JP7349158B2 - 機械学習装置、推定装置、プログラム及び学習済みモデル - Google Patents
機械学習装置、推定装置、プログラム及び学習済みモデル Download PDFInfo
- Publication number
- JP7349158B2 JP7349158B2 JP2020545937A JP2020545937A JP7349158B2 JP 7349158 B2 JP7349158 B2 JP 7349158B2 JP 2020545937 A JP2020545937 A JP 2020545937A JP 2020545937 A JP2020545937 A JP 2020545937A JP 7349158 B2 JP7349158 B2 JP 7349158B2
- Authority
- JP
- Japan
- Prior art keywords
- deformation
- shape
- shape model
- model
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010801 machine learning Methods 0.000 title claims description 58
- 238000006073 displacement reaction Methods 0.000 claims description 80
- 238000005259 measurement Methods 0.000 claims description 78
- 210000004072 lung Anatomy 0.000 claims description 69
- 210000000056 organ Anatomy 0.000 claims description 32
- 230000006870 function Effects 0.000 claims description 29
- 201000003144 pneumothorax Diseases 0.000 claims description 5
- 230000008602 contraction Effects 0.000 claims description 4
- 238000007872 degassing Methods 0.000 claims description 4
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 4
- 238000002591 computed tomography Methods 0.000 description 94
- 238000010586 diagram Methods 0.000 description 69
- 238000001356 surgical procedure Methods 0.000 description 37
- 230000009466 transformation Effects 0.000 description 29
- 238000000034 method Methods 0.000 description 28
- 238000012545 processing Methods 0.000 description 20
- 238000004364 calculation method Methods 0.000 description 18
- 238000003384 imaging method Methods 0.000 description 16
- 230000008859 change Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000005070 sampling Methods 0.000 description 5
- 238000012549 training Methods 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 210000001198 duodenum Anatomy 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 210000000496 pancreas Anatomy 0.000 description 3
- 210000002784 stomach Anatomy 0.000 description 3
- 238000013170 computed tomography imaging Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 230000003094 perturbing effect Effects 0.000 description 2
- 238000002600 positron emission tomography Methods 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 206010011985 Decubitus ulcer Diseases 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
- G06T7/0016—Biomedical image inspection using an image reference approach involving temporal comparison
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/20—Finite element generation, e.g. wire-frame surface description, tesselation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
- G06T7/248—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
- G06T7/251—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
- G06T7/75—Determining position or orientation of objects or cameras using feature-based methods involving models
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/101—Computer-aided simulation of surgical operations
- A61B2034/105—Modelling of the patient, e.g. for ligaments or bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2200/00—Indexing scheme for image data processing or generation, in general
- G06T2200/04—Indexing scheme for image data processing or generation, in general involving 3D image data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10068—Endoscopic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10076—4D tomography; Time-sequential 3D tomography
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10104—Positron emission tomography [PET]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10116—X-ray image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30061—Lung
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30061—Lung
- G06T2207/30064—Lung nodule
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2210/00—Indexing scheme for image generation or computer graphics
- G06T2210/41—Medical
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Software Systems (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Data Mining & Analysis (AREA)
- Primary Health Care (AREA)
- Multimedia (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Computer Graphics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Geometry (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Robotics (AREA)
- Quality & Reliability (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Description
また、術中に撮像するCTを用いない方法として、臓器の変形をシミュレーションする方法(非特許文献1)や、引張による弾性体の変形を学習したモデルを使用して臓器の変形をシミュレーションする方法(非特許文献2)もある。
また、非特許文献1に記載の方法には、患者固有の力学特性や物理条件の実測が難しい問題があり、非特許文献2に記載の方法は、シミュレーションで生成された人工データの変形のシミュレーションにとどまっている。
請求項2に記載の発明は、前記生成部が、前記第1の形状モデルの要素である頂点の配置を変更した第3の形状モデルと、前記第2の形状モデルの要素である頂点の配置を変更した第4の形状モデルを生成する場合、前記学習部は、前記第3の形状モデルの各微小領域と他の微小領域との間の差分値を含む特徴量と、当該第3の形状モデルの各微小領域から前記第4の形状モデルの対応する各微小領域への変位を与える前記関係も学習する、請求項1に記載の機械学習装置である。
請求項3に記載の発明は、前記特徴量は、各微小領域を与える座標、各微小領域を規定する勾配又は法線ベクトル、各微小領域を規定する曲率、各微小領域のボロノイ面積、各微小領域の収縮率、及び、各微小領域と平均的な形状モデルの対応領域からのずれ量のうちのいずれか1つ又は複数によって規定される、請求項1に記載の機械学習装置である。
請求項4に記載の発明は、前記特徴量を与える前記差分値は、前記第1の形状モデルを構成する全微小領域のうちの5%以上の微小領域との間で計算される、請求項1に記載の機械学習装置である。
請求項5に記載の発明は、前記学習部は、カーネル回帰モデルを用いて前記関係を学習する、請求項1又は2に記載の機械学習装置である。
請求項6に記載の発明は、変形の前後における前記測定データは、医用画像データであることを特徴とする請求項1又は2に記載の機械学習装置である。
請求項7に記載の発明は、前記変形は肺の脱気変形であり、脱気による変形前の前記測定データとして気胸を治療した患者の肺の医用画像データを用い、脱気による変形後の前記測定データとして気胸を治療する前の患者の肺の医用画像データを用いることを特徴とする請求項6に記載の機械学習装置である。
請求項8に記載の発明は、前記変形は、呼吸による若しくは時間変化若しくは検体の違いに伴う臓器の変形又は臓器の位置の移動を含むことを特徴とする請求項6に記載の機械学習装置である。
請求項9に記載の発明は、前記第1の形状モデルと前記第2の形状モデルは、3次元の頂点モデルであることを特徴とする請求項1に記載の機械学習装置である。
請求項10に記載の発明は、コンピュータに、変形の前後における測定データに基づいて、変形前の物体の形状を表す第1の形状モデルと変形後の物体の形状を表す第2の形状モデルを生成する機能と、前記第1の形状モデルの各微小領域と他の微小領域との間の差分値を含む特徴量と、当該第1の形状モデルの各微小領域から前記第2の形状モデルの対応する各微小領域への変位を与える関係を学習する機能とを実行させるプログラムである。
請求項11に記載の発明は、任意の測定データが与えられた場合に、変形前の測定データから生成された第1の形状モデルにおける各微小領域と他の微小領域との間の差分値を含む特徴量と、当該第1の形状モデルの各微小領域から変形後の第2の形状モデルの対応する各微小領域への変位を与える関係を学習した学習済みモデルを用い、当該任意の測定データに対応する変形後の形状を推定する推定部を有する推定装置である。
請求項12に記載の発明は、前記推定部は、入力された前記測定データについて生成される形状モデルの微小領域と他の微小領域との間の差分値を含む特徴量を算出し、各微小領域に対応する特徴量の変位を、前記学習済みモデルに記憶されている関係の補間によって推定することを特徴とする請求項11に記載の推定装置である。
請求項13に記載の発明は、コンピュータに、任意の測定データが与えられた場合に、変形前の測定データから生成された第1の形状モデルにおける各微小領域と他の微小領域との間の差分値を含む特徴量と、当該第1の形状モデルの各微小領域から変形後の第2の形状モデルの対応する各微小領域への変位を与える関係を学習した学習済みモデルを用い、当該任意の測定データに対応する変形後の形状を推定する機能を実行させるプログラムである。
請求項14に記載の発明は、変形前の測定データから生成された第1の形状モデルにおける各微小領域と他の微小領域との間の差分値を含む特徴量を入力とし、当該第1の形状モデルの各微小領域から変形後の第2の形状モデルの対応する各微小領域への変位を出力とする関係を与え、任意の測定データが与えられた場合に、前記関係を用い、当該任意の測定データに対応する形状モデルの各微小領域に対応する変位を演算することにより、当該任意の測定データに対応する変形後の形状を推定する機能をコンピュータに実行させるための学習済みモデルである。
請求項15に記載の発明は、複数の第1の物体の測定データに基づいて、第1の物体の個別の形状を表す形状モデルと平均的な形状モデルを生成する生成部と、前記個別の形状を表す形状モデルを構成する各微小領域と前記平均的な形状モデルの対応する微小領域との間の差分値を含む特徴量の分布と、当該差分値の分布と前記第1の物体との間に制約関係を有する第2の物体が存在する領域との関係を学習する学習部とを有する機械学習装置である。
請求項16に記載の発明は、前記制約関係は、前記第2の物体が前記第1の物体に隣接する又は繋がっている関係を含む、請求項15に記載の機械学習装置である。
請求項17に記載の発明は、コンピュータに、複数の第1の物体の測定データに基づいて、第1の物体の個別の形状を表す形状モデルと平均的な形状モデルを生成する機能と、前記個別の形状を表す形状モデルを構成する各微小領域と前記平均的な形状モデルの対応する微小領域との間の差分値を含む特徴量の分布と、当該差分値の分布と前記第1の物体との間に制約関係を有する第2の物体が存在する領域との関係を学習する機能とを実行させるプログラムである。
請求項2記載の発明によれば、測定データの数に比して推定精度の高い学習済みモデルを生成できる。
請求項3記載の発明によれば、形状の全体を単位として変形を学習する場合に比して、推定精度が高い学習済みモデルを生成できる。
請求項4記載の発明によれば、差分値を求める微小領域の数が少ない場合でも、推定精度が高い学習済みモデルを生成できる。
請求項5記載の発明によれば、入出力の間に非線形の関係が含まれる場合でも学習済みモデルの推定精度を高めることができる。
請求項6記載の発明によれば、生成された学習済みモデルを医用分野で利用できる。
請求項7記載の発明によれば、脱気後の肺の形状を高い精度で推定可能な学習済みモデルを生成できる。
請求項8記載の発明によれば、生成された学習済みモデルを医用分野で利用できる。
請求項9記載の発明によれば、3次元形状の変形を推定できる。
請求項10記載の発明によれば、形状の全体を単位として変形を学習する場合に比して推定精度が高い学習済みモデルを生成する装置としてコンピュータを動作させることができる。
請求項11記載の発明によれば、形状の全体を単位として変形を学習した学習済みモデルを使用する場合に比して、変形後の形状を高い精度で推定できる。
請求項12記載の発明によれば、形状の全体を単位として変形を学習した学習済みモデルを使用する場合に比して、変形後の形状を高い精度で推定できる。
請求項13記載の発明によれば、形状の全体を単位として変形を学習した学習済みモデルを使用する場合に比して、変形後の形状を高い精度で推定できる装置としてコンピュータを動作させることができる。
請求項14記載の発明によれば、形状の全体を単位として変形を学習する場合よりも変形後の形状を高い精度で推定できる学習済みモデルを提供できる。
請求項15記載の発明によれば、制約関係がある物体間の位置関係を形状単位で学習する場合よりも対象とする他の物体の位置を高い精度で推定できる。
請求項16記載の発明によれば、制約関係がある物体間の位置関係を形状単位で学習する場合よりも対象とする他の物体の位置を高い精度で推定できる。
請求項17記載の発明によれば、制約関係がある物体間の位置関係を形状単位で学習する場合よりも対象とする他の物体の位置を高い精度で推定できる。
<システム構成>
図1は、変形の前後の測定データの関係を学習した学習済みモデルを用いて、任意の測定データについての変形後の形状を推定する推定システム1の概念構成例を説明する図である。
図1に示す推定システム1は、教師データとしての測定データから学習済みモデルを生成する機械学習装置10と、生成された学習済みモデルを用いて任意の測定データの変形後の形状を推定する変形推定装置20とを有している。
本実施の形態の場合、機械学習装置10に対する測定データの入力は、測定データが格納されているデータベース(DB)30から直接入力されてもよいし、ネットワーク40経由で入力されてもよい。ここでのネットワーク40は、ローカルエリアネットワークでも、インターネットでもよい。
変形推定装置20は、端末50から直接又はネットワーク40経由で推定の対象である測定データを入力し、推定の結果(推定結果)を直接又はネットワーク40経由で端末50に出力する。ここでの端末50は、例えば手術支援システム、放射線治療装置等でもよい。
図2は、機械学習装置10のハードウェア構成の一例を示す図である。
図2に示す機械学習装置10は、プログラム(基本ソフトウェアを含む)の実行を通じて装置全体を制御するCPU(Central Processing Unit)11と、BIOS(Basic Input Output System)等のプログラムを記憶するROM12と、プログラムの実行領域として使用されるRAM(Random Access Memory)13とを有している。ここでのCPU11、ROM12、RAM13は、いわゆるコンピュータを構成し、各種の情報処理を実行する。なお、ROM12は、不揮発性の半導体メモリによって構成される。
入力装置15は、例えばキーボードやマウスであり、操作入力に使用される。出力装置16は、表示装置や印刷装置であり、操作画面の表示や情報の印刷等に使用される。なお、機械学習装置10がサーバとして実現される場合には、入力装置15と出力装置16は、不図示の端末側に設けられていてもよい。
通信装置17は、外部装置との通信に用いられる。通信装置17は、データベース30からの測定データの入力、学習済みモデル又は更新パラメータの変形推定装置20への出力(配信を含む)などに使用される。
CPU11と各部は、バス18や不図示の信号線を通じて接続されている。
なお、機械学習装置10は、専用のハードウェアとして実現することも可能である。
図3では、変形前の物体を撮像又は測定することで取得される画像データを変形前画像I(i)Iで示し、同じく変形後の物体を撮像又は測定することで取得される画像データを変形後画像I(i)Dで示す。変形前画像I(i)Iと変形後画像I(i)Dは、変形の前後における測定データの一例である。
本実施の形態における機械学習装置10は、変形前画像I(i)Iと変形後画像I(i)Dのそれぞれから頂点モデルを生成する形状モデル生成部101と、生成された頂点モデルから頂点の配置が異なる複数の頂点モデルを生成するモデルアップサンプリング部102と、アップサンプリングにより生成された頂点モデルの各微小領域の特徴量と変形の前後における微小領域間の変位との関係を学習する変形学習部103として機能する。
ここでの学習は、一般的な学習とは異なり、頂点モデルの全体ではなく、頂点モデルを構成する微小領域単位で行われる。学習の結果である変形関数fは、学習済みモデルとして出力される。
図4は、脱気による動物肺の変形を説明する図である。(A)は変位モデルAを示し、(B)は変位モデルBを示し、(C)は変位モデルCを示す。
変位モデルA、B及びCの作成には、実験用のビーグル犬を使用した。実験では、気管支内圧を14cmH2Oから2cmH2Oに変化させ、肺の形状を3次元CTで計測した。
本実施の形態の場合、変形前画像I(i)Iと変形後画像I(i)Dは3次元画像とする。3次元画像は、例えば座標とボクセル値で定義される。ボクセル値は、撮像手法によって異なる。
形状モデル生成部101は、変形前画像I(i)Iと変形後画像I(i)Dのそれぞれから頂点モデルを生成する。
図5は、実施の形態に係る形状モデル生成部101で実行される処理の一例を説明する図である。
図5に示す形状モデル生成部101は、サンプリング部101Aと位置合わせ部101Bとで構成される。
サンプリング部101Aは、例えば変形前画像I(i)Iと変形後画像I(i)Dをそれぞれサンプリングし、ボクセルメッシュ構造又はポリゴンメッシュ構造の形状データを生成する。ここでは、変形前画像I(i)Iに対応する形状データをS(i)Iとし、変形後画像I(i)Dに対応する形状データをS(i)Dとする。
図5の場合、形状データS(i)Iの頂点数は600であるが、形状データS(i)Dの頂点数は350である。
図6は、患者の違いによる頂点数の違いを説明する図である。図6では、変形の前後を無視し、患者1の画像をI(1)、患者2の画像2をI(2)、患者3の画像3をI(3)で示し、対応する形状データをS(1)、S(2)、S(3)で示している。
図6の場合、患者1の形状データS(1)の頂点数は400であり、患者2の形状データS(2)の頂点数は600であり、患者3の形状データS(3)の頂点数は350である。
形状データS(i)I及びS(i)Dが得られると、位置合わせ部101Bは、形状データ間の位置合わせを実行する。具体的には、各形状データの頂点数を揃える処理を実行する。
図5においては、頂点数を揃えた後の形状データを形状モデルM(i)と表している。以下では、変形前の形状モデルをM(i)Iといい、変形後の形状モデルはM(i)Dという。
変形前の形状モデルM(i)Iは、第1の形状モデルの一例であり、変形後の形状モデルM(i)Dは、第2の形状モデルの一例である。
図5の場合、形状モデルM(i)の頂点数は500に統一されている。
頂点数が統一された形状モデルM(i)の生成により、物体の変形を統計的に学習することが可能になる。
なお、変形前画像I(i)I及び変形後画像I(i)Dに代えて形状データS(i)I及びS(i)Dが形状モデル生成部101(図3参照)に入力される場合には、サンプリング部101Aの処理を省略できる。
ここで、位置合わせ部101B(図5参照)による位置合わせは、変形前の形状データS(i)Iに続き、変形後の形状データS(i)Dについても実行される。
図8は、変形前の形状データS(i)Iに対する位置合わせと変形後の形状データS(i)Dに対する位置合わせの実行順序を説明する図である。まず、500頂点のテンプレート形状Tの位置合わせにより変形前の形状データS(1)I、S(2)I、S(3)Iから形状モデルM(1)I、M(2)I、M(3)Iが生成される。次に、500頂点の変形前の形状モデルM(i)Iを変形後の形状データS(1)D、S(2)D、S(3)Dに位置合わせすることにより、形状モデルM(1)D、M(2)D、M(3)Dが生成される。
図8に示す2段階の位置合わせにより、変形前の形状データS(i)Iと変形後の形状データS(i)Dの頂点数をテンプレート形状Tの頂点数に統一した形状モデルM(i)I及びM(i)Dが生成される。
モデルアップサンプリング部102は、形状モデル生成部101で生成された形状モデルM(i)I及びM(i)Dをそれぞれアップサンプリングして、形状や構造はほぼ等しいが頂点の配置が異なる複数の形状モデルを生成する。
ただし、変形の前後の画像の取得が容易な物体を扱う場合等には、モデルアップサンプリング部102は必須ではない。
一方で、変形の前後の画像の取得が容易ではない物体を扱う場合(例えば医用画像データを扱う場合)には、モデルアップサンプリング部102を設けることで、学習に用いる教師データの数を増やすことができる。なお、画像の取得が容易な物体を扱う場合でも、モデルアップサンプリング部102を用いることで、より少ない画像から教師データに用いる形状モデルM(i)I及びM(i)Dの数を増やすことができる。
図9の場合、変形前の形状モデルM(i)Iの数と変形後の形状モデルM(i)Dの数がそれぞれk倍される。すなわち、変形前の1つの形状モデルM(i)Iについて、頂点の配置が異なるk個の形状モデルM(i1)I…M(ik)Iが生成され、変形後の1つの形状モデルM(i)Dについて、頂点の配置が異なるk個の形状モデルM(i1)D…M(ik)Dが生成される。
ここで、変形前の形状モデルM(i1)I…M(ik)Iは第3の形状モデルの一例であり、変形後の形状モデルM(i1)D…M(ik)Dは第4の形状モデルの一例である。
勿論、生成される形状モデルM(i1)I…M(ik)I及びM(i1)D…M(ik)Dを構成する頂点の数はいずれも500個である。
このように、頂点の配置が異なる形状モデルをアップサンプリングによって生成するのは、本実施の形態では、形状モデルの微小領域単位(例えば頂点単位)で変位を学習するためである。
前述したように、予め十分な数の測定データを利用可能な場合には、モデルアップサンプリング部102によるアップサンプリング動作を省略できる。
図10では、作図上の制約と説明の都合により、形状モデルM(i)I及びM(i)Dを構成する各500個の頂点(図中、×印で示す)のうち表面に位置する頂点だけを表している。
図10に示す方法は、形状モデルの500個の頂点を、形状モデル内に定めた点(例えば重心C)を中心にある方向に回転させ、その後、表面に位置していた頂点(図中、白丸で示す)を回転前の表面(図中、曲線で示す)のうち最も距離が近い位置に向けて線形移動させる。
この結果、回転前の表面上に位置していた各頂点(図中、×印で示す)は、黒丸で示す位置に移動される。この回転及び線形移動の際、形状モデル内の各頂点は、表面上の頂点との相対的な位置関係が保存されるように再配置される。例えば形状モデルの全体を四面体要素で表現する場合、四面体内部の相対位置をパラメータ化することが可能である。
なお、回転中心を変更すれば、同じ処理工程を実行しても、異なるアップサンプリングモデルを生成できる。同様に、回転の方向を変更することによっても、異なるアップサンプリングモデルを生成できる。線形移動時の規則の変更によっても異なるアップサンプリングモデルを生成できる。
図10に示すアップサンプリングによって、形状モデルの外形と頂点数を維持しながらも、頂点の配置が異なる複数の形状モデルを生成できる。
図11も、作図上の制約と説明の都合により、形状モデルM(i)I及びM(i)Dを構成する各500個の頂点(図中、×印で示す)のうち表面に位置する頂点だけを表している。
図11に示す方法は、形状モデルの500個の頂点を、形状モデル内に定めた点(例えば重心C)を中心に拡大変換(外方向に移動)させ、その後、表面に位置していた頂点(図中、白丸で示す)を拡大変換前の表面(図中、曲線で示す)のうち最も距離が近い位置に向けて線形移動させる。
この結果、拡大変換前の表面上に位置していた各頂点(図中、×印で示す)は、黒丸で示す位置に移動される。この拡大変換及び線形移動の際、形状モデル内の各頂点は、表面上の頂点との相対的な位置関係が保存されるように再配置される。
なお、拡大変換に使用する中心の位置を変更すれば、同じ処理工程を実行しても、異なるアップサンプリングモデルを生成できる。同様に、拡大率を変更することによっても、異なるアップサンプリングモデルを生成できる。線形移動時の規則の変更によっても異なるアップサンプリングモデルを生成できる。
図11に示すアップサンプリングによって、形状モデルの外形と頂点数を維持しながらも、頂点の配置が異なる複数の形状モデルを生成できる。
また、前述の説明では、回転等された頂点のうち表面上の頂点を元の形状モデルの表面に線形移動させるように位置合わせしているが、この線形移動による位置合わせは、弱い制約の下に実行すればよい。弱い制約とは、予め定めた範囲内の誤差を許容する意味である。
モデルアップサンプリング部102によるアップサンプリング動作により、表現された形状や構造はほぼ等しいが頂点配置が異なるモデルを多数生成できる。すなわち、教師データを増加できる。
変形学習部103は、前記の処理によって生成された変形前の形状モデルM(i1)I~M(ik)Iと変形後の形状モデルM(i1)D~M(ik)Dとの関係を学習する。
本実施の形態の場合、微小領域(例えば頂点)単位で変形を学習する。
図12及び図13に、本実施の形態における学習の概念を示す。
図12は、肺の形状モデルMと微小領域dMの関係を説明する図である。微小領域単位で学習することで、1つの測定データから取得できる微小領域の数の学習データを生成できる。微小領域として頂点を用いると、本実施の形態の場合、1つの測定データから500個の学習データを生成できることを意味する。もちろん、測定データの数だけ生成される学習データは倍増する。
図13は、実施の形態において学習する入出力関係を説明する図である。
本実施の形態では、入力として変形前の形状モデルの各頂点iに関する特徴量データxiを用い、出力として対応する頂点iについての変形前後における変位量データyiを用いる。学習の段階では、特徴量データxiと変位量データyiの両方が与えられ、2つの値の関係を規定する変形関数fが学習される。
図13では、特徴量データxiの一例である頂点間差分dの具体例として、頂点1と他の頂点2及び3と差分d12及びd13を例示している。
実際には、1つの頂点iと500個の頂点(微小領域)との間で差分dが算出される。ここで、各頂点の座標をvi及びvjで表すと、頂点iに関する頂点間差分dijは、dij=vj-vi(ただし、j=1、2、3、…、500)と表現される。
従って、頂点iについての特徴量データxiは、500個の頂点間差分dijの集合として定義される。後述するように、頂点間差分dijは、特徴量データxiの一例である。
図13では、頂点1、頂点2及び頂点3のいずれもが離散的に描かれているが、これは頂点間差分dijの説明のためであり、実際の位置は図13に示す例に限らない。
図14に示す変形学習部103は、変形前モデル群の要素である個々の形状モデルの頂点毎に特徴量データxiを算出する特徴量算出部103Aと、変形の前後の形状モデルの対応頂点i間の変位量データyiを算出する変位算出部103Bと、算出された特徴量データxiと変位量データyiとの関係を学習する機械学習部103Cとで構成される。
本実施の形態における特徴量算出部103Aは、学習用に与えられた変形前の測定データから生成された形状モデルM(i1)I~M(ik)Iの頂点毎に特徴量データxiを算出する。
前述したように、本実施の形態の場合、特徴量データxiは、学習用に入力された変形前の測定データから生成された形状モデルM(i)Iを構成する全ての頂点についての頂点間差分dijとして与えられる。すなわち、1つの形状モデルM(i)Iについて500個の特徴量データxiが算出される。
図14の場合、変形前モデル群の要素の数はk個であるので、500×k個の特徴量データxiが算出される。実際には、入力される測定データの数Aを乗算した数の特徴量データxiが算出される。
本実施の形態における機械学習部103Cは、変形前の形状モデルM(j)Iの各頂点iについての特徴量データxiと、同一の頂点iについての変形前後の形状モデル間の変位量データyiとの関係を表す変形関係f(j)を学習する。
図15は、実施の形態に係る機械学習部103Cで学習される関係を説明する図である。
図15においては、変形前の形状モデルM(1)Iの各頂点i(I=1…500)についての特徴量データx1(1)…x1(500)と、対応する頂点間の変位量データy1(1)…y1(500)との関係を学習した変形関数をf1で表している。形状モデルM(2)I及びM(3)Iについても同様である。
ここでのk(xi,x)は、次式で与えられるカーネル関数である。
k(xi,x)=exp(-β||xi-x||2)
なお、||xi-x||2は、同じ形状モデル上における頂点iと他の頂点jとの頂点間差分dijに対応するL2ノルムである。すなわち、k(xi,x)は、頂点iについての特徴量データxiに対応する。また、個々のαik(xi,x)は、図15におけるfi(i=1、2、3)に対応している。
本実施の形態における変位算出部103Bは、頂点i毎に係数αiを学習する。係数αiは、更新パラメータである。
学習された係数αiの集合を学習済みモデルとして変形推定装置20(図1参照)に与えてもよいし、新たに学習された係数αiを変形推定装置20に送信して、学習済みモデルを更新してもよい。
例えばヒトの肺の医用画像データは、気胸を患っている患者の手術前のCTデータと手術後のCTデータとして取得できる。
手術前のCTデータは、虚脱肺のCTデータであり、手術後のCTデータは、正常肺(治療後)のCTデータである。
この場合、手術後のCTデータを変形前の医用画像データとし、手術前のCTデータを変形後の医用画像データとして、変形の前後の関係を学習済みモデルとして学習する。この学習済みモデルは、通常肺の患者を手術する場合における手術中の肺の変形の予測に用いることができる。
図16は、変形推定装置20(図1参照)のハードウェア構成の一例を示す図である。
図16に示す変形推定装置20は、プログラム(基本ソフトウェアを含む)の実行を通じて装置全体を制御するCPU(Central Processing Unit)21と、BIOS(Basic Input Output System)等のプログラムを記憶するROM22と、プログラムの実行領域として使用されるRAM(Random Access Memory)23とを有している。ここでのCPU21、ROM22、RAM23は、いわゆるコンピュータを構成し、各種の情報処理を実行する。なお、ROM22は、不揮発性の半導体メモリによって構成される。
入力装置25は、例えばキーボードやマウスであり、操作入力に使用される。出力装置26は、表示装置や印刷装置であり、操作画面の表示や情報の印刷等に使用される。なお、変形推定装置20がサーバとして実現される場合には、入力装置25と出力装置26は、不図示の端末側に設けられていてもよい。
通信装置27は、外部装置との通信に用いられる。通信装置27は、端末50からの測定データの入力、推定結果の端末50への出力などに使用される。
CPU21と各部は、バス28や不図示の信号線を通じて接続されている。
なお、変形推定装置20は、専用のハードウェアとして実現することも可能である。
図17における変形推定装置20は、端末50から入力される変形前の測定データから各頂点iについての特徴量データxiを算出する特徴量算出部201と、算出された特徴量データxiを学習済みモデルに適用して頂点iの変位量データyiを推定する変形推定部202と、全ての頂点iについての変位量データyiから変形後の形状を推定して出力する推定結果出力部203として機能する。
図18は、変形推定装置20による推定過程を説明する図である。
任意の測定データM(i)Iが端末50(図1参照)から与えられると、特徴量算出部201(図17参照)が頂点i毎に特徴量データxiを算出する。次に、変形推定部202(図17参照)が、処理対象とする特徴量データxiと類似する特徴データxi2及びxi4を有する形状モデルM(i2)IとM(i4)Iを抽出する。
図18では、特徴量データxiの類似度を内分比m:1-mとして求めている。ここで、mは、0以上1以下の実数である。
さらに、変形推定部202は、抽出された複数の形状モデルM(i2)IとM(i4)Iについての学習済みモデル(すなわち変形関数f2及びf4)を線形補間した変形関数fiを生成し、生成された変形関数fiを使用して特徴量データxiに対応する変位量データyiを推定する。
本実施の形態では、線形補間を用いて変形関数fiを生成しているが、非線形の補間で生成してもよい。
出力画面300は、左側に変形前の観察画像欄301を配置し、右側に変形後の形状にあたる推定画像欄302を配置している。
図19の場合、肺の内部に、2つの結節が存在する。観察画像欄301に表示される肺の画像は手術前の画像である。肺は膨らんでいる。
推定画像欄302に表示される肺は推定された手術中の画像である。手術中の肺は、脱気変形により萎んでいる。図19に示すように、外部形状だけでなく結節の位置も推定が可能である。
以下では、前述の手法で推定された結果と実測値との誤差について説明する。
<実験条件>
・11頭のビーグル犬の生体肺データを測定
・上葉を204頂点でモデル化、下葉を200頂点でモデル化
・含気状態で測定された生体肺データを±2.5mm、±5.0mm、±7.5mmで拡大及び縮小することでアップサンプリング
・測定データの80%をトレーニングデータに使用、20%をテストデータに使用
誤差指標にハウスドルフ距離を用いて以下の回帰モデルを比較
・回帰モデル(多重線形回帰モデル、LASSO回帰モデル、カーネル回帰モデル)
・特徴量データ(4種類)
ハウスドルフ距離は、2つの形状間のずれの最大値として与えられる距離である。
図20は、3種類の回帰モデル間での推定誤差の違いを説明する図表である。
図20に示す値は、各回帰モデルの正則化パラメータを10通り程度で試行し、最も誤差が小さくなるものを選択した。
図20の場合、カーネル回帰モデルの推定誤差が最も小さい。因みに、上葉の推定誤差は3.1±0.9mmであり、下葉の推定誤差は3.9±1.9mmであった。
実施の形態で使用したカーネル回帰モデルは、多重線形回帰モデルやLASSO回帰モデル(L1正則化)の約3分の1であった。
4種類の特徴量データは、頂点iについての以下の特徴量群1~4とする。
・特徴量群1:座標vi、法線ベクトルni、曲率(2次微分、離散ラプラシアン)li、頂点間差分dij、収縮率si、ボロノイ面積ri
・特徴量群2:頂点間差分dij
・特徴量群3:頂点間差分dij、法線ベクトルni×100
・特徴量群4:座標vi、法線ベクトルni、曲率(2次微分、離散ラプラシアン)li、収縮率si、ボロノイ面積ri
特徴量群2は、前述の説明で用いた特徴量データxijに対応する。
図21に示す図表からは、頂点間差分dijが含まれていない特徴量群4だけが推定誤差が大きいことが分かる。
以上より、頂点間差分dijを特徴量データに含めることが推定精度を高める上で有効であることが分かる。
図23は、各検体の変形前後の形状の関係を2次元的に示す図である。
図22の検体と図23の検体は同じである。
上葉で5mmを超える推定誤差があるのは検体2だけであり、下葉で5mmを超える推定誤差があるのは検体2と検体8である。
今回の実験では、上葉に比して下葉がかなり大きい肺で推定誤差が比較的大きくなっているが、上葉が下葉よりも小さい肺や上葉と下葉の大きさがほぼ同じ場合には推定誤差が小さくなっている。
なお、形状全体についての統計的な平均変位で推定するモデルでは、10mm以上の誤差が認められていたので、実施の形態の手法では、推定誤差の低減が認められる。
なお、図24は、上葉についての実験結果である。図24の場合、横軸は、頂点iについての特徴量データxiを構成する頂点間差分の割合であり、縦軸は推定精度に当たるハウスドルフ距離である。
横軸の割合は、形状モデルM(i)Iを構成する全ての頂点を頂点間差分dijの算出に用いる場合を100%として表している。従って、頂点数が500の場合、特徴量データxiを構成する頂点間差分の割合が10%とは、頂点iについての特徴量データxiが50個の頂点間差分dijで与えられることを意味する。縦軸の単位はmmである。
前述の説明では、特徴量データxiを頂点数分の頂点間差分dijで与える例を説明したが、約5%以上の頂点間差分dijで特徴量データxiを定義すれば、5mm以下の推定精度が得られることがわかった。好ましくは、約10%以上の頂点間差分dijで特徴量データxiを定義することであり、より好ましくは約15%以上の頂点間差分dijで特徴量データxiを定義すれば、安定した推定精度が得られる。
前述した推定システム1(図1参照)や機械学習装置10(図1参照)で生成された学習済みモデルを用いて対象とする臓器の変形を推定する変形推定装置20(図1参照)を手術支援システムに組み込むことにより、又は、連携することにより、手術前に新たな患者の腫瘍の変位を同定することができる。
例えば図19に示す出力画面300は、手術支援システムに用いる場合の画面例として用いてもよい。この場合、端末50(図1参照)は、手術支援システムの操作端末として使用する。
実施の形態1では、単一の臓器の変形を変形前の医用画像データから推定する場合について説明したが、ここでは、複数の臓器の変形や位置の移動を推定する場合について説明する。
図25は、複数の臓器の変形を伴う移動先の推定を説明する図である。
図25の例は、肝臓、胃、十二指腸、左腎、右腎を含む医用画像データの場合である。図25に示す画像例は一例であり、他の臓器が含まれていてもよいし、より少ない数の臓器が対象でもよい。
体内の臓器の形状や位置は、呼吸、測定時の姿勢、体調等によっても変化し、位置も移動するが、実施の形態1で説明した技術を用いれば、複数の臓器(腫瘍を含む)の形状や位置の変化を高い精度で推定できる。すなわち、本実施の形態では、臓器の位置の移動も含めて学習する。
呼吸、測定時の姿勢、体調等による複数の臓器(腫瘍を含む)の形状や位置の変化は、時間変化による変形の一例でもある。
図25では、変形前の形状と位置の一部を破線で示している。
複数の臓器の変形と位置の変化の範囲を高精度に推定できることで、放射線治療における照射計画に応用できる。
実施の形態1では、変形前の測定データに基づいて生成した特徴量データを学習済みモデルに与えて変形後の形状を推定しているが、個別の臓器又は複数の臓器について学習された学習済みモデルに特徴量データを与えて変形後の形状を推定し、推定された形状を医用画像データと照合して医用画像データに含まれる臓器の位置を画像認識の技術を用いて自動的に抽出してもよい。
図26は、臓器の形状のバリエーションを推定して特定の臓器の領域を医用画像データから抽出する処理機能を説明する図である。
変形推定装置20は、変形推定部202によって推定された変形後の形状を画像認識部205に与え、医用画像データと照合し、医用画像データのうち対象とする臓器の領域を抽出することができる。
前述の実施の形態では、測定データと学習済みデータのいずれもが3次元データの場合について説明したが、測定データは2次元データである可能性がある。例えば測定データが内視鏡画像データとして与えられる場合である。
図27は、2次元画像データから3次元形状を推定し、推定された3次元形状を用いて変形後の形状を推定する例を説明する図である。
図27では、入力として2次元画像が与えられ、3次元形状推定部60によって3次元画像が出力されている。2次元カラー情報のみから3次元形状を推定する技術は、例えば以下の文献に記載されている。
H. Fan et al. “A point set generation network for 3D object reconstruction from a single image”, CVPR, 2017.
なお、3次元形状推定部60による推定処理は、グラフカットによる特定の臓器領域の抽出処理と、機械学習、深層学習、畳み込みニューラルネットワーク等を応用して学習された学習済みモデルを用いる推定処理との組み合わせにより実現できる。
ここでの学習済みモデルには、変形前の臓器領域の測定データから生成された形状モデルM(i)Iにおける各微小領域と他の微小領域との差分値dijを含む特徴量データxiと、変形前の臓器領域の形状モデルM(i)Iの各微小領域から変形後の臓器領域の形状モデルM(i)Dの対応する各微小領域への変位量データyiを与える関係が学習され記憶されている。
本実施の形態の技術を用いれば、2次元画像データしか測定できない状況でも、変形後の形状を推定できるだけでなく、外観からは確認できない腫瘍の位置を推定することもできる。
前述の実施の形態では、特徴量データxiの候補として、各頂点iの座標vi、微小領域を規定する勾配又は法線ベクトルni、微小領域を規定する曲率(2次微分、離散ラプラシアン)li、頂点間差分dij、微小領域の収縮率si、微小領域のボロノイ面積riを例示したが、特徴量データxiの候補として、各微小領域と平均的な形状モデル(以下「平均形状モデル」という)の対応領域からのずれ量uiを追加で含めてもよい。この場合、ずれ量uiを単独で特徴量データxiとして用いてもよいし、他の候補と組み合わせて特徴量データxiとして用いてもよい。
図28は、複数の形状モデルM(i)から生成される平均形状モデルMを説明する図である。平均形状モデルMの頂点iの座標vMiは、例えば複数の形状モデルM(i)の対応する頂点群の座標viの平均値として生成する。図28の場合には、500個の頂点のそれぞれについて座標の平均値が算出される。
図29は、変形前の平均形状モデルM Iに対する各形状モデルの対応領域間のずれ量uiを説明する図である。ここでの対応領域は、頂点iに対応する微小領域である。従って、ずれ量uiは、500個の頂点について算出される。図中の変形関数fは、変形前の平均形状モデルM Iから変形後の平均形状モデルM Dを生成する変形関数を表している。
なお、ここでの平均形状モデルMをテンプレート形状Tとして与え、形状データS(i)に対応する形状モデルM(i)を繰り返し計算してもよい。
前述の実施の形態では、同一の臓器についての変形の前後における特徴量データxiと変位量データyiとの関係を学習し、学習の結果である学習済みモデルを用いて任意の測定データの変形後の形状を推定する場合について説明したが、ある物体1と平均モデルとのずれ量と、物体1との間で制約関係がある他の物体2を構成する各頂点sの座標vsのとの関係を学習し、学習の結果である学習済みモデルを用いて任意の物体1の測定データから物体2の位置を推定してもよい。
図30は、物体1の測定データから生成された形状モデル(アップサンプリング後の形状モデルを含む)M1(i1)~M1(ik)の各頂点iとそれらの平均形状モデルMの対応頂点とのずれ量uiと、物体1との間に制約関係がある他の物体2を構成する各頂点sの座標vsとの関係を学習する機械学習装置310の構成例を説明する図である。なお、機械学習装置310は、前述の実施の形態と同様、コンピュータによるプログラムの実行を通じて実現される。
機械学習装置310は、頂点毎のずれ量uiを算出して出力するずれ量算出部310Aと、各ずれ量uiと物体2の各頂点sの座標vsの関係を学習する機械学習部310Bとを有する。この例の場合、機械学習部310Bは、学習の結果として対応関係関数gを出力する。
例えば物体1は肝臓であり、物体2は膵臓である。ここでの制約関係は、例えば隣接する関係又は繋がる関係である。物体1が肝臓の場合、隣接する関係を満たす物体2は、胃、十二指腸、右腎臓であり、繋がる関係を満たす物体2は、十二指腸、膵臓、脾臓などである。
位置推定装置320は、物体1の測定データから生成された形状モデルを構成する各頂点iについて平均形状モデルMとのずれ量uiを特徴量データとして算出する特徴量算出部321と、算出されたずれ量uiを学習済みモデルに適応し、物体2の位置を推定する物体位置推定部322と、推定結果を出力する推定結果出力部323とを有している。
位置推定装置320も、前述の実施の形態と同様、コンピュータによるプログラムの実行を通じて実現される。
前述の実施の形態では、物体の全体を撮像又は測定した画像データを用いて物体全体の変形を学習する場合について説明したが、以下では、物体の一部分を撮像又は測定した画像データを用いて物体全体の変形を学習する場合について説明する。
以下の説明では、物体の一部分を撮像又は測定した画像データの一例として、コーンビームCT(=Cone Beam CT)が生成する三次元画像データを使用する。コーンビームCTは、X線を円錐状又は四角錐状に照射する照射部と、被写体を通過したX線を検出する二次元検出器とで構成される可動装置を、被写体の周囲で1回転するだけで、被写体の三次元画像データを生成することができる。
このため、コーンビームCTは、例えば手術中の肺の撮像に使用されている。ただし、コーンビームCTの撮像範囲に含まれる肺実質の体積は、肺全体の体積の半分以下になる場合もあり、しかも、どの領域が撮像されるかも不明である。
図中、メッシュで示す面積が最も広いCT画像P1は、手術前に撮像されたCT画像である。肺の一部分しか撮像されないコーンビームCTとは異なり、肺の全体が撮像されている。なお、手術前であるので肺は含気状態である。ここでのCT画像P1は、実施の形態1における変形前画像I(i)Iに対応する。
図中、薄い色で着色した面積が2番めに広いCT画像P2は、手術中にコーンビームCTで撮像されたCT画像である。CT画像P2は、含気状態の肺の一部分である。被検体A、B及びCのいずれの場合も、CT画像P2は、CT画像P1より狭い領域となる。
図中、濃い色で着色した面積が最も狭いCT画像P3も、手術中にコーンビームCTで撮像されたCT画像である。CT画像P3は、脱気状態の肺の一部分である。このため、被検体A、B及びCのいずれの場合も、CT画像P3は、CT画像P2より狭い領域となる。
そこで、本実施の形態では、手術前に撮像された肺全体のCT画像P1との位置合わせを通じ、部分画像間の変形を肺全体の一部分の変化として学習する。
図33は、実施の形態7で使用する形状モデル生成部101(図3参照)で実行される処理の一例を示す図である。図33には、図5との対応部分に対応する符号を付して示している。
なお、機械学習装置のハードウェア構成や機能構成は実施の形態1と同様である。すなわち、実施の形態7における機械学習装置も、変形前画像I(i)Iと変形後画像I(i)Dのそれぞれについて形状モデルを生成し、その後、生成された形状モデルのアップサンプリングを行い、次に微小領域単位での学習を実行する。
まず、サンプリング部101Cが変形前画像I(i)ITと、変形前部分画像I(i)IPと、変形後部分画像I(i)DPのそれぞれをサンプリングし、ボクセルメッシュ構造又はポリゴンメッシュ構造の形状データを生成する。ここでは、変形前画像I(i)ITに対応する形状データをS(i)ITとし、変形前部分画像I(i)IPに対応する形状データをS(i)IPとし、変形後部分画像I(i)Dに対応する形状データをS(i)Dとする。
このため、実施の形態1で説明したように、独立に形成された形状データに含まれるボクセルの頂点の数は一般には一致しない。
そこで、本実施の形態の場合にも、生成された形状データをテンプレート形状Tに位置合わせして頂点数を揃えた形状モデルMを生成する。図33の場合、位置合わせ部101Dが位置合わせを実行する。
この位置合わせは、グローバル座標系間の位置合わせである。
なお、コーンビームCTで撮像される部位や体積は、図32に示すように、被検体や撮像回毎に異なる。このため、変形前部分形状モデルM(i)IPを構成する頂点数は、部分画像毎に異なる。
この位置合わせは、グローバル座標系とローカル座標系の位置合わせである。
この位置合わせは、ローカル座標系間の位置合わせである。
図34に示す被検体Aの場合、CT画像P2(変形前部分形状モデル)をCT画像P3(変形後部分形状モデル)の形状に変形した画像と、CT画像P3(変形後部分形状モデル)との対応頂点間の平均距離(MD: Mean Distance)は0.21mmであり、対応頂点間の最大距離(HD: Hausdorff Distance)は0.98mmである。図34の場合、対応頂点間の平均距離は、CT画像P2をCT画像P3の形状に変形させた後の画像の頂点(頂点はCT画像P2に由来)と、CT画像P3の対応する近傍表面との距離として計算される。近傍表面は、例えばCT画像P2の頂点から最も近いCT画像P3上の位置である。
なお、頂点群の推定値と真値間の包含度合い(DSC: Dice Similarity Distance)は98.93%である。
また、被検体BのMDは0.15mm、HDは0.79mm、DSCは99.24%である。被検体CのMDは0.23mm、HDは1.30mm、DSCは98.94%である。
図34に示すように、変形前の部分形状モデルM(i)IPは、高い精度で、変形後の形状モデルM(i)DPに位置合わせされる。
図35の場合、被検体AのMDは0.33mm、HDは1.91mm、DSCは98.14%である。また、被検体BのMDは0.54mm、HDは2.26mm、DSCは97.94%である。被検体CのMDは0.39mm、HDは1.53mm、DSCは98.31%である。
図35に示すように、テンプレート形状Tは、高い精度で、被検体毎に個別に撮像された肺全体のCT画像P1の形状データに位置合わせされている。
なお、変形前部分形状モデル群M(i1)IP…M(ik)IPは、変形前部分形状モデルM(i)IPをアップサンプリングして生成したモデル群である。また、変形後部分形状モデル群M(i1)DP…M(ik)DPは、変形後部分形状モデルM(i)DPをアップサンプリングして生成したモデル群である。
実施の形態1の場合には、アップサンプリングにより生成されたモデル群から頂点単位の特徴量を直接算出しているが、本実施の形態では、境界付近除去部103A0及び103B0を用い、予め境界付近の頂点を除去する。コーンビームCTで撮像された部分画像は、肺全体のうち撮像されていない領域との境界付近の信頼性が低いためである。
図37の場合、被検体AについてコーンビームCTで撮像されているのは肺の中央付近であり、肺の上部と下部は撮像されていない。このため、境界は、CT画像P2(変形前部分形状モデル)とCT画像P3(変形後部分形状モデル)の上端側と下端側の2箇所に出現する。
一方、被検体BについてコーンビームCTで撮像されているのは肺の上半分であり、肺の下半分は撮像されていない。このため、境界は、CT画像P2(変形前部分形状モデル)とCT画像P3(変形後部分形状モデル)の下端側の1箇所にのみ出現する。
図36の説明に戻る。境界付近除去部103A0は、変形前部分形状モデル群M(i1)IP…M(ik)IPのそれぞれから境界付近に存在する頂点を除去する。残った頂点群(すなわち学習対象の頂点群)は、特徴量算出部103Aと変位算出部103Bに出力される。
一方、境界付近除去部103B0は、変形後部分形状モデル群M(i1)DP…M(ik)DPのそれぞれから境界付近に存在する頂点を除去する。残った頂点群(すなわち学習対象の頂点群)は、変位算出部103Bに出力される。
図39は、境界付近の頂点を除去する場合の変位量データyiを説明する図である。(A)は被検体Aのx-y面に現れる変位量データyiとx-z面に現れる変位量データyiを示し、(B)は被検体Bのx-y面に現れる変位量データyiとx-z面に現れる変位量データyiを示し、(C)は被検体Cのx-y面に現れる変位量データyiとx-z面に現れる変位量データyiを示す。
いずれの図も、変位量データyiの長さは、見やすさを考慮し、実際よりも短く表している。
算出された特徴量データxiと変位量データyiは機械学習部103C(図36参照)に与えられる。この後、機械学習部103Cは、特徴量データxiと対応する頂点間の変位量データyiとの関係を表す変形関数fを学習する。なお、コーンビームCTで撮像される部分画像は、手術中の患者を被写体とする。このため、コーンビームCTで撮像される部分画像には、手術中の患者の姿勢(すなわち側臥位)に応じた重力変形が反映されている。その結果、機械学習部103Cにより生成される学習済みモデルにも、この重力変形が反映される。
図40に示すように、手術前に撮像したCTデータから推定された変形後の形状PSは、側臥位での重力方向(すなわち心臓に近い方向)への変形が確認され、手術映像に近い外観が得られている。
図中の縦軸は手術の前後における肺の体積変化を示し、横軸は被検体を示す。図41では、手術中にコーンビームCTで撮像されたCT画像の変形前後の体積の変化を真値として、本実施の形態の推定画像の変形前後の体積の変化を対比的に図示している。三次元画像データとしての推定画像は、前述したように手術前に撮像されたCT画像から推定される。いずれの被験体についても誤差4%程度で推定できることが確認されている。このように、本実施の形態で説明したように、部分画像を用いて変形を学習する場合でも、物体全体の変形を精度良く推定することができる。
なお、以上の説明は、部分画像の取得にコーンビームCTを用いているが、部分画像を取得する装置をコーンビームCTに限るものではない。
以上、本発明の実施の形態について説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、種々の変更又は改良を加えたものも、本発明の技術的範囲に含まれることは、特許請求の範囲の記載から明らかである。
また、前述の実施の形態では、カーネル回帰モデルを用いて頂点毎の特徴量データと変位量データの関係を学習して学習済みモデルを生成しているが、深層学習や畳み込みニューラルネットワークを用いて学習済みモデルを生成してもよい。
また、前述の実施の形態では、形状モデルを構成する頂点間の距離の関係を特に規定していないが等間隔となるように制約を加えてもよい。
また、前述の実施の形態では、もっぱら医用画像データを前提として臓器の変形の前後を学習して学習済みモデルを生成しているが、本発明に係る技術は、医用画像データに限らない。
Claims (17)
- 変形の前後における測定データに基づいて、変形前の物体の形状を表す第1の形状モデルと変形後の物体の形状を表す第2の形状モデルを生成する生成部と、
前記第1の形状モデルを構成する各微小領域と他の微小領域との間の差分値を含む特徴量と、当該第1の形状モデルの各微小領域から前記第2の形状モデルの対応する各微小領域への変位を与える関係を学習する学習部と
を有する機械学習装置。 - 前記生成部が、前記第1の形状モデルの要素である頂点の配置を変更した第3の形状モデルと、前記第2の形状モデルの要素である頂点の配置を変更した第4の形状モデルを生成する場合、
前記学習部は、前記第3の形状モデルの各微小領域と他の微小領域との間の差分値を含む特徴量と、当該第3の形状モデルの各微小領域から前記第4の形状モデルの対応する各微小領域への変位を与える前記関係も学習する、
請求項1に記載の機械学習装置。 - 前記特徴量は、各微小領域を与える座標、各微小領域を規定する勾配又は法線ベクトル、各微小領域を規定する曲率、各微小領域のボロノイ面積、各微小領域の収縮率、及び、各微小領域と平均的な形状モデルの対応領域からのずれ量のうちのいずれか1つ又は複数によって規定される、請求項1に記載の機械学習装置。
- 前記特徴量を与える前記差分値は、前記第1の形状モデルを構成する全微小領域のうちの5%以上の微小領域との間で計算される、請求項1に記載の機械学習装置。
- 前記学習部は、カーネル回帰モデルを用いて前記関係を学習する、請求項1又は2に記載の機械学習装置。
- 変形の前後における前記測定データは、医用画像データである
ことを特徴とする請求項1又は2に記載の機械学習装置。 - 前記変形は肺の脱気変形であり、脱気による変形前の前記測定データとして気胸を治療した患者の肺の医用画像データを用い、脱気による変形後の前記測定データとして気胸を治療する前の患者の肺の医用画像データを用いる
ことを特徴とする請求項6に記載の機械学習装置。 - 前記変形は、呼吸による若しくは時間変化若しくは検体の違いに伴う臓器の変形又は臓器の位置の移動を含む
ことを特徴とする請求項6に記載の機械学習装置。 - 前記第1の形状モデルと前記第2の形状モデルは、3次元の頂点モデルである
ことを特徴とする請求項1に記載の機械学習装置。 - コンピュータに、
変形の前後における測定データに基づいて、変形前の物体の形状を表す第1の形状モデルと変形後の物体の形状を表す第2の形状モデルを生成する機能と、
前記第1の形状モデルの各微小領域と他の微小領域との間の差分値を含む特徴量と、当該第1の形状モデルの各微小領域から前記第2の形状モデルの対応する各微小領域への変位を与える関係を学習する機能と
を実行させるプログラム。 - 任意の測定データが与えられた場合に、変形前の測定データから生成された第1の形状モデルにおける各微小領域と他の微小領域との間の差分値を含む特徴量と、当該第1の形状モデルの各微小領域から変形後の第2の形状モデルの対応する各微小領域への変位を与える関係を学習した学習済みモデルを用い、当該任意の測定データに対応する変形後の形状を推定する推定部
を有する推定装置。 - 前記推定部は、
入力された前記測定データについて生成される形状モデルの微小領域と他の微小領域との間の差分値を含む特徴量を算出し、
各微小領域に対応する特徴量の変位を、前記学習済みモデルに記憶されている関係の補間によって推定する
ことを特徴とする請求項11に記載の推定装置。 - コンピュータに、
任意の測定データが与えられた場合に、変形前の測定データから生成された第1の形状モデルにおける各微小領域と他の微小領域との間の差分値を含む特徴量と、当該第1の形状モデルの各微小領域から変形後の第2の形状モデルの対応する各微小領域への変位を与える関係を学習した学習済みモデルを用い、当該任意の測定データに対応する変形後の形状を推定する機能
を実行させるプログラム。 - 変形前の測定データから生成された第1の形状モデルにおける各微小領域と他の微小領域との間の差分値を含む特徴量を入力とし、当該第1の形状モデルの各微小領域から変形後の第2の形状モデルの対応する各微小領域への変位を出力とする関係を与え、
任意の測定データが与えられた場合に、前記関係を用い、当該任意の測定データに対応する形状モデルの各微小領域に対応する変位を演算することにより、当該任意の測定データに対応する変形後の形状を推定する機能をコンピュータに実行させるための学習済みモデル。 - 複数の第1の物体の測定データに基づいて、第1の物体の個別の形状を表す形状モデルと平均的な形状モデルを生成する生成部と、
前記個別の形状を表す形状モデルを構成する各微小領域と前記平均的な形状モデルの対応する微小領域との間の差分値を含む特徴量の分布と、当該差分値の分布と前記第1の物体との間に制約関係を有する第2の物体が存在する領域との関係を学習する学習部と
を有する機械学習装置。 - 前記制約関係は、前記第2の物体が前記第1の物体に隣接する又は繋がっている関係を含む、請求項15に記載の機械学習装置。
- コンピュータに、
複数の第1の物体の測定データに基づいて、第1の物体の個別の形状を表す形状モデルと平均的な形状モデルを生成する機能と、
前記個別の形状を表す形状モデルを構成する各微小領域と前記平均的な形状モデルの対応する微小領域との間の差分値を含む特徴量の分布と、当該差分値の分布と前記第1の物体との間に制約関係を有する第2の物体が存在する領域との関係を学習する機能と
を実行させるプログラム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018171825 | 2018-09-13 | ||
JP2018171825 | 2018-09-13 | ||
PCT/JP2019/034558 WO2020054503A1 (ja) | 2018-09-13 | 2019-09-03 | 機械学習装置、推定装置、プログラム及び学習済みモデル |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020054503A1 JPWO2020054503A1 (ja) | 2021-09-16 |
JP7349158B2 true JP7349158B2 (ja) | 2023-09-22 |
Family
ID=69776997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020545937A Active JP7349158B2 (ja) | 2018-09-13 | 2019-09-03 | 機械学習装置、推定装置、プログラム及び学習済みモデル |
Country Status (4)
Country | Link |
---|---|
US (1) | US11631177B2 (ja) |
EP (1) | EP3852023A4 (ja) |
JP (1) | JP7349158B2 (ja) |
WO (1) | WO2020054503A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022003428A2 (ja) * | 2020-06-30 | 2022-01-06 | 貴志 山本 | 情報処理装置及び学習済モデル |
CN112330603B (zh) * | 2020-10-19 | 2023-04-18 | 浙江省肿瘤医院 | 基于软组织表面形变估计组织内部目标运动的系统与方法 |
JP7145359B1 (ja) * | 2021-02-18 | 2022-09-30 | 株式会社Live2D | 推論モデル構築方法、推論モデル構築装置、プログラム、記録媒体、構成装置及び構成方法 |
CN114708261A (zh) * | 2022-06-01 | 2022-07-05 | 浙江大华技术股份有限公司 | 图像采集设备的运动估计方法、装置、终端及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008200482A (ja) | 2006-12-19 | 2008-09-04 | Fujifilm Corp | 癌検出のために確率的アトラスを使用する方法および装置 |
JP2015130972A (ja) | 2014-01-10 | 2015-07-23 | キヤノン株式会社 | 処理装置、処理方法、およびプログラム |
JP2016209399A (ja) | 2015-05-12 | 2016-12-15 | 国立大学法人京都大学 | 画像処理装置及び方法、並びにコンピュータプログラム |
JP2017512522A (ja) | 2014-03-04 | 2017-05-25 | ユーシーエル ビジネス ピーエルシー | 対象に固有の動きモデルを生成かつ使用する装置および方法 |
JP2018522695A (ja) | 2015-06-26 | 2018-08-16 | セレンバ | 血管構造内で血管内器具を誘導する助けとなるための方法及びシステム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12046040B2 (en) * | 2015-07-17 | 2024-07-23 | Origin Research Wireless, Inc. | Method, apparatus, and system for people counting and recognition based on rhythmic motion monitoring |
US10074160B2 (en) * | 2016-09-30 | 2018-09-11 | Disney Enterprises, Inc. | Point cloud noise and outlier removal for image-based 3D reconstruction |
WO2018064349A1 (en) * | 2016-09-30 | 2018-04-05 | Velo3D, Inc. | Three-dimensional objects and their formation |
WO2019061202A1 (en) * | 2017-09-28 | 2019-04-04 | Shenzhen United Imaging Healthcare Co., Ltd. | SYSTEM AND METHOD FOR PROCESSING COLON IMAGE DATA |
-
2019
- 2019-09-03 JP JP2020545937A patent/JP7349158B2/ja active Active
- 2019-09-03 US US17/274,065 patent/US11631177B2/en active Active
- 2019-09-03 WO PCT/JP2019/034558 patent/WO2020054503A1/ja unknown
- 2019-09-03 EP EP19859716.3A patent/EP3852023A4/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008200482A (ja) | 2006-12-19 | 2008-09-04 | Fujifilm Corp | 癌検出のために確率的アトラスを使用する方法および装置 |
JP2015130972A (ja) | 2014-01-10 | 2015-07-23 | キヤノン株式会社 | 処理装置、処理方法、およびプログラム |
JP2017512522A (ja) | 2014-03-04 | 2017-05-25 | ユーシーエル ビジネス ピーエルシー | 対象に固有の動きモデルを生成かつ使用する装置および方法 |
JP2016209399A (ja) | 2015-05-12 | 2016-12-15 | 国立大学法人京都大学 | 画像処理装置及び方法、並びにコンピュータプログラム |
JP2018522695A (ja) | 2015-06-26 | 2018-08-16 | セレンバ | 血管構造内で血管内器具を誘導する助けとなるための方法及びシステム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020054503A1 (ja) | 2021-09-16 |
EP3852023A4 (en) | 2022-06-08 |
WO2020054503A1 (ja) | 2020-03-19 |
US20210256703A1 (en) | 2021-08-19 |
EP3852023A1 (en) | 2021-07-21 |
US11631177B2 (en) | 2023-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pfeiffer et al. | Learning soft tissue behavior of organs for surgical navigation with convolutional neural networks | |
JP7349158B2 (ja) | 機械学習装置、推定装置、プログラム及び学習済みモデル | |
Kreiser et al. | A survey of flattening‐based medical visualization techniques | |
US9262583B2 (en) | Image similarity-based finite element model registration | |
US10026016B2 (en) | Tracking and representation of multi-dimensional organs | |
Özgür et al. | Preoperative liver registration for augmented monocular laparoscopy using backward–forward biomechanical simulation | |
EP3444781B1 (en) | Image processing apparatus and image processing method | |
US7825924B2 (en) | Image processing method and computer readable medium for image processing | |
Eiben et al. | Symmetric biomechanically guided prone-to-supine breast image registration | |
Vásquez Osorio et al. | Accurate CT/MR vessel‐guided nonrigid registration of largely deformed livers | |
García et al. | A step‐by‐step review on patient‐specific biomechanical finite element models for breast MRI to x‐ray mammography registration | |
Roth et al. | Registration of the endoluminal surfaces of the colon derived from prone and supine CT colonography | |
Chai et al. | A voxel‐based finite element model for the prediction of bladder deformation | |
Visentin et al. | Iterative simulations to estimate the elastic properties from a series of MRI images followed by MRI-US validation | |
Jiang et al. | Virtual image correlation of magnetic resonance images for 3D geometric modelling of pelvic organs | |
CN108805876B (zh) | 使用生物力学模型的磁共振和超声图像的可形变配准的方法和系统 | |
Chilali et al. | A survey of prostate modeling for image analysis | |
Yamamoto et al. | Deformation estimation of an elastic object by partial observation using a neural network | |
Selmi et al. | 3D interactive ultrasound image deformation for realistic prostate biopsy simulation | |
Wang et al. | 3D Shape‐Weighted Level Set Method for Breast MRI 3D Tumor Segmentation | |
Kang et al. | Simulating liver deformation during respiration using sparse local features | |
CN113674838B (zh) | 医学图像处理装置、医学图像处理方法和记录介质 | |
Yamamoto et al. | Kernel-based framework to estimate deformations of pneumothorax lung using relative position of anatomical landmarks | |
Chlap et al. | Uncertainty Estimation using a 3D Probabilistic UNet for Segmentation with Small Radiotherapy Clinical Trial Datasets | |
Dubrovin et al. | Preoperative planning and intraoperative navigation, based on 3D modeling for retroperitoneal procedures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210322 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230904 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7349158 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |