JP7393166B2 - Method for producing thermal spray powder, thermal spray slurry, and thermal barrier coating - Google Patents
Method for producing thermal spray powder, thermal spray slurry, and thermal barrier coating Download PDFInfo
- Publication number
- JP7393166B2 JP7393166B2 JP2019170616A JP2019170616A JP7393166B2 JP 7393166 B2 JP7393166 B2 JP 7393166B2 JP 2019170616 A JP2019170616 A JP 2019170616A JP 2019170616 A JP2019170616 A JP 2019170616A JP 7393166 B2 JP7393166 B2 JP 7393166B2
- Authority
- JP
- Japan
- Prior art keywords
- sio
- thermal
- particles
- thermal spray
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims description 70
- 239000007921 spray Substances 0.000 title claims description 41
- 239000002002 slurry Substances 0.000 title claims description 13
- 239000012720 thermal barrier coating Substances 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 62
- 239000002245 particle Substances 0.000 claims description 62
- 238000007751 thermal spraying Methods 0.000 claims description 24
- 239000011246 composite particle Substances 0.000 claims description 13
- 238000007750 plasma spraying Methods 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 4
- 239000002612 dispersion medium Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 description 31
- 238000000576 coating method Methods 0.000 description 27
- 239000011248 coating agent Substances 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 18
- 238000005469 granulation Methods 0.000 description 18
- 230000003179 granulation Effects 0.000 description 18
- 238000005245 sintering Methods 0.000 description 16
- 239000000463 material Substances 0.000 description 15
- 238000005507 spraying Methods 0.000 description 12
- 230000007423 decrease Effects 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 238000010298 pulverizing process Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- 229910002080 8 mol% Y2O3 fully stabilized ZrO2 Inorganic materials 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 239000011153 ceramic matrix composite Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- -1 rare earth silicate Chemical class 0.000 description 3
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 3
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910001347 Stellite Inorganic materials 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 2
- 230000009545 invasion Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 241000588731 Hafnia Species 0.000 description 1
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001374 Invar Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000007908 dry granulation Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- GEZAXHSNIQTPMM-UHFFFAOYSA-N dysprosium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Dy+3].[Dy+3] GEZAXHSNIQTPMM-UHFFFAOYSA-N 0.000 description 1
- ZXGIFJXRQHZCGJ-UHFFFAOYSA-N erbium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Er+3].[Er+3] ZXGIFJXRQHZCGJ-UHFFFAOYSA-N 0.000 description 1
- VQCBHWLJZDBHOS-UHFFFAOYSA-N erbium(III) oxide Inorganic materials O=[Er]O[Er]=O VQCBHWLJZDBHOS-UHFFFAOYSA-N 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000007909 melt granulation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 108010004034 stable plasma protein solution Proteins 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005550 wet granulation Methods 0.000 description 1
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Coating By Spraying Or Casting (AREA)
Description
本発明は、溶射用粉末、それを含む溶射用スラリー、及びこれを用いた遮熱性コーティングの製造方法に関する。更に詳しくは、本発明は、CMAS耐性を向上することができる遮熱性コーティングを形成するための溶射用粉末、溶射用スラリーおよびそれを用いた遮熱性コーティングの製造方法に関する。 The present invention relates to a thermal spraying powder, a thermal spraying slurry containing the same, and a method for producing a thermal barrier coating using the same. More specifically, the present invention relates to a thermal spray powder and a thermal spray slurry for forming a thermal barrier coating that can improve CMAS resistance, and a method for producing a thermal barrier coating using the same.
ガスタービンエンジンの静翼、動翼、燃焼器の壁材等の高温下で使用される材料においては、耐熱性の部材を遮熱性の被膜で被覆して高温から保護することが行われている。また、このような材料においては、ガスタービンエンジンの空気の取入れに付随する、シリカ系鉱物(塵、砂、火山灰、滑走路屑など)の吸込みに由来するカルシア-マグネシア-アルミナ-シリケートの堆積物(CMAS)耐性が要求される。 For materials used under high temperatures, such as gas turbine engine stator blades, moving blades, and combustor wall materials, heat-resistant components are coated with a heat-insulating film to protect them from high temperatures. . Such materials also contain calcia-magnesia-alumina-silicate deposits derived from the ingestion of silica-based minerals (dust, sand, volcanic ash, runway debris, etc.) associated with gas turbine engine air intake. (CMAS) tolerance is required.
CMAS耐性コーティングは溶射法によって形成されることが多い。溶射法は、物理的蒸着法や化学的蒸着法などとともに、実用化されている表面改質技術の一つである。溶射は、基材の寸法に制限がなく、広い面積の基材に対しても一様な溶射被膜を形成できること、被膜の形成速度が大きいこと、現場施工が容易であること、比較的容易に厚膜が形成できることなどの特徴を有するため、近年、各種の産業にその適用が拡大し、極めて重要なコーティング技術となっている。 CMAS-resistant coatings are often applied by thermal spray methods. Thermal spraying is one of the surface modification techniques that have been put into practical use, along with physical vapor deposition, chemical vapor deposition, and the like. Thermal spraying has the following advantages: there is no limit to the size of the substrate, it can form a uniform sprayed coating even on a wide area of the substrate, the coating can be formed at a high speed, it can be easily applied on-site, and it is relatively easy to apply. Due to its ability to form thick films, its application has expanded to a variety of industries in recent years, making it an extremely important coating technology.
特許文献1には、CMAS耐性遮熱性コーティング(TBC)層を備える物品であって、約50質量%~約90質量%のTBC組成物と、約10質量%~約50質量%のCMAS耐性組成物とを含む、物品が開示されており、CMAS耐性組成物としてアルミナ、シリカなどが例示されている。
特許文献2には、希土類ケイ酸塩系気密層の形成を目的とした、液体担体中に懸濁させた希土類ケイ酸塩及び1種以上の酸化物を含む焼結助剤を含む懸濁液からなる溶射原料が開示され、焼結助剤として約5nm~約3μm、約5nm~約100nm、約30nm~約70nmの外径を有するSiO2が開示されている。
U.S. Pat. No. 5,005,001 describes an article comprising a CMAS-resistant thermal barrier coating (TBC) layer, the TBC composition comprising about 50% to about 90% by weight and about 10% to about 50% by weight of the CMAS-resistant composition. Articles are disclosed, including alumina, silica, etc., as CMAS-resistant compositions.
Patent Document 2 discloses a suspension containing a sintering aid containing a rare earth silicate and one or more oxides suspended in a liquid carrier for the purpose of forming a rare earth silicate airtight layer. SiO 2 having an outer diameter of about 5 nm to about 3 μm, about 5 nm to about 100 nm, about 30 nm to about 70 nm is disclosed as a sintering aid.
しかしながら、これらの従来技術においては十分なCMAS耐性が得られない、あるいはCMAS耐性の向上により硬度またはヤング率が低下するなどの問題があった。本発明はCMAS耐性をより向上し、かつ硬度及びヤング率等の機械的特性にも優れた溶射被膜を形成するための溶射用粉末、それを含む溶射用スラリー、及びこれを用いた遮熱性コーティングの製造方法を提供することを目的とする。 However, these conventional techniques have had problems such as insufficient CMAS resistance or a decrease in hardness or Young's modulus due to improved CMAS resistance. The present invention provides a thermal spray powder for forming a thermal spray coating with improved CMAS resistance and excellent mechanical properties such as hardness and Young's modulus, a thermal spray slurry containing the same, and a thermal barrier coating using the same. The purpose is to provide a manufacturing method for.
上記の課題を解決するために、本発明は、遮熱性コーティングのための溶射用粉末であって、SiO2と、SiO2以外の酸化物系材料とを含み、溶射用粉末中におけるSiO2の含有量が、1質量%~10質量%である溶射用粉末を提供する。 In order to solve the above problems, the present invention provides a thermal spraying powder for thermal barrier coating, which contains SiO 2 and an oxide material other than SiO 2 , and which reduces the amount of SiO 2 in the thermal spraying powder. Provided is a powder for thermal spraying having a content of 1% by mass to 10% by mass.
本発明の溶射用粉末を使用して、溶射膜を形成することにより、CMASの侵入を抑制し、CMAS耐性をより向上し、かつ硬度、ヤング率等の機械的特性が優れた遮熱性コーティングを形成することができる。 By forming a thermal spray film using the thermal spray powder of the present invention, a thermal barrier coating that suppresses the invasion of CMAS, further improves CMAS resistance, and has excellent mechanical properties such as hardness and Young's modulus. can be formed.
本発明の一実施形態について詳細に説明する。なお、以下の実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、以下の実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。 An embodiment of the present invention will be described in detail. Note that the following embodiment shows an example of the present invention, and the present invention is not limited to this embodiment. Furthermore, various changes or improvements can be made to the embodiments described below, and forms with such changes or improvements are also included in the present invention. It can be done.
本発明の一実施形態は、遮熱性コーティングのための溶射用粉末であって、SiO2粉末と、SiO2以外の酸化物系粉末とを含み、溶射用粉末中におけるSiO2の含有量が、1質量%~10質量%である溶射用粉末を提供する。
また、SiO2の含有量は1質量%~10質量%であるが、好ましくは3質量%~8質量%であるとよい。SiO2の含有量が1質量%未満ではCMAS耐性の向上の効果が現れず、10質量%を超えると、CMAS耐性の効果が飽和するのに対して溶射被膜の硬度、ヤング率などの機械的特性が低下する傾向に有り、遮熱性コーティングとしての実用性が低下する。
One embodiment of the present invention is a thermal spray powder for thermal barrier coating, which includes SiO 2 powder and an oxide-based powder other than SiO 2 , wherein the content of SiO 2 in the thermal spray powder is A thermal spray powder having a content of 1% to 10% by weight is provided.
Further, the content of SiO 2 is 1% by mass to 10% by mass, preferably 3% by mass to 8% by mass. If the content of SiO 2 is less than 1% by mass, the effect of improving CMAS resistance will not appear, and if it exceeds 10% by mass, the effect of improving CMAS resistance will be saturated, but the mechanical properties such as hardness and Young's modulus of the sprayed coating will be reduced. The properties tend to deteriorate, reducing its practicality as a heat-shielding coating.
溶射粉末材料中にSiO2を1質量%~10質量%添加することによりCMAS耐性が向上する理由は必ずしも確定されているわけではないが、SiO2を添加することによりコーティング被膜のCMASとの接触面における濡れ性が低下し、表面からCMASが侵入しにくくなることが一因と考えられる。また、溶射被膜中のSiO2粒子が蒸発することによりSiO2以外の酸化物の脱酸量が低下するためと考えられる。すなわち、従来の耐熱酸化物コーティングにおいては、CMASが付着すると酸化物の脱酸によりコーティング被膜中にCMASが浸入し、酸化物とCMASとの反応相が形成されていた。これに対し、SiO2を添加することによりSiO2以外の耐熱酸化物の脱酸が低減し、さらにCMASとの接触面における濡れ性が低下するためCMASの侵入が低下できる。したがって、種々の耐熱酸化物にSiO2を1質量%~10質量%添加することによりCMAS耐性が向上することが期待できる。 The reason why CMAS resistance is improved by adding 1% to 10% by mass of SiO 2 to thermal spray powder materials is not necessarily established, but the addition of SiO 2 may improve the contact of the coating film with CMAS. One reason is thought to be that the wettability of the surface decreases, making it difficult for CMAS to penetrate from the surface. It is also thought that this is because the amount of deoxidized oxides other than SiO 2 decreases due to the evaporation of SiO 2 particles in the sprayed coating. That is, in conventional heat-resistant oxide coatings, when CMAS adheres, CMAS penetrates into the coating film due to deoxidation of the oxide, and a reaction phase of the oxide and CMAS is formed. On the other hand, by adding SiO 2 , the deoxidation of heat-resistant oxides other than SiO 2 is reduced, and furthermore, the wettability at the contact surface with CMAS is reduced, so that the invasion of CMAS can be reduced. Therefore, it is expected that CMAS resistance will be improved by adding 1% to 10% by mass of SiO 2 to various heat-resistant oxides.
得られた溶射用粉末中のSiO2粉末の粒子径は特に限定されるものではないが、体積基準の平均粒子径で0.001~2μm、好ましくは0.001~0.5μmであってよい。SiO2粉末の体積基準の平均粒子径が小さく揮発しやすいほどSiO2以外の酸化物粒子の脱酸素の量が低減し、CMAS の侵入がより低下する傾向にある。SiO2粉末の体積基準の平均粒子径が2μmを超えるとSiO2粉末が揮発しにくくなる傾向にある。また、SiO2粉末の体積基準の平均粒径はSiO2以外の酸化物系粉末の体積基準の平均粒子径より小さいか同程度であることが好ましい。SiO2粉末の体積基準の平均粒径はSiO2以外の酸化物系粉末の体積基準の平均粒子径より小さいほど、SiO2以外の酸化物粒子の脱酸素の量が低減する傾向にあり、CMASの侵入がより低下するためである。 The particle size of the SiO 2 powder in the obtained thermal spray powder is not particularly limited, but may be 0.001 to 2 μm, preferably 0.001 to 0.5 μm, in volume-based average particle size. The smaller the volume-based average particle diameter of the SiO 2 powder is and the easier it is to volatilize, the lower the amount of deoxidation from oxide particles other than SiO 2 tends to be, and the more CMAS intrusion tends to be reduced. When the volume-based average particle diameter of the SiO 2 powder exceeds 2 μm, the SiO 2 powder tends to be difficult to volatilize. Further, it is preferable that the volume-based average particle size of the SiO 2 powder is smaller than or about the same as the volume-based average particle size of the oxide-based powder other than SiO 2 . As the volume-based average particle size of SiO 2 powder is smaller than the volume-based average particle size of oxide powders other than SiO 2 , the amount of deoxidation of oxide particles other than SiO 2 tends to decrease. This is because the intrusion of
SiO2以外の酸化物系粉末としては、一般に耐熱材料に使用される酸化物粉末を使用することができる。例えば、Yb、Y、Sc、Lu、Dy、Er、Smなどの希土類元素や、Al、Ti、Ta、Zrなどの金属の酸化物や複合酸化物であってもよい。具体的には、酸化イットリウム(Y2O3)、酸化アルミニウム(Al2O3)、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)、酸化ハフニウム(HfO2)等の金属酸化物、イットリア(Y2O3)安定化ジルコニア(YSZ)、イッテルビア酸化タンタル(YbTaO)、イッテルビア(Yb2O3)安定化ジルコニア(YbSZ)、イッテルビアシリカ(Yb2SiO5、Yb2Si2O7)、ハフニアシリカ(HfSiO)、ジスプロシア(Dy2O3)安定化ジルコニア(DySZ)、エルビア(Er2O3)安定化ジルコニア(ErSZ)、SmYbZr2O7であってもよい。イットリア安定化ジルコニアの中では、8質量%のイットリアで安定化されたジルコニア(8YSZ)や20質量%のイットリアで安定化されたジルコニア(20YSZ)であってもよい。 As the oxide powder other than SiO 2 , oxide powders generally used for heat-resistant materials can be used. For example, oxides or composite oxides of rare earth elements such as Yb, Y, Sc, Lu, Dy, Er, and Sm, and metals such as Al, Ti, Ta, and Zr may be used. Specifically, metal oxides such as yttrium oxide (Y 2 O 3 ), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ), and yttria (Y 2 O 3 ) stabilized zirconia (YSZ), Ytterbia tantalum oxide (YbTaO), Ytterbia (Yb 2 O 3 ) stabilized zirconia (YbSZ), Ytterbia silica (Yb 2 SiO 5 , Yb 2 Si 2 O 7 ) , hafnia silica (HfSiO), dysprosia (Dy 2 O 3 ) stabilized zirconia (DySZ), Erbia (Er 2 O 3 ) stabilized zirconia (ErSZ), and SmYbZr 2 O 7 . Among the yttria-stabilized zirconias, zirconia stabilized with 8% by mass of yttria (8YSZ) and zirconia stabilized with 20% by mass of yttria (20YSZ) may be used.
得られた溶射用粉末中のSiO2以外の酸化物粉末の粒子径は特に限定されるものではないが、体積基準の平均粒子径で1~5μm、好ましくは1.5~3μmであってよい。SiO2以外の酸化物粉末の体積基準の平均粒子径が1μm未満であると、得られる溶射被膜の遮熱性が要求される環境下での耐久性が低下する傾向にあり、5μmを超えると溶射被膜の遮熱性が要求される環境下でのCMAS侵入防止が低下する傾向にある。 The particle size of the oxide powder other than SiO 2 in the obtained thermal spray powder is not particularly limited, but may be 1 to 5 μm, preferably 1.5 to 3 μm, in volume-based average particle size. If the volume-based average particle diameter of the oxide powder other than SiO 2 is less than 1 μm, the resulting thermal spray coating tends to have poor durability in environments where heat shielding properties are required; The ability to prevent CMAS intrusion tends to decrease in environments where the heat shielding properties of the coating are required.
本発明の溶射用粉末は、SiO2粉末とSiO2以外の酸化物粉末が単に混合されていてもよいが、両者が複合化されている複合粒子であってもよい。あるいは酸化物粒子にSiO2粒子が被覆された複合粒子であってもよい。複合粒子化、特に、酸化物粒子にSiO2粒子が被覆された複合粒子を形成することによって、酸化物粒子の脱酸素の量がより低下してCMAS侵入をより防止できることが期待できる。複合粒子の平均体積基準の平均粒子径は2~50μmであってよい。複合粒子の体積基準の平均平均粒子径が2μm未満であると得られる溶射被膜の遮熱性が要求される環境下での耐久性が低下する傾向にあり、50μmを超えると溶射被膜の遮熱性が要求される環境下でのCMAS侵入防止が低下する傾向にある。 The thermal spray powder of the present invention may be a simple mixture of SiO 2 powder and an oxide powder other than SiO 2 , or may be a composite particle in which both are combined. Alternatively, the particles may be composite particles in which oxide particles are coated with SiO 2 particles. By forming composite particles, in particular by forming composite particles in which oxide particles are coated with SiO 2 particles, it is expected that the amount of deoxidation from the oxide particles will be further reduced, thereby further preventing CMAS intrusion. The composite particles may have an average particle diameter on an average volume basis of 2 to 50 μm. If the volume-based average particle diameter of the composite particles is less than 2 μm, the thermal sprayed coating tends to have poor durability in environments where heat shielding properties are required. CMAS intrusion prevention tends to decline under demanding environments.
SiO2粉末の体積基準の平均粒子径、SiO2以外の酸化物粉末の体積基準の平均粒子径及び複合粒子の体積基準の平均粒子径はレーザ回折法や気体吸着法により測定することができる。例えば、レーザ回折/散乱粒度測定器においてはMalvern Panalytical社のレーザ回折式粒度分布測定装置Mastersizer 3000などを使用することができる。
このような混合形態、複合粒子、被覆粒子を得るためには、SiO2粉末とSiO2以外の酸化物粉末を所定の割合で予め混合、造粒、焼結、粉砕、分級などの工程を得られる粒子形態に応じて適宜、選択して行えばよい。具体的には、造粒焼結法、焼結粉砕法、溶融粉砕法などによって製造することができる。
The volume-based average particle size of SiO 2 powder, the volume-based average particle size of oxide powder other than SiO 2 , and the volume-based average particle size of composite particles can be measured by a laser diffraction method or a gas adsorption method. For example, as a laser diffraction/scattering particle size analyzer, a laser diffraction particle size distribution analyzer Mastersizer 3000 manufactured by Malvern Panalytical can be used.
In order to obtain such mixed forms, composite particles, and coated particles, processes such as mixing SiO 2 powder and oxide powder other than SiO 2 in a predetermined ratio, granulation, sintering, crushing, and classification are required. The method may be selected as appropriate depending on the particle form to be used. Specifically, it can be manufactured by a granulation and sintering method, a sintering and pulverizing method, a melting and pulverizing method, and the like.
例えば、混合工程では、水およびアルコールの混合溶液などの溶媒に粉末粒子を分散させることによりスラリーを調整する。造粒する場合は調整されたスラリーを、噴霧造粒機などの造粒機を用いて液滴状造粒した後乾燥する。複合粒子を得るためには、SiO2粉末とSiO2以外の酸化物粉末を所定の割合で予め混合し、造粒すればよい。この際、SiO2粉末とSiO2以外の酸化物粉末の粒径を調整することによって、酸化物粒子にSiO2粒子が被覆された複合粒子とすることができる。焼結では、焼結温度、焼結助剤などを適切に管理することにより最適な機械的強度を得ることが望ましい。その後、粉砕、分級により所定の粒度に調整された溶射用粉末を得ることができる。 For example, in the mixing step, a slurry is prepared by dispersing powder particles in a solvent such as a mixed solution of water and alcohol. When granulating, the prepared slurry is granulated into droplets using a granulator such as a spray granulator, and then dried. In order to obtain composite particles, SiO 2 powder and oxide powder other than SiO 2 may be mixed in advance at a predetermined ratio and granulated. At this time, by adjusting the particle sizes of the SiO 2 powder and the oxide powder other than SiO 2 , composite particles in which the oxide particles are coated with the SiO 2 particles can be obtained. In sintering, it is desirable to obtain optimal mechanical strength by appropriately controlling the sintering temperature, sintering aid, etc. Thereafter, a powder for thermal spraying adjusted to a predetermined particle size can be obtained by pulverization and classification.
造粒焼結法とは、原料粒子を二次粒子の形態に造粒した後、焼結して、原料粒子同士を強固に結合(焼結)させる手法である。この造粒焼結法において、造粒は、例えば、乾式造粒あるいは湿式造粒等の造粒方法を利用して実施することができる。造粒方法としては、具体的には、例えば、転動造粒法、流動層造粒法、撹枠造粒法、破砕造粒法、溶融造粒法、噴霧造粒法、マイクロエマルション造粒法等が挙げられる。なかでも好適な造粒方法として、噴霧造粒法が挙げられる。 The granulation and sintering method is a method in which raw material particles are granulated into secondary particles and then sintered to firmly bond (sinter) the raw material particles to each other. In this granulation and sintering method, granulation can be carried out using a granulation method such as dry granulation or wet granulation. Specifically, the granulation method includes, for example, rolling granulation method, fluidized bed granulation method, stirring frame granulation method, crushing granulation method, melt granulation method, spray granulation method, and microemulsion granulation method. Laws etc. Among them, a spray granulation method is suitable as a granulation method.
焼結粉砕法では、まず、複数の原料粉末を混合して圧縮成形することにより成形体が形成される。次に、その成形体が焼結されて焼結体が形成される。続いて、その焼結体が粉砕されて分級されることによって、目的の溶射用粉末が得られる。溶融粉砕法では、まず、複数の原料粉末を混合して加熱溶融した後に冷却することにより固化物(インゴット)が形成される。次に、その固化物が粉砕されて分級されることによって、目的の溶射用粉末が得られる。
被覆粒子を形成するためには、原料粒子を一次粒子が大きいコア粒子と、一次粒子が小さい微粒子に分け、これらを適宜ブレンドすることにより、コア粒子の表面に微粒子を静電引力や有機バインダーの接着力により付着させる。その後、焼結工程で粒子間の結合強度を高めることによって得ることができる。
In the sintering and pulverization method, first, a plurality of raw material powders are mixed and compression molded to form a compact. Next, the compact is sintered to form a sintered body. Subsequently, the sintered body is crushed and classified to obtain the desired thermal spray powder. In the melt-pulverization method, first, a plurality of raw material powders are mixed, heated and melted, and then cooled to form a solidified product (ingot). Next, the solidified product is crushed and classified to obtain the desired thermal spray powder.
In order to form coated particles, the raw material particles are divided into core particles with large primary particles and fine particles with small primary particles, and these are blended appropriately. Attach by adhesive force. After that, it can be obtained by increasing the bonding strength between particles in a sintering process.
上記方法によって製造された溶射用粉末を使用して各種の溶射法により溶射することで、各種の基材に溶射被膜を形成することができる。溶射方法は特に制限されないが、例えば、大気プラズマ溶射(APS:atmospheric plasma spraying)、サスペンションプラズマ溶射(SPS:suspension plasma spraying)、減圧プラズマ溶射(LPS:low pressure plasma spraying)、加圧プラズマ溶射(high pressure plasma spraying)等のプラズマ溶射法、酸素支燃型高速フレーム(HVOP:High Velocity Oxygen Flame)溶射法、ウォームスプレー溶射法および空気支燃型高速フレーム溶射法(HVAF : High Velocity Air flame)等の高速フレーム溶射等を好適に利用することができる。 A thermal spray coating can be formed on various substrates by thermal spraying using various thermal spraying methods using the thermal spray powder produced by the above method. Thermal spraying methods are not particularly limited, but examples include atmospheric plasma spraying (APS), suspension plasma spraying (SPS), low pressure plasma spraying (LPS), and high pressure plasma spraying. pressure plasma spraying), high velocity oxygen flame (HVOP) spraying, warm spray spraying, and high velocity air flame (HVAF) spraying. High-speed flame spraying or the like can be suitably used.
上記の方法により製造された溶射用粉末は粉末の状態で溶射装置に供給することもできるし、スラリーの形態として溶射装置に供給してもよい。溶射材料がスラリー状の形態の場合、分散媒を用いて調製することができる。分散媒として、例えばメタノール、エタノール等のアルコール類、トルエン、ヘキサン、灯油等が挙げられる。スラリー状の溶射材料は、その他の添加剤、例えば分散剤、凝集剤、粘度調整剤等をさらに含有してもよい The thermal spraying powder produced by the above method can be supplied to the thermal spraying apparatus in the form of a powder, or may be supplied to the thermal spraying apparatus in the form of a slurry. When the thermal spray material is in the form of a slurry, it can be prepared using a dispersion medium. Examples of the dispersion medium include alcohols such as methanol and ethanol, toluene, hexane, and kerosene. The thermal spray material in slurry form may further contain other additives, such as dispersants, flocculants, viscosity modifiers, etc.
溶射被膜形成の対象となる基材の種類は特に制限されない。例えば合金等の金属材料、単純セラミック材料、複合セラミック材料、セラミックスマトリックスコンポジット等が挙げられる。金属材料の具体例としては、鉄、ニッケル、コバルト等を含む合金が挙げられる。例えばステンレス鋼や、ニッケル基にモリブデン、クロム等を加えた合金であるハステロイ(ヘインズ社製)、ニッケル基に鉄、クロム、ニオブ、モリブデン等を加えた合金であるインコネル(スペシャルメタルズ社製)、コバルトを主成分とし、クロム、タングステン等を加えた合金であるステライト(デロロステライトグループ社製)、鉄にニッケル、マンガン、炭素等を加えた合金であるインバー等が挙げられる。また、セラミック系材料としては、ジルコニア、アルミナ等のモノシリックセラミックス、セラミックマトリックス複合材(CMC)等が挙げられる。 There are no particular restrictions on the type of base material on which the thermal spray coating is formed. Examples include metal materials such as alloys, simple ceramic materials, composite ceramic materials, ceramic matrix composites, and the like. Specific examples of metal materials include alloys containing iron, nickel, cobalt, and the like. For example, stainless steel, Hastelloy (manufactured by Haynes), which is a nickel-based alloy with molybdenum, chromium, etc. added, Inconel (manufactured by Special Metals), which is a nickel-based alloy with iron, chromium, niobium, molybdenum, etc. added, Examples include Stellite (manufactured by Delor Stellite Group), which is an alloy containing cobalt as a main component with additions of chromium, tungsten, etc., and Invar, which is an alloy of iron with nickel, manganese, carbon, etc. added thereto. Furthermore, examples of ceramic materials include monolithic ceramics such as zirconia and alumina, ceramic matrix composites (CMC), and the like.
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
<溶射粉末材の調整>
表1に示される体積基準の平均粒子径を有する酸化物粉末(8YSZ、YbTaO、YbSiO5)とSiO2粉末の組合せからなる原材料粉末を表1に示される方法(粒子形態)により実施例1~8及び比較例1~5の溶射粉末材を調製した。得られた溶射粉末材の組成、平均粒子径は表1に示されるとおりである。本発明において平均粒子径は体積基準の粒子径を意味するが、平均粒子径はMalvern Panalytical社のレーザ回折式粒度分布測定装置Mastersizer 3000を使用して測定した。
EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples in any way.
<Adjustment of thermal spray powder material>
Examples 1- Thermal spray powder materials of No. 8 and Comparative Examples 1 to 5 were prepared. The composition and average particle size of the obtained thermal spray powder material are as shown in Table 1. In the present invention, the average particle size means a volume-based particle size, and the average particle size was measured using a laser diffraction particle size distribution analyzer Mastersizer 3000 manufactured by Malvern Panalytical.
<溶射被膜の形成>
上記方法により製造した実施例1~8および比較例1~5の溶射粉末材を使用して大気圧プラズマ溶射(APS)またはサスペンションプラズマ溶射(SPS)により多孔質ジルコニアア基材上に溶射被膜を形成した。APSおよびSPSの溶射方法、条件は以下のとおりである。
<Formation of thermal spray coating>
Using the thermal spray powder materials of Examples 1 to 8 and Comparative Examples 1 to 5 produced by the above method, a thermal spray coating was applied to a porous zirconia base material by atmospheric pressure plasma spraying (APS) or suspension plasma spraying (SPS). Formed. The thermal spraying methods and conditions for APS and SPS are as follows.
(1)APS(大気圧プラズマ溶射)
プラクスエア・サーフィス・テクノロジーズ社製のプラズマ溶射装置SG-100を使用した。プラズマ発生条件は、プラズマ作動ガスとして、圧力0.34MPaのアルゴンガスと圧力0.34MPaのヘリウムガスを用い、電圧37.0V、電流900Aの条件でプラズマを発生させた。溶射ガンの移動速度は24m/min、溶射距離は90mmとした。
プラズマ溶射装置への溶射粉末材の供給には、プラクスエア・サーフィス・テクノロジーズ社製の粉末供給機Model1264型を用いた。溶射粉末材をプラズマ溶射装置へ供給する速度は、20g/minとした。
(1) APS (Atmospheric Pressure Plasma Spraying)
A plasma spraying device SG-100 manufactured by Praxair Surface Technologies was used. Plasma generation conditions were as follows: argon gas at a pressure of 0.34 MPa and helium gas at a pressure of 0.34 MPa were used as plasma working gases, and plasma was generated at a voltage of 37.0 V and a current of 900 A. The moving speed of the thermal spray gun was 24 m/min, and the thermal spraying distance was 90 mm.
A powder feeder Model 1264 manufactured by Praxair Surface Technologies was used to supply the thermal spray powder material to the plasma spray apparatus. The rate at which the spray powder material was fed to the plasma spray apparatus was 20 g/min.
(2)SPS(サスペンションプラズマ溶射)
プログレッシブサーフェイス社製のプラズマ溶射装置100HEを使用した。溶射用スラリーをプラズマ溶射装置に供給する供給装置には、プログレッシブサーフェイス社製のLiquifeederHE(商品名) SPS/SPPSフィードシステムを使用した。溶射条件は、以下の通りである。
アルゴンガスの流量:180NL/min
窒素ガスの流量 : 70NL/min
水素ガスの流量 : 70NL/min
プラズマ出力 :105kW
溶射距離 : 76mm
トラバース速度 :1500mm/s
溶射角度 : 90°
スラリー供給量 : 38mL/min
パス数 : 50パス
(2) SPS (Suspension Plasma Spraying)
A plasma spraying device 100HE manufactured by Progressive Surface Co., Ltd. was used. A Liquifeeder HE (trade name) SPS/SPPS feed system manufactured by Progressive Surface Co., Ltd. was used as a supply device for supplying thermal spraying slurry to the plasma spraying apparatus. The thermal spraying conditions are as follows.
Argon gas flow rate: 180NL/min
Nitrogen gas flow rate: 70NL/min
Hydrogen gas flow rate: 70NL/min
Plasma output: 105kW
Spraying distance: 76mm
Traverse speed: 1500mm/s
Spraying angle: 90°
Slurry supply amount: 38mL/min
Number of passes: 50 passes
<溶射被膜の特性評価>
(1)硬度およびヤング率の測定
上記方法により形成された実施例1~8および比較例1~5の溶射被膜のビッカース硬度を株式会社島津製作所社製の微小硬度計HMV0001を使用して測定した結果を表1に示した。同様に、ヤング率をH.FISCHER社製の超微小押し込み硬さ試験機HM2000を使用して測定した結果を表1に示した。
<Characteristic evaluation of thermal spray coating>
(1) Measurement of hardness and Young's modulus The Vickers hardness of the sprayed coatings of Examples 1 to 8 and Comparative Examples 1 to 5 formed by the above method was measured using a microhardness meter HMV0001 manufactured by Shimadzu Corporation. The results are shown in Table 1. Similarly, Table 1 shows the results of measuring Young's modulus using an ultra-micro indentation hardness tester HM2000 manufactured by H.FISCHER.
(2)CMAS侵入層厚み評価試験
上記方法により形成された実施例1~8および比較例1~5の溶射被膜上に0.5mmの厚さとなる様にCMAS試験粉体を堆積し、Ar雰囲気中で1300℃3時間保持した後、溶射被膜の断面を走査電子顕微鏡(SEM)を用いたエネルギー分散型X線分析(EDX)により評価することでCMAS侵入層の厚みを測定した結果を表1に示した。本評価では桜島で採取した火山灰を平均粒子径50μmに粉砕した粉末をCMAS試験粉体として使用した。CMAS試験粉体の主成分は酸化ケイ素、炭素、酸化アルミニウム、酸化鉄、酸化カルシウム、酸化マグネシウム等であった。溶射被膜の断面電子顕微鏡写真は、図1(a)~(c)に示されるように、表面にCMAS侵入層が形成されている。なお、図1の(a)は比較例1、(b)は比較例2、(c)は比較例4により形成された溶射被膜を上記方法によりAr雰囲気中で1300℃3時間保持した後の断面電子顕微鏡写真を示している。溶射被膜の表面に結晶粒度が粗く表面が凹凸状のCMAS侵入組織が形成されていることが分かる。
(2) CMAS penetration layer thickness evaluation test CMAS test powder was deposited to a thickness of 0.5 mm on the thermal sprayed coatings of Examples 1 to 8 and Comparative Examples 1 to 5 formed by the above method, and Ar atmosphere was applied. Table 1 shows the results of measuring the thickness of the CMAS penetration layer by evaluating the cross section of the sprayed coating by energy dispersive X-ray analysis (EDX) using a scanning electron microscope (SEM). It was shown to. In this evaluation, powder obtained by pulverizing volcanic ash collected from Sakurajima to an average particle size of 50 μm was used as the CMAS test powder. The main components of the CMAS test powder were silicon oxide, carbon, aluminum oxide, iron oxide, calcium oxide, magnesium oxide, etc. As shown in FIGS. 1(a) to 1(c), cross-sectional electron micrographs of the sprayed coating show that a CMAS penetration layer is formed on the surface. In addition, in FIG. 1, (a) shows the sprayed coating formed in Comparative Example 1, (b) shows Comparative Example 2, and FIG. A cross-sectional electron micrograph is shown. It can be seen that a CMAS intrusion structure with coarse grain size and uneven surface is formed on the surface of the sprayed coating.
表1に示されるように、実施例1は比較例1を比較すると、造粒焼結によるYbTaOのみからなる比較例1のAPS溶射被膜に対して5質量%のSiO2が含有されることにより、実施例1では硬度及びヤング率が僅かに低下するもののCMAS侵入層の厚みが8.2μmから3.5μmに大幅に低下していることが分かる。同様に、実施例2、3、4及び5と比較例2を比較すると、同様に、実施例2、3、4では造粒焼結による8YSZのみからなる比較例2のAPS溶射被膜に対して、それぞれ1質量%、5質量%、8質量%及び10質量%のSiO2が含有されるとことにより、SiO2含有量の増加に伴い硬度及びヤング率が僅かに低下するもののCMAS侵入層の厚みが5.6μmからそれぞれ3.4μm、2.2μm、1.8μm、1.4μmとSiO2の含有量と共に低下していることが分かる。これに対して、比較例3と実施例5を比較すると、比較例3はSiO2の含有量が20質量%と高すぎるため、CMAS侵入層の厚みは実施例5の1.4μmと同等であったが、硬度及びヤング率が大幅に低下していることが分かる。次に、比較例4と実施例6を比較すると、造粒焼結によるYb2SiO5のみからなる比較例4のAPS溶射被膜に対して5質量%のSiO2が含有されることにより、実施例6は比較例4と硬度及びヤング率がほぼ同等であるがCMAS侵入層の厚みが1.4μmから0.5μmに大幅に低下していることが分かる。さらに、比較例5と実施例7を比較すると、焼結粉砕による8YSZのみからなる比較例5のSPS溶射被膜に対して5質量%のSiO2が含有されることにより、実施例7では硬度及びヤング率が僅かに低下するもののCMAS侵入層の厚みが1.4μmから0.5μmに大幅に低下していることが分かる。これに対して、実施例7と同様の組成であるが、粒子形態を8YSZにSiO2微粒子を被覆した粒子形態にしてSPS溶射被膜を形成した実施例8では、実施例7に比較して硬度が僅かに低下し、ヤング率もやや低下したが、CMASの侵入層の厚みは1.2μmとさらに低下していることが分かる。 As shown in Table 1, when comparing Example 1 with Comparative Example 1, it is found that 5% by mass of SiO 2 is contained in the APS sprayed coating of Comparative Example 1, which is made only of YbTaO by granulation and sintering. It can be seen that in Example 1, although the hardness and Young's modulus are slightly reduced, the thickness of the CMAS interstitial layer is significantly reduced from 8.2 μm to 3.5 μm. Similarly, when comparing Examples 2, 3, 4, and 5 with Comparative Example 2, it is found that in Examples 2, 3, and 4, compared to the APS sprayed coating of Comparative Example 2 consisting only of 8YSZ by granulation and sintering. , 1% by mass, 5% by mass, 8% by mass and 10% by mass of SiO 2 , respectively, caused the hardness and Young's modulus to decrease slightly with increasing SiO 2 content, but the CMAS interstitial layer It can be seen that the thickness decreases from 5.6 μm to 3.4 μm, 2.2 μm, 1.8 μm, and 1.4 μm, respectively, as the SiO 2 content increases. On the other hand, when Comparative Example 3 and Example 5 are compared, Comparative Example 3 has a too high SiO 2 content of 20% by mass, so the thickness of the CMAS interstitial layer is equivalent to 1.4 μm in Example 5. However, it can be seen that the hardness and Young's modulus are significantly reduced. Next, comparing Comparative Example 4 and Example 6, it is found that 5% by mass of SiO 2 is contained in the APS sprayed coating of Comparative Example 4, which is made of only Yb 2 SiO 5 by granulation and sintering. It can be seen that Example 6 has almost the same hardness and Young's modulus as Comparative Example 4, but the thickness of the CMAS penetration layer is significantly reduced from 1.4 μm to 0.5 μm. Furthermore, when Comparative Example 5 and Example 7 are compared, it is found that 5% by mass of SiO 2 is contained in the SPS sprayed coating of Comparative Example 5, which is made only of 8YSZ by sintering and pulverization, so that in Example 7, the hardness and It can be seen that although the Young's modulus slightly decreases, the thickness of the CMAS interstitial layer decreases significantly from 1.4 μm to 0.5 μm. On the other hand, in Example 8, which had the same composition as Example 7 but had a particle form of 8YSZ coated with SiO 2 fine particles to form an SPS sprayed coating, the hardness was lower than that of Example 7. Although the Young's modulus decreased slightly, the thickness of the CMAS interstitial layer decreased further to 1.2 μm.
Claims (8)
SiO2粒子とSiO2以外の酸化物粒子を含み、
溶射用粉末中における前記SiO2粒子の含有量が1質量%~10質量%であり、
前記SiO2以外の酸化物粒子は、イッテルビアシリカであることを特徴とする溶射用粉末。 A thermal spray powder for thermal barrier coating,
Contains SiO 2 particles and oxide particles other than SiO 2 ,
The content of the SiO 2 particles in the thermal spray powder is 1% by mass to 10% by mass,
A powder for thermal spraying, wherein the oxide particles other than SiO 2 are ytterbia silica .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019170616A JP7393166B2 (en) | 2019-09-19 | 2019-09-19 | Method for producing thermal spray powder, thermal spray slurry, and thermal barrier coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019170616A JP7393166B2 (en) | 2019-09-19 | 2019-09-19 | Method for producing thermal spray powder, thermal spray slurry, and thermal barrier coating |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021046588A JP2021046588A (en) | 2021-03-25 |
JP7393166B2 true JP7393166B2 (en) | 2023-12-06 |
Family
ID=74877880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019170616A Active JP7393166B2 (en) | 2019-09-19 | 2019-09-19 | Method for producing thermal spray powder, thermal spray slurry, and thermal barrier coating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7393166B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115011907B (en) * | 2022-06-10 | 2024-01-19 | 南方电网电力科技股份有限公司 | Supersonic flame spraying composite coating and preparation method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002309362A (en) | 2001-04-11 | 2002-10-23 | Mitsui Eng & Shipbuild Co Ltd | Thermal spraying material and thermal spray coating member |
JP2017125254A (en) | 2015-10-20 | 2017-07-20 | ゼネラル・エレクトリック・カンパニイ | Coating method and coated article |
JP2018040017A (en) | 2015-05-13 | 2018-03-15 | エリコンメテコジャパン株式会社 | Thermal spray powder, thermal spraying method and thermal spray coating |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56152959A (en) * | 1980-04-22 | 1981-11-26 | Vysoka Skola Chem Tech | Fusion spraying materials for heat spraying or plasma spraying and manufacture thereof |
JP2700241B2 (en) * | 1987-03-27 | 1998-01-19 | バブコツク日立株式会社 | Oxide spray material |
-
2019
- 2019-09-19 JP JP2019170616A patent/JP7393166B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002309362A (en) | 2001-04-11 | 2002-10-23 | Mitsui Eng & Shipbuild Co Ltd | Thermal spraying material and thermal spray coating member |
JP2018040017A (en) | 2015-05-13 | 2018-03-15 | エリコンメテコジャパン株式会社 | Thermal spray powder, thermal spraying method and thermal spray coating |
JP2017125254A (en) | 2015-10-20 | 2017-07-20 | ゼネラル・エレクトリック・カンパニイ | Coating method and coated article |
Also Published As
Publication number | Publication date |
---|---|
JP2021046588A (en) | 2021-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fauchais et al. | From powders to thermally sprayed coatings | |
US6723674B2 (en) | Multi-component ceramic compositions and method of manufacture thereof | |
Lin et al. | Characterization of alumina–3 wt.% titania coating prepared by plasma spraying of nanostructured powders | |
RU2451043C2 (en) | Strontium and titanium oxides and abrasive coatings obtained on their basis | |
Feng et al. | Ablation resistance of TaC-modified HfC coating prepared by supersonic plasma spraying for SiC-coated carbon/carbon composites | |
US10695839B2 (en) | Method for producing spray powders containing chromium nitride | |
US8318261B2 (en) | Thermally sprayed Al2O3 coatings having a high content of corundum without any property-reducing additives, and method for the production thereof | |
KR20020062855A (en) | Spray powder and method for its production | |
Ramachandran et al. | Synthesis, spheroidization and spray deposition of lanthanum zirconate using thermal plasma process | |
CA2576319C (en) | Partially-alloyed zirconia powder | |
US6319615B1 (en) | Use of a thermal spray method for the manufacture of a heat insulating coat | |
CN107815633A (en) | A kind of high-performance thermal barrier coating and its ceramic layer | |
Li et al. | Laser remelting of plasma-sprayed conventional and nanostructured Al2O3–13 wt.% TiO2 coatings on titanium alloy | |
KR102284838B1 (en) | Slurry Composition for Suspension Plasma Spraying, Method for Preparing the Same and Suspension Plasma Spray Coating Layer | |
JP7393166B2 (en) | Method for producing thermal spray powder, thermal spray slurry, and thermal barrier coating | |
KR101458815B1 (en) | Method for manufacturing thermal barrier coating using suspension plasma spraying | |
KR102013652B1 (en) | Method for manufacturing ceramic thermal barrier coatings having enhanced thermal durability by controlling porosity | |
Iqbal et al. | A relationship of porosity and mechanical properties of spark plasma sintered scandia stabilized zirconia thermal barrier coating | |
Zou et al. | Preparation, mechanical properties and cyclic oxidation behavior of the nanostructured NiCrCoAlY-TiB2 coating | |
Khor et al. | Hot isostatic pressing of plasma sprayed yttria-stabilized zirconia | |
JP6596214B2 (en) | Thermal spray material | |
KR101189184B1 (en) | Sintered body for thermal barrier coating, method for manufacturing the same and method for manufacturing double-layered thermal barrier using the same | |
RU2634864C1 (en) | Powder material for gas-thermal spraying of coatings | |
WO2021060005A1 (en) | Powder material for spraying, and method for manufacturing sprayed film | |
JP2017066465A (en) | Thermal spray powder and method for forming thermal spray coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190927 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220428 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230207 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230711 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230810 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231031 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231124 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7393166 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |