Nothing Special   »   [go: up one dir, main page]

JP7231331B2 - Thermal insulation film - Google Patents

Thermal insulation film Download PDF

Info

Publication number
JP7231331B2
JP7231331B2 JP2018044477A JP2018044477A JP7231331B2 JP 7231331 B2 JP7231331 B2 JP 7231331B2 JP 2018044477 A JP2018044477 A JP 2018044477A JP 2018044477 A JP2018044477 A JP 2018044477A JP 7231331 B2 JP7231331 B2 JP 7231331B2
Authority
JP
Japan
Prior art keywords
heat shield
shield film
heat
film
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018044477A
Other languages
Japanese (ja)
Other versions
JP2019157191A (en
Inventor
勝哉 高岡
拓也 品川
邦治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2018044477A priority Critical patent/JP7231331B2/en
Publication of JP2019157191A publication Critical patent/JP2019157191A/en
Application granted granted Critical
Publication of JP7231331B2 publication Critical patent/JP7231331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Glass Compositions (AREA)

Description

本開示は遮熱膜に関する。 The present disclosure relates to thermal barrier films.

防火ガラス等の基材上に遮熱膜を形成する技術が知られている。特許文献1には、3層膜構造の遮熱膜が記載されている。 A technique for forming a heat shield film on a base material such as fire glass is known. Patent Literature 1 describes a heat shielding film having a three-layer film structure.

特許第4284694号公報Japanese Patent No. 4284694

遮熱膜は、遮熱性が高い必要がある。また、遮熱膜は、基材に対する密着性が良好である必要がある。従来の遮熱膜は、遮熱性と密着性とを両立させることが困難であった。本開示の一局面は、遮熱性が高く、基材に対する密着性が良好である遮熱膜を提供することを目的とする。 The heat shield film needs to have high heat shielding properties. Also, the heat shield film needs to have good adhesion to the base material. It has been difficult for conventional heat shield films to achieve both heat shielding properties and adhesion. An object of one aspect of the present disclosure is to provide a heat shielding film that has high heat shielding properties and good adhesion to a substrate.

本開示の一局面は、基材上に形成される遮熱膜であって、前記遮熱膜は、ガラス及び無機繊維を含み、前記遮熱膜を厚み方向に貫通する連続気孔を有する多孔質体からなる遮熱膜である。 One aspect of the present disclosure is a heat shield film formed on a base material, the heat shield film contains glass and inorganic fibers, and is porous and has continuous pores penetrating the heat shield film in the thickness direction. It is a heat shield film consisting of a body.

本開示の一局面である遮熱膜は、ガラス及び無機繊維を含む多孔質体により構成され、熱伝導率が低く、遮熱性に優れる。そのため、本開示の一局面である遮熱膜は、基材への熱伝導を抑制できる。 A heat shielding film, which is one aspect of the present disclosure, is composed of a porous material containing glass and inorganic fibers, and has low thermal conductivity and excellent heat shielding properties. Therefore, the heat shield film, which is one aspect of the present disclosure, can suppress heat conduction to the base material.

遮熱膜を形成するとき、一般的に、遮熱膜を加熱し、その後、冷却する。加熱されるとき、遮熱膜は、基材に引っ張られて膨張する。その後、遮熱膜が冷却されるとき、一般的に、遮熱膜の収縮量は基材の収縮量より小さいので、遮熱膜と基材との界面に応力が生じる。応力によって遮熱膜が割れると、遮熱膜が基材から剥がれてしまう。 When forming the heat shield film, the heat shield film is generally heated and then cooled. When heated, the thermal barrier film is pulled by the substrate and expands. After that, when the heat shield film is cooled, the amount of shrinkage of the heat shield film is generally smaller than that of the base material, so stress is generated at the interface between the heat shield film and the base material. If the heat shield film cracks due to the stress, the heat shield film will peel off from the substrate.

本開示の一局面である遮熱膜は、加熱し、その後冷却しても、基材から剥がれ難い。その理由は以下のように推測される。遮熱膜は多孔質体により構成され、気孔を含む。冷却時に遮熱膜に応力が加わると、気孔がつぶれることで、遮熱膜は縮むことができる。そのため、冷却時に遮熱膜は割れ難く、基材から剥がれ難い。また、遮熱膜は無機繊維を含むので、界面の応力が、遮熱膜において界面から離れた部位にまで伝わり易い。そのため、界面付近に応力が集中し難いので、冷却時に遮熱膜は割れ難く、基材から剥がれ難い。 The heat shield film, which is one aspect of the present disclosure, is not easily peeled off from the base material even after being heated and then cooled. The reason is presumed as follows. The heat shield film is composed of a porous body and contains pores. When stress is applied to the heat shield film during cooling, the pores are crushed and the heat shield film can be shrunk. Therefore, the heat shield film is difficult to crack and peel off from the substrate during cooling. In addition, since the heat shielding film contains inorganic fibers, stress at the interface is easily transmitted to a portion of the heat shielding film distant from the interface. Therefore, since stress is less likely to concentrate near the interface, the thermal barrier film is less likely to crack or peel off from the substrate during cooling.

本開示の一局面である遮熱膜は、遮熱膜の厚み方向に貫通する連続気孔を有する。そのため、本開示の一局面である遮熱膜は、連続気孔を通じて、適度に熱を基材に伝導させることができる。 A heat shield film that is one aspect of the present disclosure has continuous pores penetrating in the thickness direction of the heat shield film. Therefore, the heat shield film, which is one aspect of the present disclosure, can moderately conduct heat to the substrate through the continuous pores.

遮熱膜の製造方法を表す説明図である。It is explanatory drawing showing the manufacturing method of a thermal insulation film. 遮熱膜の断面を表す写真である。It is a photograph showing the cross section of a thermal insulation film. 遮熱膜の熱伝導度を測定する方法を表す説明図である。FIG. 4 is an explanatory diagram showing a method of measuring the thermal conductivity of a heat shield film;

本開示の例示的な実施形態を説明する。
1.遮熱膜の構成
Exemplary embodiments of the disclosure are described.
1. Structure of heat shield film

本開示の遮熱膜は基材上に形成される。基材として、例えば、金属製の基材が挙げられる。基材を構成する金属は、純金属であってもよいし、合金であってもよい。純金属として、例えば、Fe、Ti、Al等が挙げられる。合金として、例えば、Fe合金、Ti合金、Al-Si合金等が挙げられる。 The thermal barrier film of the present disclosure is formed on a substrate. Examples of the base material include metal base materials. The metal forming the substrate may be a pure metal or an alloy. Examples of pure metals include Fe, Ti, and Al. Examples of alloys include Fe alloys, Ti alloys, Al—Si alloys, and the like.

遮熱膜は、基材の表面のうち一部に設けられていてもよいし、基材の全表面に設けられていてもよい。遮熱膜は、ガラス及び無機繊維を含む多孔質体からなる。多孔質体は、例えば、主にガラスと無機繊維との骨格からなる多孔質体である。遮熱膜は、多孔質体により構成されるため、熱伝導率が小さく、遮熱性が高い。遮熱膜は、例えば、基材よりも熱伝導率が小さい。 The heat shield film may be provided on a part of the surface of the substrate, or may be provided on the entire surface of the substrate. The heat shield film is made of a porous material containing glass and inorganic fibers. The porous body is, for example, a porous body mainly composed of a skeleton of glass and inorganic fibers. Since the heat shielding film is composed of a porous material, it has a low thermal conductivity and a high heat shielding property. The heat shield film has, for example, a lower thermal conductivity than the base material.

本開示の遮熱膜は、加熱し、その後冷却しても、基材から剥がれ難い。その理由は上述したとおりである。
遮熱膜は、ガラス及び無機繊維以外の成分をさらに含んでもよいし、含まなくてもよい。遮熱膜は、例えば、無機繊維同士が絡み合う構造を有する。ガラスは、例えば、無機繊維と接合している。ガラスの少なくとも一部は、例えば、絡み合う無機繊維同士の接点に接合している。
The heat shield film of the present disclosure is not easily peeled off from the substrate even when heated and then cooled. The reason is as described above.
The heat shield film may or may not contain components other than glass and inorganic fibers. The heat shield film has, for example, a structure in which inorganic fibers are entangled with each other. Glass, for example, is bonded with inorganic fibers. At least part of the glass is bonded to, for example, contact points between intertwined inorganic fibers.

遮熱膜における気孔は、例えば、ガラス及び無機繊維のいずれにも占められていない空間である。遮熱膜は、遮熱膜を厚み方向に貫通する連続気孔を有する。本開示の遮熱膜は、連続気孔を通じて、適度に熱を基材に伝導させることができる。遮熱膜は、連続気孔に加えて、独立気孔をさらに有していてもよい。 Pores in the heat insulating film are, for example, spaces that are not occupied by glass or inorganic fibers. The heat shield film has continuous pores penetrating the heat shield film in the thickness direction. The heat shield film of the present disclosure can moderately conduct heat to the substrate through the continuous pores. The heat insulating film may further have closed pores in addition to continuous pores.

ガラスは、公知のガラスの中から適宜選択することができる。ガラスは、Te及びBiの少なくとも一方を含むことが好ましい。Te及びBiの少なくとも一方を含むガラスは、それらを含まないガラスより熱膨張係数が大きい。そのため、ガラスがTe及びBiの少なくとも一方を含む場合、遮熱膜の熱膨張係数は一層大きくなり、遮熱膜の熱膨張係数と、基材の熱膨張係数との差は一層小さくなる。その結果、ガラスがTe及びBiの少なくとも一方を含む場合、遮熱膜と基材との密着性が一層良好である。 The glass can be appropriately selected from known glasses. The glass preferably contains at least one of Te and Bi. A glass containing at least one of Te and Bi has a larger coefficient of thermal expansion than a glass not containing them. Therefore, when the glass contains at least one of Te and Bi, the thermal expansion coefficient of the heat shield film is even greater, and the difference between the thermal expansion coefficient of the heat shield film and the thermal expansion coefficient of the substrate is even smaller. As a result, when the glass contains at least one of Te and Bi, the adhesion between the heat shield film and the substrate is even better.

ガラスとして、例えば、(a)P及びBの少なくとも一方と、(b)RO及びR’Oと、を含み、(a)及び(b)の合計モル数に対する、(b)のモル数の比率(以下ではRR’比率とする)が40~60%であるガラスが挙げられる。RはLi、Na、及びKから成る群から選択される1以上であり、R’は、Mg、Ca、及びCuから成る群から選択される1以上である。ガラスが上記のガラスである場合、遮熱膜の熱膨張係数は一層大きくなり、遮熱膜の熱膨張係数と、基材の熱膨張係数との差は一層小さくなる。その結果、遮熱膜と基材との密着性が一層良好である。 The glass includes, for example, (a) at least one of P 2 O 5 and B 2 O 3 and (b) R 2 O and R'O, and with respect to the total number of moles of (a) and (b), A glass in which the molar ratio of (b) (hereinafter referred to as the RR' ratio) is 40 to 60%. R is one or more selected from the group consisting of Li, Na, and K, and R' is one or more selected from the group consisting of Mg, Ca, and Cu. When the glass is the glass described above, the coefficient of thermal expansion of the heat shield film is even greater, and the difference between the coefficient of thermal expansion of the heat shield film and the coefficient of thermal expansion of the substrate is even smaller. As a result, the adhesion between the heat shield film and the substrate is even better.

無機繊維は、公知の無機繊維から適宜選択することができる。無機繊維として、例えば、セラミック繊維、金属繊維等が挙げられる。無機繊維の具体例として、Al繊維、SiO繊維、ZrO繊維、BN繊維、SiC繊維、TiO繊維、CNF繊維、グラスウール等が挙げられる。無機繊維は、Al繊維、SiO繊維、及びZrO繊維から成る群から選択される1以上を含むことが好ましい。無機繊維が、Al繊維、SiO繊維、及びZrO繊維から成る群から選択される1以上を含む場合、遮熱膜を構成する多孔質体の状態を制御することが容易である。また、遮熱膜の強度が高い。 Inorganic fibers can be appropriately selected from known inorganic fibers. Examples of inorganic fibers include ceramic fibers and metal fibers. Specific examples of inorganic fibers include Al2O3 fibers, SiO2 fibers, ZrO2 fibers, BN fibers, SiC fibers, TiO2 fibers, CNF fibers , glass wool, and the like. The inorganic fibers preferably include one or more selected from the group consisting of Al 2 O 3 fibers, SiO 2 fibers and ZrO 2 fibers. When the inorganic fibers include one or more selected from the group consisting of Al 2 O 3 fibers, SiO 2 fibers, and ZrO 2 fibers, it is easy to control the state of the porous body constituting the heat shield film. . In addition, the strength of the heat insulating film is high.

無機繊維として、例えば、結晶質酸化物繊維が挙げられる。結晶質酸化物繊維として、例えば、α-アルミナ繊維、γ-アルミナ繊維、ムライト繊維等が挙げられる。無機繊維が結晶質酸化物繊維である場合、遮熱膜に熱衝撃が加えられても、遮熱膜が破損し難い。 Examples of inorganic fibers include crystalline oxide fibers. Examples of crystalline oxide fibers include α-alumina fibers, γ-alumina fibers, mullite fibers and the like. When the inorganic fibers are crystalline oxide fibers, the heat shielding film is less likely to break even when a thermal shock is applied to the heat shielding film.

遮熱膜の断面において、ガラスの面積と無機繊維の面積との合計面積に対する、無機繊維の面積の比率(以下では繊維面積比とする)は、20~60%であることが好ましい。繊維面積比が20~60%である場合、遮熱膜を構成する多孔質体の状態を制御することが容易である。また、遮熱膜の強度が高い。無機繊維が結晶質酸化物繊維であり、繊維面積比が20~60%である場合、遮熱膜に熱衝撃が加えられても、遮熱膜が破損し難い。 In the cross section of the heat insulating film, the ratio of the area of the inorganic fibers to the total area of the glass and the inorganic fibers (hereinafter referred to as the fiber area ratio) is preferably 20 to 60%. When the fiber area ratio is 20 to 60%, it is easy to control the state of the porous body that constitutes the heat insulating film. In addition, the strength of the heat insulating film is high. When the inorganic fibers are crystalline oxide fibers and the fiber area ratio is 20 to 60%, the thermal barrier film is less likely to break even if the thermal shock is applied to the thermal barrier film.

繊維面積比の測定方法は以下のとおりである。遮熱膜を切断し、断面を形成する。EPMAを用いて断面のうち、200μm×100μmの範囲を組成分析し、ガラスの部分と、無機繊維の部分とをそれぞれ同定する。ガラスの部分の面積を測定し、測定値をS1とする。無機繊維の部分の面積を測定し、測定値をS2とする。以下の式(1)で表されるSfを、繊維面積比(%)とする。 The method for measuring the fiber area ratio is as follows. Cut the heat shield film to form a cross section. A 200 μm×100 μm range of the cross section is subjected to composition analysis using EPMA to identify the glass portion and the inorganic fiber portion. The area of the glass portion is measured and the measured value is defined as S1. The area of the inorganic fiber portion is measured, and the measured value is defined as S2. Let Sf represented by the following formula (1) be a fiber area ratio (%).

式(1) Sf=(S2/(S1+S2))×100
無機繊維の平均アスペクト比は10以上であることが好ましい。平均アスペクト比が10以上である場合、遮熱膜において無機繊維同士が絡み易い。そのため、遮熱膜の強度が高い。
Formula (1) Sf=(S2/(S1+S2))×100
The average aspect ratio of inorganic fibers is preferably 10 or more. When the average aspect ratio is 10 or more, the inorganic fibers tend to entangle with each other in the heat insulating film. Therefore, the strength of the heat insulating film is high.

平均アスペクト比の測定方法は以下のとおりである。遮熱膜を切断し、断面を形成する。断面のうち、200μm×200μmの領域に存在する全ての無機繊維について、アスペクト比を測定する。アスペクト比は、無機繊維の直径に対する無機繊維の長さの比である。アスペクト比の算出に用いる直径は、1本の無機繊維のうち、最も直径が小さい部分での値である。長さは、無機繊維の形状に沿って測定した長さである。200μm×200μmの領域に存在する全ての無機繊維におけるアスペクト比の平均値を、平均アスペクト比とする。 The method for measuring the average aspect ratio is as follows. Cut the heat shield film to form a cross section. Aspect ratios are measured for all inorganic fibers present in a 200 μm×200 μm region of the cross section. Aspect ratio is the ratio of the length of an inorganic fiber to the diameter of the inorganic fiber. The diameter used for calculating the aspect ratio is the value of the smallest diameter portion of one inorganic fiber. Length is the length measured along the shape of the inorganic fiber. Let the average value of the aspect-ratio in all the inorganic fibers which exist in the area|region of 200 micrometers x 200 micrometers be an average aspect-ratio.

遮熱膜の平均厚みは、80~400μmであることが好ましい。遮熱膜の平均厚みが80μm以上である場合、基材への熱伝導を遮熱膜によって一層抑制できる。遮熱膜の平均厚みが400μm以下である場合、遮熱膜にクラックが生じ難く、遮熱膜が基材から剥がれ難い。 The average thickness of the heat shield film is preferably 80 to 400 μm. When the average thickness of the heat shielding film is 80 μm or more, the heat conduction to the substrate can be further suppressed by the heat shielding film. When the average thickness of the heat shield film is 400 μm or less, cracks are less likely to occur in the heat shield film, and the heat shield film is less likely to peel off from the substrate.

遮熱膜の平均厚みの測定方法は以下のとおりである。遮熱膜を切断し、断面を形成する。断面のうち、長さ500μmの範囲における複数の場所でそれぞれ遮熱膜の厚みを測定する。遮熱膜の厚みを測定する複数の場所は、いずれも、遮熱膜の端部以外の場所である。複数の場所における遮熱膜の厚みの平均値を遮熱膜の平均厚みとする。 The method for measuring the average thickness of the heat shield film is as follows. Cut the heat shield film to form a cross section. The thickness of the heat shield film is measured at a plurality of locations within a 500 μm length range of the cross section. All of the multiple locations where the thickness of the heat shield film is measured are locations other than the end portions of the heat shield film. The average value of the thickness of the heat shield film at a plurality of locations is taken as the average thickness of the heat shield film.

遮熱膜の断面での幅0.5mmの範囲における遮熱膜の厚みの最大値と最小値との差(以下では厚み差とする)が70μm以下であることが好ましい。厚み差が70μm以下である場合、遮熱膜に熱衝撃が加えられても、遮熱膜が破損し難い。 It is preferable that the difference between the maximum value and the minimum value of the thickness of the heat shielding film (hereinafter referred to as the thickness difference) in the range of 0.5 mm in width in the cross section of the heat shielding film is 70 μm or less. When the thickness difference is 70 μm or less, the heat insulating film is less likely to be damaged even if a thermal shock is applied to the heat insulating film.

遮熱膜の平均気孔率は25~50%であることが好ましい。平均気孔率が25%以上である場合、基材への熱伝導を遮熱膜によって一層抑制できる。遮熱膜の平均気孔率が50%以下である場合、遮熱膜にクラックが生じ難く、遮熱膜が基材から剥がれ難い。 The heat insulating film preferably has an average porosity of 25 to 50%. When the average porosity is 25% or more, the heat transfer to the substrate can be further suppressed by the heat shield film. When the heat shielding film has an average porosity of 50% or less, the heat shielding film is less likely to crack and peel off from the base material.

遮熱膜の平均気孔率の測定方法は以下のとおりである。遮熱膜を切断し、断面を形成する。SEMを用いて断面の反射電子像を取得する。反射電子像内の10の視野において、それぞれ、ガラスの部分、無機繊維の部分、及び気孔の部分をそれぞれ同定する。それぞれの視野は、200μm×50μmの大きさを有する。なお、反射電子像において、ガラスの部分、無機繊維の部分、及び気孔の部分は、コントラストの濃淡により区別することができる。 The method for measuring the average porosity of the heat shield film is as follows. Cut the heat shield film to form a cross section. A backscattered electron image of the cross section is obtained using an SEM. In each of the 10 fields of view in the backscattered electron image, the glass portion, the inorganic fiber portion, and the pore portion are identified, respectively. Each field of view has a size of 200 μm×50 μm. In the backscattered electron image, the glass portion, the inorganic fiber portion, and the pore portion can be distinguished by contrast density.

10の視野に含まれるガラスの部分の面積を測定し、測定値をS1とする。また、10の視野に含まれる無機繊維の部分の面積を測定し、測定値をS2とする。また、10の視野に含まれる気孔の部分の面積を測定し、測定値をS3とする。以下の式(2)で表されるSpを、平均気孔率(%)とする。 The area of the glass portion included in 10 fields of view is measured, and the measured value is defined as S1. Also, the area of the inorganic fiber portion included in the 10 visual fields is measured, and the measured value is defined as S2. Also, the area of the pore portion included in the 10 visual fields is measured, and the measured value is defined as S3. Let Sp represented by the following formula (2) be the average porosity (%).

式(2) Sp=(S3/(S1+S2+S3))×100
2.遮熱膜の製造方法
本開示の遮熱膜は、例えば、以下のように製造できる。ガラス粉末と、無機繊維と、水とを含むスラリーを調製する。スラリーは、さらに他の成分を含んでもよいし、含まなくてもよい。
Formula (2) Sp=(S3/(S1+S2+S3))×100
2. Method for Producing Thermal Insulating Film The thermal insulating film of the present disclosure can be produced, for example, as follows. A slurry containing glass powder, inorganic fibers, and water is prepared. The slurry may or may not contain other ingredients.

次に、図1のSTEP1に示すように、基材1の表面にスラリーを塗布し、塗布層3を形成する。
次に、STEP2において、60~120℃の温度で1~2時間保持して塗布層3を乾燥させ、遮熱膜5を形成する。次に、STEP3において、400~600℃の温度で0.5~2時間保持し、遮熱膜5を焼き付ける。以上の工程により、遮熱膜5が完成する。
Next, as shown in STEP 1 of FIG. 1, slurry is applied to the surface of the substrate 1 to form the coating layer 3 .
Next, in STEP 2, the coating layer 3 is dried by holding at a temperature of 60 to 120° C. for 1 to 2 hours, and the heat shield film 5 is formed. Next, in STEP 3, the temperature of 400 to 600° C. is maintained for 0.5 to 2 hours to bake the heat shield film 5 . The heat insulating film 5 is completed through the above steps.

遮熱膜の断面を図2に示す。基材の表面に遮熱膜が形成されている。遮熱膜は、ガラス及び無機繊維を含む多孔質体により構成されている。遮熱膜は、遮熱膜を厚み方向に貫通する連続気孔を有する。 FIG. 2 shows a cross section of the heat shield film. A heat insulating film is formed on the surface of the base material. The heat shield film is composed of a porous material containing glass and inorganic fibers. The heat shield film has continuous pores penetrating the heat shield film in the thickness direction.

3.実施例
(3-1)遮熱膜の製造
実施例1~23、及び比較例1の遮熱膜を以下のようにして製造した。ガラス粉末と、無機繊維と、水とを含むスラリーを調製した。ガラス粉末の組成は、以下の表1における「ガラス組成」の列に記載したものである。無機繊維の種類は、表1における「無機繊維」のうち「種類」の列に記載したものである。スラリーにおけるガラス粉末と無機繊維との配合比は、繊維面積比が表1における「繊維面積比」の列に記載した値となる配合比である。
3. Examples (3-1) Manufacture of Heat Shielding Films Heat shielding films of Examples 1 to 23 and Comparative Example 1 were produced as follows. A slurry containing glass powder, inorganic fibers, and water was prepared. The composition of the glass powder is described in the "Glass composition" column in Table 1 below. The types of inorganic fibers are those described in the "type" column of "inorganic fibers" in Table 1. The blending ratio of the glass powder and the inorganic fibers in the slurry is a blending ratio at which the fiber area ratio is the value described in the "fiber area ratio" column in Table 1.

Figure 0007231331000001
次に、基材の表面にスラリーを塗布し、塗布層を形成した。基材の材質は、上記表1における「基材の材質」の列に記載したものである。次に、50~100℃の温度で30分間~6時間保持して塗布層を乾燥させ、遮熱膜を形成した。次に、350~500℃の温度で5分間~2時間保持し、遮熱膜を焼き付けた。以上の工程により、遮熱膜が完成した。
Figure 0007231331000001
Next, the slurry was applied to the surface of the substrate to form a coating layer. The material of the base material is described in the column of "Material of base material" in Table 1 above. Next, the coating layer was dried by holding at a temperature of 50 to 100° C. for 30 minutes to 6 hours to form a heat shield film. Next, the temperature was kept at 350 to 500° C. for 5 minutes to 2 hours to bake the heat shield film. Through the steps described above, the heat insulating film was completed.

(3-2)遮熱膜の評価
実施例1~23、及び比較例1の遮熱膜の評価を以下のように行った。
無機繊維の平均アスペクト比と、遮熱膜の平均厚みと、遮熱膜の平均気孔率とを測定した。測定方法は上述した方法である。無機繊維の平均アスペクト比の測定結果を上記表1における「無機繊維」のうち「平均アスペクト比」の列に示す。遮熱膜の平均厚みの測定結果を上記表1における「厚み」の列に示す。遮熱膜の平均気孔率の測定結果を上記表1における「気孔率」の列に示す。
X線CTにより作成した3次元モデリングを画像解析し、遮熱膜が連続気孔を有するか否かを確認した。なお、水銀圧入法により、遮熱膜が連続気孔を有するか否かを確認してもよい。連続気孔とは、遮熱膜を厚み方向に貫通する気孔である。遮熱膜が連続気孔を有する場合は、上記表1における「連続気孔の有無」の列に「○」と記載し、連続気孔を有さない場合は「×」と記載した。
(3-2) Evaluation of Heat Shielding Films The heat shielding films of Examples 1 to 23 and Comparative Example 1 were evaluated as follows.
The average aspect ratio of the inorganic fibers, the average thickness of the heat shield film, and the average porosity of the heat shield film were measured. The measuring method is the method described above. The measurement results of the average aspect ratio of the inorganic fibers are shown in the "average aspect ratio" column of the "inorganic fibers" in Table 1 above. The measurement results of the average thickness of the heat shield film are shown in the "thickness" column in Table 1 above. The measurement results of the average porosity of the heat insulating film are shown in the column of "Porosity" in Table 1 above.
Image analysis of the three-dimensional modeling created by X-ray CT was performed to confirm whether or not the heat shield film had continuous pores. It should be noted that a mercury intrusion method may be used to confirm whether or not the heat insulating film has continuous pores. A continuous pore is a pore that penetrates the heat insulating film in the thickness direction. When the heat shield film has continuous pores, it is marked with "◯" in the column "Presence or absence of continuous pores" in Table 1 above, and when it does not have continuous pores, it is marked with "x".

基材と遮熱膜との接合強度を以下の方法で測定した。基材と、その基材上に形成された遮熱膜とを備えるサンプルを用意した。そのサンプルを水中に入れ、水圧を所定値まで増加させ、10分間保持する。その後、遮熱膜が基材から剥離しているか否かを確認する。この工程を、上記の所定値の値を少しずつ大きくしながら、遮熱膜が基材から剥離するまで繰り返す。遮熱膜が基材から剥離したときの上記の所定値を接合強度とする。接合強度の測定結果を上記表1における「評価」のうち「接合評価」の列に示す。 The bonding strength between the base material and the heat shield film was measured by the following method. A sample including a substrate and a heat shield film formed on the substrate was prepared. The sample is placed in water, the water pressure is increased to a predetermined value, and held for 10 minutes. After that, it is confirmed whether or not the heat shield film is peeled off from the base material. This process is repeated while gradually increasing the predetermined value until the heat shield film is peeled off from the substrate. The above predetermined value when the heat shield film is peeled off from the base material is defined as the bond strength. The measurement results of the bonding strength are shown in the "bonding evaluation" column of the "evaluation" in Table 1 above.

遮熱膜の熱伝導度を以下の方法で測定した。図3に示すように、基材1と、その基材1の一方の面に形成された遮熱膜5と、を備えるサンプル7を用意した。サンプル7を構成する基材1のうち、遮熱膜5とは反対側の面9を赤外線で加熱した。このとき、熱電対11を用いて、遮熱膜5の温度を継続的に測定し、温度の推移を取得した。また、遮熱膜5を備えず、基材1のみから成る比較サンプルについても、同様に、基材1の一方の面に対する赤外線による加熱と、反対側の面における継続的な温度測定とを行い、温度の推移を取得した。サンプル7における遮熱膜5の温度の推移と、比較サンプルにおける温度の推移とに基づき、シミューレーションによって遮熱膜5の熱伝導度を算出した。算出した熱伝導度を以下の基準に当てはめて、遮熱性を評価した。評価結果を上記表1における「評価」のうち「熱伝導」の列に示す。 The thermal conductivity of the heat shield film was measured by the following method. As shown in FIG. 3, a sample 7 including a substrate 1 and a heat shield film 5 formed on one surface of the substrate 1 was prepared. Of the base material 1 constituting the sample 7, the surface 9 opposite to the heat shield film 5 was heated with infrared rays. At this time, the thermocouple 11 was used to continuously measure the temperature of the heat shield film 5 to acquire the transition of the temperature. Similarly, for a comparative sample consisting of only the base material 1 without the heat shield film 5, one surface of the base material 1 was heated by infrared rays and the opposite surface was continuously subjected to temperature measurement. , the transition of temperature was obtained. The thermal conductivity of the heat shield film 5 was calculated by simulation based on the temperature transition of the heat shield film 5 in Sample 7 and the temperature transition in the comparative sample. Thermal conductivity was evaluated by applying the calculated thermal conductivity to the following criteria. The evaluation results are shown in the "heat conduction" column of the "evaluation" in Table 1 above.

◎:熱伝導度が0.3W/(m・k)以下である。
○:熱伝導度が0.3W/(m・k)を超え、0.6W/(m・k)以下である。
×:熱伝導度が0.6W/(m・k)を超える。
A: The thermal conductivity is 0.3 W/(m·k) or less.
◯: The thermal conductivity exceeds 0.3 W/(m·k) and is 0.6 W/(m·k) or less.
x: Thermal conductivity exceeds 0.6 W/(m·k).

実施例1~23の遮熱膜では、基材と遮熱膜との接合強度が高く、遮熱膜の遮熱性が良好であった。比較例1の遮熱膜では、遮熱性が不良であった。
4.他の実施形態
以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
In the heat shield films of Examples 1 to 23, the bonding strength between the substrate and the heat shield film was high, and the heat shield properties of the heat shield film were good. The heat shielding film of Comparative Example 1 had poor heat shielding properties.
4. Other Embodiments Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and various modifications can be made.

(1)上記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記各実施形態の構成の一部を省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 (1) A function of one component in each of the above embodiments may be assigned to a plurality of components, or a function of a plurality of components may be performed by one component. Also, part of the configuration of each of the above embodiments may be omitted. Also, at least part of the configuration of each of the above embodiments may be added, replaced, etc. with respect to the configuration of the other above embodiments. It should be noted that all aspects included in the technical idea specified by the wording in the claims are embodiments of the present disclosure.

(2)上述した遮熱膜の他、当該遮熱膜を構成要素とするシステム、遮熱膜の製造方法等、種々の形態で本開示を実現することもできる。 (2) In addition to the heat shielding film described above, the present disclosure can also be realized in various forms such as a system having the heat shielding film as a component, a method for manufacturing the heat shielding film, and the like.

1…基材、3…塗布層、5…遮熱膜、9…反対側の面、11…熱電対 DESCRIPTION OF SYMBOLS 1... Base material, 3... Coating layer, 5... Thermal insulation film, 9... Opposite surface, 11... Thermocouple

Claims (5)

基材上に形成される遮熱膜であって、
前記遮熱膜は、ガラス及び無機繊維を含み、前記遮熱膜を厚み方向に貫通する連続気孔を有する多孔質体からなり、
前記遮熱膜の断面において、前記ガラスの面積と前記無機繊維の面積との合計面積に対し、前記無機繊維の面積の比率は、15%以上である遮熱膜。
A heat shielding film formed on a substrate,
The heat shield film contains glass and inorganic fibers and is made of a porous body having continuous pores penetrating the heat shield film in the thickness direction ,
The heat shielding film, wherein the ratio of the area of the inorganic fiber to the total area of the area of the glass and the area of the inorganic fiber in the cross section of the heat shielding film is 15% or more.
請求項1に記載の遮熱膜であって、
前記ガラスはTe及びBiの少なくとも一方を含む遮熱膜。
The heat shield film according to claim 1,
The glass is a heat insulating film containing at least one of Te and Bi.
請求項1又は2に記載の遮熱膜であって、
前記無機繊維は、Al繊維、SiO繊維、及びZrO繊維から成る群から選択される1以上を含み、
前記遮熱膜の断面において、前記ガラスの面積と前記無機繊維の面積との合計面積に対し、前記無機繊維の面積の比率は、20~60%である遮熱膜。
The heat shield film according to claim 1 or 2,
The inorganic fibers include one or more selected from the group consisting of Al 2 O 3 fibers, SiO 2 fibers, and ZrO 2 fibers,
The heat shielding film, wherein the ratio of the area of the inorganic fiber to the total area of the area of the glass and the area of the inorganic fiber in the cross section of the heat shielding film is 20 to 60%.
請求項1~3のいずれか1項に記載の遮熱膜であって、
前記無機繊維の平均アスペクト比は10以上である遮熱膜。
The heat shield film according to any one of claims 1 to 3,
The heat insulating film, wherein the inorganic fibers have an average aspect ratio of 10 or more.
請求項1~4のいずれか1項に記載の遮熱膜であって、
前記遮熱膜の平均厚みが80~400μmであり、
前記遮熱膜の平均気孔率が25~50%である遮熱膜。
The heat shield film according to any one of claims 1 to 4,
The heat shield film has an average thickness of 80 to 400 μm,
The heat shield film having an average porosity of 25 to 50%.
JP2018044477A 2018-03-12 2018-03-12 Thermal insulation film Active JP7231331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018044477A JP7231331B2 (en) 2018-03-12 2018-03-12 Thermal insulation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018044477A JP7231331B2 (en) 2018-03-12 2018-03-12 Thermal insulation film

Publications (2)

Publication Number Publication Date
JP2019157191A JP2019157191A (en) 2019-09-19
JP7231331B2 true JP7231331B2 (en) 2023-03-01

Family

ID=67995851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018044477A Active JP7231331B2 (en) 2018-03-12 2018-03-12 Thermal insulation film

Country Status (1)

Country Link
JP (1) JP7231331B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157193A (en) * 2018-03-12 2019-09-19 日本特殊陶業株式会社 Heat insulation film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176946A (en) * 1984-02-20 1985-09-11 Ikebukuro Horo Kogyo Kk Glaze composition containing whisker
JPS63303049A (en) * 1987-06-04 1988-12-09 Shinagawa Refract Co Ltd Fiber-reinforced vitreous thermal spraying material
JP3167653B2 (en) * 1997-09-05 2001-05-21 トーカロ株式会社 Soluble glassy material spray-coated member and method of manufacturing the same

Also Published As

Publication number Publication date
JP2019157191A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
EP0134770B1 (en) Carbonaceous articles having oxidation prohibitive coatings thereon
KR101339083B1 (en) Bond coat compositions and arrangements of same capable of self healing
US2843646A (en) Laminated metal ceramic
JP7231331B2 (en) Thermal insulation film
JPS59232979A (en) Ceramic aluminum alloy composite body
US3403043A (en) Ceramic-metal seals
WO2019109718A1 (en) Oxygen barrier material in anti-oxidation coating structure for tungsten-rhenium thermocouple and application thereof
JPS602659A (en) Thermally sprayed member for high temperature
GB2263430A (en) Bonded metal/ceramics
JP2019157193A (en) Heat insulation film
JP2019157192A (en) Heat insulation film
WO2012077787A1 (en) Oxide-based composite material
JP2019515853A (en) Copper-ceramic composite material
JP7231330B2 (en) engine components
JPS6040687A (en) Brazing filler metal of active metal
JP2007022889A (en) Ceramic sintered compact for orthoprosthesis, orthoprosthesis, and method for manufacturing these
JP7051500B2 (en) Engine components
JP6407180B2 (en) Honeycomb structure and method for manufacturing honeycomb structure
CA2079859A1 (en) Casting apparatus for low-melting metals having two or more coating layers
US2524263A (en) Composite metal insert
JPWO2019082240A1 (en) Method for producing member for molten metal bath
JP6993267B2 (en) Engine components
JPH08319582A (en) Insulating ceramics film on surface of metal and its formation
WO2020203014A1 (en) Composite member and heat radiation member
Fang et al. Joining dense Si3N4 to porous Si3N4 by using an anorthite based glass-ceramic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220322

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220617

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220913

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221115

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20221213

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230124

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230216

R150 Certificate of patent or registration of utility model

Ref document number: 7231331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150