、割れの発生しやすさは、へん平試験を行う鋼管の鋼種、サイズによって大きく異なるため、割れの判断方法を統一することは非常に困難であった。他にも、鋼管のサイズによっては、目視による割れの判断が困難となり、割れを見逃す場合もあった。このように、へん平試験等による加工性評価方法の測定精度を向上させることが希求されていた。 However, in this judgment method, the criteria for judging cracks differ depending on the tester. For example, even if a flattening test is performed on the same steel pipe, there is a problem in that the flattening ratio measured by different testers may vary greatly. Furthermore, the ease with which cracks occur varies greatly depending on the steel type and size of the steel pipe to be subjected to the flattening test, so it has been extremely difficult to standardize the method for determining cracks. Additionally, depending on the size of the steel pipe, it may be difficult to visually determine cracks, and cracks may be overlooked. Thus, there has been a desire to improve the measurement accuracy of workability evaluation methods such as flattening tests.

本発明は、上記問題を鑑みてなされたものであり、測定精度を向上させた鋼管の加工性評価方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for evaluating the workability of steel pipes with improved measurement accuracy.

上記課題に対し、本発明者らは鋭意検討し、鋼管のへん平試験において発生するアコースティックエミッション波の信号(以下、AE信号とも記す。)を、アコースティックエミッションセンサ(以下、AEセンサとも記す。)により検知させることを着想した。そして、へん平試験により発生するAE信号に基づいて、鋼管の割れの発生の有無を精度良く判断できることを知見した。 In order to solve the above problem, the present inventors have made extensive studies and have developed an acoustic emission sensor (hereinafter also referred to as AE sensor) that uses an acoustic emission wave signal (hereinafter also referred to as AE signal) generated in the flattening test of steel pipes. I came up with the idea of detecting this by using The inventors have also discovered that it is possible to accurately determine the presence or absence of cracks in a steel pipe based on the AE signal generated by the flattening test.

具体的には、まず、このへん平試験では、従来は、目視による判断によって割れを判定していたが、目視で割れを確認することが困難になるほど鋼管の直径が大きい場合、鋼管が長い場合、また、割れが鋼管内表面で生じる場合には、鋼管に発生した割れを見逃すことがあった。このような問題に対して、カメラによるへん平試験の監視も行われてきたが、割れの位置が試験毎に変化する場合がある。この場合、試験毎にカメラの焦点を合わせる必要が生じる。また、鋼管のサイズが大きくなるほど、カメラの設置位置や監視モニターの設置位置の調整等が煩雑となる。また、鋼管内表面の割れの確認のために鋼管内部にカメラを入れると、試験中にカメラが破損するおそれがある。
この点、へん平試験において、AEセンサを用いることで、目視やカメラによる撮影が困難になるような鋼管サイズであっても、また、へん平試験による割れが鋼管内表面で生じた場合であっても、割れを簡便に且つ精度良く測定することが可能となることを本発明者らは知見した。
Specifically, first, in this flattening test, cracks were conventionally judged by visual inspection, but if the diameter of the steel pipe is large or long enough to make it difficult to visually confirm cracks, Furthermore, when cracks occur on the inner surface of the steel pipe, the cracks occurring in the steel pipe may be overlooked. To address this problem, flattening tests have been monitored using cameras, but the location of cracks may change from test to test. In this case, it becomes necessary to adjust the focus of the camera for each test. Furthermore, as the size of the steel pipe becomes larger, it becomes more complicated to adjust the installation position of the camera and the monitoring monitor. Furthermore, if a camera is inserted inside the steel pipe to check for cracks on the inner surface of the steel pipe, there is a risk that the camera will be damaged during the test.
In this regard, by using an AE sensor in the flattening test, even if the size of the steel pipe is difficult to visually inspect or photograph with a camera, or if cracks occur on the inner surface of the steel pipe due to the flattening test, The present inventors have discovered that it is possible to measure cracks easily and with high precision even when using a conventional method.

また、さらに検討をし、鋼管に割れが生じる直前には、単位時間当たりに出力されるAE信号が大きくなることも知見した。 Furthermore, after further investigation, it was discovered that the AE signal output per unit time increases immediately before a crack occurs in the steel pipe.

本発明はかかる知見に基づいてさらに検討を加えて完成されたものであり、その要旨は次のとおりである。
[1]鋼管を挟圧する挟圧工程と、
前記挟圧により発生するアコースティックエミッション波を検出する検出工程と、
検出された前記アコースティックエミッション波に基づいて、前記鋼管の割れの発生の有無を判定する判定工程と、を含む、鋼管の加工性評価方法。
[2]前記判定工程では、
検出された前記アコースティックエミッション波の信号において、
単位時間当たり、所定の閾値を超えた信号の個数が所定数以上である場合に、前記鋼管に割れが発生したと判定する、前記[1]に記載の鋼管の加工性評価方法。
[3]無負荷時の前記鋼管から検出されるアコースティックエミッション波の信号の大きさに基づいて前記閾値を決定する、前記[2]に記載の鋼管の加工性評価方法。
The present invention has been completed through further study based on such knowledge, and the gist thereof is as follows.
[1] A squeezing process of squeezing the steel pipe,
a detection step of detecting acoustic emission waves generated by the pinching pressure;
A method for evaluating the workability of a steel pipe, the method comprising: determining whether or not cracks have occurred in the steel pipe based on the detected acoustic emission waves.
[2] In the determination step,
In the detected acoustic emission wave signal,
The steel pipe workability evaluation method according to [1] above, wherein it is determined that a crack has occurred in the steel pipe when the number of signals exceeding a predetermined threshold per unit time is equal to or greater than a predetermined number.
[3] The steel pipe workability evaluation method according to [2] above, wherein the threshold value is determined based on the magnitude of a signal of an acoustic emission wave detected from the steel pipe under no load.

ここで、アコースティックエミッション(AE)とは、材料が変形、破壊するときに、材料が内部に蓄えていたひずみエネルギーを弾性波として放出する現象のことをいう。本発明でいうアコースティックエミッション波(AE波)は、挟圧工程で、へん平試験等により鋼管を挟圧することで発せられる弾性波である。 Here, acoustic emission (AE) refers to a phenomenon in which when a material deforms or breaks, the strain energy stored inside the material is released as an elastic wave. The acoustic emission wave (AE wave) referred to in the present invention is an elastic wave emitted by squeezing a steel pipe in a flattening test or the like in a squeezing process.

本発明によれば、測定精度を向上させた鋼管の加工性評価方法が提供される。 According to the present invention, a steel pipe workability evaluation method with improved measurement accuracy is provided.

本発明の鋼管の加工性評価方法を説明するフロー図である。FIG. 2 is a flow diagram illustrating a method for evaluating the workability of steel pipes according to the present invention. 加工性評価装置の模式図である。FIG. 2 is a schematic diagram of a workability evaluation device. AEセンサの取り付け位置を説明するための図である。FIG. 3 is a diagram for explaining the mounting position of an AE sensor. AE信号と鋼管表面のひずみの関係を示すグラフである。It is a graph showing the relationship between the AE signal and the strain on the surface of the steel pipe. AE事象率と鋼管のへん平率の関係を示すグラフである。It is a graph showing the relationship between the AE event rate and the flattening ratio of steel pipes.

以下に、本発明の実施形態について図面に基づき説明する。
図1は、本発明の鋼管の加工性評価方法を説明するフロー図である。
本発明の鋼管の加工性評価方法は、鋼管を挟圧する挟圧工程S1と、挟圧により発生するアコースティックエミッション波を検出する検出工程S2と、検出されたアコースティックエミッション波に基づいて、鋼管の割れの発生の有無を判定する判定工程S3と、を含む。
図2は、この加工性評価方法を実施するための好適な加工性評価装置の模式図である。以下、図1、図2を参照しながら、本発明の鋼管の加工性評価方法を説明する。
Embodiments of the present invention will be described below based on the drawings.
FIG. 1 is a flow diagram illustrating the method for evaluating the workability of steel pipes according to the present invention.
The steel pipe workability evaluation method of the present invention includes a clamping step S1 of clamping the steel pipe, a detection step S2 of detecting acoustic emission waves generated by the clamping, and a method for determining cracks in the steel pipe based on the detected acoustic emission waves. and a determination step S3 of determining the presence or absence of occurrence of.
FIG. 2 is a schematic diagram of a suitable workability evaluation apparatus for carrying out this workability evaluation method. Hereinafter, the method for evaluating the workability of a steel pipe according to the present invention will be described with reference to FIGS. 1 and 2.

(挟圧工程S1)
本発明では、まず、挟圧工程S1で鋼管4を挟圧する。
本工程では、へん平試験を行うことができる。
具体的には、図2に示すへん平試験機1が有する2枚の平板2、3で鋼管4を挟み、上側の平板2の上方と下側の平板3の下方から圧力を加えて鋼管断面が楕円状になるように圧縮する。上側の平板2を稼働させ、下側の平板3を固定させること、または上側の平板2を固定し、下側の平板3を稼働させることにより、鋼管4の断面を楕円状になるように圧縮することができる。
へん平試験機1に関しては、このように平板2、3を使って鋼管に対してへん平作業を行うことができれば特に限定されず、公知のへん平試験機1を用いることができる。また、平板2、3による圧縮速度に関しても特に限定されない。
(Pinching step S1)
In the present invention, first, the steel pipe 4 is compressed in a clamping step S1.
In this step, a flattening test can be performed.
Specifically, the steel pipe 4 is sandwiched between the two flat plates 2 and 3 of the flattening tester 1 shown in FIG. Compress it so that it becomes an ellipse. By operating the upper flat plate 2 and fixing the lower flat plate 3, or by fixing the upper flat plate 2 and operating the lower flat plate 3, the cross section of the steel pipe 4 is compressed into an elliptical shape. can do.
The flattening tester 1 is not particularly limited as long as it can perform flattening work on steel pipes using the flat plates 2 and 3 as described above, and any known flattening tester 1 can be used. Furthermore, the compression speed by the flat plates 2 and 3 is not particularly limited.

(検出工程S2)
本発明では、挟圧工程S1の後、検出工程S2において、挟圧により発生するアコースティックエミッション波(AE波)を検出する。
AE波は、図2に示すAEセンサ6により検出することができる。図3は、AEセンサ6の取り付け位置の一例を説明するための図である。AEセンサ6の設置位置は、試験機1の平板2、3上、鋼管4上などが考えられ、いずれでもAE波を検出することができるが、AEセンサ6の損傷を回避しつつ、ノイズの小さなAE信号の計測を可能にするために、図3に示すように、平板2上であって鋼管4の直上にあたる部分であることが好ましい。
(Detection step S2)
In the present invention, after the clamping process S1, in the detection process S2, acoustic emission waves (AE waves) generated by the clamping process are detected.
The AE wave can be detected by the AE sensor 6 shown in FIG. FIG. 3 is a diagram for explaining an example of the mounting position of the AE sensor 6. The AE sensor 6 can be installed on the flat plates 2 and 3 of the testing machine 1, on the steel pipe 4, etc., and AE waves can be detected in either of them. In order to make it possible to measure small AE signals, it is preferable to use a portion directly above the steel pipe 4 on the flat plate 2, as shown in FIG.

また、AEセンサ6と平板2との間にはAE信号検知感度向上のため、グリスを塗布することが好ましい。AEセンサ6は、鋼管4への挟圧により発生するAE波を検出することができれば、装置構成上、特に限定されない。 Further, it is preferable to apply grease between the AE sensor 6 and the flat plate 2 in order to improve the AE signal detection sensitivity. The AE sensor 6 is not particularly limited in terms of device configuration, as long as it can detect AE waves generated by squeezing the steel pipe 4.

また、本発明では、検出工程S2と併行して、鋼管4に生じたひずみを検出することができる。具体的には、鋼管4にはひずみセンサ5を取り付け、ひずみセンサ5により、へん平試験を実施することで生じたひずみを検出することができる。ひずみセンサ5の取り付けは、鋼管4の管軸方向垂直断面視で、上方の平板2を0時、下方の平板3を6時とした際、3時または9時の位置(90°位置とも言う)の鋼管外表面とすることが好ましい。これは、鋼管4に対してへん平試験を実施した際に、この3時の位置および9時の位置に最大の引張ひずみが生じるためである。
このひずみセンサ5によって、鋼管平板表面に生じるひずみ量を計測する。ひずみセンサ5は、鋼管4への挟圧により発生するひずみを検出することができれば、装置構成上、特に限定されない。
Furthermore, in the present invention, the strain occurring in the steel pipe 4 can be detected in parallel with the detection step S2. Specifically, a strain sensor 5 is attached to the steel pipe 4, and the strain sensor 5 can detect strain caused by performing a flattening test. The strain sensor 5 is installed at the 3 o'clock or 9 o'clock position (also called the 90° position) when the upper flat plate 2 is set at 0 o'clock and the lower flat plate 3 is set at 6 o'clock in a vertical cross-sectional view of the steel pipe 4 in the tube axis direction. ) is preferably the outer surface of the steel pipe. This is because when a flattening test is performed on the steel pipe 4, the maximum tensile strain occurs at the 3 o'clock position and the 9 o'clock position.
This strain sensor 5 measures the amount of strain occurring on the surface of the steel pipe flat plate. The strain sensor 5 is not particularly limited in terms of its device configuration, as long as it can detect the strain generated by squeezing the steel pipe 4.

(判定工程S3)
本発明では、検出工程S2後、判定工程S3において、検出されたアコースティックエミッション波(AE波)に基づいて、鋼管の割れの発生の有無を判定する。これにより、精度高く割れの有無を判定することができる。
(Judgment step S3)
In the present invention, after the detection step S2, in the determination step S3, it is determined whether cracks have occurred in the steel pipe based on the detected acoustic emission waves (AE waves). Thereby, the presence or absence of cracks can be determined with high accuracy.

判定工程S3では、一例として、まず、図2に示すAEセンサ6から送信されたAE信号がAEセンサ用アンプ装置7によって増幅される。そして、演算装置8において、AE信号におけるAE事象率等が計算される。また、AE信号表示装置9において、AE事象率等、AE信号に関する情報が表示され、装置の使用者は試験中のAE信号を監視することができる。
AE信号表示装置9にはデータロガー等の記憶部を有していてもよいが、特に限定されない。
なお、AE事象率は、単位時間当たり、所定の閾値を超えたAE信号(波形)の個数のことをいう。
In the determination step S3, as an example, first, the AE signal transmitted from the AE sensor 6 shown in FIG. 2 is amplified by the AE sensor amplifier device 7. Then, the arithmetic unit 8 calculates the AE event rate and the like in the AE signal. Further, the AE signal display device 9 displays information regarding the AE signal, such as the AE event rate, and allows the user of the device to monitor the AE signal during the test.
The AE signal display device 9 may have a storage unit such as a data logger, but is not particularly limited thereto.
Note that the AE event rate refers to the number of AE signals (waveforms) exceeding a predetermined threshold per unit time.

また、本発明では、判定工程S3と併行して、ひずみセンサ5により検出されたひずみも信号として、ひずみセンサ用アンプ装置10によって増幅され、ひずみ記録装置11で記録することができる。
上記の演算装置8、AE信号表示装置9、ひずみ記録装置11は、CPU(Central Processing Unit)を有するコンピュータ(制御装置)等の情報処理装置の一部とすることができる。
Further, in the present invention, in parallel with the determination step S3, the strain detected by the strain sensor 5 can also be amplified as a signal by the strain sensor amplifier device 10 and recorded by the strain recording device 11.
The arithmetic device 8, AE signal display device 9, and strain recording device 11 described above can be part of an information processing device such as a computer (control device) having a CPU (Central Processing Unit).

判定工程S3において、鋼管4の割れの発生の有無は、AE事象率に基づいて判定することができる。すなわち、検出されたアコースティックエミッション波(AE波)の信号において、単位時間当たり、所定の閾値を超えた信号の個数が所定数以上である場合に、鋼管4に割れが発生したと判定することができる。 In the determination step S3, the presence or absence of cracking in the steel pipe 4 can be determined based on the AE event rate. That is, in the detected acoustic emission wave (AE wave) signals, if the number of signals exceeding a predetermined threshold per unit time is a predetermined number or more, it can be determined that a crack has occurred in the steel pipe 4. can.

図4は、AE信号と鋼管表面のひずみの関係を示すグラフの一例である。また、図5は、AE事象率と鋼管のへん平率の関係を示すグラフの一例である。図4、5に示すように、へん平試験により生じたひずみと、同時に発生するAE信号値において、引張ひずみが所定の値以上のとき、単位時間当たり、所定の閾値を超えたAE信号の個数(AE事象率)が所定数以上の場合に割れが生じたと判定することができる。 FIG. 4 is an example of a graph showing the relationship between the AE signal and the strain on the surface of the steel pipe. Moreover, FIG. 5 is an example of a graph showing the relationship between the AE event rate and the flattening ratio of the steel pipe. As shown in Figures 4 and 5, the number of AE signals that exceed a predetermined threshold per unit time when the tensile strain is greater than a predetermined value when the strain generated by the flattening test and the AE signal value that occurs simultaneously. It can be determined that cracking has occurred when (AE event rate) is greater than or equal to a predetermined number.

例えば、図4、図5に示す例では、引張ひずみが2.0%以上のときであって、AE事象率が10以上となった際に割れが生じたと判断することができる。この例では、引張ひずみが2.0%以上である場合を割れの判定対象とすることで、試験開始直後の鋼管4と試験機1とのすべりで生じるAE波や弾性変形中に生じるAE波を検知することにより、鋼管4に割れが発生したと誤って判断しないようにすることができる。
また、この例では、AE事象率が10以上で割れが発生したと予め設定することで、塑性変形や鋼管4と試験機1とのすべりを起因とするAE波を除外し、より精度良く割れを判定することができる。
For example, in the examples shown in FIGS. 4 and 5, it can be determined that cracking has occurred when the tensile strain is 2.0% or more and the AE event rate is 10 or more. In this example, by determining cracking when the tensile strain is 2.0% or more, the AE waves generated due to the sliding between the steel pipe 4 and the testing machine 1 immediately after the start of the test, and the AE waves generated during elastic deformation. By detecting this, it is possible to avoid erroneously determining that a crack has occurred in the steel pipe 4.
In addition, in this example, by setting in advance that cracking has occurred when the AE event rate is 10 or more, AE waves caused by plastic deformation or slipping between the steel pipe 4 and the testing machine 1 can be excluded, and the cracking can be done more accurately. can be determined.

また、上記の閾値については、無負荷時の鋼管から検出されるアコースティックエミッション波の信号(AE信号)の大きさに基づいて決定することができる。
例えば、図4、図5に示す例では、鋼管表面に割れが生じた際のAE波は、無負荷時に生じる機械の油圧やサーボモーターの振動等によるAE波(ノイズとも記す)よりも顕著に大きな値を示す。このノイズを誤検知せずに、割れによるAE波を精度良く検知するという観点から、例えば、AE信号の閾値を、無負荷時のAE信号の絶対値平均値の2倍又は2倍超とすることができる。なお、ここでいう、絶対値平均値とは、無負荷時に計測されたAE波のAE信号の値(波の振幅値)のすべてを絶対値とし、これらの平均値のことを指す。
Moreover, the above-mentioned threshold value can be determined based on the magnitude of the acoustic emission wave signal (AE signal) detected from the steel pipe under no load.
For example, in the examples shown in Figures 4 and 5, the AE waves generated when a crack occurs on the surface of a steel pipe are more noticeable than the AE waves (also referred to as noise) caused by machine oil pressure, servo motor vibration, etc. that occur when there is no load. Indicates a large value. From the viewpoint of accurately detecting AE waves caused by cracks without erroneously detecting this noise, for example, the threshold value of the AE signal is set to be twice or more than twice the average absolute value of the AE signal under no load. be able to. Note that the absolute value average value herein refers to the average value of all the AE signal values (wave amplitude values) of the AE waves measured during no-load, as absolute values.

なお、本発明で加工性を評価する鋼管としては、特に限定されず、電縫鋼管、鍛接鋼管、継目無鋼管、UOE鋼管などが考えられる。また、鋼管のサイズ、鋼種に関しても特に限定されない。 Note that the steel pipes whose workability is evaluated in the present invention are not particularly limited, and include electric resistance welded steel pipes, forge-welded steel pipes, seamless steel pipes, UOE steel pipes, and the like. Moreover, the size and steel type of the steel pipe are not particularly limited.

本発明によれば、AE波に基づいて割れの発生の有無を判定するため、高精度に割れの発生を判定することができる。
また、本発明によれば、鋼管のへん平試験時の評価を定量的に行うことができるため、試験者による評価のバラツキを防止できる。また、AEセンサによる監視を行えるため、目視では判定が困難なサイズの鋼管のへん平試験であっても、割れを見逃すことを防止できる。
According to the present invention, since the presence or absence of cracking is determined based on AE waves, the occurrence of cracking can be determined with high accuracy.
Further, according to the present invention, since it is possible to quantitatively evaluate a steel pipe during a flattening test, it is possible to prevent variations in evaluation by testers. Moreover, since monitoring can be performed using an AE sensor, it is possible to prevent cracks from being overlooked even in a flattening test of a steel pipe whose size is difficult to judge visually.

本実施例は、図2に示す装置を用いて実施した。表1に実施条件を示す。
それぞれの鋼管の90°位置にひずみセンサを取り付け、AEセンサと平板の間にはグリスを塗布したのち、AEセンサをへん平試験機上側平板上に取り付けた。
AEセンサの平板上の取り付け位置は、図3に示すように鋼管の直上とした。本発明の実施例では、下側の平板を固定し上側の平板を稼働させて鋼管を圧縮した。
試験は、まず鋼管に平板を接触させた段階で5秒間試験を停止させ、無負荷時のAE信号の絶対値平均値を計測した。
その後、圧縮を開始し、鋼管表面に生じるひずみとAE信号を記録した。
記録例を図4に示す。また、図5にAE事象率(単位時間(1秒)当たり、所定の閾値を超えたAE信号(波形)の個数)と鋼管のへん平率の計測例を示す。図4、図5の記録はNo.1の結果である。
割れが発生したと判断するための上記の閾値は、無負荷時のAE信号の絶対値平均値(V)の2倍とした。
試験中2.0%以上のひずみをひずみセンサで記録したのち、AE事象率が10以上となった際に試験機を停止させ鋼管表面を観察したところ、割れが見られた。
This example was carried out using the apparatus shown in FIG. Table 1 shows the implementation conditions.
A strain sensor was attached to each steel pipe at a 90° position, and after applying grease between the AE sensor and the flat plate, the AE sensor was attached to the upper flat plate of the flattening tester.
The mounting position of the AE sensor on the flat plate was directly above the steel pipe, as shown in FIG. In the example of the present invention, the lower flat plate was fixed and the upper flat plate was operated to compress the steel pipe.
In the test, the test was first stopped for 5 seconds when the flat plate was brought into contact with the steel pipe, and the average absolute value of the AE signal under no load was measured.
Thereafter, compression was started, and the strain produced on the surface of the steel pipe and the AE signal were recorded.
A recording example is shown in FIG. Further, FIG. 5 shows a measurement example of the AE event rate (the number of AE signals (waveforms) exceeding a predetermined threshold per unit time (1 second)) and the flattening rate of a steel pipe. The records in FIGS. 4 and 5 are No. This is the result of 1.
The above-mentioned threshold value for determining that a crack has occurred was twice the absolute average value (V) of the AE signal at no load.
During the test, a strain of 2.0% or more was recorded by a strain sensor, and when the AE event rate reached 10 or more, the testing machine was stopped and the steel pipe surface was observed, and cracks were observed.

各実施条件による評価結果を表1に示す。なお、表中、最大AE事象率とは、各評価において測定されたAE事象率のうちの最大値のことを指す。 Table 1 shows the evaluation results under each implementation condition. In addition, in the table, the maximum AE event rate refers to the maximum value of the AE event rates measured in each evaluation.

本発明によれば、へん平試験を行い、へん平試験により発生するアコースティックエミッション波(AE波)を検出し、検出されたAE波に基づいて、鋼管の割れの発生の有無を判定できることが分かった。 According to the present invention, it has been found that it is possible to perform a flattening test, detect acoustic emission waves (AE waves) generated by the flattening test, and determine whether cracks have occurred in the steel pipe based on the detected AE waves. Ta.

Figure 0007396327000001
Figure 0007396327000001

1 へん平試験機
2 平板(上側)
3 平板(下側)
4 鋼管
5 ひずみセンサ
6 AEセンサ
7 AEセンサ用アンプ装置
8 演算装置
9 AE信号表示装置
10 ひずみセンサ用アンプ装置
11 ひずみ記録装置
1 flattening tester 2 flat plate (upper side)
3 Flat plate (lower side)
4 Steel pipe 5 Strain sensor 6 AE sensor 7 AE sensor amplifier device 8 Arithmetic device 9 AE signal display device 10 Strain sensor amplifier device 11 Strain recording device

Claims (2)

鋼管を挟圧する挟圧工程と、
前記挟圧により発生するアコースティックエミッション波を検出する検出工程と、
検出された前記アコースティックエミッション波に基づいて、前記鋼管の割れの発生の有無を判定する判定工程と、
を含み、
前記判定工程では、
検出された前記アコースティックエミッション波の信号において、
単位時間当たり、所定の閾値を超えた信号の個数が所定数以上である場合に、前記鋼管に割れが発生したと判定する、鋼管の加工性評価方法。
A clamping process of clamping the steel pipe;
a detection step of detecting acoustic emission waves generated by the pinching pressure;
a determination step of determining whether or not a crack has occurred in the steel pipe based on the detected acoustic emission wave;
including;
In the determination step,
In the detected acoustic emission wave signal,
A method for evaluating the workability of a steel pipe, in which it is determined that a crack has occurred in the steel pipe when the number of signals exceeding a predetermined threshold per unit time is equal to or greater than a predetermined number .
無負荷時の前記鋼管から検出されるアコースティックエミッション波の信号の大きさに基づいて前記閾値を決定する、請求項に記載の鋼管の加工性評価方法。 The method for evaluating workability of a steel pipe according to claim 1 , wherein the threshold value is determined based on the magnitude of a signal of an acoustic emission wave detected from the steel pipe under no load.
JP2021075682A 2021-04-28 2021-04-28 Steel pipe workability evaluation method Active JP7396327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021075682A JP7396327B2 (en) 2021-04-28 2021-04-28 Steel pipe workability evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021075682A JP7396327B2 (en) 2021-04-28 2021-04-28 Steel pipe workability evaluation method

Publications (2)

Publication Number Publication Date
JP2022169937A JP2022169937A (en) 2022-11-10
JP7396327B2 true JP7396327B2 (en) 2023-12-12

Family

ID=83944631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021075682A Active JP7396327B2 (en) 2021-04-28 2021-04-28 Steel pipe workability evaluation method

Country Status (1)

Country Link
JP (1) JP7396327B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162192A (en) 1998-11-27 2000-06-16 Daido Steel Co Ltd Monitoring method of quality in extension of pipe
JP2002040004A (en) 2000-07-27 2002-02-06 Hitachi Metals Ltd Fusion defect detection method of resin tube fusion part
JP2008031512A (en) 2006-07-27 2008-02-14 Jfe Steel Kk Method for preventing hydrogen embrittlement cracking from occurring in steel material in working process
JP2012229457A (en) 2011-04-25 2012-11-22 Jfe Steel Corp High strength electroseamed steel pipe and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223714A (en) * 1992-02-07 1993-08-31 Chukichi Sato Method and device for testing tubing material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162192A (en) 1998-11-27 2000-06-16 Daido Steel Co Ltd Monitoring method of quality in extension of pipe
JP2002040004A (en) 2000-07-27 2002-02-06 Hitachi Metals Ltd Fusion defect detection method of resin tube fusion part
JP2008031512A (en) 2006-07-27 2008-02-14 Jfe Steel Kk Method for preventing hydrogen embrittlement cracking from occurring in steel material in working process
JP2012229457A (en) 2011-04-25 2012-11-22 Jfe Steel Corp High strength electroseamed steel pipe and method for producing the same

Also Published As

Publication number Publication date
JP2022169937A (en) 2022-11-10

Similar Documents

Publication Publication Date Title
CN108318357A (en) Damage monitoring device and method for composites gas cylinder fatigue test
CN103293225B (en) Ultrasonic detection and diagnosis method for hydrogen damages on water-cooling wall pipe of boiler
US9176025B2 (en) Apparatus and method of vibration testing for manufacturing defect detection in composite insulators
US11320354B2 (en) Material tester and natural vibration determination-noise elimination thereof
JP7125712B2 (en) Non-destructive test equipment for structures and its non-destructive test method
CN111597653A (en) Bridge structure defect dynamic detection and identification method for bridge crane
Ramesh et al. Health Monitoring of Structures by Using Non-Destructive Testing Methods
CN106645429A (en) Normal probe with pressure display for ultrasonic testing
CN109298076B (en) Lamb wave-based active valve internal leakage damage detection system and method
US11624687B2 (en) Apparatus and method for detecting microcrack using orthogonality analysis of mode shape vector and principal plane in resonance point
JP5865100B2 (en) Defect inspection apparatus and inspection method
JP7396327B2 (en) Steel pipe workability evaluation method
JP3606086B2 (en) Strength estimation method for structural concrete
JP7459835B2 (en) Evaluation method for steel pipe joints
JPH0616030B2 (en) Method and apparatus for diagnosing deterioration of article
KR20160039916A (en) Defect Detection Apparatus of Panel and Method Thereof
WO2022061515A1 (en) Human ear hearing characteristics-based method and device for detecting bearing failure
CN114002327A (en) Method for detecting integrity degree of steel strand
JP2013237085A (en) Indication detecting method of stick-slip phenomenon, indication detecting device, and cold drawing method using the indication detecting method
Cobb et al. Ultrasonic structural health monitoring: a probability of detection case study
RU2008125112A (en) METHODS, SYSTEMS AND COMPUTER SOFTWARE PRODUCTS FOR STRUCTURE DIAGNOSTICS
Padzi et al. Evaluating ultrasound signals of carbon steel fatigue testing using signal analysis approaches
KR0116243Y1 (en) Flattening test device of welding pipe
JP2019113453A (en) Gate pin inspection device and method for inspecting gate pin
CN103792280B (en) Magnetic nondestructive testing method for contact damage inversion of ferromagnetic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7396327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150