JP7235498B2 - Method for producing konjac powder - Google Patents
Method for producing konjac powder Download PDFInfo
- Publication number
- JP7235498B2 JP7235498B2 JP2018239728A JP2018239728A JP7235498B2 JP 7235498 B2 JP7235498 B2 JP 7235498B2 JP 2018239728 A JP2018239728 A JP 2018239728A JP 2018239728 A JP2018239728 A JP 2018239728A JP 7235498 B2 JP7235498 B2 JP 7235498B2
- Authority
- JP
- Japan
- Prior art keywords
- dietary fiber
- konjac
- powder
- insoluble dietary
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Preparation Of Fruits And Vegetables (AREA)
- Jellies, Jams, And Syrups (AREA)
Description
本発明は、こんにゃく粉末に含まれる粉末粒子における水溶性食物繊維を不溶性食物繊維に転換し、これらの割合を変えたこんにゃく粉末の製造方法に関する。 The present invention relates to a method for producing konjac powder by converting water-soluble dietary fiber in powder particles contained in konjac powder into insoluble dietary fiber and changing the ratio of these.
こんにゃくは、乾燥こんにゃく芋を粉砕して精製したこんにゃく精粉を水に溶解してこんにゃく糊とし、一般的には消石灰(水酸化カルシウム粉末)を水に分散させた懸濁液をこんにゃく糊に添加混合して良く練り込んだ後に成型して加熱凝固させる方法により製造されている。
こんにゃくは、古くから日本を始め、中国や東南アジアの一部地域で食されてきたが、近年の健康食ブームで不溶性食物繊維含有食品として脚光を浴びている。
こんにゃく芋の主要成分は水溶性のグルコマンナンであり、水に溶解すると糊状のゾルとなるが、アルカリ条件下で加熱すると不溶性となりゲル化し、水を抱き込んでこんにゃくとなる。こんにゃく製造に使用されるアルカリ凝固剤は、水酸化カルシウム、水酸化ナトリウムまたは炭酸ナトリウムが主体である。この時の反応は、水溶性グルコマンナン(水溶性食物繊維)中のアセチル基が、アルカリ条件下で外れることによりゲル化(不溶性食物繊維への転換)が起こるとされている。
Konnyaku is made by dissolving refined konjac powder, which is obtained by pulverizing dried konjac potatoes, in water to make konjac paste. In general, a suspension of slaked lime (calcium hydroxide powder) dispersed in water is added to the konjac paste. It is produced by a method of mixing and kneading well, molding, and heating and solidifying.
Konjac has long been eaten in Japan, China, and some parts of Southeast Asia, but with the recent health food boom, konnyaku has come into the limelight as a food containing insoluble dietary fiber.
The main component of konjac potato is water-soluble glucomannan, which becomes a pasty sol when dissolved in water, but becomes insoluble and gels when heated under alkaline conditions, and becomes konjac by absorbing water. Alkaline coagulants used in konjac production are mainly calcium hydroxide, sodium hydroxide or sodium carbonate. In this reaction, the acetyl groups in water-soluble glucomannan (water-soluble dietary fiber) are said to be released under alkaline conditions, resulting in gelation (conversion to insoluble dietary fiber).
不溶性食物繊維の含有割合を高めたこんにゃく加工製品としては、こんにゃくを乾燥後製粉して得られるこんにゃくパウダーが知られている。特許文献1には、水分を含むこんにゃくを挽肉状に破砕後、水洗によるあく抜き、脱水を経て得られるこんにゃくペーストを、乾燥して、精粉機でパウダー化するこんにゃくパウダーの製造方法が開示されている。
特許文献2には、こんにゃく粒の膨潤を抑制した状態で、こんにゃく粉がアルカリ溶液とともに加熱処理されて改質された改質こんにゃく粉であって、水に分散して分散液とした後に加熱処理又は撹拌処理されるとゲル化するように調製されていることを特徴とする改質こんにゃく粉が開示されている。
As a processed konjac product with an increased content of insoluble dietary fiber, konjac powder obtained by drying konjac and then milling is known. Patent Document 1 discloses a method for producing konjac powder, in which konjac containing water is crushed into minced meat, then washed with water to remove harshness, dehydrated, and the resulting konjac paste is dried and powdered with a mill. ing.
Patent Document 2 discloses a modified konjac powder obtained by heat-treating konjac powder with an alkaline solution while suppressing the swelling of konjac grains, dispersing it in water to form a dispersion, followed by heat treatment. Alternatively, modified konjac flour is disclosed that is prepared to gel when agitated.
特許文献1に代表される従来技術によるこんにゃくの不溶性食物繊維粉末は、不溶性食物繊維含有量が高く、水分を多く含むこんにゃくに比べて取扱い性が格段によく、不溶性食物繊維摂取用の食品として非常に優れた製品である。しかしながら、従来技術によるこんにゃく粉末に含まれる粉末粒子は吸水性が低く、或いは吸水性を持たず、そのまま摂取した際の食感が独特であり、用途が限定される場合があった。
特許文献1では、原料であるこんにゃく粉を水に溶解し(一般的に3質量%濃度)、所謂こんにゃく糊を調製した後にアルカリを加え、加熱してこんにゃくを得る。これを湿式で破砕し、水洗によるあく抜きと脱水を経て、得られるこんにゃくファイバー区分を乾燥後、粉砕してパウダー化する。これにより不溶性食物繊維の含有量の高いこんにゃくパウダーを得ることができる。しかしながら、特許文献1の方法では、製造工程数が増加し、また、製造工程も複雑となり、製造の効率化を図ることが難しい。
従って、従来技術によるこんにゃく粉末の製造では、水分を多量に含むこんにゃく糊の調製に始まり、アルカリ添加、成型、加熱、冷却、細断、脱水、乾燥及び粉末化の多くの工程が必須であり、また、こんにゃく糊に対するこんにゃく粉の収率(質量基準)も低く、こんにゃく粉末の製造効率を上げることには限界があった。
特許文献2には、原料であるこんにゃく粉にアルカリ溶液を加え、あるいは、アルカリ溶液とエタノール等の膨潤抑制剤を加えて加熱処理を施すことによる改質こんにゃく粉の製造方法が開示されている。この製造方法では、原料であるこんにゃく粉の紛体の状態を維持してアルカリ溶液での処理が行われる。この改質こんにゃく粉を水に分散させて加熱処理を行えば、そのままゲル化する。
特許文献2に開示される改質こんにゃく粉はゲル化能を有し、ゲル化剤として利用される。従って、この改質こんにゃく粉は不溶性食物繊維を含むこんにゃく粉を、ゲルを形成することなく紛体の状態で利用する用途に適した物性を有していない。
The insoluble dietary fiber powder of konjac according to the prior art represented by Patent Document 1 has a high insoluble dietary fiber content and is much easier to handle than konjac containing a large amount of water. It is an excellent product for However, the powder particles contained in the konjac powder according to the prior art have low water absorbency or no water absorbency, and the texture when ingested as it is is unique, and there are cases where the application is limited.
In Patent Document 1, konjac powder, which is a raw material, is dissolved in water (generally at a concentration of 3% by mass) to prepare a so-called konjac paste, and then alkali is added and heated to obtain konjac. The resulting konjac fiber fraction is wet-pulverized, washed with water to remove harshness and dehydrated, and the resulting konjac fiber fraction is dried and then pulverized into a powder. This makes it possible to obtain konjac powder with a high content of insoluble dietary fiber. However, in the method of Patent Document 1, the number of manufacturing steps increases and the manufacturing steps become complicated, making it difficult to improve the efficiency of manufacturing.
Therefore, in the production of konjac powder according to the prior art, many processes such as preparation of konjac paste containing a large amount of water, alkali addition, molding, heating, cooling, shredding, dehydration, drying and pulverization are essential. In addition, the yield (mass basis) of konjac powder to konjac paste was low, and there was a limit to increasing the production efficiency of konjac powder.
Patent Document 2 discloses a method for producing modified konjac flour by adding an alkaline solution to konjac flour, which is a raw material, or by adding an alkaline solution and a swelling inhibitor such as ethanol and performing heat treatment. In this production method, the konjac flour, which is a raw material, is treated with an alkaline solution while maintaining its powdery state. If this modified konjac powder is dispersed in water and heat-treated, it will gel as it is.
The modified konjac flour disclosed in Patent Document 2 has gelling ability and is used as a gelling agent. Therefore, this modified konjac flour does not have physical properties suitable for applications in which konjac flour containing insoluble dietary fiber is used in a powder state without forming a gel.
本発明の目的は、こんにゃく原料粉末に対して不溶性食物繊維の含有割合が飛躍的に増加しており、紛体の状態での水溶性食物繊維及び不溶性食物繊維の直接摂取や食品への配合に有用な、こんにゃく粉末の製造方法を提供することにある。 The object of the present invention is to dramatically increase the content of insoluble dietary fiber relative to the konjac raw material powder, which is useful for direct ingestion of water-soluble dietary fiber and insoluble dietary fiber in the powder state and blending into foods. Another object of the present invention is to provide a method for producing konjac powder.
本発明にかかるこんにゃく粉末の製造方法は、
こんにゃく原料粉末とアルカリ金属溶液を混合して、該こんにゃく原料粉末に含まれる粉末粒子に該アルカリ金属溶液を供給する混合工程と、
前記アルカリ金属溶液が供給された粉末粒子において該アルカリ金属溶液の作用により不溶性食物繊維を形成してこんにゃく粉末を得る不溶性食物繊維形成工程と、を有し、
前記混合工程及び前記不溶性食物繊維形成工程が、前記粉末粒子の粒子としての形態が維持された状態で行われる
ことを特徴とする。
The method for producing konjac powder according to the present invention includes:
A mixing step of mixing the konjac raw material powder and an alkali metal solution and supplying the alkali metal solution to the powder particles contained in the konjac raw material powder;
an insoluble dietary fiber forming step for obtaining konjac powder by forming insoluble dietary fiber in the powder particles supplied with the alkali metal solution by the action of the alkali metal solution,
The mixing step and the insoluble dietary fiber forming step are characterized in that the powder particles are maintained in the form of particles.
本発明によれば、原料であるこんにゃく粉に、アルカリ金属溶液を添加して、こんにゃく粉の粉末粒子の粒子としての形態を維持しつつ、これらを混合し、粉末粒子の表面及びその内部に供給されたアルカリ金属溶液の作用により生成する不溶性食物繊維の含有量を増加させたゲル化能を有していない粉末粒子を含むこんにゃく粉末を得ることができる。
こんにゃく粉末に含まれる水溶性食物繊維に対する不溶性食物繊維の割合は、アルカリ金属溶液とこんにゃく原料粉末との反応条件を選択することによって制御することができる。
本発明の方法によれば、グルコマンナンからの不溶性食物繊維の形成によって、こんにゃく原料粉末が有していたゲル化能が失われる。すなわち、水溶性食物繊維として含まれるグルコマンナンの不溶性食物繊維への変換は、こんにゃく原料粉末が有していたゲル化能が消失するように行われる。こんにゃく粉末がゲル化能を消失したかどうか、すなわち非ゲル形成性となったかどうかについては、後述するこんにゃく粉末の分散液の粘度を測定する方法等によって確認することができる。
ゲル化能を持たないこんにゃく粉末の乾物当たりの全食物繊維に対する不溶性食物繊維の含量を50質量%以上とすることが好ましい。乾物当たりの不溶性食物繊維含量の上限は特に限定されないが、乾物当たりの全食物繊維に対する不溶性食物繊維含量は、100質量%未満、あるいは99質量%以下とすることができる。
更に、本発明にかかるこんにゃく粉末の製造方法では、こんにゃく原料粉末に含まれる粉末粒子の粒子形態を維持した状態で、アルカリ金属溶液を作用させて、目的とするこんにゃく粉末を直接得ることができる。従って、本発明にかかるこんにゃく粉末の製造方法では、従来技術における、こんにゃく糊を調製する工程、こんにゃく糊をアルカリ凝固剤の添加及び加熱によりゲル化する工程、水分を含むこんにゃく塊の細断、脱水、乾燥、粉末化を行う工程を省略して、極めて効率よく全食物繊維に対して不溶性食物繊維を50質量%以上含むこんにゃく粉末を製造することができる。
本発明にかかるこんにゃく粉末は、水溶性食物繊維と不溶性食物繊維を含み、水に不溶性であり、かつ水への分散性、抱水性(膨潤性)に優れ、紛体の形態でのそのままでの利用や、あるいは飲料や食品中への添加による飲料や食品中での水溶性食物繊維と不溶性食物繊維混合形態としての利用が可能である。
According to the present invention, an alkali metal solution is added to the konjac flour as a raw material, and the powder particles of the konjac flour are mixed while maintaining the shape of the particles, and supplied to the surface and inside of the powder particles. It is possible to obtain konjac powder containing powder particles having no gelling ability and having an increased content of insoluble dietary fiber generated by the action of the alkali metal solution.
The ratio of insoluble dietary fiber to water-soluble dietary fiber contained in the konjac powder can be controlled by selecting reaction conditions between the alkali metal solution and the konjac raw material powder.
According to the method of the present invention, the formation of insoluble dietary fiber from glucomannan causes the konjac raw material powder to lose its gelling ability. That is, the conversion of glucomannan, which is contained as water-soluble dietary fiber, into insoluble dietary fiber is carried out so as to eliminate the gelling ability of the konjac raw material powder. Whether or not the konjac powder has lost its gelling ability, that is, whether or not it has become non-gel-forming, can be confirmed by the method of measuring the viscosity of the konjac powder dispersion, which will be described later.
It is preferable that the content of insoluble dietary fiber relative to the total dietary fiber per dry matter of the non-gelling konjac powder is 50% by mass or more. Although the upper limit of the insoluble dietary fiber content per dry matter is not particularly limited, the insoluble dietary fiber content relative to the total dietary fiber per dry matter can be less than 100% by mass, or 99% by mass or less.
Furthermore, in the method for producing konjac powder according to the present invention, the desired konjac powder can be obtained directly by allowing the alkali metal solution to act while maintaining the particle morphology of the powder particles contained in the konjac raw material powder. Therefore, in the method for producing konjac powder according to the present invention, the steps in the conventional technology include the steps of preparing konjac paste, adding an alkaline coagulant and heating the konjac paste to gel it, shredding the konjac mass containing water, and dehydrating it. By omitting the steps of drying and pulverizing, it is possible to produce konjac powder containing 50% by mass or more of insoluble dietary fiber with respect to total dietary fiber very efficiently.
The konjac powder according to the present invention contains water-soluble dietary fiber and insoluble dietary fiber, is insoluble in water, has excellent dispersibility in water and water holding property (swelling property), and can be used as it is in the form of powder. Alternatively, it can be used as a mixture of water-soluble dietary fiber and insoluble dietary fiber in beverages and foods by adding them to beverages and foods.
先に述べた特許文献1に代表される従来技術によるこんにゃくの不溶性食物繊維粉末における技術課題を解決するために、本発明者らは、こんにゃく粉末の製造方法について鋭意検討した。その結果、こんにゃく原料粉末中のグルコマンナン(水溶性食物繊維)を水に溶解することなく、粉末粒子中に閉じ込めた状態を維持して、水溶性の食物繊維から不溶性の食物繊維を形成することが可能で、その割合を自由にコントロールできるのであれば、広範な用途に利用可能で、且つ製造効率の良いこんにゃく粉末を提供できるとの結論を得た。
すなわち、精粉こんにゃく中の食物繊維含量は、2015年版日本食品標準成分表(文部科学省、化学技術・学術審議会、資源調査分科会編集)によれば、水溶性食物繊維が0.1%、不溶性食物繊維が2.1%であるが、上記食品標準成分表によると、原料であるこんにゃく精粉では、水溶性食物繊維が73.3%、不溶性食物繊維が6.6%となっている。従って、こんにゃくの不溶性食物繊維をより積極的に、更には、これまで以上に幅広く活用するためには、不溶性食物繊維の含有率が2.1%のこんにゃくから不溶性食物繊維を取り出すのではなく、原料であるこんにゃく精粉中の水溶性食物繊維を、直接不溶性食物繊維に転換させることが肝要である。
In order to solve the technical problems associated with conventional konjac insoluble dietary fiber powders represented by the above-mentioned Patent Document 1, the present inventors have extensively studied methods for producing konjac powder. As a result, the glucomannan (water-soluble dietary fiber) in the konjac raw material powder is not dissolved in water, but maintained in a state of being confined in the powder particles to form an insoluble dietary fiber from the water-soluble dietary fiber. is possible, and if the ratio can be freely controlled, it is possible to provide a konjac powder that can be used in a wide range of applications and has good production efficiency.
That is, according to the 2015 edition of the Standard Tables of Food Composition in Japan (Ministry of Education, Culture, Sports, Science and Technology, Chemical Technology and Academic Council, Edited by the Resource Survey Subcommittee), the dietary fiber content in refined konjac is 0.1% water-soluble dietary fiber. , Insoluble dietary fiber is 2.1%, but according to the standard food composition table, the raw material, konjac flour, has 73.3% water-soluble dietary fiber and 6.6% insoluble dietary fiber. there is Therefore, in order to use the insoluble dietary fiber of konjac more actively and more widely than ever before, instead of extracting insoluble dietary fiber from konjac with an insoluble dietary fiber content of 2.1%, It is important to directly convert the water-soluble dietary fiber in refined konjac flour, which is the raw material, into insoluble dietary fiber.
一方、特許文献2には、こんにゃく粉をアルカリ溶液とともに加熱処理を施すことで改質し、これを水に分散させて加熱処理を行えば、そのままゲル化することが記載されている。特許文献2で目的とするところは、こんにゃく粉を水に分散させ、糊状とした後にアルカリを混合して加熱処理を行ってゲル化させるという通常の手順を踏むことなく、改質こんにゃく粉から簡単に加熱ゲルが得られるという点にある。しかしながら、特許文献2に開示される方法では、改質こんにゃく粉中の水溶性食物繊維であるグルコマンナンの一部が不溶性食物繊維へ転換している可能性はあるが、飽く迄も全体としてゲル化能を残しているということが、大前提となっている。
本発明者らの検討によれば、アルカリ剤で処理したこんにゃく粉末において、プロスキー変法により測定されるこんにゃく粉中の不溶性食物繊維の含量が、全食物繊維含量に対して40質量%以上となると、ゲル化能は無くなるということが明らかとなった。
すなわち、2015年版日本食品標準成分表によれば、こんにゃく精粉中には不溶性食物繊維が6.6%含有され、水溶性食物繊維が73.3%含有されるので、水溶性食物繊維の少なくとも35%以上を、直接的に不溶性食物繊維に変換させることで、こんにゃく精粉中の全食物繊維に対しての不溶性食物繊維の割合を40質量%以上とすることができ、ゲル化しないこんにゃく粉となるのである。従って、特許文献2では、原料であるこんにゃく粉中の水溶性のグルコマンナンの35質量%以上を、不溶性食物繊維とすることは想定されていないと言えるのである。
また、特許文献1及び2には、こんにゃくパウダーの各粒子に含まれる水溶性食物繊維と不溶性食物繊維との割合を制御する点についての記載や示唆は無い。
On the other hand, Patent Document 2 describes that konjac powder is modified by heat treatment with an alkaline solution, and when this is dispersed in water and heat treated, it gels as it is. The purpose of Patent Document 2 is to disperse the konjac powder in water, make it pasty, and then mix the alkali and heat it to gel it without going through the normal procedure, from the modified konjac powder. The point is that a heated gel can be easily obtained. However, in the method disclosed in Patent Document 2, there is a possibility that part of the glucomannan, which is a water-soluble dietary fiber in the modified konjac flour, is converted to insoluble dietary fiber, but the gelling ability as a whole It is a major premise that
According to the studies of the present inventors, in the konjac powder treated with an alkaline agent, the content of insoluble dietary fiber in the konjac powder measured by the modified Prosky method is 40% by mass or more with respect to the total dietary fiber content. It was found that the gelling ability was lost when the temperature increased.
That is, according to the 2015 edition of the Standard Tables of Food Composition in Japan, refined konjac flour contains 6.6% insoluble dietary fiber and 73.3% water-soluble dietary fiber, so at least By directly converting 35% or more to insoluble dietary fiber, the ratio of insoluble dietary fiber to the total dietary fiber in the refined konjac flour can be 40% by mass or more, and konjac flour that does not gel. It becomes. Therefore, it can be said that Patent Document 2 does not assume that 35% by mass or more of the water-soluble glucomannan in the raw material konjac flour is made into insoluble dietary fiber.
Further, Patent Documents 1 and 2 do not describe or suggest controlling the ratio of water-soluble dietary fiber and insoluble dietary fiber contained in each particle of konjac powder.
本発明者らは既に、糖水酸化カルシウム水溶液を用いて、水溶性こんにゃく粉を水に溶解して糊状とすること無く、粉末状態で不溶性こんにゃく粉に転換する新しい製造技術を開発した。この製造技術では、糖水酸化カルシウム水溶液をこんにゃく原料粉末に含まれる粉末粒子に直接吸収させて、粉末粒子中で水溶性食物繊維であるグルコマンナンの不溶化を行う。
糖水酸化カルシウム水溶液は、水溶性こんにゃく粉との反応が穏やかであると同時に、添加する水酸化カルシウム濃度を、低濃度から、水酸化カルシウム単独では達成し得ない高濃度まで容易にコントロールでき、不溶性食物繊維への転換において、定量的で再現性の高い反応が担保されるという大きなメリットを有している。
The present inventors have already developed a new manufacturing technology that converts water-soluble konjac powder into insoluble konjac powder in powder form without dissolving water-soluble konjac powder in water and making it pasty by using an aqueous sugar calcium hydroxide solution. In this production technique, the sugar calcium hydroxide aqueous solution is directly absorbed into the powder particles contained in the konjac raw material powder, and glucomannan, which is a water-soluble dietary fiber, is insolubilized in the powder particles.
The sugar calcium hydroxide aqueous solution reacts gently with the water-soluble konjac flour, and at the same time, the concentration of calcium hydroxide to be added can be easily controlled from a low concentration to a high concentration that cannot be achieved with calcium hydroxide alone. It has the great merit of ensuring a quantitative and highly reproducible response in conversion to dietary fiber.
本発明者らは、こんにゃく原料粉末中の不溶性食物繊維の含有量を増加させるためのアルカリ剤として、水酸化カルシウム等のカルシウム化合物ではなく、ナトリウム化合物、カリウム化合物等のアルカリ金属化合物を成分とする、より簡単な組成のアルカリ剤について検討を行った。その結果、ナトリウム化合物、カリウム化合物は水溶性食物繊維との反応性が極めて高く、原料であるこんにゃく粉末の純度が低い場合にも対応でき、幅広い応用が可能であるとの新たな知見が得られた。この様に、ナトリウム化合物、カリウム化合物等のアルカリ金属化合物を用いる方法もまた、水溶性こんにゃく粉を水に溶解して糊状とすること無く、粉末粒子の状態で、不溶性こんにゃく粉に転換するのに有効な方法であることが見出された。
特に、上述の日本食品標準成分表に記載されている、水溶性食物繊維を73.3%、不溶性食物繊維を6.6%含有するこんにゃく精粉を原料として、0.1M~1.0Mの水酸化ナトリウム溶液や水酸化カリウム溶液を作用させることによって、全食物繊維に対する不溶性食物繊維の割合が50質量%以上であるこんにゃく粉末を得ることができる点が確認された。
本発明は、上述した本発明者らによる新たな知見に基づいて成されたものである。
本発明にかかるこんにゃく粉末の製造方法の一形態は、
(A)こんにゃく原料粉末とアルカリ金属溶液を混合して、こんにゃく原料粉末に含まれる粉末粒子にアルカリ金属溶液を供給する混合工程と、
(B)アルカリ金属溶液が供給された粉末粒子においてアルカリ金属溶液の作用により不溶性食物繊維を形成して、ゲル化能を有さないこんにゃく粉末を得る不溶性食物繊維形成工程と、
を有する。ここで目標とする好ましい不溶性食物繊維含量は、こんにゃく粉中の全食物繊維含量に対して50質量%以上である。
従って、上記の工程(A)及び(B)は、こんにゃく粉に含まれる粉末粒子の粒子としての形態が維持された状態で、こんにゃく粉末に含まれる全食物繊維(水溶性食物繊維と不溶性食物繊維との合計)に対する不溶性食物繊維の割合(質量基準)が、こんにゃく原料の有していたゲル化能が消失するように高くなるまで行われる。全食物繊維に対する不溶性食物繊維の割合は、100質量%未満、あるいは99質量%以下とすることができる。
The present inventors have found that the alkaline agent for increasing the content of insoluble dietary fiber in the konjac raw material powder is not a calcium compound such as calcium hydroxide, but an alkali metal compound such as a sodium compound and a potassium compound. , an alkaline agent with a simpler composition was investigated. As a result, sodium compounds and potassium compounds have extremely high reactivity with water-soluble dietary fiber, and new knowledge was obtained that they can be used even when the purity of the raw material, konjac powder, is low. rice field. In this way, the method using an alkali metal compound such as a sodium compound or a potassium compound also converts the water-soluble konjac powder into insoluble konjac powder in the form of powder particles without dissolving the water-soluble konjac powder in water to form a paste. It was found to be an effective method for
In particular, as a raw material, 0.1M to 1.0M of konjac powder containing 73.3% of water-soluble dietary fiber and 6.6% of insoluble dietary fiber, which is described in the above-mentioned Japanese Food Standard Ingredients Table, It was confirmed that a konjac powder having a ratio of insoluble dietary fiber to total dietary fiber of 50% by mass or more can be obtained by applying a sodium hydroxide solution or a potassium hydroxide solution.
The present invention has been made based on the above-described new findings by the inventors of the present invention.
One form of the method for producing konjac powder according to the present invention is
(A) a mixing step of mixing the konjac raw material powder and the alkali metal solution and supplying the alkali metal solution to the powder particles contained in the konjac raw material powder;
(B) an insoluble dietary fiber forming step of forming insoluble dietary fiber in the powder particles supplied with the alkali metal solution by the action of the alkali metal solution to obtain konjac powder having no gelling ability;
have The preferred insoluble dietary fiber content targeted here is 50% by mass or more relative to the total dietary fiber content in the konjac flour.
Therefore, in the above steps (A) and (B), the powder particles contained in the konjac powder are maintained in the form of particles, and the total dietary fiber contained in the konjac powder (water-soluble dietary fiber and insoluble dietary fiber) The ratio of insoluble dietary fiber (mass basis) to the total of konnyaku) is increased so that the gelling ability of the konjac raw material disappears. The ratio of insoluble dietary fiber to total dietary fiber can be less than 100% by mass, or 99% by mass or less.
本発明において、こんにゃく原料粉末とは、こんにゃくの製造用として、或いは、こんにゃく製造用として利用し得る水溶性のグルコマンナンを含むこんにゃく粉であり、水に溶解する。一方、アルカリ剤で処理された本発明にかかるこんにゃく粉は、こんにゃく原料粉末を上記の工程によって処理して得られるこんにゃく粉であり、不溶性食物繊維の含有量がこんにゃく原料粉末に対して絶対的に多くなっていることにより、水に溶解することは無く、かつ、ゲル化能を有しておらず、こんにゃく原料粉末と明確に区別されるものである。従って、こんにゃく原料粉末はこんにゃくの製造に用いることができるが、本発明にかかるこんにゃく粉を用いてこんにゃくや、特許文献2におけるようにゲル状食品を製造することはできない。また、特許文献1に記載されるような従来のこんにゃくパウダーに対して、本発明にかかるこんにゃく粉は、水溶性食物繊維を含む点において明確に区別される。 In the present invention, the konjac raw material powder is konjac powder containing water-soluble glucomannan that can be used for the production of konjac or for the production of konjac, and dissolves in water. On the other hand, the konjac flour according to the present invention treated with an alkaline agent is konjac flour obtained by treating the konjac raw material powder by the above process, and the content of insoluble dietary fiber is absolutely Due to the large amount, it does not dissolve in water and does not have gelling ability, and is clearly distinguished from the konjac raw material powder. Therefore, the konjac raw material powder can be used for the production of konjac, but the konjac flour according to the present invention cannot be used to produce konjac or gel-like food as in Patent Document 2. Moreover, the konjac powder according to the present invention is clearly distinguished from conventional konjac powder as described in Patent Document 1 in that it contains water-soluble dietary fiber.
本発明のこんにゃく粉末の製造方法においては、先ず、こんにゃく原料粉末とアルカリ金属溶液との混合物が調製される。この混合物の調製には、こんにゃく原料粉末にアルカリ金属溶液を添加して、攪拌により混合する方法を好ましく用いることができる。こんにゃく原料粉末とアルカリ金属溶液との混合には、公知の攪拌混合機を用いることができる。
更に、こんにゃく原料粉末へのアルカリ金属溶液の添加混合時において、粉末粒子の粒子としての形態を維持するには、アルカリ金属溶液を吸収して粒子と粒子が集まり結着して部分的に形成された硬い集合体を攪拌などによりほぐし、粒子をバラバラにする方法を好ましく用いることができる。さらには、原料こんにゃく粉に対して2倍量以上のアルカリ金属溶液を添加混合すると、強い攪拌などによってもほぐすことができず、集合体を形成したスポンジ様の状態が生ずるが、これを乾燥後に撹拌等により粒子をバラバラにしても良い。尚、集合体を形成した状態のまま、あるいは乾燥工程を経て、含水アルコールで洗浄、さらには、酸により中和して、脱水、乾燥後に強い攪拌などによって粒子をバラバラにすることも可能である。すなわち、アルカリ金属溶液が、こんにゃく原料粉末の一粒、一粒に均一に吸収される様にアルカリ金属溶液を添加混合することが好ましい。
本発明のポイントは、こんにゃく原料粉末中にアルカリ金属化合物を如何に浸透させるかにあり、原料粉末に添加したアルカリ金属溶液が、完全に吸収されて個々の粉末粒子をバラバラに離れた状態とすることが重要である。
In the method for producing konjac powder of the present invention, first, a mixture of konjac raw material powder and an alkali metal solution is prepared. For the preparation of this mixture, a method of adding an alkali metal solution to the konjac raw material powder and mixing by stirring can be preferably used. A known stirring mixer can be used for mixing the konjac raw material powder and the alkali metal solution.
Furthermore, when adding and mixing the alkali metal solution to the konjac raw material powder, in order to maintain the shape of the powder particles as particles, the particles are partially formed by absorbing the alkali metal solution and binding the particles together. It is preferable to use a method in which the hard aggregates are loosened by stirring or the like to separate the particles. Furthermore, when the alkali metal solution is added and mixed in an amount more than twice the raw material konjac flour, it cannot be loosened even by strong stirring, etc., and a sponge-like state in which aggregates are formed occurs. The particles may be separated by stirring or the like. In addition, it is also possible to separate the particles by strong agitation after washing with hydrous alcohol, further neutralizing with acid, dehydration, drying, etc., while the aggregates are formed, or after the drying process. . That is, it is preferable to add and mix the alkali metal solution so that the alkali metal solution is uniformly absorbed by each grain of the konjac raw material powder.
The point of the present invention is how to infiltrate the alkali metal compound into the konjac raw material powder, and the alkali metal solution added to the raw material powder is completely absorbed and separates the individual powder particles. This is very important.
こんにゃく原料粉末としては、アルカリ金属溶液を用いる処理によって目的とするこんにゃく粉末を得ることができるものであれば特に制限なく利用できる。こんにゃく原料粉末としては、例えば、通常用いられる特等粉、一等粉、或いは、ティマックマンナン(オリヒロ(株)製)等のこんにゃく精粉を用いることができる。 The konjac raw material powder can be used without any particular limitation as long as the desired konjac powder can be obtained by treatment with an alkali metal solution. As the konjac raw material powder, for example, commonly used special grade flour, first grade flour, or refined konjac flour such as Timac Mannan (manufactured by Orihiro Co., Ltd.) can be used.
こんにゃく原料粉末に添加するアルカリ金属溶液に含まれるアルカリ金属化合物としては、ナトリウム化合物及びカリウム化合物が好ましく、これらの少なくとも1種を用いることができる。ナトリウム化合物としては、水酸化ナトリウム;炭酸ナトリウム、炭酸水素ナトリウム、リン酸一ナトリウム、リン酸ニナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、ポリリン酸ナトリウム等のナトリウムの無機塩;クエン酸一ナトリウム、クエン酸二ナトリウム、クエン酸三ナトリウム等のナトリウムの有機塩;などを挙げることができる。カリウム化合物としては、水酸化カリウム;炭酸カリウム、炭酸水素カリウム、リン酸水素二カリウム、リン酸二カリウム、リン酸三カリウム、メタリン酸カリウム、ポリリン酸カリウム、ピロリン酸四カリウムなどのピロリン酸カリウム等のカリウムの無機塩;クエン酸三カリウム等のカリウムの有機塩;などを挙げることができる。
これらの中では、水酸化ナトリウム、水酸化カリウム及び炭酸ナトリウムが好ましく、これら化合物を単独で、あるいは2種以上を組み合わせて用いることが好ましい。
アルカリ金属化合物の2種以上を組み合わせて用いる場合には、これらの2種以上を含む溶液を用意してこんにゃく原料粉末との混合工程に用いることができる。また、これらの2種以上のそれぞれの溶液を用意して、こんにゃく原料粉末との混合工程に用いることができる。
アルカリ金属溶液はアルカリ金属化合物とその溶解用の液媒体を含む。液媒体としては、食品製造用として利用し得る水を用いることができる。アルカリ金属溶液としては、アルカリ金属化合物の水溶液が好ましい。また、アルカリ金属溶液は、糖やアルコール等の成分を含まず、水とアルカリ金属化合物とからなり、アルカリ成分としてアルカリ金属化合物を単一成分とする、すなわちアルカリ成分がアルカリ金属化合物からなる水溶液が好ましい。
アルカリ金属溶液中のアルカリ金属化合物の濃度は特に限定されず、こんにゃく原料粉末に含まれる水溶性食物繊維の不溶性食物繊維への目的とする変換率が得られるように設定される。アルカリ金属溶液中のアルカリ金属化合物の濃度は、0.1M~5.0Mの範囲から選択することが出来るが、0.2M~3.0Mの範囲から選択することが好ましく、0.4M~2.0Mの範囲から選択することがより好ましく、0.4M~1.0Mの範囲から選択することが更に好ましい。
更に、アルカリ金属溶液のpHも、こんにゃく原料粉末に含まれる水溶性食物繊維の不溶性食物繊維への目的とする変換率が得られるように設定されれば特に限定されないが、例えば11.0~14.0の範囲から選択することが好ましい。
The alkali metal compound contained in the alkali metal solution to be added to the konjac raw material powder is preferably a sodium compound or a potassium compound, and at least one of these can be used. Examples of sodium compounds include sodium hydroxide; inorganic salts of sodium such as sodium carbonate, sodium hydrogen carbonate, monosodium phosphate, disodium phosphate, trisodium phosphate, sodium pyrophosphate, sodium metaphosphate, and sodium polyphosphate; organic salts of sodium such as monosodium citrate, disodium citrate, and trisodium citrate; Potassium compounds include potassium hydroxide; potassium pyrophosphates such as potassium carbonate, potassium hydrogen carbonate, dipotassium hydrogen phosphate, dipotassium phosphate, tripotassium phosphate, potassium metaphosphate, potassium polyphosphate, and tetrapotassium pyrophosphate. inorganic salts of potassium; organic salts of potassium such as tripotassium citrate; and the like.
Among these, sodium hydroxide, potassium hydroxide and sodium carbonate are preferred, and it is preferred to use these compounds alone or in combination of two or more.
When two or more alkali metal compounds are used in combination, a solution containing two or more of these compounds can be prepared and used in the step of mixing with the konjac raw material powder. Also, two or more of these solutions can be prepared and used in the step of mixing with the konjac raw material powder.
The alkali metal solution comprises an alkali metal compound and a liquid medium for its dissolution. As the liquid medium, water that can be used for food production can be used. As the alkali metal solution, an aqueous solution of an alkali metal compound is preferred. Further, the alkali metal solution does not contain components such as sugars and alcohols, but is composed of water and an alkali metal compound, and has the alkali metal compound as a single component as an alkali component, that is, an aqueous solution in which the alkali component is an alkali metal compound. preferable.
The concentration of the alkali metal compound in the alkali metal solution is not particularly limited, and is set so as to obtain the desired conversion rate of water-soluble dietary fiber contained in the konjac raw material powder to insoluble dietary fiber. The concentration of the alkali metal compound in the alkali metal solution can be selected from the range of 0.1M to 5.0M, preferably from the range of 0.2M to 3.0M, more preferably from 0.4M to 2.0M. More preferably, it is selected from the range of 0.0M, and even more preferably from the range of 0.4M to 1.0M.
Furthermore, the pH of the alkali metal solution is not particularly limited as long as it is set so that the desired conversion rate of water-soluble dietary fiber contained in the konjac raw material powder to insoluble dietary fiber is obtained, but for example, 11.0 to 14 It is preferred to select from the range of .0.
こんにゃく原料粉末へのアルカリ金属溶液の添加量は、こんにゃく原料粉末に含まれる粉末粒子が粒子としての形態を維持することができ、かつ、こんにゃく原料粉末に含まれるグルコマンナンの不溶性食物繊維への目的とする変換割合が達成できる範囲から選択すればよい。
アルカリ金属溶液に含まれるアルカリ金属化合物の濃度や、アルカリ金属溶液からこんにゃく原料粉末に供給される水分量に基づいて、こんにゃく原料粉末へのアルカリ金属溶液の添加量を選択することが好ましい。
本発明者らが検討した結果、アルカリ金属溶液の添加を、こんにゃく原料粉末の量に対して好ましくは0.5~10倍量、より好ましくは0.5~5倍量、さらに好ましくは0.5~1.5倍量(質量基準)とすることで、粉末粒子の形態を維持させつつアルカリ金属溶液を粉末粒子に吸収させることが可能であることが明らかとなった。
The amount of the alkali metal solution added to the konjac raw material powder is such that the powder particles contained in the konjac raw material powder can maintain the form of particles, and the glucomannan contained in the konjac raw material powder is added to the insoluble dietary fiber. can be selected from the range in which the conversion rate of .
It is preferable to select the amount of the alkali metal solution added to the konjac raw material powder based on the concentration of the alkali metal compound contained in the alkali metal solution and the amount of water supplied from the alkali metal solution to the konjac raw material powder.
As a result of investigation by the present inventors, the addition of the alkali metal solution is preferably 0.5 to 10 times, more preferably 0.5 to 5 times, still more preferably 0.5 to 10 times the amount of the konjac raw material powder. It has been clarified that by increasing the amount by 5 to 1.5 times (based on mass), it is possible to allow the powder particles to absorb the alkali metal solution while maintaining the shape of the powder particles.
混合工程により得られた混合物を、必要に応じて撹拌しつつ、或いは静置により、不溶性食物繊維形成に必要な時間保持する不溶性食物繊維形成工程を行って、不溶性食物繊維の生成を進行させ、不溶性食物繊維の割合を増加させたこんにゃく粉末を得ることが好ましい。
不溶性食物繊維形成工程においては、こんにゃく原料粉末に含まれる粉末粒子にアルカリ金属溶液が供給され、粉末粒子内、すなわち、粉末粒子の表面及び内部の少なくとも一部において水溶性グルコマンナンから不溶性食物繊維が形成される。
The mixture obtained in the mixing step is optionally stirred or allowed to stand for a period of time necessary for the formation of insoluble dietary fiber, performing an insoluble dietary fiber forming step to promote the production of insoluble dietary fiber, It is preferable to obtain a konjac powder with an increased proportion of insoluble dietary fiber.
In the insoluble dietary fiber forming step, an alkali metal solution is supplied to the powder particles contained in the konjac raw material powder, and insoluble dietary fiber is produced from the water-soluble glucomannan within the powder particles, that is, at least part of the surface and inside of the powder particles. It is formed.
混合工程と不溶性食物繊維形成工程は、一部を重複させて、あるいは同時に行うことができる。
混合工程において原料粉末にアルカリ金属化合物を添加吸収させる時に、適度に加温することはグルコマンナンの不溶性食物繊維への変換を促進する上で好ましい。加温を行う場合の温度は特に限定されないが、5℃~80℃の範囲、好ましくは30℃~60℃の範囲から選択することが好ましい。その後、室温、または5℃~80℃程度の適度な加温をして数時間から数日間保持することによる不溶性食物繊維形成工程を行うことによって、不溶性食物繊維への変換を促進させてもよい。
The mixing step and the insoluble dietary fiber forming step can be partially overlapped or performed simultaneously.
When adding and absorbing the alkali metal compound to the raw material powder in the mixing step, moderate heating is preferable for promoting the conversion of glucomannan into insoluble dietary fiber. The temperature for heating is not particularly limited, but it is preferably selected from the range of 5°C to 80°C, preferably from the range of 30°C to 60°C. Thereafter, conversion to insoluble dietary fiber may be promoted by performing an insoluble dietary fiber forming step by heating at room temperature or moderately at about 5° C. to 80° C. and maintaining it for several hours to several days. .
粉末粒子の粒子としての形態の維持とは、先に記載した混合工程及び不溶性食物繊維形成工程(変換工程)を含む、アルカリ金属溶液での処理工程を通して、こんにゃく原料粉末に含まれる粉末粒子が、粒子の外形形状や大きさの変化の有無にかかわらず、その一次粒子の状態を維持していることを意味し、アルカリ金属溶液の粉末粒子内への浸透による粉末粒子の膨潤や、水分等の粉末粒子外への放出による粉末粒子の収縮、あるいは粒子外形や大きさの変化が生じる場合を含んでもよい。
本発明にかかる製造方法においては、こんにゃく原料粉末とアルカリ金属溶液との混合工程及び粉末粒子内での不溶性食物繊維の形成工程において、こんにゃく原料粉末が粉末の状態で加工されてこんにゃく粉末となり、その間において粉末粒子の粒子としての形状が維持される。
The maintenance of the form of the powder particles as particles means that the powder particles contained in the konjac raw material powder are subjected to the treatment process with an alkali metal solution, including the mixing process and the insoluble dietary fiber forming process (conversion process) described above. It means that the state of the primary particles is maintained regardless of the presence or absence of changes in the outer shape and size of the particles, and swelling of the powder particles due to the penetration of the alkali metal solution into the powder particles, moisture, etc. Shrinkage of powder particles or change in particle shape or size due to ejection to the outside of the powder particles may also be included.
In the production method according to the present invention, in the step of mixing the konjac raw material powder and the alkali metal solution and the step of forming insoluble dietary fiber in the powder particles, the konjac raw material powder is processed in a powder state into konjac powder. in which the shape of the powder particles is maintained as particles.
グルコマンナンがアルカリ金属溶液と接触すると、アルカリ金属化合物の作用により糖鎖高分子が多数の架橋点を介して結合した水不溶性の構造、すなわち不溶性食物繊維を形成するものと推定される。この水不溶性の構造の形成は、アルカリ金属溶液の粉末粒子の表面から内部への浸透に伴って、粉末粒子の表層から中央部へ向かって進行するものと考えられる。従って、こんにゃく原料粉末にアルカリ金属溶液を作用させる際の条件を変更することによって、こんにゃく粉末粒子中に含まれる食物繊維における水溶性食物繊維と不溶性食物繊維の割合を変更することができる。
また、最初に形成されると推定される粉末粒子の表層の網目状構造は、通水性を有し、表層に網目構造が形成された状態でも、アルカリ金属溶液の粉末粒子内への浸透が妨げられることがないと考えられる。更に、粉末粒子の表層に水不溶性の網目状構造が形成されることによって、アルカリ金属溶液を用いた処理工程全体を通して、各粉末粒子は独立して粒子形状を維持することが可能であり、例え各粒子間での粘着や癒着が一時的に起きたとしても、これを適宜ほぐして各粒子を夫々バラバラにすることによって、その後の各粒子間での粘着や癒着を抑えた、各粒子の分散性のよい粉末を得ることができる。
また、粉末粒子の表層及び内部にグルコマンナンの架橋ゲルからなる網目状の構造が形成されることによって、粉末粒子は吸水性を有し、かつ吸水した水を保持する保水性を有する。これにより粉末粒子に良好な食感を付与可能であり、また、飲料や食品に添加する際に飲料や食品と馴染みやすく、これらの食感や風味を損なうことがない。
It is presumed that when glucomannan comes into contact with an alkali metal solution, the action of the alkali metal compound forms a water-insoluble structure in which sugar chain macromolecules are linked via numerous cross-linking points, that is, an insoluble dietary fiber. It is considered that the formation of this water-insoluble structure progresses from the surface layer toward the center of the powder particles as the alkali metal solution permeates from the surface to the inside of the powder particles. Therefore, the ratio of water-soluble dietary fiber and insoluble dietary fiber in the dietary fiber contained in the konjac powder particles can be changed by changing the conditions under which the alkali metal solution is applied to the konjac raw material powder.
In addition, the network structure on the surface layer of the powder particles, which is presumed to be formed first, has water permeability, and even when the network structure is formed on the surface layer, the penetration of the alkali metal solution into the powder particles is prevented. It is considered that there will be no Furthermore, the formation of a water-insoluble network structure on the surface layer of the powder particles allows each powder particle to independently maintain its particle shape throughout the treatment process using the alkali metal solution. Even if the adhesion or adhesion between particles occurs temporarily, the particles are dispersed by appropriately loosening the particles to separate them, thereby suppressing subsequent adhesion or adhesion between the particles. A fine powder can be obtained.
In addition, the powder particles have water absorbency and water retentivity to retain absorbed water by forming a network structure composed of crosslinked gel of glucomannan on the surface and inside of the powder particles. This makes it possible to impart a good texture to the powder particles, and when added to beverages and foods, it is easy to mix with beverages and foods without impairing their texture and flavor.
目的とするグルコマンナンの不溶性食物繊維への変換が達成された段階で、不溶性食物繊維形成工程を終了する。目的とするこんにゃく粉末が得られたかどうかについては、水溶性食物繊維と不溶性食物繊維の含有量及びこれらの含有比の測定結果、粘度の測定値、水や温水での分散状態の観察等を用いて確認することができる。
水溶性食物繊維と不溶性食物繊維の含有量比を用いて不溶性食物繊維形成工程の終了時期を設定する場合は、各種の処理条件で得られたこんにゃく粉の水溶性食物繊維と不溶性食物繊維の含有量比を測定し、目的とする含有比を得ることができる処理条件を予め選択しておき、選択された処理条件でこんにゃく原料粉末を処理する方法を用いることができる。
アルカリ金属溶液での処理工程中のこんにゃく粉末から試験用の試料をサンプリングし、その水分散液の粘度を測定することにより、さらには水分散液中での分散状態を観察して、不溶性食物繊維形成工程の終了時期を確認することもできる。全食物繊維に対する不溶性食物繊維の割合が増加してゲル化能が失われると、こんにゃく粉は水分散液中で溶解せずに粒子の状態を保持し、また、水分散液の粘度は一定で増加しない。例えば、後述する実験例及び実施例に示されるとおり、ゲル化能を持たないこんにゃく粉末の所定濃度の水分散液では、200mPa・s以下の低粘度の状態が維持される。このように、低粘度状態が維持されることをゲル化能の消失の指標として利用することができる。更に、ゲル化能の消失の指標に用いる全食物繊維に対する不溶性食物繊維の割合としては、50質量%以上を好ましく用いることができる。
The step of forming an insoluble dietary fiber is completed when the desired conversion of glucomannan into an insoluble dietary fiber is achieved. Regarding whether the desired konjac powder was obtained, the results of measuring the content of water-soluble and insoluble dietary fiber and their content ratio, the measured value of viscosity, observation of the state of dispersion in water or warm water, etc. can be confirmed by
When setting the end time of the insoluble dietary fiber formation process using the content ratio of water-soluble dietary fiber and insoluble dietary fiber, the content of water-soluble dietary fiber and insoluble dietary fiber in konjac flour obtained under various treatment conditions It is possible to use a method of measuring the amount ratio, preliminarily selecting treatment conditions that allow the target content ratio to be obtained, and treating the konjac raw material powder under the selected treatment conditions.
By sampling a test sample from the konjac powder during the treatment process with the alkali metal solution, measuring the viscosity of the aqueous dispersion, and observing the dispersion state in the aqueous dispersion, Insoluble dietary fiber It is also possible to confirm the end time of the forming process. When the ratio of insoluble dietary fiber to total dietary fiber increases and the gelling ability is lost, the konjac flour does not dissolve in the aqueous dispersion and retains its particle state, and the viscosity of the aqueous dispersion remains constant. not increase. For example, as shown in Experimental Examples and Examples to be described later, an aqueous dispersion of konjac powder having no gelling ability and having a predetermined concentration maintains a low viscosity of 200 mPa·s or less. Thus, the fact that the low viscosity state is maintained can be used as an indicator of the disappearance of the gelling ability. Furthermore, the ratio of insoluble dietary fiber to total dietary fiber used as an index of disappearance of gelling ability is preferably 50% by mass or more.
こんにゃく原料粉末とアルカリ金属溶液の混合物は、アルカリ金属溶液での処理工程中及び終了時は湿潤粉末としての状態を維持する。こうして得られた湿潤粉末または湿潤粉末を乾燥して得られる乾燥粉末に対して、洗浄工程及び乾燥工程を必要に応じて追加してもよい。洗浄工程をアルカリ金属溶液の作用を停止させる工程終了用の工程として利用してもよい。また、洗浄工程、乾燥工程及び後述する中和工程の少なくも一つの工程中に、あるいは、これらの工程の少なくとも一つの工程後に、粉末粒子の分散性を向上させる、あるいは粉末粒子の粒径を下げる粉砕処理(微粉砕処理を含む)を追加してもよい。この粉砕処理は目的とする粉砕処理効果が得られる処理であれば特に限定されず、この粉砕処理には公知の粉砕処理方法を用いることができる。例えば、粉砕処理には、乾式粉砕処理、湿式粉砕処理及び湿式加圧処理の少なくとも1つ、或いは複数の方式を組み合わせて利用することができるが、最も重視すべきは最終的に抱水能を有するこんにゃく粉末とするために粒子径を調整することである。 The mixture of the konjac raw material powder and the alkali metal solution remains as a wet powder during and at the end of the treatment with the alkali metal solution. The wet powder thus obtained or the dry powder obtained by drying the wet powder may optionally be subjected to a washing step and a drying step. The washing step may be used as a final step to stop the action of the alkali metal solution. In addition, during at least one step of the washing step, the drying step, and the neutralization step described later, or after at least one of these steps, the dispersibility of the powder particles is improved or the particle size of the powder particles is reduced. A pulverization treatment (including a fine pulverization treatment) for lowering may be added. The pulverization treatment is not particularly limited as long as the intended pulverization effect can be obtained, and a known pulverization treatment method can be used for the pulverization treatment. For example, for the pulverization treatment, at least one of dry pulverization treatment, wet pulverization treatment and wet pressure treatment, or a combination of a plurality of methods can be used. It is to adjust the particle size to make it a konjac powder having.
原料粉末の粉末粒子の粒子としての形態が維持された状態で水溶性食物繊維の一部を不溶性食物繊維に変換して得られたこんにゃく粉末では、各粉末粒子の外殻部に主に不溶性食物繊維が含まれ、その内部に主に水溶性食物繊維が含まれていると考えられる。
この粉末粒子に対して粒径を下げる粉砕処理を行うと、粉末粒子にへき開に似たような破砕が生じ、半球状、薄片状、球形の一部が破壊された形状などの形状の粒径が減少した破砕物としての粒子が生じる。すなわち、粉末粒子の不溶性食物繊維を含む外殻部分が部分的に削られたり、分割されて粉末粒子粒径が小さくなる。このような粉砕処理による粉砕物、すなわちアルカリ剤でこんにゃく原料粉中の水溶性食物繊維の一部を、粉末の形状を維持しつつアルカリ剤により不溶性食物繊維に変換したこんにゃく粉の粉砕物では、粉砕前の粉末粒子内部にある水溶性食物繊維を含む部分が露出し易くなり、水溶性食物繊維と不溶性食物繊維の両方をより効果的に利用可能なこんにゃく粉末にすることができる、と考えられる。かかる粉砕処理を経た粉末粒子は、水溶性繊維と不溶性繊維の両方の性質や機能を利用する上で更に好ましい形態である。
かかる粉砕処理後のこんにゃく粉末では、水溶性食物繊維と不溶性食物繊維の両方の機能を効果的に利用することで、吸水性による抱水能(膨潤性)と、水中で複数の粉末粒子が弱い結合力で会合する会合特性を獲得する。これらの性質は、粉砕前の紛体粒子にはみられない、あるいは粉砕前の紛体粒子よりも強いものであり、粒度分布に加えて、水中でのこれらの性質にかかる挙動を観察することによっても、粉砕前と粉砕後の粉末粒子を区別することができる。
粉砕処理前の粉末粒子の粒径は、こんにゃく原料粉末に含まれる粉末粒子の粒径に基づき、こんにゃく原料粉末の種類によって変わるが、通常、粒度分布の体積累積における中央値(D50値;メジアン径とも呼ばれ、d50とも標記される)は300μm~400μmにある。上記の抱水能(膨潤性)と会合性を得るには、粉砕前の中央値を粉砕により小さくするように粉砕処理条件を設定する。
粉砕後の粉末の粒度分布における中央値としては、120μm以下が好ましく、100μm以下がより好ましく、30μm以上100μm未満の範囲が更に好ましい。また、粉砕処理後のこんにゃく粉末は、粒径が1μm~300μmの範囲にある粉末粒子を含むことが好ましいが、300μm以上の粒径のこんにゃく粉末が混入していても差支えない。
D50値は、紛体の粒度分布から算出され、紛体の粒度分布は公知の方法により求めることができる。上記のD50値は、レーザー回折・散乱法により得られた粒度分布から算出した。レーザー回折・散乱法による粒度分布の測定は、マイクロトラック・ベル社のMT3300シリーズ(LOW-WET)を用いた粒子径分布測定装置により行った。
In the konjac powder obtained by converting part of the water-soluble dietary fiber into insoluble dietary fiber while maintaining the form of the powder particles of the raw material powder, the outer shell of each powder particle contains mainly insoluble food. It contains fiber, and is thought to contain mainly water-soluble dietary fiber.
When the powder particles are pulverized to reduce the particle size, crushing similar to cleavage occurs in the powder particles, resulting in particle sizes such as hemispherical, flaky, and partially broken spherical shapes. Particles are produced as fractures with reduced . That is, the outer shell portion of the powder particles containing insoluble dietary fiber is partially shaved or split to reduce the particle size of the powder particles. The pulverized product obtained by such a pulverization treatment, that is, the pulverized konjac flour obtained by converting part of the water-soluble dietary fiber in the konjac raw material powder to insoluble dietary fiber with an alkaline agent while maintaining the shape of the powder with an alkaline agent, It is believed that the portion containing water-soluble dietary fiber inside the powder particles before pulverization is easily exposed, and it is possible to make konjac powder in which both water-soluble dietary fiber and insoluble dietary fiber can be used more effectively. . Powder particles that have undergone such a pulverization process are a more preferable form for utilizing the properties and functions of both the water-soluble fibers and the insoluble fibers.
In the konjac powder after such pulverization, by effectively using the functions of both water-soluble dietary fiber and insoluble dietary fiber, water-holding capacity (swelling property) due to water absorption and multiple powder particles are weak in water. It acquires the association property of associating with binding force. These properties are not seen in the powder particles before pulverization, or are stronger than the powder particles before pulverization. , the powder particles before and after grinding can be distinguished.
The particle size of the powder particles before pulverization is based on the particle size of the powder particles contained in the konjac raw material powder, and varies depending on the type of konjac raw material powder. d50) lies between 300 μm and 400 μm. In order to obtain the above water-holding capacity (swelling property) and associativity, the pulverization conditions are set so that the median value before pulverization is reduced by pulverization.
The median value of the particle size distribution of the pulverized powder is preferably 120 μm or less, more preferably 100 μm or less, and still more preferably 30 μm or more and less than 100 μm. The konjac powder after pulverization preferably contains powder particles with a particle size in the range of 1 μm to 300 μm, but konjac powder with a particle size of 300 μm or more may be mixed.
The D50 value is calculated from the particle size distribution of the powder, and the particle size distribution of the powder can be determined by a known method. The above D50 value was calculated from the particle size distribution obtained by the laser diffraction/scattering method. The particle size distribution was measured by a laser diffraction/scattering method using a particle size distribution analyzer using Microtrac Bell's MT3300 series (LOW-WET).
本発明者の検討によれば、胃内の酸性条件を模倣した崩壊試験第1液(pH1.2)の酸水溶液中(35℃)において撹拌することによっても、前述した粉砕処理後の粉末粒子が膨潤して会合することによって抱水(保水)して体積膨張した塊を形成することが判明した。この塊は、強く振盪することによって適度に崩れて酸水溶液中に小塊となり、さらには各粉末粒子が分散することも判明した。更に、粒度分布の中央値が100μm以下となっている粉末粒子の酸水溶液中での会合状態を、食物繊維の代表である生キャベツを歯で噛み砕いて粉砕した場合の状態を模倣した生キャベツの磨砕ペースト(pH1.6に調整)と比較すると、キャベツの粉砕物の細胞の大きさに相当する粒径の粉末粒子が、キャベツの粉砕断片に見られる細胞集合体の構造に類似する形態で会合していることが判明した。
以上の新たな本発明者の知見から、粉砕処理後の粉末粒子の水溶性食物繊維と不溶性食物繊維との割合を、例えばキャベツに近い範囲(水溶性食物繊維0.4%に対して不溶性食物繊維1.4%;日本食品標準成分表2015年版参照)は元より、他の野菜と比較してそれぞれのレベルに近い範囲とすることで、生キャベツ等の食物繊維を含む野菜と同じ生理的機能、すなわち食物繊維本来の物理化学的特性である抱水能(water holding capacity)を有することが可能であるということが明確となった。従って、本発明にかかる粉末粒子によれば、野菜の食物繊維本来の生理的機能である便秘解消や便秘予防効果が得られることは明らかである(日本食品工業学会誌、Vol. 37, No. 11, 916~933 (1990) 参照)、しかも、粉砕処理後の粉末の吸水性が向上しており、胃を含む消化器系内での水分の吸収による膨潤までの時間を短縮して、より短時間での生理的機能が発揮されることが期待できる。
According to the study of the present inventors, even by stirring in an acid aqueous solution (35 ° C.) of the disintegration test first liquid (pH 1.2) simulating the acidic conditions in the stomach, the powder particles after the above-mentioned pulverization treatment It was found that by swelling and associating, water is retained (water retention) to form a volume-expanded mass. It was also found that the agglomerates moderately crumbled into small agglomerates in the acid aqueous solution by vigorous shaking, and further the individual powder particles were dispersed. Furthermore, the state of association of powder particles in an acid aqueous solution with a median particle size distribution of 100 μm or less is similar to the state of raw cabbage, which is a typical dietary fiber, crushed by chewing with teeth. Compared to the ground paste (adjusted to pH 1.6), the powder particles with a particle size corresponding to the cell size of the cabbage grinds were found in a morphology similar to the structure of the cell aggregates found in the cabbage shreds. It turned out that they were meeting.
From the above new findings of the present inventor, the ratio of water-soluble dietary fiber and insoluble dietary fiber in the powder particles after pulverization is, for example, a range close to cabbage (water-soluble dietary fiber 0.4% to insoluble food Fiber 1.4%; see the Standard Tables of Food Composition in Japan 2015), and compared to other vegetables, the range is close to each level, so it is the same physiological as vegetables containing dietary fiber such as raw cabbage. It has become clear that it is possible to have a function, namely a water holding capacity, which is the inherent physicochemical property of dietary fiber. Therefore, it is clear that the powder particles according to the present invention can provide constipation relieving and constipation prevention effects, which are the physiological functions inherent in vegetable dietary fiber (Journal of Japan Food Industry Association, Vol. 37, No. 11, 916-933 (1990)).In addition, the water absorption of the powder after pulverization is improved, and the time until swelling due to absorption of water in the digestive system including the stomach is shortened, making it more effective. It can be expected that the physiological function will be exhibited in a short period of time.
更に、粉砕処理後のこんにゃく粉末においても、粉砕前のこんにゃく粉と同様に、粉末粒子中の全食物繊維の割合を、少なくとも80質量%以上、さらには90質量%以上に調整することができ、かつ、キャベツを含む繊維質野菜における割合を含む水溶性食物繊維と不溶性食物繊維の割合に調整することによって、以下のような効果を得ることができる。
(1)生キャベツにおける水分及び食物繊維の含有割合は、日本食品標準成分表2015年版によれば、水分92.7%、水溶性食物繊維0.4%、不溶性食物繊維1.4%である。例えば、歯で噛み砕いた状態を模倣した生キャベツ60g分(食物繊維量1.1g)の粉砕物の体積と、同等の体積の水を抱き込んで膨潤した粉末の塊を得る上で必要とされる粉砕後のこんにゃく粉末の量を2g程度とすることができ、しかもこのような少量でも、1.8g程度の食物繊維の摂取が可能となる。
(2)一日当たりの食物繊維の摂取量を3~8g前後に設定した場合、生キャベツは水分量が多く、この摂取量を達成するには、160g~400gと比較的大量の生キャベツが必要となるが、粉砕後のこんにゃく粉末の食物繊維含有量は生キャベツと比較すると格段に高く、かかる摂取量を容易に達成することが可能となる。
(3)生キャベツの総食物繊維量に対しての水溶性食物繊維の割合は22%、不溶性食物繊維の割合は78%であるが、生野菜の水溶性食物繊維と不溶性食物繊維の割合や、これらの合計の含有割合に関して変動もあり、安定した品質の野菜を常時入手することが難しい場合がある。これに対して、粉砕後のこんにゃく粉末では、水溶性食物繊維と不溶性食物繊維の割合や、これらの合計の含有割合が安定した製品とすることができ、定量的な食物繊維の摂取を保障することができる。例えば、カプセルタイプとして携帯すれば、常に食前に服用できるという大きなメリットを有することになるのである。
(4)生野菜は、常温における長期保存ができず、常に新鮮な生野菜を入手する必要がある。これに対して、粉砕後のこんにゃく粉末は、乾燥品であり、保存安定性も高く、長期保存や安定供給が可能となる。
以上の点から、定量的な食物繊維の摂取を日常的に継続する上で粉砕後のこんにゃく粉末は好ましい特性を有している。
上述した効果を得る上で、粉砕後のこんにゃく粉末の食物繊維の割合は、50質量%~98質量%の範囲とすることが好ましい。更に、繊維質野菜と同等の水溶性食物繊維と不溶性食物繊維の割合とするには、全食物繊維に対して水溶性食物繊維を1質量%~60質量%の範囲とすることが好ましく、2質量%~50質量%の範囲とすることがより好ましく、不溶性食物繊維を40質量%~99質量%の範囲とすることが好ましく、50質量%~98質量%とすることがより好ましい。
Furthermore, in the konjac powder after pulverization, as in the konjac powder before pulverization, the ratio of total dietary fiber in the powder particles can be adjusted to at least 80% by mass or more, and further 90% by mass or more. In addition, the following effects can be obtained by adjusting the ratio of water-soluble dietary fiber and insoluble dietary fiber, including the ratio in fibrous vegetables including cabbage.
(1) The content of water and dietary fiber in raw cabbage is 92.7% water, 0.4% water-soluble dietary fiber, and 1.4% insoluble dietary fiber according to the 2015 edition of the Standard Tables of Food Composition in Japan. . For example, it is necessary to obtain a mass of powder swollen by enclosing water of the same volume as the volume of pulverized material of 60 g of raw cabbage (1.1 g of dietary fiber) that imitates the state of being chewed with teeth. The amount of konjac powder after pulverization can be reduced to about 2 g, and even with such a small amount, it is possible to take in about 1.8 g of dietary fiber.
(2) When the intake of dietary fiber per day is set at around 3 to 8 g, raw cabbage has a large water content, and a relatively large amount of 160 g to 400 g is required to achieve this intake. However, the dietary fiber content of konjac powder after pulverization is much higher than that of raw cabbage, and it is possible to easily achieve such intake.
(3) The ratio of soluble dietary fiber to the total dietary fiber amount of raw cabbage is 22%, and the ratio of insoluble dietary fiber is 78%. , there is also variation in the total content ratio of these, and it may be difficult to always obtain vegetables of stable quality. On the other hand, konjac powder after pulverization can be made into a product with a stable ratio of water-soluble and insoluble dietary fibers and a total content ratio of these, which guarantees quantitative intake of dietary fiber. be able to. For example, if it is carried as a capsule type, it will have the great merit that it can always be taken before meals.
(4) Raw vegetables cannot be stored for a long time at room temperature, and it is necessary to always obtain fresh raw vegetables. On the other hand, the konjac powder after pulverization is a dried product and has high storage stability, enabling long-term storage and stable supply.
From the above points, the konjac powder after pulverization has preferable properties for continuing the intake of dietary fiber in a quantitative manner on a daily basis.
In order to obtain the effects described above, the ratio of dietary fiber in the ground konjac powder is preferably in the range of 50% by mass to 98% by mass. Furthermore, in order to make the ratio of water-soluble dietary fiber and insoluble dietary fiber equivalent to that of fibrous vegetables, it is preferable that the water-soluble dietary fiber is in the range of 1% by mass to 60% by mass with respect to the total dietary fiber. More preferably, the range is from 40% to 99% by mass, more preferably from 50% to 98% by mass.
粉砕後のこんにゃく粉末は、吸水性が高く、膨潤して水中に分散し、容易に沈殿しないという特性を有し、食物繊維強化のための液体食品への添加や、液中での分散状態での食物繊維強化のための食品製造における使用において好適に利用することができる。更に、サプリメント等の機能性食品や特定保健用食品等の食品組成物の食物繊維成分として好適に利用することができる。
粉砕後のこんにゃく粉の膨潤性は、粉砕において目標とする粒度及び粒度分布やアルカリ剤の種類、アルカリ剤での処理条件等によって制御することができる。これらの点から、アルカリ剤としてカリウム化合物、好ましくは水酸化カリウムを用いることがより好ましい。また、アルカリ剤としてカリウム化合物を用いることで、食物繊維に加えてカリウム摂取用としてこんにゃく粉末を利用することもできる。
Konjac powder after pulverization has high water absorbency, swells and disperses in water, and does not easily precipitate. It can be suitably used in food production for reinforcing dietary fiber. Furthermore, it can be suitably used as a dietary fiber component of food compositions such as functional foods such as supplements and foods for specified health uses.
The swellability of the konjac powder after pulverization can be controlled by the target particle size and particle size distribution in the pulverization, the type of alkaline agent, treatment conditions with the alkaline agent, and the like. From these points, it is more preferable to use a potassium compound, preferably potassium hydroxide, as the alkaline agent. Moreover, by using a potassium compound as an alkaline agent, konjac powder can be used for potassium intake in addition to dietary fiber.
こんにゃく粉末の洗浄用の洗浄剤としては、グルコマンナンの不溶性食物繊維への変換に利用されなかった余りのアルカリ金属化合物をこんにゃく粉末から洗浄除去、すなわち脱アルカリ処理できる洗浄剤であれば、制限なく利用できる。洗浄剤としては、例えば、10~50質量%のエタノール等の揮発性アルコールを含むアルコール含有水が好ましい。 The cleaning agent for cleaning the konjac powder is not particularly limited as long as it is a cleaning agent capable of washing and removing from the konjac powder excess alkali metal compounds that have not been used for conversion of glucomannan into insoluble dietary fiber, i.e. dealkalization. Available. As the cleaning agent, for example, alcohol-containing water containing 10 to 50% by mass of volatile alcohol such as ethanol is preferable.
洗浄工程中、または後に、酸を用いた中和工程を必要に応じて追加してもよい。中和に用いる酸としては、食品に使用される酸性化剤の酸成分として用いられているものが好ましい。このような酸としては、クエン酸、リンゴ酸等の有機酸類、または、塩酸、リン酸、リン酸塩等の無機酸類等を挙げることができる。酸は、粉末や粒子状で洗浄液に添加するか、または水溶液として中和処理に用いることができ、酸の濃度は、目的とする中和効果が得られるように選択する。例えば、1~10質量%の酸濃度の水溶液を好ましく用いることができる。 During or after the washing step, an optional neutralization step with acid may be added. Acids used for neutralization are preferably those used as acid components of acidifying agents used in foods. Examples of such acids include organic acids such as citric acid and malic acid, and inorganic acids such as hydrochloric acid, phosphoric acid and phosphates. The acid can be added to the cleaning solution in powder or particulate form, or can be used as an aqueous solution in the neutralization process, the concentration of the acid being selected to achieve the desired neutralizing effect. For example, an aqueous solution with an acid concentration of 1 to 10% by mass can be preferably used.
乾燥工程は、目的とするこんにゃく粉末の水分含量に応じた条件で行うことができ、公知の粉末乾燥装置を用いて行うことができる。乾燥工程後のこんにゃく粉末の水分含量は、例えば、10質量%以下、好ましくは2~8質量%の範囲とすることができる。
洗浄工程及び乾燥工程を有する製造方法の一形態は以下の各工程を有することができる。
(A)こんにゃく原料粉末とアルカリ金属溶液を混合して、こんにゃく原料粉末に含まれる粉末粒子にアルカリ金属溶液を供給する混合工程。
(B)アルカリ金属溶液が供給された粉末粒子においてアルカリ金属溶液の作用により不溶性食物繊維を形成してこんにゃく粉末を得る不溶性食物繊維形成工程。
(C)前記こんにゃく粉末を洗浄する洗浄工程。
(D)前記洗浄工程を経たこんにゃく粉末を乾燥する乾燥工程。
また、洗浄工程、中和工程及び乾燥工程を有する製造方法の一形態は以下の各工程を有することができる。
(A)こんにゃく原料粉末とアルカリ金属溶液を混合して、こんにゃく原料粉末に含まれる粉末粒子にアルカリ金属溶液を供給する混合工程。
(B)アルカリ金属溶液が供給された粉末粒子においてアルカリ金属溶液の作用により不溶性食物繊維を形成してこんにゃく粉末を得る不溶性食物繊維形成工程。
(C)前記こんにゃく粉末を洗浄する洗浄工程。
(C’)前記洗浄工程中に中和するか、或いは洗浄工程を経たこんにゃく粉末を中和する中和工程。
(D)前記中和工程を経たこんにゃく粉末を乾燥する乾燥工程。
上記の工程(A)及び(B)は、先に述べた通り、こんにゃく粉に含まれる粉末粒子の粒子としての形態が維持された状態で、こんにゃく原料粉末のゲル化能が消失するまで行われる。
The drying process can be performed under conditions according to the moisture content of the desired konjac powder, and can be performed using a known powder drying apparatus. The moisture content of the konjac powder after the drying step can be, for example, 10% by mass or less, preferably in the range of 2 to 8% by mass.
One form of a manufacturing method having a washing step and a drying step can have the following steps.
(A) A mixing step of mixing the konjac raw material powder and the alkali metal solution and supplying the alkali metal solution to the powder particles contained in the konjac raw material powder.
(B) A step of forming insoluble dietary fiber in the powder particles to which the alkali metal solution has been supplied to form insoluble dietary fiber by the action of the alkali metal solution to obtain konjac powder.
(C) A washing step of washing the konjac powder.
(D) A drying step of drying the konjac powder that has undergone the washing step.
Moreover, one form of the manufacturing method having a washing step, a neutralization step and a drying step can have the following steps.
(A) A mixing step of mixing the konjac raw material powder and the alkali metal solution and supplying the alkali metal solution to the powder particles contained in the konjac raw material powder.
(B) A step of forming insoluble dietary fiber in the powder particles to which the alkali metal solution has been supplied to form insoluble dietary fiber by the action of the alkali metal solution to obtain konjac powder.
(C) A washing step of washing the konjac powder.
(C') A neutralization step of neutralizing during the washing step or neutralizing the konjac powder that has undergone the washing step.
(D) A drying step of drying the konjac powder that has undergone the neutralization step.
As described above, the above steps (A) and (B) are performed until the konjac raw material powder loses its gelling ability while the powder particles contained in the konjac flour are maintained in the form of particles. .
こうして得られたこんにゃく粉末は、食品添加物原料、或いは、健康食品原料として使用することができる。
特に、本発明にかかるこんにゃく粉は、水を含む液体に対する分散性が向上しており、例えば、飲料水、清涼飲料水、各種ドリンク剤、各種スープ等の飲料、または液体食品へ添加した際に、不溶性食物繊維を主として含む粒子が飲料または液体食品中に速やかに広がり、かつ分散状態を長い時間保つことができる。更に、分散した不溶性食物繊維を主として含む粒子は飲料または液体食品の喉越しを阻害せず、むしろ喉越しを改善する効果を得ることができる。従って、こんにゃく粉は飲料や液体食品による水溶性繊維及び不溶性食物繊維の手軽な摂取に好適に利用でき、更には、菓子、パン、麺類等に混和させる場合にも好適である。
本発明にかかるこんにゃく粉の製造方法によれば、従来技術における、こんにゃく糊を調製する工程、こんにゃく糊をアルカリ凝固剤の添加及び加熱によりゲル化する工程、水分を含むこんにゃく塊の細断、乾燥、粉末化を行う工程を省略して、極めて効率よく、不溶性食物繊維の割合を増加させた、ゲル化能を有していないこんにゃく粉末を製造することができる。
The konjac powder thus obtained can be used as a raw material for food additives or a raw material for health foods.
In particular, the konjac flour according to the present invention has improved dispersibility in liquids containing water. , the particles mainly containing insoluble dietary fiber can spread quickly in a beverage or liquid food and keep the dispersed state for a long time. Furthermore, the particles mainly containing dispersed insoluble dietary fiber do not impede the smoothness of the beverage or liquid food, but rather have the effect of improving the smoothness. Therefore, konjac flour can be suitably used for easy intake of water-soluble fiber and insoluble dietary fiber from beverages and liquid foods, and is also suitable for mixing with sweets, bread, noodles and the like.
According to the method for producing konjac flour according to the present invention, the steps of preparing konjac paste, adding an alkaline coagulant and heating to gel the konjac paste, shredding and drying the konjac mass containing water, , It is possible to omit the step of powdering, and very efficiently produce konjac powder that has an increased proportion of insoluble dietary fiber and does not have gelling ability.
水溶性食物繊維を不溶性食物繊維に変換することで、不溶性食物繊維の含有割合を増加させたこんにゃく粉末は、食物繊維強化食品そのものとして、或いは飲料や食品に対する食物繊維強化用の食品添加物や補助成分として極めて有用である。
本発明にかかる製造方法により得られるこんにゃく粉末は、サプリメント等の食物繊維強化用食品そのものとして、あるいは飲料や食品に対する食物繊維強化用の食品添加物や補助成分として極めて有用である。
本発明にかかるこんにゃく粉末を食物繊維強化用食品として利用する場合は、こんにゃく粉末をそのまま、あるいは、食品の成分として許容される担体、賦形剤、カプセル材等によって製剤化して利用することができる。こんにゃく粉末を利用した食物繊維強化用食品には、必要に応じて更に、ビタミン、タンパク質、糖質、ミネラル成分等の栄養補助成分を配合することができる。
飲料や食品に対する食品添加物や補助成分として利用する場合も、こんにゃく粉末をそのまま、あるいは、食品の成分として許容される担体、賦形剤、カプセル材等によって製剤化して利用することができる。
By converting water-soluble dietary fiber into insoluble dietary fiber, konjac powder with an increased content of insoluble dietary fiber can be used as a dietary fiber-enriched food itself, or as a food additive or supplement for enhancing dietary fiber in beverages and foods. Very useful as an ingredient.
The konjac powder obtained by the production method according to the present invention is extremely useful as a dietary fiber-enriched food itself such as a supplement, or as a dietary fiber-enriched food additive or auxiliary ingredient for beverages and foods.
When the konjac powder according to the present invention is used as a dietary fiber-enriched food, the konjac powder can be used as it is, or after being formulated with carriers, excipients, capsules, etc. that are acceptable as food ingredients. . Dietary fiber-enriched foods using konjac powder can be further blended with nutritional supplements such as vitamins, proteins, carbohydrates and minerals, if necessary.
When used as a food additive or auxiliary ingredient for beverages and foods, konjac powder can be used as it is, or after being formulated with carriers, excipients, capsule materials, etc. that are acceptable as food ingredients.
(実験例1)
こんにゃく精粉としては、オリヒロ(株)製、ティマックマンナン(商品名)(水分8.0質量%、食物繊維85.4質量%)を使用した。
水酸化ナトリウム(関東化学(株)製、食品添加物、純度95%)を用い、A:0.100M(pH13.0),B:0.125M(pH13.1)、C:0.150M(pH13.2)、D:0.200M(pH13.3)、E:0.300M(pH13.4)溶液の5種類を用意した。
ティマックマンナン10gに対して水酸化ナトリウム溶液15gを添加した後に、クッキングカッター(日立製作所製、型式FV-F3)を用いて均質化し、密封して60℃で30分間加温後、さらに、37℃で20時間加温した。この様にしてアルカリ濃度の異なる6種類の試験サンプルA~Eについて、原料であるティマックマンナンを夫々200g用いて調製した。夫々原料に対して8倍量の30質量%のアルコールを加え、クエン酸溶液で中和後、脱水し、70℃で乾燥した。
夫々の乾燥粉末について、水分測定とプロスキー変法による水溶性食物繊維、不溶性食物繊維を測定した、さらに、1質量%の溶液濃度となる様に35℃の水に混合して混合物を調製し、各混合物の粘度を測定した。本粘度測定法は、こんにゃく粉(水溶性こんにゃく粉)の品質規格を定めるために一般的に採用されており、35℃の温浴中で撹拌しながら、2,3,4時間毎の粘度(東機産業株式会社製、B型粘度計)を測定し、このうちの最高値をもって判定する検査方法で、粘度が高い程良質のゲル化能を有するこんにゃく粉とするものであり、本測定法でのこんにゃく原料粉末の格付けが広く普及している。
この粘度によるこんにゃく原料粉末の品質の分類の一例では、本測定法での粘度が15,000mPa・s以上のものを特等粉、13,000mPa・s以上のものを1等粉として分類している。ティマックマンナンはこんにゃく臭であるトリメチルアミン臭を除くためのアルコール処理により、精製純度が高くなっており、こんにゃく製造用のこんにゃく粉の本測定法での粘度の規格値は16,000mPa・s以上としている。
結果を表1に示す。
(Experimental example 1)
As refined konjac flour, TIMAC MANNAN (trade name) manufactured by Orihiro Co., Ltd. (water content 8.0% by mass, dietary fiber 85.4% by mass) was used.
Using sodium hydroxide (manufactured by Kanto Chemical Co., Ltd., food additive, purity 95%), A: 0.100 M (pH 13.0), B: 0.125 M (pH 13.1), C: 0.150 M ( pH 13.2), D: 0.200 M (pH 13.3), E: 0.300 M (pH 13.4) solutions were prepared.
After adding 15 g of sodium hydroxide solution to 10 g of timac mannan, homogenize using a cooking cutter (manufactured by Hitachi, model FV-F3), seal and heat at 60 ° C. for 30 minutes. C. for 20 hours. In this manner, 200 g of timac mannan as a raw material was used to prepare six types of test samples A to E having different alkali concentrations. An alcohol of 30% by mass, which is 8 times the amount of the raw material, was added to each material, neutralized with a citric acid solution, dehydrated, and dried at 70°C.
For each dry powder, water-soluble dietary fiber and insoluble dietary fiber were measured by moisture measurement and Prosky's modified method, and further mixed with water at 35 ° C. so that the solution concentration was 1% by mass to prepare a mixture. , the viscosity of each mixture was measured. This viscosity measurement method is generally used to determine the quality standard of konjac flour (water-soluble konjac flour). Machine Sangyo Co., Ltd., B-type viscometer) is measured, and the highest value among these is measured. The grading of konjac raw material powder is widely spread.
In one example of classifying the quality of konjac raw material powder based on this viscosity, those with a viscosity of 15,000 mPa s or more in this measurement method are classified as special powders, and those with a viscosity of 13,000 mPa s or more are classified as first class powders. . Timacmannan is treated with alcohol to remove the odor of trimethylamine, which is the odor of konjac, and has a high purification purity. there is
Table 1 shows the results.
(実験例2)
原料としてティマックマンナン各100gに対して、水酸化カリウム(関東化学(株)製、食品添加物、純度85%)の0.2M溶液及び0.3M溶液を夫々個々に100g添加、混合し、クッキングカッターを用いて均質化し、2種類のアルカリ濃度の異なる試験サンプルを調整した。夫々密封して60℃で30分間加温後、さらに、25℃で20時間静置した後に75℃で水分含量10質量%以下となる様に乾燥した。これに30質量%含水アルコール800gを加え、夫々10質量%クエン酸溶液を添加してpH7.0に中和、脱水後、これを70℃で熱風乾燥した。乾燥物の水分量は0.2M水酸化カリウム溶液で調整したサンプルは4.5質量%、0.3M水酸化カリウム溶液で調整したサンプルは7.1質量%であった。
プロスキー変法による不溶性食物繊維量は、0.2M水酸化カリウム溶液で調整したサンプルが、不溶性食物繊維量は35.17質量%、水溶性食物繊維量は38.51質量%であり、全食物繊維量に対する不溶性食物繊維量は47.7質量%であった。0.3M水酸化カリウム溶液で調整したサンプルは、不溶性食物繊維量は80.0質量%、水溶性食物繊維量は7.1質量%であり、全食物繊維量に対する不溶性食物繊維量は91.8質量%であった。
尚、0.2M水酸化カリウム溶液で調整したサンプルの1質量%溶液の35℃、2,3,4時間毎の粘度を測定したところ、最高値は160.4mPa・sであった。また、0.3M水酸化カリウム溶液で調整したサンプルの1質量%溶液の35℃、2,3,4時間毎の粘度を測定したところ、最高値は4.0mPa・sであった。
(実験例3)
原料としてティマックマンナン10gに対して、無水炭酸ナトリウム(キシダ化学(株)製、食品添化物、純度99%以上)の1M溶液(pH11.7)10gを添加、混合し、クッキングカッターを用いて均質化した。密封して60℃で30分間加温後、さらに、35℃で20時間静置した。これに30質量%含水アルコール250gを加えたところ溶液のpHは10.7であった。これに10質量%クエン酸溶液を添加してpH7.0に中和し、以降は実験例1と全く同様の操作によって30質量%アルコールで洗浄、脱水後、75℃で乾燥した。乾燥物の水分量は6.5質量%、プロスキー変法による水溶性食物繊維量は3.3質量%、不溶性食物繊維量は89.7質量%であり、全食物繊維量に対する不溶性食物繊維量は96.5質量%となった。
(実験例4)
原料としてティマックマンナン10gに対して、水酸化カリウム(関東化学(株)製、食品添加物、純度85%)の0.4M溶液(pH13.7)15gを添加混合した後に、クッキングカッター(日立製作所製、型式FV-F3)を用いて均質化し、密封して60℃で30分間加温後、さらに、30℃で15時間加温した。この様にしてティマックマンナン200gを加工し、これに30質量%含水アルコール800gを加えたところ、溶液のpHは12.2であった。これに10質量%クエン酸溶液を添加してpH7.0に中和し、20分間撹拌後に静置して上澄みを廃棄した。さらに、800gの30質量%含水アルコールを加えて20分間の撹拌を行い、上澄みを廃棄する洗浄操作を2回行った後に濾布を用いて脱水し、これを70℃で熱風乾燥した。乾燥物の水分量は4.0質量%、プロスキー変法による不溶性食物繊維量は94.7質量%、水溶性食物繊維量は1.4質量%であり、全食物繊維量に対する不溶性食物繊維量は98.5質量%となった。
(実験例5)
原料としてこんにゃく粉・特等粉(オリヒロ(株)製)10gに対して水酸化ナトリウム(関東化学(株)製、食品添化物、純度95%)の0.4M溶液(pH13.5)15gを添加混合した後に、ミニスピードミル(ラボネクト(株)製、型式MS-05)を用いて均質化し、密封して60℃で30分間加温後、さらに、35℃で20時間加温した。この様にして特等粉200gを加工し、これに30質量%含水アルコール800gを加え、10質量%クエン酸溶液を添加してpH6.90とし、20分間撹拌後に静置して上澄みを廃棄した。さらに、800gの30質量%含水アルコールを加えて20分間の撹拌を行い、上澄みを廃棄した後に濾布を用いて脱水した。これを70℃で熱風乾燥し、水溶性食物繊維と不溶性食物繊維を、プロスキー変法により測定した。
その結果、原料である特等粉(水分8.0質量%)の水溶性食物繊維が75.6質量%、不溶性食物繊維が2.1質量%で、全食物繊維に対して不溶性食物繊維の割合が2.7質量%であるのに対して、0.4M水酸化ナトリウム溶液で処理した乾燥物(水分7.3質量%)では、水溶性食物繊維が2.7質量%、不溶性食物繊維が91.9質量%となり、全食物繊維に対して不溶性食物繊維の割合が97.1質量%となった。
本粉末は水に不溶性で、こんにゃく粉の品質の鑑定法である1質量%水分散液を用いた粘度の測定値(35℃の温浴中で撹拌しながら2,3、4時間毎の粘度をB型粘度計で測定し、この間の最高値を求める)は2.0mPa・sであった。
(Experimental example 2)
100 g each of 0.2 M solution and 0.3 M solution of potassium hydroxide (manufactured by Kanto Chemical Co., Ltd., food additive, purity 85%) were added to each 100 g of timac mannan as a raw material, and mixed, It was homogenized using a cooking cutter, and test samples with two different alkali concentrations were prepared. After each was sealed and heated at 60° C. for 30 minutes, it was allowed to stand at 25° C. for 20 hours, and then dried at 75° C. so that the water content was 10% by mass or less. To this, 800 g of 30% by weight hydroalcohol was added, and 10% by weight citric acid solution was added to each to neutralize to pH 7.0. After dehydration, this was dried with hot air at 70°C. The moisture content of the dried product was 4.5% by mass for the sample adjusted with 0.2M potassium hydroxide solution and 7.1% by mass for the sample adjusted with 0.3M potassium hydroxide solution.
The amount of insoluble dietary fiber according to the Prosky modified method was 35.17% by mass and 38.51% by mass of water-soluble dietary fiber in the sample adjusted with 0.2M potassium hydroxide solution. The amount of insoluble dietary fiber relative to the amount of dietary fiber was 47.7% by mass. The sample prepared with 0.3M potassium hydroxide solution had an insoluble dietary fiber content of 80.0% by mass, a water-soluble dietary fiber content of 7.1% by mass, and an insoluble dietary fiber content of 91.0% with respect to the total dietary fiber content. It was 8% by mass.
When the viscosity of a 1 mass % solution of a sample prepared with a 0.2 M potassium hydroxide solution was measured at 35° C. every 2, 3, and 4 hours, the maximum value was 160.4 mPa·s. Further, when the viscosity of a 1% by mass solution of the sample prepared with a 0.3M potassium hydroxide solution was measured at 35° C. every 2, 3 and 4 hours, the maximum value was 4.0 mPa·s.
(Experimental example 3)
To 10 g of timac mannan as a raw material, 10 g of a 1 M solution (pH 11.7) of anhydrous sodium carbonate (manufactured by Kishida Chemical Co., Ltd., food additive, purity of 99% or more) is added and mixed, and using a cooking cutter Homogenized. After sealing and heating at 60° C. for 30 minutes, it was allowed to stand still at 35° C. for 20 hours. When 250 g of 30% by mass hydrous alcohol was added to this solution, the pH of the solution was 10.7. A 10% by mass citric acid solution was added to this to neutralize it to pH 7.0, and the same procedure as in Experimental Example 1 was followed to wash with 30% by mass alcohol, dehydrate, and dry at 75°C. The dry matter has a moisture content of 6.5% by mass, a water-soluble dietary fiber content of 3.3% by mass according to the modified Prosky method, and an insoluble dietary fiber content of 89.7% by mass. The amount amounted to 96.5% by weight.
(Experimental example 4)
After adding and mixing 15 g of a 0.4 M solution (pH 13.7) of potassium hydroxide (manufactured by Kanto Chemical Co., Ltd., food additive, purity 85%) to 10 g of timac mannan as a raw material, a cooking cutter (Hitachi The mixture was homogenized using a model FV-F3 manufactured by Seisakusho, sealed and heated at 60° C. for 30 minutes, and further heated at 30° C. for 15 hours. When 200 g of timac mannan was processed in this manner and 800 g of 30% by mass hydroalcohol was added thereto, the pH of the solution was 12.2. A 10% by mass citric acid solution was added to this to neutralize it to pH 7.0, and after stirring for 20 minutes, the mixture was allowed to stand, and the supernatant was discarded. Further, 800 g of 30% by mass hydroalcohol was added, stirred for 20 minutes, washed twice to discard the supernatant, dehydrated using a filter cloth, and dried with hot air at 70°C. The dry matter has a water content of 4.0% by mass, an insoluble dietary fiber content of 94.7% by mass according to the modified Prosky method, and a water-soluble dietary fiber content of 1.4% by mass. The amount amounted to 98.5% by weight.
(Experimental example 5)
As a raw material, 15 g of a 0.4 M solution (pH 13.5) of sodium hydroxide (manufactured by Kanto Chemical Co., Ltd., food additive, purity 95%) is added to 10 g of konjac powder / special powder (manufactured by Orihiro Co., Ltd.). After mixing, the mixture was homogenized using a mini speed mill (manufactured by Labonect Co., Ltd., model MS-05), sealed and heated at 60° C. for 30 minutes, and further heated at 35° C. for 20 hours. In this way, 200 g of special flour was processed, 800 g of 30% by weight hydroalcohol was added, 10% by weight citric acid solution was added to adjust pH to 6.90, stirred for 20 minutes, allowed to stand, and the supernatant was discarded. Further, 800 g of 30% by mass hydroalcohol was added and stirred for 20 minutes. After discarding the supernatant, dehydration was performed using a filter cloth. This was dried with hot air at 70° C., and water-soluble dietary fiber and insoluble dietary fiber were measured by Prosky's modified method.
As a result, the raw material special flour (water content 8.0% by mass) contained 75.6% by mass of water-soluble dietary fiber and 2.1% by mass of insoluble dietary fiber, and the ratio of insoluble dietary fiber to total dietary fiber is 2.7% by mass, whereas the dry matter (7.3% by mass of water) treated with 0.4M sodium hydroxide solution has 2.7% by mass of water-soluble dietary fiber and 2.7% by mass of insoluble dietary fiber. The ratio of insoluble dietary fiber to total dietary fiber was 97.1% by mass.
This powder is insoluble in water, and the measured value of the viscosity using a 1% by mass aqueous dispersion, which is a method for evaluating the quality of konjac flour (the viscosity is measured every 2, 3, and 4 hours while stirring in a warm bath at 35 ° C). Measured with a Brookfield viscometer, the maximum value during this period) was 2.0 mPa·s.
(実施例1)
原料としてティマックマンナン40kgをバーチカルグラニュレーター((株)パウレック製、FMVC-25型)に投入して160rpmで撹拌、品温40℃となった時点で、水酸化ナトリウム(関東化学(株)製、食品添化物)の0.4M溶液(pH13.5)40kgを40分間かけて添加混合した。品温65℃で取り出して密封、室温で20時間保持した。これを70~80℃の雰囲気下で乾燥後、30質量%含水アルコール320kgを加えて20分間撹拌(pH10.1)後、クエン酸1,860gを添加溶解して湿式グラインダー処理を数回行った(この時点での上澄みのpHは6.98)。これを濾布濾過で脱水して75℃で熱風乾燥した後に、水溶性食物繊維と不溶性食物繊維を、プロスキー変法により測定した。その結果、水分含量8.0%で水溶性食物繊維が2.3質量%、不溶性食物繊維が89.7質量%で、全食物繊維に対して不溶性食物繊維の割合が97.5質量%であった。
本粉末は水に不溶性で、1質量%の水分散液を用いて35℃の温浴中で3時間撹拌した後のB型粘度計で測定した値は3.0mPa・sであった。本粉末の微粉砕処理(ホソカワミクロン(株)製、型式:ACM-15H)を行ったところ、最少粒径4μm、最大粒径296μmで、d50(メジアン径)が54μmであり、水分は4.5質量%、プロスキー変法での測定による水溶性食物繊維は15.0質量%、不溶性食物繊維は79.4質量%であった。この微粉末2gを35℃の崩壊試験第1液(0.29%塩酸溶液:pH1.2)58g中で15分間ゆっくりと撹拌したところ、水分を抱き込み会合し、56mlの容積を有する集合体となった。
(Example 1)
As a raw material, 40 kg of timac mannan was put into a vertical granulator (manufactured by Powrex Co., Ltd., model FMVC-25) and stirred at 160 rpm. , food additives) was added and mixed for 40 minutes. It was taken out at a product temperature of 65° C., sealed, and held at room temperature for 20 hours. After drying this in an atmosphere of 70 to 80° C., 320 kg of 30% by mass hydrous alcohol was added and stirred for 20 minutes (pH 10.1). (The pH of the supernatant at this point is 6.98). After dehydration by filter cloth filtration and drying with hot air at 75° C., water-soluble dietary fiber and insoluble dietary fiber were measured by Prosky's modified method. As a result, the water content was 8.0%, the water-soluble dietary fiber was 2.3% by mass, the insoluble dietary fiber was 89.7% by mass, and the ratio of the insoluble dietary fiber to the total dietary fiber was 97.5% by mass. there were.
This powder was insoluble in water, and the value measured with a Brookfield viscometer after stirring for 3 hours in a 35° C. hot bath using a 1% by mass aqueous dispersion was 3.0 mPa·s. When this powder was pulverized (manufactured by Hosokawa Micron Corporation, model: ACM-15H), the minimum particle size was 4 μm, the maximum particle size was 296 μm, the d50 (median diameter) was 54 μm, and the water content was 4.5. 15.0% by mass of water-soluble dietary fiber and 79.4% by mass of insoluble dietary fiber measured by the modified Prosky method. When 2 g of this fine powder was slowly stirred for 15 minutes in 58 g of the disintegration test liquid 1 (0.29% hydrochloric acid solution: pH 1.2) at 35° C., water was incorporated into aggregates having a volume of 56 ml. became.
(実施例2)
原料としてティマックマンナン40kgをバーチカルグラニュレーター((株)パウレック製、FMVC-25型)に投入して160rpmで撹拌、品温40℃となった時点で、水酸化カリウム(関東化学(株)製、食品添化物)の0.4M溶液(pH13.5)40kgを40分間かけて添加混合した。得られた混合物を品温65℃で取り出して密封、室温で20時間保持した後、70~80℃の雰囲気下で乾燥し、38.9kgの乾燥物を得た。
この乾燥粉末の水溶性食物繊維と不溶性食物繊維をプロスキー変法により測定したところ、水分7.3質量%、水溶性食物繊維3.6質量%、不溶性食物繊維82.1質量%であった。また、1質量%の水分散液を用いて35℃の温浴中で3時間撹拌した後のB型粘度計で測定した最大値は4.0mPa・sであった。
得られた乾燥粉末に30質量%含水アルコール320kgを加えて20分間撹拌後、クエン酸266gを添加溶解して湿式グラインダー処理を数回行った(この時点での上澄みのpHは7.2)。これを濾布濾過で脱水して75℃で熱風乾燥した。
この乾燥粉末の微粉砕処理(ホソカワミクロン(株)製、型式:ACM-15H)を行った。得られたこんにゃく粉末は、d50(メジアン径)が40μmであった。また、最少粒径は2.9μmで、最大粒径は230μmであった。この粉砕したこんにゃく粉末は水分4.1質量%、プロスキー変法での測定による水溶性食物繊維12.1質量%、不溶性食物繊維82.3質量%であった。また、1質量%の水分散液を用いて35℃の温浴中で3時間撹拌した後のB型粘度計で測定した最大値は17.5mPa・sであった。
この微粉末2gを35℃の崩壊試験第1液(0.29%塩酸溶液:pH1.2)58g中で15分間ゆっくりと撹拌したところ(60mlの容積)となった。この固形区分を実体顕微鏡で観察したところ、多数の抱水したこんにゃく粉末が会合した小塊が、さらに互いに会合して集合体が形成されており、強く振盪すると小塊となり、最終的には1個の抱水したこんにゃく粉単体となることが確認された。
この水を抱き込むことにより膨潤し、会合したこんにゃく粉の集合体から取り出した小塊(一例として長さ1100μm、幅750μmの立方体)を構成する、抱水(膨潤)した1個のこんにゃく粉粒子のサイズは、代表例ではあるが137×106μmであった。これに対して、生キャベツ(可食部)60gをフードカッター((株)チェリーテラス製bamix-M300)で、丹念にペースト状にした磨砕物の容積はほぼ60mlとなり、実体顕微鏡による磨砕ペーストの観察では、構成する細胞が立体的に配列されており、そのサイズはおおよそ均一で、長さ100~130μm×幅100~130μmの範囲にあった。以上の結果から、この微粉化されたこんにゃく粉は、水を吸収して生野菜の細胞に似た立体的な構造を示すことが確認された。
この微粉末は、冷水~熱湯までの温度帯で抱水(膨潤)し、一個、一個の粉末粒子同士が会合するが、その抱水力は水温が高ければ大きく、会合に要する時間も短縮される。従って、2~8gの本こんにゃく粉末を、毎食時温かい味噌汁、或いはスープ等に加えれば、素早く抱水して会合するので、野菜のペーストと同様の感覚で食することができる。即ち、野菜に近い水溶性食物繊維と不溶性食物繊維の割合を持ち、抱水能を有した食物繊維ペーストを手軽に摂取できるのである。
また、本こんにゃく微粉末を70℃程度の液温で予め十分に抱水(膨潤)させ、果汁等の呈味と、フレーバリングを行った液状の状態とし、必要により増粘剤等で適度な粘性を持たせた後、一食当たり本こんにゃく微粉末4~6g相当をスタンディングパウチ等の容器に詰めて殺菌することにより、何時でも野菜に近い水溶性食物繊維と不溶性食物繊維の配合された食物繊維の摂取が可能となる。
本こんにゃく微粉末4gを、粉末状コーンスープ1食分(18g)に混合した後、熱湯150mlを注ぎ軽く撹拌したところ、こんにゃく粉末が抱水(膨潤)して会合し、本来1.0mm径の篩を100%通過するコーンスープが、60質量%以上が1.0mm径の篩上に残った。この結果、本来の飲むスープから食物繊維3.6g入りの食べるスープとなり、呈味もこんにゃく粉末無添加のものに比べて濃厚で、深みがあり好評であった。
(Example 2)
As a raw material, 40 kg of timac mannan was put into a vertical granulator (manufactured by Powrex Co., Ltd., model FMVC-25) and stirred at 160 rpm. , food additives) was added and mixed for 40 minutes. The resulting mixture was taken out at a material temperature of 65° C., sealed, held at room temperature for 20 hours, and dried in an atmosphere of 70 to 80° C. to obtain 38.9 kg of dried product.
When the water-soluble dietary fiber and insoluble dietary fiber of this dry powder were measured by the modified Prosky method, it was found to be 7.3% by mass of water, 3.6% by mass of water-soluble dietary fiber, and 82.1% by mass of insoluble dietary fiber. . Moreover, the maximum value measured with a Brookfield viscometer after stirring for 3 hours in a 35° C. hot bath using a 1% by mass aqueous dispersion was 4.0 mPa·s.
320 kg of 30% by mass hydrous alcohol was added to the obtained dry powder, and after stirring for 20 minutes, 266 g of citric acid was added and dissolved, and wet grinder treatment was performed several times (pH of the supernatant at this point was 7.2). This was dehydrated by filtering with a filter cloth and dried with hot air at 75°C.
This dry powder was pulverized (manufactured by Hosokawa Micron Corporation, model: ACM-15H). The obtained konjac powder had a d50 (median diameter) of 40 μm. The minimum particle size was 2.9 μm and the maximum particle size was 230 μm. The pulverized konjac powder had a water content of 4.1% by mass, a water-soluble dietary fiber of 12.1% by mass and an insoluble dietary fiber of 82.3% by mass as measured by the modified Prosky method. Moreover, the maximum value measured with a Brookfield viscometer after stirring for 3 hours in a 35° C. hot bath using a 1% by mass aqueous dispersion was 17.5 mPa·s.
2 g of this fine powder was slowly stirred for 15 minutes in 58 g of disintegration test liquid 1 (0.29% hydrochloric acid solution: pH 1.2) at 35° C., resulting in a volume of 60 ml. When this solid fraction was observed with a stereomicroscope, a large number of small lumps in which konjac powder with water was associated were further associated with each other to form aggregates. It was confirmed that the konjac powder alone was hydrated.
One water-retained (swollen) konjac powder particle that swells by embracing this water and constitutes a small mass (for example, a cube with a length of 1100 μm and a width of 750 μm) taken out from the aggregate of the associated konjac flour. was typically 137×106 μm. On the other hand, 60 g of raw cabbage (edible part) was carefully ground into a paste with a food cutter (bamix-M300 manufactured by Cherry Terrace Co., Ltd.), and the volume of the ground product was approximately 60 ml. , the constituent cells were arranged three-dimensionally, and their sizes were approximately uniform, ranging from 100 to 130 μm in length×100 to 130 μm in width. From the above results, it was confirmed that this pulverized konjac flour absorbs water and exhibits a three-dimensional structure resembling the cells of raw vegetables.
This fine powder holds water (swells) in a temperature range from cold water to hot water, and each powder particle is associated with each other. . Therefore, if 2 to 8 g of the present konjac powder is added to hot miso soup or soup at each meal, the konnyaku powder quickly absorbs water and mixes, so that the konjac powder can be eaten with the same feeling as vegetable paste. That is, a dietary fiber paste having a ratio of water-soluble dietary fiber and insoluble dietary fiber close to that of vegetables and having water-holding capacity can be easily ingested.
In addition, the present konjac fine powder is sufficiently hydrated (swelled) in advance at a liquid temperature of about 70 ° C., and the taste such as fruit juice and flavoring are performed to make it a liquid state. After imparting viscosity, 4 to 6 g of this konjac fine powder per serving is packed in a container such as a standing pouch and sterilized, so that a food containing water-soluble dietary fiber and insoluble dietary fiber close to vegetables at any time. Fiber intake becomes possible.
After mixing 4 g of this konjac fine powder with one serving of powdered corn soup (18 g), 150 ml of hot water was poured and lightly stirred. 60 mass % or more of the corn soup that passed 100% remained on the 1.0 mm diameter sieve. As a result, the soup, which was normally drinkable, became an eating soup containing 3.6 g of dietary fiber.
Claims (13)
こんにゃく原料精粉にアルカリ金属溶液を添加して、該こんにゃく原料精粉に含まれる粉末粒子に該アルカリ金属溶液を供給する供給工程と、
前記アルカリ金属溶液が供給された粉末粒子において該アルカリ金属溶液の作用により不溶性食物繊維を形成してこんにゃく粉末を得る不溶性食物繊維形成工程と、を有し、
前記供給工程及び前記不溶性食物繊維形成工程が、前記粉末粒子の粒子としての形態が維持された状態で行われ、前記不溶性食物繊維形成工程により得られたこんにゃく粉末はゲル化能を有していないことを特徴とするこんにゃく粉末の製造方法。 A method for producing konjac powder,
A supply step of adding an alkali metal solution to the refined konjac raw material and supplying the alkali metal solution to the powder particles contained in the refined konjac raw material ;
an insoluble dietary fiber forming step for obtaining konjac powder by forming insoluble dietary fiber in the powder particles supplied with the alkali metal solution by the action of the alkali metal solution,
The supplying step and the insoluble dietary fiber forming step are performed while the powder particles are maintained in the form of particles , and the konjac powder obtained by the insoluble dietary fiber forming step does not have gelling ability. A method for producing konjac powder, characterized by:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980016390.2A CN111787813A (en) | 2018-03-02 | 2019-03-01 | Konjak powder and its production method |
PCT/JP2019/008174 WO2019168171A1 (en) | 2018-03-02 | 2019-03-01 | Amorphophallus konjac powder and manufacturing method for same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018037419 | 2018-03-02 | ||
JP2018037419 | 2018-03-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019150012A JP2019150012A (en) | 2019-09-12 |
JP7235498B2 true JP7235498B2 (en) | 2023-03-08 |
Family
ID=67946266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018239728A Active JP7235498B2 (en) | 2018-03-02 | 2018-12-21 | Method for producing konjac powder |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7235498B2 (en) |
CN (1) | CN111787813A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021025022A1 (en) * | 2019-08-05 | 2021-02-11 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001045988A (en) | 1999-08-06 | 2001-02-20 | Sono Kosakusho:Kk | Method for producing granular or powdery dry devil's tongue |
JP2011072304A (en) | 2009-09-02 | 2011-04-14 | Ina Food Industry Co Ltd | Modified konnyaku (devil's tongue) powder, and gelled material and foodstuff by using the same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59113867A (en) * | 1982-12-20 | 1984-06-30 | Kiichiro Sarui | Preparation of powdery mannan of konjak (devil's tongue) bonded with protecting colloidal agent, etc. or its partial decomposition product |
JPS62118861A (en) * | 1985-11-20 | 1987-05-30 | Kazuo Hara | Utilization of konjak |
JPS63160563A (en) * | 1986-12-23 | 1988-07-04 | Yasuo Shimizu | Preparation of 'konjak' powder |
JPH0499453A (en) * | 1990-08-15 | 1992-03-31 | Hitachi Kinzoku Estate:Kk | Production of crush, paste and powder made from starch of devil's-tongue |
JP3637852B2 (en) * | 2000-08-10 | 2005-04-13 | 群馬県 | Konjac food and production method |
US20030138545A1 (en) * | 2002-01-22 | 2003-07-24 | Guanggu Sun | Glucomannan high fiber beverage |
CN102823875A (en) * | 2012-09-10 | 2012-12-19 | 湖北强森魔芋科技有限公司 | High-dietary fiber meal replacement powder and preparation method thereof |
-
2018
- 2018-12-21 JP JP2018239728A patent/JP7235498B2/en active Active
-
2019
- 2019-03-01 CN CN201980016390.2A patent/CN111787813A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001045988A (en) | 1999-08-06 | 2001-02-20 | Sono Kosakusho:Kk | Method for producing granular or powdery dry devil's tongue |
JP2011072304A (en) | 2009-09-02 | 2011-04-14 | Ina Food Industry Co Ltd | Modified konnyaku (devil's tongue) powder, and gelled material and foodstuff by using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2019150012A (en) | 2019-09-12 |
CN111787813A (en) | 2020-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA3094101C (en) | Sea weed-based powder | |
ES2731450T3 (en) | Method for preparing pectinic product containing fibers and pectinic products thereof | |
EP3136878B1 (en) | Preparations of plant parenchymal cell wall clusters | |
JPS6058941B2 (en) | Food manufacturing method | |
EP2628396B1 (en) | Powder mix | |
CN105685891B (en) | High-resistance starch instant whole lotus root starch and preparation method thereof | |
CN100534329C (en) | Calcium nutrition reinforcer and its production process | |
KR101450830B1 (en) | Seaweeds Noodle of Seaweeds Shape and Manufacturing Method | |
JP4117818B2 (en) | Disintegrating cellulose-containing food composition | |
JP7235498B2 (en) | Method for producing konjac powder | |
JP5800124B2 (en) | Rice-like food and production method thereof | |
JPS61224945A (en) | Structural food and its production | |
WO2019168171A1 (en) | Amorphophallus konjac powder and manufacturing method for same | |
WO2018070382A1 (en) | Konjac powder and production method therefor | |
JP2021119744A (en) | Loosening agent for starch-containing food | |
EP1595460B1 (en) | Freeze-dried food product | |
JP2002187842A (en) | Processed product of kale and method for processing the same | |
WO2021025022A1 (en) | Modified konjac flour-containing physiologically active agent for oral administration | |
JP6938238B2 (en) | Konjac powder and its manufacturing method | |
JP2023098030A (en) | Composition for promoting proliferation of akkermansia muciniphila comprising dietary fiber | |
JP6383560B2 (en) | Dry composition, water-absorbing swelling agent and food containing the same | |
JP2023039734A (en) | Food material and production method of the same | |
JP2006230274A (en) | Method for producing bean-curd refuse paste | |
CA3151282A1 (en) | Seaweed-based composition | |
JPS6053585B2 (en) | Heat stable filling composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230224 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7235498 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |