Nothing Special   »   [go: up one dir, main page]

JP7372083B2 - Expanded particle manufacturing device and manufacturing method - Google Patents

Expanded particle manufacturing device and manufacturing method Download PDF

Info

Publication number
JP7372083B2
JP7372083B2 JP2019158794A JP2019158794A JP7372083B2 JP 7372083 B2 JP7372083 B2 JP 7372083B2 JP 2019158794 A JP2019158794 A JP 2019158794A JP 2019158794 A JP2019158794 A JP 2019158794A JP 7372083 B2 JP7372083 B2 JP 7372083B2
Authority
JP
Japan
Prior art keywords
temperature
steam
foaming tank
pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019158794A
Other languages
Japanese (ja)
Other versions
JP2021037635A (en
Inventor
昌英 戎井
経宣 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2019158794A priority Critical patent/JP7372083B2/en
Priority to CN202010875801.8A priority patent/CN112440403B/en
Publication of JP2021037635A publication Critical patent/JP2021037635A/en
Application granted granted Critical
Publication of JP7372083B2 publication Critical patent/JP7372083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Molding Of Porous Articles (AREA)
  • Flow Control (AREA)
  • Control Of Temperature (AREA)

Description

本発明は、発泡粒子の製造装置および製造方法に関する。 The present invention relates to an expanded particle manufacturing apparatus and manufacturing method.

熱可塑性樹脂からなる発泡粒子は、発泡槽内で分散剤を含む水中に熱可塑性樹脂粒子を分散させ、ついで揮発性発泡剤を添加し、高温高圧下に保って揮発性発泡剤を含浸させたのち、低圧雰囲気下に放出する方法(以下、除圧発泡法)により製造されることは知られている。 Expanded particles made of thermoplastic resin are obtained by dispersing thermoplastic resin particles in water containing a dispersant in a foaming tank, then adding a volatile blowing agent, and keeping the mixture under high temperature and pressure to impregnate the volatile blowing agent. It is known that the material is manufactured by a method in which the material is subsequently released into a low-pressure atmosphere (hereinafter referred to as a depressurized foaming method).

このような発泡粒子の製造方法である除圧発泡法では、各生産バッチでの発泡粒子の発泡倍率のバラツキを小さくするために、生産バッチ間での発泡槽内温バラツキを小さくすること、およびバッチ内での発泡槽の温度制御の精度が高いこと(±0.1℃レベル)が必要である。このため、発泡槽内の温度は、昇温から発泡終了までの間で精密に調節されている。図5は、発泡槽1内の温度を調節する従来の温調制御部の概略構成を模式的に示した図である。 In the depressurized foaming method, which is a method for manufacturing such foamed particles, in order to reduce the variation in the expansion ratio of the foamed particles in each production batch, it is necessary to reduce the variation in the temperature inside the foaming tank between production batches, and It is necessary that the temperature control of the foaming tank within a batch be highly accurate (±0.1°C level). For this reason, the temperature within the foaming tank is precisely regulated from the temperature rise until the end of foaming. FIG. 5 is a diagram schematically showing a schematic configuration of a conventional temperature control section that adjusts the temperature inside the foaming tank 1. As shown in FIG.

図5に示されるように、従来の発泡粒子の製造装置は、発泡槽1と温調制御部100と、を備えている。発泡槽1には、その外周部を取り囲むように、ジャケット部2が設けられている。従来の温調制御部100は、ジャケット部2に対して蒸気を供給する蒸気供給管路111を備えている。そして、蒸気供給管路111には、蒸気供給源から蒸気が供給される上流側から下流側(ジャケット部2側)へ向けて、減圧弁112、開閉弁113、および制御弁114がこの順に設けられている。減圧弁112は、蒸気供給源から流れる高圧の蒸気を減圧して、ジャケット部2へ供給する蒸気圧を一定に保つ。また、制御弁114は、上流側から流れる蒸気を所定の流量に調節し下流側へ送る。制御弁114は、温度指示調節器(TIC)に接続されている。当該温度指示調節器は、発泡槽1内の温度の信号を受け、当該信号に基づいてPID制御などのプロセス制御方式を用いて制御弁114の弁開度を調節する。これによって、蒸気供給管路111を流れる蒸気の流量が調節される。このように、従来の構成では、発泡槽1の昇温から発泡終了までの間、一定口径(呼び径)の蒸気供給管路111を用いて、ジャケット部2へ一定圧力の蒸気を供給するようになっている。そして、この一定圧力の蒸気の供給量を制御弁114により調節することによって、発泡槽1内の温度が調節される。 As shown in FIG. 5, the conventional foamed particle manufacturing apparatus includes a foaming tank 1 and a temperature control section 100. A jacket part 2 is provided in the foaming tank 1 so as to surround the outer periphery thereof. The conventional temperature control section 100 includes a steam supply pipe 111 that supplies steam to the jacket section 2 . The steam supply pipe 111 is provided with a pressure reducing valve 112, an on-off valve 113, and a control valve 114 in this order from the upstream side where steam is supplied from the steam supply source to the downstream side (jacket portion 2 side). It is being The pressure reducing valve 112 reduces the pressure of high-pressure steam flowing from a steam supply source and keeps the steam pressure supplied to the jacket portion 2 constant. Further, the control valve 114 adjusts the steam flowing from the upstream side to a predetermined flow rate and sends it to the downstream side. Control valve 114 is connected to a temperature indicating controller (TIC). The temperature indicating regulator receives a signal of the temperature inside the foaming tank 1, and adjusts the valve opening degree of the control valve 114 based on the signal using a process control method such as PID control. Thereby, the flow rate of steam flowing through the steam supply pipe 111 is adjusted. In this way, in the conventional configuration, steam at a constant pressure is supplied to the jacket part 2 using the steam supply pipe 111 having a constant diameter (nominal diameter) from the time when the temperature of the foaming tank 1 increases until the end of foaming. It has become. The temperature inside the foaming tank 1 is adjusted by adjusting the supply amount of this constant pressure steam using the control valve 114.

各生産バッチで発泡倍率バラツキが小さい発泡粒子を製造する上で、発泡槽内の温度を精密に制御することは重要である。発泡槽1の内部は最大160℃へ加熱する必要があるため、ジャケット部2へ蒸気を供給して加熱する。そのため、(a)加熱のみ(冷却しない)の温度制御となること、(b)発泡槽1の熱容量が大きいことから、温調制御部100による発泡槽1の内温測定値の応答遅れ時間が長く、精度良く内温を制御することは難しい。図5に示された従来の装置では、発泡槽1内の温度を精密に制御する点において、改善の余地がある。 Precise control of the temperature in the foaming tank is important in producing foamed particles with small variations in expansion ratio in each production batch. Since the inside of the foaming tank 1 needs to be heated to a maximum of 160° C., steam is supplied to the jacket portion 2 to heat it. Therefore, (a) the temperature control is only heating (not cooling), and (b) the heat capacity of the foaming tank 1 is large, so the response delay of the internal temperature measurement value of the foaming tank 1 by the temperature control unit 100 is It is difficult to control the internal temperature with high precision over a long period of time. The conventional device shown in FIG. 5 has room for improvement in terms of precisely controlling the temperature inside the foaming tank 1.

本発明の一態様は、発泡槽内の温度を精密に制御することが可能な発泡粒子の製造装置および製造方法を実現することを目的とする。 An object of one aspect of the present invention is to realize a foamed particle manufacturing apparatus and manufacturing method that can precisely control the temperature within a foaming tank.

上記の課題を解決するために、本発明の一態様に係る発泡粒子の製造装置は、発泡槽と、前記発泡槽の外周部に設けられたジャケット部と、前記ジャケット部へ蒸気を供給する供給管を有し、前記発泡槽内の温度を調節する温調制御部と、を備え、前記温調制御部は、前記ジャケット部へ供給される蒸気の圧力を一定に保つ第1の減圧弁と、前記第1の減圧弁の下流側から分岐し、蒸気供給量が互いに異なる複数の分岐管と、前記複数の分岐管の開閉切替を制御するための切替制御部と、前記複数の分岐管の少なくとも1つに設けられ、当該分岐管での蒸気量を調節する第1の制御弁と、を備えたことを特徴としている。 In order to solve the above problems, an apparatus for manufacturing expanded particles according to one aspect of the present invention includes a foaming tank, a jacket part provided on the outer periphery of the foaming tank, and a supply supply for supplying steam to the jacket part. a temperature control section that has a pipe and adjusts the temperature within the foaming tank, and the temperature control section includes a first pressure reducing valve that maintains a constant pressure of the steam supplied to the jacket section. , a plurality of branch pipes branching from the downstream side of the first pressure reducing valve and having different steam supply amounts; a switching control unit for controlling opening/closing switching of the plurality of branch pipes; and a switching control unit for controlling switching of the plurality of branch pipes. The branch pipe is characterized in that it includes a first control valve provided in at least one of the branch pipes to adjust the amount of steam in the branch pipe.

また、上記の課題を解決するために、本発明の一態様に係る発泡粒子の製造装置は、発泡槽と、前記発泡槽の外周部に設けられたジャケット部と、前記ジャケット部へ蒸気を供給する供給管を有し、前記発泡槽内の温度を調節する温調制御部と、を備え、前記温調制御部は、前記供給管に設けられ、上流側の蒸気供給源から送られる蒸気の圧力を減圧して、下流側へ送る第2の減圧弁と、前記供給管における前記第2の減圧弁の下流側に設けられ、前記ジャケット部への蒸気流量を調節する第2の制御弁と、前記第2の減圧弁を制御し、前記供給管を流れる蒸気の圧力を上昇または降下させる減圧弁圧力制御部と、を備えたことを特徴としている。 Furthermore, in order to solve the above problems, an apparatus for manufacturing expanded particles according to one aspect of the present invention includes a foaming tank, a jacket part provided on the outer periphery of the foaming tank, and supplying steam to the jacket part. a temperature control section that is provided in the supply pipe and that controls the temperature of the steam sent from the upstream steam supply source. a second pressure reducing valve that reduces the pressure and sends it to the downstream side; a second control valve that is provided downstream of the second pressure reducing valve in the supply pipe and adjusts the flow rate of steam to the jacket portion; , a pressure reducing valve pressure control section that controls the second pressure reducing valve and increases or decreases the pressure of steam flowing through the supply pipe.

また、上記の課題を解決するために、本発明の一態様に係る発泡粒子の製造方法は、発泡槽と、前記発泡槽の周囲に設けられたジャケット部と、前記ジャケット部へ蒸気を供給する供給管を有し、前記発泡槽内の温度を調節する温調制御部と、を備え、前記温調制御部は、前記ジャケット部へ供給される蒸気の圧力を一定に保つ第1の減圧弁と、前記第1の減圧弁の下流側から分岐し、蒸気供給量が互いに異なる複数の分岐管と、前記複数の分岐管の少なくとも1つに設けられた第1の制御弁と、を備えた製造装置を用いた発泡粒子の製造方法において、前記複数の分岐管の開閉切替を制御するとともに、当該分岐管での蒸気量を前記第1の制御弁により調節することを特徴としている。 Furthermore, in order to solve the above problems, a method for manufacturing expanded particles according to one aspect of the present invention includes a foaming tank, a jacket part provided around the foaming tank, and supplying steam to the jacket part. a temperature control section that has a supply pipe and adjusts the temperature within the foaming tank; the temperature control section includes a first pressure reducing valve that maintains a constant pressure of the steam supplied to the jacket section; and a plurality of branch pipes branching from the downstream side of the first pressure reducing valve and having mutually different steam supply amounts, and a first control valve provided in at least one of the plurality of branch pipes. The method for manufacturing expanded particles using a manufacturing apparatus is characterized in that opening and closing switching of the plurality of branch pipes is controlled, and the amount of steam in the branch pipes is adjusted by the first control valve.

また、上記の課題を解決するために、本発明の一態様に係る発泡粒子の製造方法は、発泡槽と、前記発泡槽の周囲に設けられたジャケット部と、前記ジャケット部へ蒸気を供給する供給管を有し、前記発泡槽内の温度を調節する温調制御部と、を備え、前記温調制御部は、前記供給管に設けられ、上流側の蒸気供給源から送られる蒸気の圧力を減圧して、下流側へ送る第2の減圧弁と、前記供給管における前記第2の減圧弁の下流側に設けられた第2の制御弁と、を備えた製造装置を用いた発泡粒子の製造方法において、前記第2の減圧弁を制御し、前記供給管を流れる蒸気の圧力を上昇または降下させるとともに、前記ジャケット部への蒸気流量を前記第2の制御弁により調節することを特徴としている。 Furthermore, in order to solve the above problems, a method for manufacturing expanded particles according to one aspect of the present invention includes a foaming tank, a jacket part provided around the foaming tank, and supplying steam to the jacket part. a temperature control section that has a supply pipe and adjusts the temperature in the foaming tank, and the temperature control section is provided in the supply pipe and controls the pressure of steam sent from an upstream steam supply source. Foamed particles using a production device including a second pressure reducing valve that reduces the pressure and sends it to the downstream side, and a second control valve provided on the downstream side of the second pressure reducing valve in the supply pipe. In the manufacturing method, the second pressure reducing valve is controlled to increase or decrease the pressure of steam flowing through the supply pipe, and the flow rate of steam to the jacket portion is adjusted by the second control valve. It is said that

本発明の一態様によれば、発泡槽内の温度を精密に制御することができる。 According to one aspect of the present invention, the temperature within the foaming tank can be precisely controlled.

本発明の実施形態1に係る発泡粒子の製造装置の概略構成を模式的に示した図である。1 is a diagram schematically showing a schematic configuration of an expanded particle manufacturing apparatus according to Embodiment 1 of the present invention. 発泡工程中の発泡槽の内温設定の一例、および当該内温設定に対応した実施形態1に係る製造装置における複数の分岐管の切替制御を示すグラフである。It is a graph which shows an example of the internal temperature setting of the foaming tank during a foaming process, and the switching control of the several branch pipe in the manufacturing apparatus based on Embodiment 1 corresponding to the said internal temperature setting. 本発明の実施形態2に係る発泡粒子の製造装置の概略構成を模式的に示した図である。FIG. 2 is a diagram schematically showing a schematic configuration of an expanded particle manufacturing apparatus according to Embodiment 2 of the present invention. 発泡工程中の発泡槽の内温設定の一例、および当該内温設定に対応した実施形態2に係る製造装置における複数の分岐管の切替制御を示すグラフである。It is a graph which shows an example of the internal temperature setting of the foaming tank during a foaming process, and the switching control of the several branch pipe in the manufacturing apparatus based on Embodiment 2 corresponding to the said internal temperature setting. 従来の発泡粒子の製造装置の概略構成を模式的に示した図である。1 is a diagram schematically showing a schematic configuration of a conventional foamed particle manufacturing apparatus.

〔実施形態1〕
以下、本発明の一実施形態について、詳細に説明する。図1は、本実施形態に係る発泡粒子の製造装置の概略構成を模式的に示した図である。
[Embodiment 1]
Hereinafter, one embodiment of the present invention will be described in detail. FIG. 1 is a diagram schematically showing a schematic configuration of an expanded particle manufacturing apparatus according to the present embodiment.

図1に示されるように、本実施形態に係る発泡粒子の製造装置は、発泡槽1と、ジャケット部2と、温調制御部10と、を備えている。発泡槽1は、発泡粒子の製造に使用される従来公知のものであれば、特に限定されない。ジャケット部2は、発泡槽1と離間するように、発泡槽1の外周部を覆うように設けられている。 As shown in FIG. 1, the expanded particle manufacturing apparatus according to the present embodiment includes a foaming tank 1, a jacket section 2, and a temperature control section 10. The foaming tank 1 is not particularly limited as long as it is a conventionally known foaming tank used for producing foamed particles. The jacket part 2 is provided so as to cover the outer peripheral part of the foaming tank 1 so as to be spaced apart from the foaming tank 1.

温調制御部10は、ジャケット部2に蒸気を供給する供給管11を有している。供給管11から供給される蒸気は、発泡槽1とジャケット部2との間の空間に満たされる。そして、この蒸気によって、発泡槽1の内部は加熱される。温調制御部10は、ジャケット部2へ供給される蒸気量を調節することによって、発泡槽1内の温度を調節する。なお、本実施形態では、供給管11を流れる加熱媒体として蒸気を用いている。しかし、供給管11を流れる加熱媒体は、これに限定されるものではなく、発泡槽1に投入される熱可塑性樹脂の種類に応じて他の加熱媒体、例えば、オイル、加熱空気、蒸気と加熱空気との混合媒体などを用いることができる。 The temperature control section 10 has a supply pipe 11 that supplies steam to the jacket section 2 . Steam supplied from the supply pipe 11 fills the space between the foaming tank 1 and the jacket part 2. The inside of the foaming tank 1 is heated by this steam. The temperature control section 10 regulates the temperature within the foaming tank 1 by regulating the amount of steam supplied to the jacket section 2 . Note that in this embodiment, steam is used as the heating medium flowing through the supply pipe 11. However, the heating medium flowing through the supply pipe 11 is not limited to this, and depending on the type of thermoplastic resin introduced into the foaming tank 1, other heating media may be used, such as oil, heated air, steam, or heating medium. A mixed medium with air can be used.

温調制御部10は、供給管11と、減圧弁12(第1の減圧弁)と、開閉弁13a~13cと、制御弁14bおよび14c(第1の制御弁)と、を備えている。減圧弁12は、上流側の蒸気供給源から送られる高圧蒸気の圧力を最適圧力に減圧する弁であり、ジャケット部2へ供給される蒸気の圧力を一定に保つ。 The temperature control unit 10 includes a supply pipe 11, a pressure reducing valve 12 (first pressure reducing valve), on-off valves 13a to 13c, and control valves 14b and 14c (first control valves). The pressure reducing valve 12 is a valve that reduces the pressure of high-pressure steam sent from an upstream steam supply source to an optimal pressure, and keeps the pressure of the steam supplied to the jacket portion 2 constant.

分岐管11a~11cは、供給管11における減圧弁12の下流側から分岐している。分岐管11a~11cはそれぞれ、蒸気供給量が異なるように構成されている。分岐管11a~11cは、この順で蒸気供給量が大きくなるように構成されている。図1に示される構成において、例えば、発泡槽1の容量2~4mに対して、分岐管11aは、呼び径50A(外径:60.5mm)であり、分岐管11bは、呼び径25A(外径:34.0mm)であり、分岐管11cは、呼び径15A(外径:21.7mm)である。 The branch pipes 11a to 11c are branched from the supply pipe 11 downstream of the pressure reducing valve 12. The branch pipes 11a to 11c are configured to supply different amounts of steam, respectively. The branch pipes 11a to 11c are configured so that the amount of steam supplied increases in this order. In the configuration shown in FIG. 1, for example, for a capacity of 2 to 4 m 3 of the foaming tank 1, the branch pipe 11a has a nominal diameter of 50 A (outer diameter: 60.5 mm), and the branch pipe 11b has a nominal diameter of 25 A. (outer diameter: 34.0 mm), and the branch pipe 11c has a nominal diameter of 15A (outer diameter: 21.7 mm).

開閉弁13a~13cはそれぞれ、分岐管11a~11cの開閉を切替える弁である。本実施形態に係る製造装置では、供給管11における減圧弁12の下流側で、蒸気供給量が異なる3つの分岐管に分岐されている。そして、開閉弁13a~13cにより、分岐管11a~11cそれぞれの開閉が切り替えられるようになっている。 The on-off valves 13a to 13c are valves that open and close the branch pipes 11a to 11c, respectively. In the manufacturing apparatus according to this embodiment, the supply pipe 11 is branched into three branch pipes with different amounts of steam supplied on the downstream side of the pressure reducing valve 12. Opening and closing of the branch pipes 11a to 11c can be switched by the on-off valves 13a to 13c.

本実施形態に係る製造装置では、分岐管11a~11cそれぞれにおいて、蒸気供給量が調節されるようになっている。制御弁14bおよび14cはそれぞれ、分岐管11bおよび11cの呼び径に対応した接続径を有し、分岐管11bおよび11cに接続されている。制御弁14bは、分岐管11bでの蒸気量を調節する弁であり、制御弁14cは、分岐管11cでの蒸気量を調節する弁である。制御弁14bおよび14cには、発泡槽1またはジャケット部2内の温度の測定値等がフィードバック制御される。制御弁14bおよび14cはそれぞれ、フィードバックされた前記測定値等に基づいて、分岐管11bおよび11cを流れる蒸気量を調節する。具体的には、制御弁14bおよび14cはそれぞれ、温度指示調節器(TIC)に接続されている。当該温度指示調節器は、発泡槽1内の設定温度のデータが与えられ、発泡槽1内の温度データを測定し、設定温度データおよび測定温度データの両信号からPID制御等のプロセス制御方式によって、発泡槽1内の温度が前記設定温度になるように、制御弁14bおよび/または14cの弁開度を制御する。これによって、分岐管11bおよび/または11cを流れる蒸気の流量が調節される。また、蒸気供給量が最も大きい分岐管11aには、制御弁が設けられていない。 In the manufacturing apparatus according to this embodiment, the amount of steam supplied is adjusted in each of the branch pipes 11a to 11c. The control valves 14b and 14c each have a connection diameter corresponding to the nominal diameter of the branch pipes 11b and 11c, and are connected to the branch pipes 11b and 11c. The control valve 14b is a valve that adjusts the amount of steam in the branch pipe 11b, and the control valve 14c is a valve that adjusts the amount of steam in the branch pipe 11c. The control valves 14b and 14c are feedback-controlled with the measured value of the temperature inside the foaming tank 1 or the jacket section 2, and the like. The control valves 14b and 14c respectively adjust the amount of steam flowing through the branch pipes 11b and 11c based on the fed-back measurement values and the like. Specifically, control valves 14b and 14c are each connected to a temperature indicating controller (TIC). The temperature indicating regulator is given data on the set temperature in the foaming tank 1, measures the temperature data in the foaming tank 1, and uses a process control method such as PID control based on both signals of the set temperature data and measured temperature data. The valve opening degrees of the control valves 14b and/or 14c are controlled so that the temperature inside the foaming tank 1 reaches the set temperature. This adjusts the flow rate of steam flowing through the branch pipes 11b and/or 11c. Further, the branch pipe 11a that supplies the largest amount of steam is not provided with a control valve.

本実施形態に係る製造装置は、開閉弁切替制御部21(切替制御部)を備えている。開閉弁切替制御部21は、開閉弁13a~13cの開閉切替を制御するためのものである。開閉弁切替制御部21は、発泡工程中の発泡槽1内の温度に応じて、開閉弁13a~13cの開閉切替を制御する。開閉弁切替制御部21によって分岐管11a~11cの開閉が切り替えられるので、この切り替えに応じて、ジャケット部2へ供給される蒸気量は変化する。 The manufacturing apparatus according to this embodiment includes an on-off valve switching control section 21 (switching control section). The on-off valve switching control section 21 is for controlling the on-off switching of the on-off valves 13a to 13c. The on-off valve switching control section 21 controls the on-off switching of the on-off valves 13a to 13c according to the temperature inside the foaming tank 1 during the foaming process. Since the opening/closing of the branch pipes 11a to 11c is switched by the on-off valve switching control section 21, the amount of steam supplied to the jacket section 2 changes in accordance with this switching.

(開閉弁切替制御部21による蒸気供給量の制御)
本実施形態に係る製造装置では、ジャケット部2への蒸気供給量の範囲は、開閉弁切替制御部21によって制御されている。また、本実施形態に係る発泡粒子の製造方法は、図1に示した製造装置を用いた方法であり、複数の分岐管11a~11cの開閉切替を制御するとともに、分岐管11bおよび11cでの蒸気量を制御弁14bおよび14cにより調節する。そして、このような制御方式により、発泡工程中の発泡槽1内の昇温から発泡終了までの発泡槽1内の温度が精密に制御され得る。
(Control of steam supply amount by on-off valve switching control unit 21)
In the manufacturing apparatus according to this embodiment, the range of the amount of steam supplied to the jacket section 2 is controlled by the on-off valve switching control section 21. Further, the method for manufacturing expanded particles according to the present embodiment is a method using the manufacturing apparatus shown in FIG. The amount of steam is adjusted by control valves 14b and 14c. With such a control system, the temperature inside the foaming tank 1 from the temperature increase in the foaming tank 1 during the foaming process until the end of foaming can be precisely controlled.

開閉弁切替制御部21による蒸気供給量の制御について、図2を参照して説明する。図2は、発泡工程中の発泡槽1の内温設定の一例、および当該内温設定に対応した分岐管11a~11cの切替制御を示すグラフである。なお、図2においては、分岐管11aの口径をD1とし、分岐管11bの口径をD2とし、分岐管11cの口径をD3としている。そして、口径D1~D3の大きさは、D1>D2>D3となっている。 Control of the amount of steam supplied by the on-off valve switching control section 21 will be explained with reference to FIG. 2. FIG. 2 is a graph showing an example of the internal temperature setting of the foaming tank 1 during the foaming process and switching control of the branch pipes 11a to 11c corresponding to the internal temperature setting. In addition, in FIG. 2, the diameter of the branch pipe 11a is set to D1, the diameter of the branch pipe 11b is set to D2, and the diameter of the branch pipe 11c is set to D3. The sizes of the apertures D1 to D3 are such that D1>D2>D3.

まず、開閉弁切替制御部21は、開閉弁13aのみを開放して発泡槽1の昇温をスタートさせる。これにより、分岐管11aのみを通過して蒸気がジャケット部2へ流れる。このとき、分岐管11aの口径D1は、分岐管11a~11cの口径の中で最も大きい口径である。それゆえ、ジャケット部2への蒸気供給量が最も大きくなる。このため、ジャケット部2には分岐管11aを介して最大量の蒸気が供給され続ける。これにより、発泡槽1内の温度を速く上昇させることができる(発泡槽1の内温上昇速度:傾きS1)。 First, the on-off valve switching control section 21 opens only the on-off valve 13a and starts raising the temperature of the foaming tank 1. Thereby, the steam flows to the jacket part 2 passing only through the branch pipe 11a. At this time, the diameter D1 of the branch pipe 11a is the largest diameter among the diameters of the branch pipes 11a to 11c. Therefore, the amount of steam supplied to the jacket portion 2 is the largest. Therefore, the maximum amount of steam continues to be supplied to the jacket portion 2 via the branch pipe 11a. Thereby, the temperature inside the foaming tank 1 can be quickly raised (rate of increase in internal temperature of the foaming tank 1: slope S1).

次いで、発泡槽1内の温度が所定の設定温度T1に到達した後、所定のタイミングで、開閉弁切替制御部21は、開閉弁13aを閉じ開閉弁13bのみを開放するように制御する。このとき、分岐管11bのみを通過した蒸気がジャケット部2へ流れる。温度指示調節器(TIC)は、発泡槽1内の温度が設定温度T1から設定温度T2へ到達するように、制御弁14bの弁開度を調節する。この制御弁14bの調節により、ジャケット部2への蒸気供給量が調節される。分岐管11bの口径D2が分岐管11aの口径D1よりも小さいので、ジャケット部2への蒸気供給速度は減少する。このような蒸気供給速度が減少した状態で、発泡槽1内の温度を設定温度T2へオーバーシュートせずに到達させるために、温度指示調節器(TIC)には、内温上昇速度が異なる2本の折れ線(発泡槽1の内温上昇速度:傾きS2、S2’、傾きの大きさ:S2>S2’)として発泡槽1内の温度の設定値が与えられる。また、温度指示調節器(TIC)は、発泡槽1内の温度測定値に基づいて、発泡槽1内の温度が前記折れ線の設定値に沿うように、制御弁14bの開弁度を調節し、これによりジャケット部2への蒸気供給量が調節される。このような蒸気供給量の調節により、発泡槽1内の温度を設定温度T1からゆるやかに上昇させて、目標の設定温度T2に到達させることができる。 Next, after the temperature in the bubbling tank 1 reaches a predetermined set temperature T1, the on-off valve switching control section 21 controls the on-off valve 13a to close and only the on-off valve 13b to open at a predetermined timing. At this time, the steam that has passed only through the branch pipe 11b flows to the jacket portion 2. The temperature indication controller (TIC) adjusts the valve opening degree of the control valve 14b so that the temperature in the foaming tank 1 reaches the set temperature T2 from the set temperature T1. By adjusting the control valve 14b, the amount of steam supplied to the jacket portion 2 is adjusted. Since the diameter D2 of the branch pipe 11b is smaller than the diameter D1 of the branch pipe 11a, the rate of steam supply to the jacket portion 2 is reduced. In order to make the temperature in the foaming tank 1 reach the set temperature T2 without overshooting under such a reduced steam supply rate, the temperature indication controller (TIC) is equipped with two controllers with different internal temperature rise rates. The set value of the temperature inside the foaming tank 1 is given as a polygonal line (rate of increase in internal temperature of the foaming tank 1: slope S2, S2', magnitude of slope: S2>S2'). Further, the temperature indication controller (TIC) adjusts the degree of opening of the control valve 14b based on the measured temperature value in the foaming tank 1 so that the temperature in the foaming tank 1 follows the set value of the polygonal line. , whereby the amount of steam supplied to the jacket section 2 is adjusted. By adjusting the amount of steam supplied in this manner, the temperature in the foaming tank 1 can be gradually raised from the set temperature T1 to reach the target set temperature T2.

さらに、発泡槽1内の温度が設定温度T2に到達した後、所定のタイミングで、開閉弁切替制御部21は、開閉弁13bを閉じ開閉弁13cのみを開放するように制御する。このとき、分岐管11cのみを通過して蒸気がジャケット部2へ流れる。温度指示調節器(TIC)は、発泡槽1内の温度が設定温度T2から設定温度T3へ到達するように、制御弁14cの弁開度を調節する。この制御弁14cの調節により、ジャケット部2への蒸気供給量が調節される。分岐管11cの口径D3は、分岐管11bの口径D2よりも小さので、ジャケット部2への蒸気供給速度はさらに減少する。このような蒸気供給速度が減少した状態で、発泡槽1内の温度を目標の設定温度T3へオーバーシュートせずに到達させるために、温度指示調節器(TIC)には、設定温度T2から設定温度T3へ向かう直線として発泡槽1内の温度の設定値が与えられる。また、温度指示調節器(TIC)は、発泡槽1内の温度測定値に基づいて、発泡槽1内の温度が設定温度T2から目標の設定温度T3への設定値の直線に沿うように、制御弁14cの弁開度を調節し、これにより、ジャケット部2への蒸気供給量が調節される。このような蒸気供給量の調節により、発泡槽1内の温度を目標の設定温度T3に到達させることができる(発泡槽1の内温上昇速度:傾きS3)。 Furthermore, after the temperature in the foaming tank 1 reaches the set temperature T2, the on-off valve switching control section 21 controls the on-off valve 13b to close and only the on-off valve 13c to open at a predetermined timing. At this time, the steam flows to the jacket portion 2 through only the branch pipe 11c. The temperature indication controller (TIC) adjusts the valve opening degree of the control valve 14c so that the temperature in the foaming tank 1 reaches the set temperature T3 from the set temperature T2. By adjusting the control valve 14c, the amount of steam supplied to the jacket portion 2 is adjusted. Since the diameter D3 of the branch pipe 11c is smaller than the diameter D2 of the branch pipe 11b, the steam supply speed to the jacket portion 2 is further reduced. In order to make the temperature in the foaming tank 1 reach the target set temperature T3 without overshooting under such a reduced steam supply rate, the temperature indicating controller (TIC) has a setting temperature from the set temperature T2. The set value of the temperature in the foaming tank 1 is given as a straight line heading towards the temperature T3. Further, the temperature indication controller (TIC) is configured to adjust the temperature in the foaming tank 1 based on the measured temperature value in the foaming tank 1 so that the temperature in the foaming tank 1 follows a straight line from the set temperature T2 to the target set temperature T3. The valve opening degree of the control valve 14c is adjusted, and thereby the amount of steam supplied to the jacket portion 2 is adjusted. By adjusting the amount of steam supplied in this manner, the temperature inside the foaming tank 1 can be made to reach the target set temperature T3 (rate of increase in internal temperature of the foaming tank 1: slope S3).

このように開閉弁切替制御部21は、蒸気供給量が最も大きい分岐管11aから蒸気供給量が最も小さい分岐管11cへ順に、開閉を切替えるように構成されている。これにより、発泡槽1内の温度は、設定温度T1から設定温度T3へと、精密にかつ再現性を高めて調節できる。本実施形態に係る製造装置によれば、発泡槽1内の温度を最大160℃で±0.1℃以内に精密に制御することができる。 In this way, the on-off valve switching control unit 21 is configured to switch opening and closing in order from the branch pipe 11a with the largest amount of steam supply to the branch pipe 11c with the smallest amount of steam supply. Thereby, the temperature in the foaming tank 1 can be adjusted from the set temperature T1 to the set temperature T3 with precision and improved reproducibility. According to the manufacturing apparatus according to this embodiment, the temperature inside the foaming tank 1 can be precisely controlled to within ±0.1°C at a maximum of 160°C.

このように、本実施形態に係る製造装置では、開閉弁切替制御部21による開閉弁13a~13cの切替制御により、発泡槽1内の温度を、設定温度T1、T2およびT3に3段階で制御することができる。それゆえ、本実施形態に係る製造装置によれば、従来の製造装置と比較して、精密にかつ再現性を高めて発泡槽1内の温度を制御することができる。 As described above, in the manufacturing apparatus according to the present embodiment, the temperature in the foaming tank 1 is controlled in three stages to set temperatures T1, T2, and T3 by switching control of the on-off valves 13a to 13c by the on-off valve switching control section 21. can do. Therefore, according to the manufacturing apparatus according to the present embodiment, the temperature inside the foaming tank 1 can be controlled more precisely and with improved reproducibility compared to conventional manufacturing apparatuses.

図1に示される構成では、供給管11は3つの分岐管11a~11cを有していた。しかし、本実施形態に係る製造装置において、分岐管の数は、複数であればよく、発泡槽1の寸法(容量)または発泡工程中の発泡槽1内の温度制御の方法や精度に応じて適宜設定可能である。また、分岐管11a~11cの蒸気供給量を規定する呼び径も、図1に示される構成に限定されず、発泡槽1の寸法または発泡工程中の発泡槽1内の温度制御の精度に応じて適宜設定可能である。 In the configuration shown in FIG. 1, the supply pipe 11 had three branch pipes 11a to 11c. However, in the manufacturing apparatus according to the present embodiment, the number of branch pipes may be plural and may vary depending on the dimensions (capacity) of the foaming tank 1 or the method and accuracy of temperature control in the foaming tank 1 during the foaming process. It can be set as appropriate. Further, the nominal diameter that defines the steam supply amount of the branch pipes 11a to 11c is not limited to the configuration shown in FIG. It can be set as appropriate.

本実施形態における制御弁は、分岐管11a~11cの少なくとも1つに設けられていればよい。例えば、発泡槽1内の昇温初期に使用される分岐管11aには、制御弁が設けられていてもよいし、図1に示すように制御弁が設けられていなくてもよい。制御弁の設置の有無は、分岐管の構成または発泡槽1内の温度制御動作に応じて適宜設定することができる。また、制御弁14bおよび14cは、従来公知の制御弁であればよい。制御弁14bおよび14cは、発泡槽1内の温度測定値のデータをフィードバックする構成に限定されない。 The control valve in this embodiment may be provided in at least one of the branch pipes 11a to 11c. For example, the branch pipe 11a used in the initial stage of temperature rise in the foaming tank 1 may be provided with a control valve, or may not be provided with a control valve as shown in FIG. Whether or not to install a control valve can be determined as appropriate depending on the configuration of the branch pipe or the temperature control operation within the foaming tank 1. Further, the control valves 14b and 14c may be any conventionally known control valves. The control valves 14b and 14c are not limited to a configuration that feeds back data of the temperature measurement value within the foaming tank 1.

また、開閉弁切替制御部21は、開閉弁13a~13cの開閉切替を制御するためのものである。開閉弁切替制御部21の切り替え動作は、分岐管11aから分岐管11cへ順に、開閉を切替える動作に限定されない。例えば、開閉弁切替制御部21は、開閉弁13a~13cのうち、2つの開閉弁を開くと共に、残りの開閉弁を閉じるように制御してもよい。この場合、開閉弁切替制御部21は、前記2つの開閉弁について開放度合いを変えて制御してもよい。例えば、一方の開閉弁が100%開放する一方、他方の開閉弁は25%開放するように、開閉弁切替制御部21は、前記2つの開閉弁を制御してもよい。 Further, the on-off valve switching control section 21 is for controlling the on-off switching of the on-off valves 13a to 13c. The switching operation of the on-off valve switching control section 21 is not limited to the operation of sequentially switching opening and closing from the branch pipe 11a to the branch pipe 11c. For example, the on-off valve switching control section 21 may control to open two on-off valves among the on-off valves 13a to 13c, and close the remaining on-off valves. In this case, the on-off valve switching control section 21 may control the two on-off valves by changing the degree of opening. For example, the on-off valve switching control unit 21 may control the two on-off valves so that one on-off valve opens 100% while the other on-off valve opens 25%.

また、開閉弁切替制御部21は、開閉弁13a~13cの開閉切替を制御することができる要素または部材で構成されていればよい。例えば、開閉弁切替制御部21は、発泡槽1内の温度を測定する測定機能と、測定温度が所定温度(例えば設定温度T1、T2またはT3)を超える、あるいは下回ったときに発泡槽1内の温度を前記所定温度に制御する制御機能と、発泡槽1内の温度が前記所定温度に到達したことを使用者に通知する通知機能と、を備えた構成であってもよい。 Further, the on-off valve switching control section 21 may be composed of any element or member that can control the on-off switching of the on-off valves 13a to 13c. For example, the on-off valve switching control unit 21 has a measurement function that measures the temperature inside the foaming tank 1, and a function that measures the temperature inside the foaming tank 1 when the measured temperature exceeds or falls below a predetermined temperature (for example, set temperature T1, T2, or T3). The foaming tank 1 may be configured to include a control function for controlling the temperature within the foaming tank 1 to the predetermined temperature, and a notification function for notifying the user that the temperature within the foaming tank 1 has reached the predetermined temperature.

また、開閉弁切替制御部21は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。このような開閉弁切替制御部21を備えたことによって、開閉弁13a~13cの開閉切替制御の自動化を実現することができる。 Further, the on-off valve switching control section 21 may be realized by a logic circuit (hardware) formed on an integrated circuit (IC chip) or the like, or may be realized by software using a CPU (Central Processing Unit). good. By providing such an on-off valve switching control section 21, automation of on-off switching control of the on-off valves 13a to 13c can be realized.

この場合、本実施形態に係る製造装置は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本開示の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In this case, the manufacturing apparatus according to the present embodiment includes a CPU that executes instructions of a program that is software that implements each function, a ROM (Read Only memory) or a storage device (these are referred to as a "recording medium"), a RAM (Random Access Memory) for expanding the above program, and the like. Then, the object of the present disclosure is achieved by the computer (or CPU) reading the program from the recording medium and executing it. As the recording medium, a "non-temporary tangible medium" such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, etc. can be used. Furthermore, the program may be supplied to the computer via any transmission medium (communication network, broadcast waves, etc.) that can transmit the program. Note that the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.

〔実施形態2〕
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。図3は、本実施形態に係る発泡粒子の製造装置の概略構成を模式的に示した図である。
[Embodiment 2]
Other embodiments of the invention will be described below. For convenience of explanation, members having the same functions as the members described in the above embodiment are given the same reference numerals, and the description thereof will not be repeated. FIG. 3 is a diagram schematically showing a schematic configuration of an expanded particle manufacturing apparatus according to the present embodiment.

図3に示されるように、本実施形態に係る製造装置は、ジャケット部2へ蒸気を供給する供給管が分岐されていない点が前記実施形態1と異なる。当該製造装置では、温調制御部10Aは、ただ1つの供給管11dを備えている。供給管11dの呼び径は、80A(外径:89.1mm)である。 As shown in FIG. 3, the manufacturing apparatus according to the present embodiment differs from the first embodiment in that the supply pipe that supplies steam to the jacket portion 2 is not branched. In the manufacturing apparatus, the temperature control section 10A includes only one supply pipe 11d. The nominal diameter of the supply pipe 11d is 80A (outer diameter: 89.1 mm).

温調制御部10Aは、減圧弁15(第2の減圧弁)と、開閉弁13dと、制御弁14d(第2の制御弁)と、を備えている。供給管11dには、蒸気供給源がある上流側から下流側(ジャケット部2側)へ向かって、減圧弁15、開閉弁13d、および制御弁14dがこの順に設けられている。減圧弁15は、上流側の蒸気供給源から送られる蒸気の圧力を減圧して、下流側へ送る弁である。また、開閉弁13dは、供給管11dを開閉するための弁である。 The temperature adjustment control unit 10A includes a pressure reducing valve 15 (second pressure reducing valve), an on-off valve 13d, and a control valve 14d (second control valve). The supply pipe 11d is provided with a pressure reducing valve 15, an on-off valve 13d, and a control valve 14d in this order from the upstream side where the steam supply source is located to the downstream side (jacket portion 2 side). The pressure reducing valve 15 is a valve that reduces the pressure of steam sent from an upstream steam supply source and sends it downstream. Moreover, the on-off valve 13d is a valve for opening and closing the supply pipe 11d.

また、制御弁14dは、供給管11dにおける減圧弁15の下流側に設けられ、ジャケット部2への蒸気流量を調節するための弁である。制御弁14dによって、発泡槽1またはジャケット部2内の温度の測定値等がフィードバック制御される。制御弁14dは、フィードバックされた前記測定値等に基づいて、供給管11dを流れる蒸気量を調節する。具体的には、制御弁14dは、温度指示調節器(TIC)に接続されている。当該温度指示調節器は、発泡槽1内の設定温度のデータが与えられ、発泡槽1内の温度データを測定し、設定温度データおよび測定温度データの両信号からPID制御等のプロセス制御方式によって、発泡槽1内の温度が前記設定温度になるように、制御弁14dの弁開度を制御する。これによって、供給管11dを流れる蒸気の流量が調節される。 Further, the control valve 14d is provided on the downstream side of the pressure reducing valve 15 in the supply pipe 11d, and is a valve for adjusting the flow rate of steam to the jacket portion 2. The control valve 14d performs feedback control on the measured temperature inside the foaming tank 1 or the jacket section 2, and the like. The control valve 14d adjusts the amount of steam flowing through the supply pipe 11d based on the feedback measurement value and the like. Specifically, the control valve 14d is connected to a temperature indication controller (TIC). The temperature indicating regulator is given data on the set temperature in the foaming tank 1, measures the temperature data in the foaming tank 1, and uses a process control method such as PID control based on both signals of the set temperature data and measured temperature data. The opening degree of the control valve 14d is controlled so that the temperature inside the foaming tank 1 reaches the set temperature. This adjusts the flow rate of steam flowing through the supply pipe 11d.

本実施形態に係る製造装置は、減圧弁圧力制御部22を備えている。減圧弁圧力制御部22は、減圧弁15を制御し、供給管11dを流れる蒸気の圧力を上昇または降下させる。この減圧弁圧力制御部22によって、ジャケット部2への蒸気の供給速度が変化する。そして、この変化に応じて、ジャケット部2へ供給される蒸気量は変化する。 The manufacturing apparatus according to this embodiment includes a pressure reducing valve pressure control section 22. The pressure reducing valve pressure control unit 22 controls the pressure reducing valve 15 to increase or decrease the pressure of steam flowing through the supply pipe 11d. This pressure reducing valve pressure control section 22 changes the supply speed of steam to the jacket section 2. According to this change, the amount of steam supplied to the jacket section 2 changes.

(減圧弁圧力制御部22による蒸気供給量の制御)
本実施形態に係る製造装置では、ジャケット部2への蒸気供給圧力は、減圧弁圧力制御部22によって制御されている。また、本実施形態に係る発泡粒子の製造方法は、図3に示した製造装置を用いた方法であり、減圧弁15にて圧力設定し、供給管11dを流れる蒸気の圧力を上昇または降下させるとともに、ジャケット部2への蒸気流量を制御弁14dにより調節する。そして、このような制御により、発泡工程中の発泡槽1内の温度制御が精密に制御され得る。
(Control of steam supply amount by pressure reducing valve pressure control unit 22)
In the manufacturing apparatus according to this embodiment, the steam supply pressure to the jacket section 2 is controlled by a pressure reducing valve pressure control section 22. Further, the method for manufacturing expanded particles according to this embodiment is a method using the manufacturing apparatus shown in FIG. At the same time, the flow rate of steam to the jacket portion 2 is adjusted by the control valve 14d. Through such control, the temperature inside the foaming tank 1 during the foaming process can be precisely controlled.

減圧弁圧力制御部22による蒸気供給量の制御について、図4を参照して説明する。図4は、発泡工程中の発泡槽1内の内温の時間的変化の一例、および当該時間的変化に対応した減圧弁15の設定圧力切替制御を示す図である。なお、図4においては、減圧弁圧力制御部22は、減圧弁15の設定圧力をP1、P2、P3の3つの圧力に設定する。そして、設定圧力P1~P3の大きさは、P1>P2>P3となっている。 Control of the amount of steam supplied by the pressure reducing valve pressure control section 22 will be explained with reference to FIG. 4. FIG. 4 is a diagram showing an example of a temporal change in the internal temperature in the foaming tank 1 during the foaming process, and a setting pressure switching control of the pressure reducing valve 15 corresponding to the temporal change. In addition, in FIG. 4, the pressure reducing valve pressure control unit 22 sets the set pressures of the pressure reducing valve 15 to three pressures, P1, P2, and P3. The magnitudes of the set pressures P1 to P3 are such that P1>P2>P3.

まず、減圧弁圧力制御部22は、供給管11dを流れる蒸気の圧力が設定圧力P1となるように減圧弁15を制御する。これにより、設定圧力P1の蒸気が供給管11dを通過してジャケット部2へ流れる。このとき、ジャケット部2には設定圧力P1の蒸気が供され続け、発泡槽1内の温度は設定温度T1へ昇温される(発泡槽1の内温上昇速度:傾きS1)。 First, the pressure reducing valve pressure control unit 22 controls the pressure reducing valve 15 so that the pressure of steam flowing through the supply pipe 11d becomes the set pressure P1. As a result, steam at the set pressure P1 passes through the supply pipe 11d and flows to the jacket portion 2. At this time, steam at the set pressure P1 continues to be supplied to the jacket part 2, and the temperature inside the foaming tank 1 is raised to the set temperature T1 (rate of increase in internal temperature of the foaming tank 1: slope S1).

次いで、発泡槽1内の温度が所定の設定温度T1に到達した後、所定のタイミングで、減圧弁圧力制御部22は、供給管11dを流れる蒸気の圧力が設定圧力P1よりも低い設定圧力P2になるように、減圧弁15を制御する。温度指示調節器(TIC)は、発泡槽1内の温度が設定温度T1から設定温度T2へ到達するように、制御弁14dの弁開度を調節する。この制御弁14dの調節により、ジャケット部2への蒸気供給量が調節される。このとき、ジャケット部2へ供給される蒸気の圧力は、設定圧力P1よりも低い設定圧力P2となるので、ジャケット部2への蒸気供給速度は減少する。このような蒸気供給速度が減少した状態で、発泡槽1内の温度を設定温度T2へオーバーシュートせずに到達させるために、温度指示調節器(TIC)には、内温上昇速度が異なる2本の折れ線(発泡槽1の内温上昇速度:傾きS2、S2’、傾きの大きさ:S2>S2’)として発泡槽1内の温度の設定値が与えられる。また、温度指示調節器(TIC)は、発泡槽1内の温度測定値に基づいて、発泡槽1内の温度が前記折れ線の設定値に沿うように、制御弁14dの開弁度を調節し、これによりジャケット部2への蒸気供給量が調節される。このような蒸気供給量の調節により、発泡槽1内の温度を設定温度T1からゆるやかに上昇させて、目標の設定温度T2に到達させることができる。 Next, after the temperature in the foaming tank 1 reaches a predetermined set temperature T1, at a predetermined timing, the pressure reducing valve pressure control unit 22 sets the pressure of the steam flowing through the supply pipe 11d to a set pressure P2 lower than the set pressure P1. The pressure reducing valve 15 is controlled so that The temperature indication controller (TIC) adjusts the valve opening degree of the control valve 14d so that the temperature in the foaming tank 1 reaches the set temperature T2 from the set temperature T1. By adjusting the control valve 14d, the amount of steam supplied to the jacket portion 2 is adjusted. At this time, the pressure of the steam supplied to the jacket section 2 becomes a set pressure P2 lower than the set pressure P1, so the speed of steam supply to the jacket section 2 decreases. In order to make the temperature in the foaming tank 1 reach the set temperature T2 without overshooting under such a reduced steam supply rate, the temperature indication controller (TIC) is equipped with two controllers with different internal temperature rise rates. The set value of the temperature inside the foaming tank 1 is given as a polygonal line (rate of increase in internal temperature of the foaming tank 1: slope S2, S2', magnitude of slope: S2>S2'). Further, the temperature indication controller (TIC) adjusts the degree of opening of the control valve 14d based on the measured temperature value in the foaming tank 1 so that the temperature in the foaming tank 1 follows the set value of the polygonal line. , whereby the amount of steam supplied to the jacket section 2 is adjusted. By adjusting the amount of steam supplied in this manner, the temperature in the foaming tank 1 can be gradually raised from the set temperature T1 to reach the target set temperature T2.

さらに、発泡槽1内の温度が設定温度T2に到達した後、所定のタイミングで、減圧弁圧力制御部22は、供給管11dを流れる蒸気の圧力が設定圧力P2よりも低い設定圧力P3になるように、減圧弁15を制御する。温度指示調節器(TIC)は、発泡槽1内の温度が設定温度T2から設定温度T3へ到達するように、制御弁14dの弁開度を調節する。この制御弁14dの調節により、ジャケット部2への蒸気供給量が調節される。このとき、ジャケット部2へ供給される蒸気の圧力は、設定圧力P2よりも低い設定圧力P3となるので、ジャケット部2への蒸気供給速度はさらに減少する。このような蒸気供給速度が減少した状態で、発泡槽1内の温度を設定温度T3へオーバーシュートせずに到達させるために、温度指示調節器(TIC)には、設定温度T2から設定温度T3へ向かう直線として発泡槽1内の温度の設定値が与えられる。また、温度指示調節器(TIC)は、発泡槽1内の温度測定値に基づいて、発泡槽1内の温度が設定温度T2から目標の設定温度T3への設定値の直線に沿うように、制御弁14cの弁開度を調節し、これにより、ジャケット部2への蒸気供給量が調節される。このような蒸気供給量の調節により、発泡槽1内の温度を目標の設定温度T3に到達させることができる(発泡槽1の内温上昇速度:傾きS3)。 Furthermore, after the temperature in the foaming tank 1 reaches the set temperature T2, at a predetermined timing, the pressure reducing valve pressure control unit 22 sets the pressure of the steam flowing through the supply pipe 11d to a set pressure P3 lower than the set pressure P2. The pressure reducing valve 15 is controlled as follows. The temperature indication controller (TIC) adjusts the valve opening degree of the control valve 14d so that the temperature in the foaming tank 1 reaches the set temperature T3 from the set temperature T2. By adjusting the control valve 14d, the amount of steam supplied to the jacket portion 2 is adjusted. At this time, the pressure of the steam supplied to the jacket section 2 becomes a set pressure P3 lower than the set pressure P2, so the speed of steam supply to the jacket section 2 further decreases. In order to make the temperature in the foaming tank 1 reach the set temperature T3 without overshooting under such a reduced steam supply rate, the temperature indicating controller (TIC) has a temperature indicator that changes the temperature from the set temperature T2 to the set temperature T3. The set value of the temperature in the foaming tank 1 is given as a straight line heading toward . Further, the temperature indication controller (TIC) is configured to adjust the temperature in the foaming tank 1 based on the measured temperature value in the foaming tank 1 so that the temperature in the foaming tank 1 follows a straight line from the set temperature T2 to the target set temperature T3. The valve opening degree of the control valve 14c is adjusted, and thereby the amount of steam supplied to the jacket portion 2 is adjusted. By adjusting the amount of steam supplied in this manner, the temperature inside the foaming tank 1 can be made to reach the target set temperature T3 (rate of increase in internal temperature of the foaming tank 1: slope S3).

このように減圧弁圧力制御部22は、設定圧力P1からP3へ順に、段階的に蒸気圧が減少するように構成されている。これにより、発泡槽1内の設定温度の傾きをS1、S2、S2’、およびS3を与え、発泡槽1内の温度をT1、T2およびT3に3段階で昇温させることができる。それゆえ、本実施形態に係る製造装置によれば、従来の製造装置と比較して、精密にかつ再現性を高めて発泡槽1内の温度を制御することができる。 In this way, the pressure reducing valve pressure control section 22 is configured so that the steam pressure decreases in stages from the set pressure P1 to P3. Thereby, the slope of the set temperature in the foaming tank 1 is given as S1, S2, S2', and S3, and the temperature in the foaming tank 1 can be raised in three steps to T1, T2, and T3. Therefore, according to the manufacturing apparatus according to the present embodiment, the temperature inside the foaming tank 1 can be controlled more precisely and with improved reproducibility compared to conventional manufacturing apparatuses.

また、制御弁14dは、従来公知の制御弁であればよい。制御弁14bおよび14cは、発泡槽1内の温度測定値のデータをフィードバックする構成に限定されない。また、減圧弁圧力制御の変更段数は限定されないし、連続的に変更しても良い。発泡槽1内の設定温度およびその傾きも限定されない。 Further, the control valve 14d may be any conventionally known control valve. The control valves 14b and 14c are not limited to a configuration that feeds back data of the temperature measurement value within the foaming tank 1. Further, the number of change steps in the pressure reducing valve pressure control is not limited, and may be changed continuously. The set temperature in the foaming tank 1 and its slope are also not limited.

また、減圧弁圧力制御部22は、減圧弁15を制御するためのものである。それゆえ、減圧弁圧力制御部22は、減圧弁15を制御することができる要素または部材で構成されていればよい。例えば、減圧弁圧力制御部22は、供給管11dの圧力を測定する測定機能と、測定圧力が所定圧力(例えば設定圧力P1、P2またはP3)を超える、あるいは下回ったときに供給管11dの圧力を前記所定圧力に制御する制御機能と、供給管11dの圧力が前記所定圧力に到達したことを使用者に通知する通知機能と、を備えた構成であってもよい。 Further, the pressure reducing valve pressure control section 22 is for controlling the pressure reducing valve 15. Therefore, the pressure reducing valve pressure control section 22 only needs to be composed of an element or member that can control the pressure reducing valve 15. For example, the pressure reducing valve pressure control unit 22 has a measurement function of measuring the pressure of the supply pipe 11d, and a function of measuring the pressure of the supply pipe 11d when the measured pressure exceeds or falls below a predetermined pressure (for example, set pressure P1, P2, or P3). The configuration may include a control function to control the pressure to the predetermined pressure, and a notification function to notify the user that the pressure of the supply pipe 11d has reached the predetermined pressure.

また、減圧弁圧力制御部22は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。このような減圧弁圧力制御部22を備えたことによって、減圧弁15の自動制御を実現することができる。 Further, the pressure reducing valve pressure control section 22 may be realized by a logic circuit (hardware) formed on an integrated circuit (IC chip) or the like, or may be realized by software using a CPU (Central Processing Unit). good. By providing such a pressure reducing valve pressure control section 22, automatic control of the pressure reducing valve 15 can be realized.

この場合、本実施形態に係る製造装置は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本開示の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In this case, the manufacturing apparatus according to the present embodiment includes a CPU that executes instructions of a program that is software that implements each function, a ROM (Read Only memory) or a storage device (these are referred to as a "recording medium"), a RAM (Random Access Memory) for expanding the above program, and the like. Then, the object of the present disclosure is achieved by the computer (or CPU) reading the program from the recording medium and executing it. As the recording medium, a "non-temporary tangible medium" such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, etc. can be used. Furthermore, the program may be supplied to the computer via any transmission medium (communication network, broadcast waves, etc.) that can transmit the program. Note that the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.

供給管11dの蒸気供給量を規定する呼び径は、図3に示される構成に限定されず、発泡槽1の寸法または発泡工程中の発泡槽1内の温度制御に応じて適宜設定可能である。 The nominal diameter that defines the steam supply amount of the supply pipe 11d is not limited to the configuration shown in FIG. 3, and can be set as appropriate depending on the dimensions of the foaming tank 1 or the temperature control inside the foaming tank 1 during the foaming process. .

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. are also included within the technical scope of the present invention.

〔まとめ〕
本発明の態様1に係る発泡粒子の製造装置は、発泡槽1と、前記発泡槽1の外周部に設けられたジャケット部2と、前記ジャケット部2へ蒸気を供給する供給管11を有し、前記発泡槽1内の温度を調節する温調制御部10と、を備え、前記温調制御部10は、前記ジャケット部2へ供給される蒸気の圧力を一定に保つ第1の減圧弁(減圧弁12)と、前記第1の減圧弁の下流側から分岐し、蒸気供給量が互いに異なる複数の分岐管11a~11cと、前記複数の分岐管11a~11cの開閉切替を制御するための切替制御部(開閉弁切替制御部21)と、前記複数の分岐管11a~11cの少なくとも1つに設けられ、当該分岐管での蒸気量を調節する第1の制御弁(制御弁14bおよび14c)と、を備えた構成である。
〔summary〕
The expanded particle manufacturing apparatus according to aspect 1 of the present invention includes a foaming tank 1, a jacket section 2 provided on the outer periphery of the foaming tank 1, and a supply pipe 11 for supplying steam to the jacket section 2. , a temperature control section 10 that adjusts the temperature inside the foaming tank 1, and the temperature control section 10 includes a first pressure reducing valve ( a pressure reducing valve 12), a plurality of branch pipes 11a to 11c branching from the downstream side of the first pressure reducing valve and having mutually different steam supply amounts, and a system for controlling opening/closing switching of the plurality of branch pipes 11a to 11c. A switching control section (on-off valve switching control section 21), a first control valve (control valves 14b and 14c) that is provided in at least one of the plurality of branch pipes 11a to 11c and that adjusts the amount of steam in the branch pipe. ).

また、本発明の態様2に係る発泡粒子の製造装置は、態様1において、蒸気供給量が最も大きい分岐管11aには、前記第1の制御弁が設けられていない構成である。 Furthermore, the expanded particle manufacturing apparatus according to the second aspect of the present invention has a configuration in which the first control valve is not provided in the branch pipe 11a that supplies the largest amount of steam in the first aspect.

また、本発明の態様3に係る発泡粒子の製造装置は、態様1または2において、前記切替制御部(開閉弁切替制御部21)は、蒸気供給量が最も大きい分岐管11aから蒸気供給量が最も小さい分岐管11cへ順に、開閉を切替えるように構成されている構成である。 Further, in the expanded particle manufacturing apparatus according to aspect 3 of the present invention, in aspect 1 or 2, the switching control section (on-off valve switching control section 21) controls the amount of steam supplied from the branch pipe 11a having the largest amount of steam supplied. This configuration is configured to switch opening and closing in order to the smallest branch pipe 11c.

本発明の態様4に係る発泡粒子の製造装置は、発泡槽1と、前記発泡槽1の外周部に設けられたジャケット部2と、前記ジャケット部2へ蒸気を供給する供給管11dを有し、前記発泡槽内の温度を調節する温調制御部10Aと、を備え、前記温調制御部10Aは、前記供給管11dに設けられ、上流側の蒸気供給源から送られる蒸気の圧力を減圧して、下流側へ送る第2の減圧弁(減圧弁15)と、前記供給管11dにおける前記第2の減圧弁の下流側に設けられ、前記ジャケット部2への蒸気流量を調節する第2の制御弁(制御弁14d)と、前記第2の減圧弁を制御し、前記供給管を流れる蒸気の圧力を上昇または降下させる減圧弁圧力制御部22と、を備えた構成である。 The expanded particle manufacturing apparatus according to aspect 4 of the present invention includes a foaming tank 1, a jacket section 2 provided on the outer periphery of the foaming tank 1, and a supply pipe 11d for supplying steam to the jacket section 2. , a temperature control control section 10A that adjusts the temperature in the foaming tank, and the temperature control control section 10A is provided in the supply pipe 11d and reduces the pressure of steam sent from an upstream steam supply source. and a second pressure reducing valve (pressure reducing valve 15) for sending the steam to the downstream side, and a second pressure reducing valve that is provided downstream of the second pressure reducing valve in the supply pipe 11d and that adjusts the flow rate of steam to the jacket section 2. (control valve 14d), and a pressure reducing valve pressure control section 22 that controls the second pressure reducing valve and increases or decreases the pressure of the steam flowing through the supply pipe.

本発明の態様5に係る発泡粒子の製造方法は、発泡槽1と、前記発泡槽1の外周部に設けられたジャケット部2と、前記ジャケット部2へ蒸気を供給する供給管11を有し、前記発泡槽1内の温度を調節する温調制御部10と、を備え、前記温調制御部10は、前記ジャケット部2へ供給される蒸気の圧力を一定に保つ第1の減圧弁(減圧弁12)と、前記第1の減圧弁の下流側から分岐し、蒸気供給量が互いに異なる複数の分岐管11a~11cと、前記複数の分岐管11a~11cの少なくとも1つに設けられた第1の制御弁(制御弁14bおよび14c)と、を備えた製造装置を用いた発泡粒子の製造方法において、前記複数の分岐管11a~11cの開閉切替を制御するとともに、当該分岐管11bおよび11cでの蒸気量を前記第1の制御弁により調節する。 A method for manufacturing expanded particles according to aspect 5 of the present invention includes a foaming tank 1, a jacket part 2 provided on the outer periphery of the foaming tank 1, and a supply pipe 11 for supplying steam to the jacket part 2. , a temperature control section 10 that adjusts the temperature inside the foaming tank 1, and the temperature control section 10 includes a first pressure reducing valve ( A pressure reducing valve 12), a plurality of branch pipes 11a to 11c branching from the downstream side of the first pressure reducing valve and having mutually different steam supply amounts, and a plurality of branch pipes 11a to 11c provided in at least one of the plurality of branch pipes 11a to 11c. In a method for manufacturing expanded particles using a manufacturing apparatus equipped with a first control valve (control valves 14b and 14c), opening and closing switching of the plurality of branch pipes 11a to 11c is controlled, and the branch pipes 11b and 14c are controlled to open and close. The amount of steam at 11c is adjusted by the first control valve.

本発明の態様6に係る発泡粒子の製造方法は、発泡槽1と、前記発泡槽1の外周部に設けられたジャケット部2と、前記ジャケット部2へ蒸気を供給する供給管11dを有し、前記発泡槽1内の温度を調節する温調制御部10Aと、を備え、前記温調制御部10Aは、前記供給管11dに設けられ、上流側の蒸気供給源から送られる蒸気の圧力を減圧して、下流側へ送る第2の減圧弁(減圧弁15)と、前記供給管11dにおける前記第2の減圧弁の下流側に設けられた第2の制御弁と、を備えた製造装置を用いた発泡粒子の製造方法において、前記第2の減圧弁を制御し、前記供給管11dを流れる蒸気の圧力を上昇または降下させるとともに、前記ジャケット部2への蒸気流量を前記第2の制御弁により調節する。 A method for manufacturing expanded particles according to aspect 6 of the present invention includes a foaming tank 1, a jacket part 2 provided on the outer periphery of the foaming tank 1, and a supply pipe 11d for supplying steam to the jacket part 2. , a temperature control section 10A that adjusts the temperature inside the foaming tank 1, and the temperature control section 10A is provided in the supply pipe 11d and controls the pressure of the steam sent from the upstream steam supply source. A manufacturing device comprising a second pressure reducing valve (pressure reducing valve 15) that reduces the pressure and sends it to the downstream side, and a second control valve provided on the downstream side of the second pressure reducing valve in the supply pipe 11d. In the method for manufacturing expanded particles using the method, the second pressure reducing valve is controlled to increase or decrease the pressure of the steam flowing through the supply pipe 11d, and the flow rate of steam to the jacket part 2 is controlled by the second control. Adjusted by valve.

1 発泡槽
2 ジャケット部
10、10A 温調制御部
11、11d 供給管
11a、11b、11c 分岐管
12 減圧弁(第1の減圧弁)
15 減圧弁(第2の減圧弁)
13a、13b、13c、13d 開閉弁
14b、14c 制御弁(第1の制御弁)
14d 制御弁(第2の制御弁)
21 開閉弁切替制御部(切替制御部)
22 減圧弁圧力制御部
1 Foaming tank 2 Jacket section 10, 10A Temperature control section 11, 11d Supply pipe 11a, 11b, 11c Branch pipe 12 Pressure reducing valve (first pressure reducing valve)
15 Pressure reducing valve (second pressure reducing valve)
13a, 13b, 13c, 13d On-off valve 14b, 14c Control valve (first control valve)
14d Control valve (second control valve)
21 Open/close valve switching control section (switching control section)
22 Pressure reducing valve pressure control section

Claims (4)

発泡槽と、
前記発泡槽の外周部に設けられたジャケット部と、
前記ジャケット部へ蒸気を供給する供給管を有し、前記発泡槽内の温度を調節する温調制御部と、を備え、
前記温調制御部は、
上流側の蒸気供給源から送られる高圧蒸気の圧力を最適圧力に減圧する弁であって、前記ジャケット部へ供給される蒸気の圧力を一定に保つ第1の減圧弁と、
前記第1の減圧弁の下流側から分岐し、蒸気供給量が互いに異なる複数の分岐管と、
前記複数の分岐管の開閉切替を制御するための切替制御部と、
前記複数の分岐管の少なくとも1つに設けられ、当該分岐管での蒸気量を調節する第1の制御弁と、を備え
前記複数の分岐管は、口径が異なる第1~第3の分岐管から構成され、これら分岐管の口径は、第1の分岐管>第2の分岐管>第3の分岐管であり、
前記第1の制御弁は、前記第1の分岐管に設けられておらず、
前記切替制御部は、
(1)前記第1の分岐管のみを開放して前記発泡槽の昇温をスタートし、
(2)前記発泡槽内の温度が第1の設定温度に到達した後、前記第2の分岐管のみを開放し、
(3)前記発泡槽内の温度が第1の設定温度から第2の設定温度に到達した後、第3の分岐管のみを開放し、前記発泡槽内の温度を目標の第3の設定温度に到達させる、発泡粒子の製造装置。
A foaming tank,
a jacket part provided on the outer periphery of the foaming tank;
a temperature control section that has a supply pipe that supplies steam to the jacket section and adjusts the temperature within the foaming tank;
The temperature control section includes:
a first pressure reducing valve that reduces the pressure of high-pressure steam sent from an upstream steam supply source to an optimal pressure, and maintains a constant pressure of the steam supplied to the jacket portion;
a plurality of branch pipes that branch from the downstream side of the first pressure reducing valve and have mutually different steam supply amounts;
a switching control unit for controlling opening/closing switching of the plurality of branch pipes;
a first control valve that is provided in at least one of the plurality of branch pipes and adjusts the amount of steam in the branch pipe ;
The plurality of branch pipes are composed of first to third branch pipes having different diameters, and the diameters of these branch pipes are first branch pipe>second branch pipe>third branch pipe,
The first control valve is not provided in the first branch pipe,
The switching control section includes:
(1) Start raising the temperature of the foaming tank by opening only the first branch pipe,
(2) After the temperature in the foaming tank reaches the first set temperature, only the second branch pipe is opened;
(3) After the temperature in the foaming tank reaches the second set temperature from the first set temperature, only the third branch pipe is opened, and the temperature in the foaming tank is adjusted to the target third set temperature. A device for producing expanded particles that achieves
発泡槽と、
前記発泡槽の外周部に設けられたジャケット部と、
前記ジャケット部へ蒸気を供給する供給管を有し、前記発泡槽内の温度を調節する温調制御部と、を備え、
前記温調制御部は、
前記供給管に設けられ、上流側の蒸気供給源から送られる蒸気の圧力を減圧して、下流側へ送る第2の減圧弁と、
前記供給管における前記第2の減圧弁の下流側に設けられ、前記ジャケット部への蒸気流量を調節する第2の制御弁と、
前記第2の減圧弁を制御し、前記供給管を流れる蒸気の圧力を上昇または降下させることにより、ジャケット部への蒸気の供給速度を変化させる減圧弁圧力制御部と、を備えた、発泡粒子の製造装置。
A foaming tank,
a jacket part provided on the outer periphery of the foaming tank;
a temperature control section that has a supply pipe that supplies steam to the jacket section and adjusts the temperature within the foaming tank;
The temperature control section includes:
a second pressure reducing valve provided in the supply pipe to reduce the pressure of steam sent from an upstream steam supply source and send it to the downstream side;
a second control valve that is provided downstream of the second pressure reducing valve in the supply pipe and adjusts the flow rate of steam to the jacket part;
a pressure reducing valve pressure control section that controls the second pressure reducing valve and increases or decreases the pressure of the steam flowing through the supply pipe to change the supply speed of steam to the jacket section. manufacturing equipment.
発泡槽と、
前記発泡槽の外周部に設けられたジャケット部と、
前記ジャケット部へ蒸気を供給する供給管を有し、前記発泡槽内の温度を調節する温調制御部と、を備え、
前記温調制御部は、
上流側の蒸気供給源から送られる高圧蒸気の圧力を最適圧力に減圧する弁であって、前記ジャケット部へ供給される蒸気の圧力を一定に保つ第1の減圧弁と、
前記第1の減圧弁の下流側から分岐し、蒸気供給量が互いに異なる複数の分岐管と、
前記複数の分岐管の少なくとも1つに設けられた第1の制御弁と、を備えた製造装置を用いた発泡粒子の製造方法において、
前記複数の分岐管の開閉切替を制御するとともに、当該分岐管での蒸気量を前記第1の制御弁により調節し、
前記複数の分岐管は、口径が異なる第1~第3の分岐管から構成され、これら分岐管の口径は、第1の分岐管>第2の分岐管>第3の分岐管であり、
前記第1の制御弁は、前記第1の分岐管に設けられておらず、
前記開閉切替の制御において、
(1)前記第1の分岐管のみを開放して前記発泡槽の昇温をスタートし、
(2)前記発泡槽内の温度が第1の設定温度に到達した後、前記第2の分岐管のみを開放し、
(3)前記発泡槽内の温度が第1の設定温度から第2の設定温度に到達した後、第3の分岐管のみを開放し、前記発泡槽内の温度を目標の第3の設定温度に到達させる、発泡粒子の製造方法。
A foaming tank,
a jacket part provided on the outer periphery of the foaming tank;
a temperature control section that has a supply pipe that supplies steam to the jacket section and adjusts the temperature within the foaming tank;
The temperature control section includes:
a first pressure reducing valve that reduces the pressure of high-pressure steam sent from an upstream steam supply source to an optimal pressure, and maintains a constant pressure of the steam supplied to the jacket portion;
a plurality of branch pipes that branch from the downstream side of the first pressure reducing valve and have mutually different steam supply amounts;
a first control valve provided in at least one of the plurality of branch pipes;
controlling the opening and closing switching of the plurality of branch pipes, and adjusting the amount of steam in the branch pipes by the first control valve;
The plurality of branch pipes are composed of first to third branch pipes having different diameters, and the diameters of these branch pipes are first branch pipe>second branch pipe>third branch pipe,
The first control valve is not provided in the first branch pipe,
In the control of the opening/closing switching,
(1) Start raising the temperature of the foaming tank by opening only the first branch pipe,
(2) After the temperature in the foaming tank reaches the first set temperature, only the second branch pipe is opened;
(3) After the temperature in the foaming tank reaches the second set temperature from the first set temperature, only the third branch pipe is opened, and the temperature in the foaming tank is adjusted to the target third set temperature. A method for producing expanded particles that achieves .
発泡槽と、
前記発泡槽の外周部に設けられたジャケット部と、
前記ジャケット部へ蒸気を供給する供給管を有し、前記発泡槽内の温度を調節する温調制御部と、を備え、
前記温調制御部は、
前記供給管に設けられ、上流側の蒸気供給源から送られる蒸気の圧力を減圧して、下流側へ送る第2の減圧弁と、
前記供給管における前記第2の減圧弁の下流側に設けられた第2の制御弁と、を備えた製造装置を用いた発泡粒子の製造方法において、
前記第2の減圧弁を制御し、前記供給管を流れる蒸気の圧力を上昇または降下させることにより、ジャケット部への蒸気の供給速度を変化させるとともに、前記ジャケット部への蒸気流量を前記第2の制御弁により調節する、発泡粒子の製造方法。
A foaming tank,
a jacket part provided on the outer periphery of the foaming tank;
a temperature control section that has a supply pipe that supplies steam to the jacket section and adjusts the temperature within the foaming tank;
The temperature control section includes:
a second pressure reducing valve provided in the supply pipe to reduce the pressure of steam sent from an upstream steam supply source and send it to the downstream side;
a second control valve provided downstream of the second pressure reducing valve in the supply pipe;
By controlling the second pressure reducing valve and increasing or decreasing the pressure of the steam flowing through the supply pipe, the supply speed of steam to the jacket section is changed, and the flow rate of steam to the jacket section is increased or decreased by increasing or decreasing the pressure of the steam flowing through the supply pipe. A method for producing expanded particles, which is controlled by a control valve.
JP2019158794A 2019-08-30 2019-08-30 Expanded particle manufacturing device and manufacturing method Active JP7372083B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019158794A JP7372083B2 (en) 2019-08-30 2019-08-30 Expanded particle manufacturing device and manufacturing method
CN202010875801.8A CN112440403B (en) 2019-08-30 2020-08-27 Apparatus and method for producing expanded beads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019158794A JP7372083B2 (en) 2019-08-30 2019-08-30 Expanded particle manufacturing device and manufacturing method

Publications (2)

Publication Number Publication Date
JP2021037635A JP2021037635A (en) 2021-03-11
JP7372083B2 true JP7372083B2 (en) 2023-10-31

Family

ID=74733182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019158794A Active JP7372083B2 (en) 2019-08-30 2019-08-30 Expanded particle manufacturing device and manufacturing method

Country Status (2)

Country Link
JP (1) JP7372083B2 (en)
CN (1) CN112440403B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201273A (en) 2000-01-14 2001-07-27 Tlv Co Ltd Steam-heating equipment
JP2003268151A (en) 2002-03-18 2003-09-25 Achilles Corp Process for producing prefoamed particle
JP2005187778A (en) 2003-12-26 2005-07-14 Kaneka Corp Temperature-controlled process for producing styrene-based prefoamed particle
CN102968141A (en) 2012-11-28 2013-03-13 东莞市科力钢铁线材有限公司 Novel temperature control device and application method thereof
JP2014098693A (en) 2012-10-18 2014-05-29 Kaneka Corp Device for measuring volume density of pre-foamed particles and method for manufacturing pre-foamed particles
CN104431218A (en) 2013-09-20 2015-03-25 天津滨海新区奥通食品有限公司 Novel sugar softening equipment for producing soft or hard sugar

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2537508C3 (en) * 1975-08-22 1980-06-26 Joachim Dr.-Ing. 7251 Warmbronn Wuenning Process and device for the production of strand-like moldings with a cell-like structure from sinterable granules
JPS591231A (en) * 1982-06-26 1984-01-06 Sekisui Plastics Co Ltd Heating method of foam molding
JPS59164823A (en) * 1983-03-10 1984-09-18 Mitsubishi Heavy Ind Ltd Moving bed drum type coal burning boiler
JPH0657432B2 (en) * 1986-03-19 1994-08-03 芳彦 関 Foam molding method for thermoplastic resin
JPS6445607A (en) * 1987-11-30 1989-02-20 Kanegafuchi Chemical Ind Method for preexpanding expandable thermoplastic resin particle
DE3841741A1 (en) * 1988-12-10 1990-06-13 Welland & Tuxhorn STEAM FORMING PROCESS
JP3078604B2 (en) * 1991-06-28 2000-08-21 大開工業株式会社 Automatic selection of foaming conditions
PL173404B1 (en) * 1991-11-14 1998-03-31 Prefoam Ag Method of and apparatus for making a continuous foamed polyurethane block within predetermined pressure range
JPH06300216A (en) * 1993-04-15 1994-10-28 Tlv Co Ltd Steam heating temperature control device
JPH07188448A (en) * 1993-12-27 1995-07-25 Sekisui Plastics Co Ltd Preexpander
JPH0979512A (en) * 1995-09-14 1997-03-28 Tlv Co Ltd Low-pressure steam heater by heating medium
JP3706180B2 (en) * 1995-10-25 2005-10-12 株式会社ダイセン工業 Method and apparatus for molding foamed plastic products
JP3695934B2 (en) * 1997-09-26 2005-09-14 東洋機械金属株式会社 Piping structure of foam molding machine
US6015465A (en) * 1998-04-08 2000-01-18 Applied Materials, Inc. Temperature control system for semiconductor process chamber
US6277954B2 (en) * 1999-09-14 2001-08-21 Kaneka Corporation Method of stripping for latex of vinyl chloride paste resin, stripping apparatus, and vinyl chloride paste resin latex having low concentration of residual monomer
JP4540772B2 (en) * 1999-10-15 2010-09-08 株式会社テイエルブイ Steam heating device
US6739288B1 (en) * 2000-01-14 2004-05-25 Tvl Co., Ltd. Steam heating device
CA2602524C (en) * 2000-01-14 2009-06-02 Tlv Co., Ltd. Steam-heating apparatus
JP2001216029A (en) * 2000-02-04 2001-08-10 Hitachi Zosen Corp Device for supplying gas with constant rate and foamed resin extrusion facility equipped with the same device
JP4115064B2 (en) * 2000-02-28 2008-07-09 石川島プラント建設株式会社 Steam heating method for cryogenic fluid
WO2001089672A1 (en) * 2000-05-24 2001-11-29 Millipore Corporation Method of manufacturing membranes and the resulting membranes
JP2004075442A (en) * 2002-08-14 2004-03-11 Nissan Motor Co Ltd Membrane reactor
JP2004188737A (en) * 2002-12-10 2004-07-08 Kasahara Industries Co Ltd Foaming resin molding apparatus and its heating control method
JP5165991B2 (en) * 2006-11-23 2013-03-21 スルザー ケムテック アクチェンゲゼルシャフト Method and plant for producing polymer particles
JP4897465B2 (en) * 2006-12-15 2012-03-14 株式会社テイエルブイ Evaporative cooling device
CN201116985Y (en) * 2007-11-20 2008-09-17 沂源瑞丰高分子材料有限公司 Automatic temperature controlling device for salting out technique
JP5112364B2 (en) * 2009-03-09 2013-01-09 積水化成品工業株式会社 Process for producing polylactic acid-based resin foam molding
JP5721958B2 (en) * 2010-03-09 2015-05-20 株式会社松井製作所 Powder material drying equipment
KR101403578B1 (en) * 2012-02-16 2014-06-03 이실근 Apparatus for manufacturing eps or epp
CN202795085U (en) * 2012-05-31 2013-03-13 开封万盛新材料有限公司 Temperature control system for steam heating devices
CN202895561U (en) * 2012-11-29 2013-04-24 北京物资学院 Gas adding device
CN103472869A (en) * 2013-09-09 2013-12-25 威海宝源电气有限公司 Oil product storage tank constant-temperature energy-saving automatic control method and device
CN203712938U (en) * 2014-01-25 2014-07-16 长安大学 Temperature control high-efficiency pre-foaming machine
JP6208060B2 (en) * 2014-03-24 2017-10-04 日本碍子株式会社 Method for setting temperature rise profile of sensor element in gas sensor
WO2017010525A1 (en) * 2015-07-14 2017-01-19 株式会社前田製作所 Method of flow-type high-pressure steam sterilization by soft water heat process, and flow-type sterilization device
JP2018094287A (en) * 2016-12-16 2018-06-21 株式会社サムソン Steam jacketed kettle
CN107145175B (en) * 2017-05-26 2020-11-06 中国核动力研究设计院 Steam generator feedwater temperature control analog system
DE102017117427A1 (en) * 2017-08-01 2019-02-07 Kurtz Gmbh Apparatus and method for producing a particle foam part
CN109834902A (en) * 2017-11-27 2019-06-04 安徽祥欣新材料科技有限公司 A kind of efficient EPS foaming vacuum forming machine
CN207789540U (en) * 2017-12-31 2018-08-31 杭州富阳东山塑料机械有限公司 A kind of bivalve heating control system of the automatic rapidform machine of digitlization
CN208759877U (en) * 2018-09-04 2019-04-19 河北北联重工机械科技有限公司 A kind of frostproof froth n machine is with applying steam heating device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201273A (en) 2000-01-14 2001-07-27 Tlv Co Ltd Steam-heating equipment
JP2003268151A (en) 2002-03-18 2003-09-25 Achilles Corp Process for producing prefoamed particle
JP2005187778A (en) 2003-12-26 2005-07-14 Kaneka Corp Temperature-controlled process for producing styrene-based prefoamed particle
JP2014098693A (en) 2012-10-18 2014-05-29 Kaneka Corp Device for measuring volume density of pre-foamed particles and method for manufacturing pre-foamed particles
CN102968141A (en) 2012-11-28 2013-03-13 东莞市科力钢铁线材有限公司 Novel temperature control device and application method thereof
CN104431218A (en) 2013-09-20 2015-03-25 天津滨海新区奥通食品有限公司 Novel sugar softening equipment for producing soft or hard sugar
CN105579827A (en) 2013-10-18 2016-05-11 株式会社钟化 Bulk-density measuring device for pre-expanded particles and method for manufacturing pre-expanded particles
US20160229096A1 (en) 2013-10-18 2016-08-11 Kaneka Corporation Bulk-density measuring device for pre-expanded particles and method for manufacturing pre-expanded particles

Also Published As

Publication number Publication date
CN112440403A (en) 2021-03-05
CN112440403B (en) 2023-03-21
JP2021037635A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
KR940002641B1 (en) Clock thermostat control device
RU2707487C1 (en) Method of controlling fluid medium flow through a valve
KR101910347B1 (en) High-Tech Temperature Control Device for Semiconductor Manufacturing Facilities
JP7372083B2 (en) Expanded particle manufacturing device and manufacturing method
US5586574A (en) Air system control
US20190337210A1 (en) Temperature Control Unit, System, and Method for Molding Equipment
CA2297107A1 (en) Adaptive cascade control algorithm
CN110666126B (en) Method for stabilizing convection heat exchange coefficient of crystallizer copper plate cooling water
CN111443680B (en) Control method, control device and cigarette processing equipment
JP2004220237A (en) Method for stably supplying gas
US20080097657A1 (en) Method and System for Wafer Temperature Control
US5890369A (en) Method for controlling an evaporative gas conditioning system
CN104865996A (en) Supercritical water reaction temperature control method, device and supercritical water reactor system
KR20010071277A (en) A system for controlling temperature of a continuous polymerization process
CN116334742A (en) Method for controlling temperature consistency in crystal pulling process
US10283391B2 (en) Multiple gases providing method and multiple gases providing apparatus
KR101785247B1 (en) Automatic hot-water control apparatus and control method therefor
CN113701548A (en) Control method and control device for centralized heat exchange system
JPS59127948A (en) Multistep type water sprayer for treating molding sand
EP4332548A1 (en) Snow environment test apparatus and snow environment test method
KR100809490B1 (en) Micro-control water having valve system and there of micro-control water method
JPH0936097A (en) Temperature adjustment device
CN220895451U (en) Temperature control system
EP3407153B1 (en) Control of pressure controller at border values
CN103047768B (en) Method for controlling temperature of heat-transfer medium (HTM) furnace evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231019

R150 Certificate of patent or registration of utility model

Ref document number: 7372083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150