Nothing Special   »   [go: up one dir, main page]

JP7213662B2 - 画像処理装置、画像処理方法 - Google Patents

画像処理装置、画像処理方法 Download PDF

Info

Publication number
JP7213662B2
JP7213662B2 JP2018211699A JP2018211699A JP7213662B2 JP 7213662 B2 JP7213662 B2 JP 7213662B2 JP 2018211699 A JP2018211699 A JP 2018211699A JP 2018211699 A JP2018211699 A JP 2018211699A JP 7213662 B2 JP7213662 B2 JP 7213662B2
Authority
JP
Japan
Prior art keywords
image
specific object
encoding
roi
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018211699A
Other languages
English (en)
Other versions
JP2020078031A5 (ja
JP2020078031A (ja
Inventor
恵子 米沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018211699A priority Critical patent/JP7213662B2/ja
Priority to US16/670,008 priority patent/US11281927B2/en
Publication of JP2020078031A publication Critical patent/JP2020078031A/ja
Publication of JP2020078031A5 publication Critical patent/JP2020078031A5/ja
Application granted granted Critical
Publication of JP7213662B2 publication Critical patent/JP7213662B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/167Position within a video image, e.g. region of interest [ROI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Description

本発明は、画像の符号化技術に関するものである。
近年、スマートフォンやデジタルビデオカメラ等の普及に伴い、撮像を行って画像データを生成する機会が増えている。その一方、データを記録しておくストレージの容量や、データを送受信する際の通信帯域には限りがある。そのため、画像データを効率的に圧縮する技術が求められている。画像圧縮の方法としては、H.264/AVCという標準規格が知られている。また、H.265/HEVCという標準規格も普及し始めている。
画像の圧縮符号化技術において、画質を調整するために、量子化パラメータ(Quantization Parameter)等のパラメータが規定されている。これらのパラメータを用いて、画質の劣化を防ぎつつ、データ量をできるだけ少なくすることが求められている。具体的には、画像中の注目領域をROI(Region of Interest)として抽出し、ROIとそれ以外の領域とで量子化パラメータを変える手法がある。これまで、ユーザが注目領域をROIとして設定し(以下、ユーザ設定ROIと称する)、その領域のみを高画質化する手法が知られている。さらに、動体もしくは動きのある人や車の検知結果に基づきROIを設定し(以下、動的ROIと称する)、その領域を高画質化する手法も知られている。ユーザ設定ROIを用いると、映像に全く変化がないような状況下でもROIが常に高画質化されてしまうという問題がある。これに対して動的ROIを用いると、映像に変化がある場合に高画質化されるが、動きが小さい場合にROIが設定されず、必要な領域が高画質化されなくなる問題がある。
このような問題に対し、特許文献1には、ユーザ設定ROIと動的ROIの両者が重なる場合には双方を含む領域を合成してROIを生成する方法が開示されている。また特許文献2には、駐車場内の入り口付近にユーザ設定ROIを設定し、車検知を行った結果の動的ROIが、ユーザ設定ROIに含まれる場合には、追尾を開始してどこに駐車されるかを特定することで、駐車場の占有率を求める方法が開示されている。
特開2006-93784号公報 特開2015-36980号公報
しかしながら、特許文献1や特許文献2に開示されている方法では、ユーザがシーンに応じて適切なROIを設定する必要があり、あらかじめROIとする領域が想定できない場合には適切に用いることが困難という課題がある。さらに特許文献1においては、動的ROIもすべて高画質化するために、常に動きのある植生や水面などが存在する場合にROIが必要以上に大きくなるという課題がある。本発明では、より簡便且つより効率的な画像圧縮符号化技術を提供する。
本発明の一様態は、動画像におけるフレーム画像から特定物体を検出する検出手段と、
前記検出手段による前記特定物体の検出結果に基づいて、前記フレーム画像に対して注目領域を設定する設定手段と、
前記設定手段により前記フレーム画像に設定された複数の注目領域のうち前記フレーム画像から検出された動体の領域を含まない注目領域を、第1符号化パラメータを用いて符号化し、前記複数の注目領域のうち前記フレーム画像から検出された動体の領域を含む注目領域前記第1符号化パラメータよりも相対的に高画質になるように符号化することが可能な第2符号化パラメータを用いて符号化する符号化手段と
を備えることを特徴とする。
本発明の構成によれば、より簡便且つより効率的な画像圧縮符号化技術を提供することができる。
画像処理システムの構成例を示す図。 (A)は撮像装置100の機能構成例を示すブロック図、(B)は撮像装置100のハードウェア構成例を示す図。 特定物体ROIを説明する図。 動的ROIを説明する図。 フレーム画像の圧縮符号化のフローチャート。 ステップS530における処理の詳細を示すフローチャート。 (A)、(B)は図5のS550~ステップS570の処理を視覚的に説明する図。 ステップS530における処理の詳細を示すフローチャート。 特定物体ROIの一例を示す図。
以下、添付図面を参照し、本発明の実施形態について説明する。なお、以下説明する実施形態は、本発明を具体的に実施した場合の一例を示すもので、特許請求の範囲に記載した構成の具体的な実施形態の1つである。
[第1の実施形態]
本実施形態では、動画像におけるフレーム画像から特定物体を検出すると、該検出の結果(検出結果)に基づいて、フレーム画像に対して注目領域(ROI)を設定する。つまり、フレーム画像に対し、特定物体に基づくROIを、ユーザによる操作を介さずに設定する。
そして、設定した注目領域のうち動体の領域の少なくとも一部と重なっている注目領域が相対的に高画質で符号化されるように、フレーム画像を符号化する。つまり、常に全てのROIを高画質で符号化するのではなく、「動体の領域の少なくとも一部が重なっているROI」を高画質で符号化を行う対象とし、それ以外の画像領域については高画質で符号化を行う対象としない。これにより、ビットレートの上昇を抑えるだけでなく、効果的な符号化を行うことが可能となる。
先ず、本実施形態に係る画像処理システムの構成例について、図1を用いて説明する。図1に示す如く、本実施形態に係る画像処理システム10は、撮像装置100とクライアント端末装置200とを有する。そして、撮像装置100とクライアント端末装置200とは、有線および/または無線のネットワーク300を介して互いにデータ通信が可能なように構成されている。
先ず、撮像装置100について説明する。撮像装置100は、動画像を撮像し、該撮像した動画像の各フレームの撮像画像(フレーム画像)に対して画像処理を行って圧縮符号化する画像処理装置として機能する。撮像装置100は、クライアント端末装置200からの配信要求コマンドに応じて映像ストリームを該クライアント端末装置200に対して送信(配信)する。また撮像装置100は、クライアント端末装置200から送信された設定パラメータや設定コマンドに応じて各種の設定処理を行う。撮像装置100のハードウェア構成例について、図2(B)のブロック図を用いて説明する。
撮像部221は、レンズを通して結像した光を撮像素子において受光し、該受光した光を電荷に変換して動画像を取得する。撮像素子には、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサを用いることができる。また、撮像素子にはCCD(Charge Coupled Device)イメージセンサを用いてもよい。なお、撮像部221は、動画像に限らず、定期的若しくは不定期的に静止画像をフレーム画像として撮像するものであっても良い。
記憶部222は、ROM(Read Only Memory)、RAM(Random Access Memory)、等のメモリ装置により構成されている。記憶部222には、撮像装置100の設定データや起動プログラム、撮像装置100が行うものとして後述する各処理を制御部223に実行若しくは制御させるためのコンピュータプログラムやデータ、が保存されている。また記憶部222は、通信部224を介して外部(例えばクライアント端末装置200)から受信したデータ(例えば設定データ)を格納するためのエリアや、制御部223が各種の処理を実行するために要するエリア等の各種のエリアを適宜提供する。
例えば、記憶部222は、撮像部221に関するホワイトバランスや露出等の設定であるカメラパラメータや、圧縮符号化に関する圧縮符号化パラメータ等を記憶する。圧縮符号化パラメータには、ROIを高画質化(高画質で符号化する)する時間(高画質化処理の継続時間)やROI内外それぞれの量子化パラメータ(以下qP値)が含まれる。qP値は、値が大きくなるほど量子化ステップが大きくなることから、より大きいqP値で圧縮符号化するほど画質はより低下する。また、記憶部222は、クライアント端末装置200に配信するフレーム画像のフレームレートやフレーム画像のサイズ(解像度)を含む、フレーム画像に関するパラメータも記憶し得る。
さらに記憶部222は、フレームメモリやバッファメモリとして機能することも可能である。なお、記憶部222として、ROM、RAM等のメモリ装置の他に、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ、不揮発性のメモリカード、DVDなどの記憶媒体を用いてもよい。
制御部223は、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等の1つ以上のプロセッサにより構成されている。制御部223は、記憶部222に記憶されているコンピュータプログラムやデータを用いて各種の処理を行う。これにより制御部223は、撮像装置100全体の動作制御を行うと共に、撮像装置100が行うものとして後述する各処理を実行若しくは制御する。
なお、制御部223は、記憶部222に記憶されているコンピュータプログラムとOS(Operating System)との協働により撮像装置100全体を制御するようにしてもよい。なお、制御部223は、DSP(Digital Signal Processor)等のプロセッサやASIC(Application Specific Integrated Circuit)により構成されてもよい。
通信部224は、ネットワーク300を介してクライアント端末装置200との間のデータ通信を行うべく、クライアント端末装置200との間の有線信号または無線信号の送受信を行う。
次に、撮像装置100の機能構成例について、図2(A)のブロック図を用いて説明する。なお、以下では図2(A)の機能部を処理の主体として説明する場合があるが、実際には、図2(A)の機能部に対応する機能を制御部223に実現させるためのコンピュータプログラムを制御部223が実行することで、該機能部の機能を実現させる。なお、図2(A)の機能部をハードウェアで実装するようにしても良い。
画像取得部211は、撮像部221により撮像されたフレーム画像を取得し、該フレーム画像に対し、クライアント端末装置200から受信した各種のパラメータに従って各種の画像処理を施すことで、圧縮符号化対象のフレーム画像を生成する。なお、フレーム画像の取得元は撮像部221に限らず、例えば、ネットワーク300に接続されている他の機器であっても良い。
第1検出部212は、画像取得部211による画像処理済みのフレーム画像から特定物体を検出する。画像から物体を検出する方法には様々な方法があり、特定の方法に限らない。例えば、機械学習により特定物体の特徴を学習した識別機を生成しておき、フレーム画像に適用することで該フレーム画像から特定物体を検出する既知の方法を用いても良い。
領域生成部213は、第1検出部212による特定物体の検出結果に基づいてROIを設定したり、特定物体が規定時間以上検出されなくなったROIを削除したりする。
第2検出部214は、画像取得部211による画像処理済みのフレーム画像から動体を検出する。フレーム画像から動体を検出する方法には様々な方法があり、特定の方法に限らない。例えば、フレーム画像間の差分から動き領域を検出するフレーム間差分法や、背景画像を生成しておき、その差分から背景に対する前景として動き領域を検出する背景差分法が知られている。これらの動体検出方法は、検出対象のフレーム画像の画素値と他の画像(例えば背景画像)の画素値との差分値に基づく検出方法である。
圧縮符号化部215は、記憶部222に記憶されている圧縮符号化パラメータに従ってフレーム画像を圧縮符号化する。通信制御部216は通信部224を制御し、圧縮符号化部215により圧縮符号化されたフレーム画像を、例えば、ストリーム形式でネットワーク300を介してクライアント端末装置200に対して送信する。なお、圧縮符号化されたフレーム画像の送信先はクライアント端末装置200に限らず、例えば、ネットワーク300を介して他の機器に対して送信しても良いし、記憶部222に出力しても良い。
次に、クライアント端末装置200について説明する。クライアント端末装置200は、撮像装置100に対して上記の設定パラメータや設定コマンド等の各種のパラメータやコマンドを送信すると共に、撮像装置100から送信された圧縮符号化済みのフレーム画像を復号する。復号したフレーム画像はクライアント端末装置200以外の他の装置に転送しても良いし、クライアント端末装置200が有するメモリに格納しても良いし、表示装置に表示しても良い。クライアント端末装置200は、例えば、パーソナルコンピュータ、タブレット型端末装置、スマートフォン等のコンピュータ装置であり、CPU等のプロセッサとRAMや不揮発性メモリなどのメモリ装置とを有する。
ここで、フレーム画像中における特定物体の領域や動体の領域をROIとして設定し、該ROIを他の画像領域よりも高画質に圧縮符号化する場合の問題点について、図3,4を用いて説明する。
図3のフレーム画像30は、駐車場におけるシーンが撮像されて生成されたフレーム画像であり、このフレーム画像30には、駐車場内に止められた車310、その周囲に存在する人320、駐車場の周囲の木立330が含まれている。図3では、特定物体として車310を検出し、車310を含む領域をROI(特定物体ROI)340として設定した例を示している。特定物体ROIを特定物体ROI以外の領域よりも高画質で圧縮符号化する場合、図3の例では、車310やその周囲の動きに関わらず、常に特定物体ROI340が特定物体ROI340外の領域よりも高画質で圧縮符号化される。
図4のフレーム画像40は、駐車場におけるシーンが撮像されて生成されたフレーム画像である。このフレーム画像40には、駐車場内に止められた静止物体としての車310、その周囲に存在する動体としての人320、駐車場の周囲の動体としての木立330が含まれている。図4では、動体として人320を検出して人320を含む領域をROI(動的ROI)420として設定するとと共に、動体として木立330を検出して木立330を含む領域を動的ROI430として設定した例を示している。動的ROIをそれ以外の領域よりも高画質で圧縮符号化する場合、図4の例では、フレーム画像40中の画質を高めるべき領域の位置を、状況に合わせて動的に変更することが可能となる。
ここで、圧縮符号化では、画像中の各領域を、それぞれ異なる量子化パラメータを用いて量子化して符号化することが可能である。上述したように、より大きいqP値(量子化パラメータ値)で圧縮すると、画質はより低下する。図3,4の例では、ROIが小さいほど圧縮効率は高くなるので、できるだけROIが小さくなることが望ましい。図3で示した特定物体ROI340の場合、駐車場に車が止めてある間は常に特定物体ROI340が高画質化(低qP値)されるため、圧縮効率が悪くなる。すなわち、時間方向に不必要な高画質化が生じ得る。
それに対し、図4の動的ROI420は、人320の動きがある場合のみ高画質化されるため、不必要な高画質化が低減される。しかしながら、人320の動きが少ない場合や車310の後方に見え隠れするような場合には、動きが精度よく検出されず、人320とその周辺が動的ROIとして設定されず、高画質化されない場合がある。さらに、木立330のように常に動きのある物体(他にも、はためく旗や水面など)が存在する場合、そのような物体を含む領域が常に動的ROIとして設定されるので、不必要に高画質化される場合がある。また、撮像装置100が監視目的で設置される場合、通常のビデオカメラと比べて、取得される動画像に動きが少ない場合や注目すべきターゲット(対象)が限定される場合が多い。
このような問題に鑑みた本実施形態に係るフレーム画像の圧縮符号化について、図5のフローチャートに従って説明する。ステップS510では、画像取得部211は、上記の各種のパラメータや設定データを記憶部222から取得する。本実施形態では一例として、フレーム画像のサイズは3840画素×2160画素、配信のフレームレートは30fps、ROI内のqP値を35、ROI外のqP値を43とする。
ステップS520では、画像取得部211は、フレーム画像群(動画像における各フレーム画像や、定期的若しくは不定期的に撮像されたフレーム画像の集合)を取得する。そして画像取得部211は、取得したそれぞれのフレーム画像に対し、ステップS510で取得した各種のパラメータに従って各種の画像処理を施すことで、圧縮符号化対象のフレーム画像を生成する。
ステップS530では、特定物体ROIの設定(特定物体ROIの追加や削除)に係る処理を行う。ステップS530における処理の詳細について、図6のフローチャートに従って説明する。
ステップS610では、第1検出部212は、ステップS520で生成されたフレーム画像群のうち未選択の1つを選択フレーム画像として選択し、該選択フレーム画像から特定物体を検出する。フレーム画像からの特定物体の検出は、各フレームについて行っても良いし、数フレームおきに行っても良い。ここで、ステップS610における処理を、駐車場におけるシーンが撮像されて生成されたフレーム画像から車を特定物体として検出する処理を例に取り説明する。
車検出の一例として、画像特徴量としてHaar-Like特徴量、学習アルゴリズムとしてAdaboostを用いる方法が知られている。具体的には、車が映っている画像(車画像)と映っていない画像(非車画像)を準備し、それぞれからHaar-Like特徴量を抽出する。そして抽出した各特徴量に対して、識別力の高いものを選択しつつ弱識別機を生成することで、車両判定のAdaboostによる強識別機を生成する。
フレーム画像をスキャンするウィンドウを入力としてウィンドウ内で車両が含まれるか否かを識別することで、フレーム画像内に車が含まれている場合にはその位置と共に、車が検出される。
フレーム画像からの特定物体の検出により、フレーム画像中における特定物体の位置およびサイズを得ることができる。「フレーム画像中における特定物体の位置」は、例えば、フレーム画像の左上隅の位置を原点としたときの特定物体の領域の位置(例えば中心位置、重心位置、四隅のいずれかの位置)である。また、「フレーム画像中における特定物体のサイズ」は、例えば、特定物体の領域の縦の画素数および横の画素数である。
ステップS620では、領域生成部213は、現在設定されている特定物体ROIに関する情報が登録されているテーブルを記憶部222から取得する。このテーブルには、現在設定されているそれぞれの特定物体ROIについて、該特定物体ROIの位置およびサイズ、該特定物体ROIから特定物体が検出されていない最近の期間の期間長、が登録されている。
「特定物体ROIの位置」は、例えば、フレーム画像の左上隅の位置を原点とした場合における特定物体ROIの位置(例えば中心位置、重心位置、四隅のいずれかの位置)である。また、「特定物体ROIのサイズ」は、例えば、特定物体ROIの縦の画素数および横の画素数である。
「特定物体ROIから特定物体が検出されていない最近の期間の期間長」は、特定物体ROIから特定物体が検出されなくなってから現在までの経過時間であり、特定物体ROIから特定物体が検出されると、この経過時間は0にリセットされる。
なお、画像取得部211が最初のフレーム画像(1フレーム目の撮像画像)を取得する時点では、未だフレーム画像上には特定物体ROIは設定されていないので、テーブルには何も登録されておらず、記憶部222には、空のテーブルが登録されている。
そして、テーブルに登録されている特定物体ROIのうち、ステップS610で検出した特定物体の何れも含まない特定物体ROIが、ステップS630およびステップS640の対象となる。領域生成部213は、テーブルに登録されている各特定物体ROIの位置およびサイズから、フレーム画像上のそれぞれの特定物体ROIを特定する。そして領域生成部213は、該それぞれの特定物体ROIのうち、ステップS610で検出された特定物体の領域や位置を含まない特定物体ROIを、ステップS630およびステップS640の対象(対象特定物体ROI)とする。
一方、ステップS610で検出された特定物体のうち、テーブルに登録されている特定物体ROIの何れにも含まれていない特定物体を、ステップS650およびステップS660の対象とする。つまり領域生成部213は、テーブルに登録されている各特定物体ROIの位置およびサイズから、フレーム画像上のそれぞれの特定物体ROIを特定する。そして領域生成部213は、ステップS610で検出された特定物体のうち、その位置や領域が、フレーム画像上の特定物体ROIの何れにも含まれていない特定物体を、ステップS650およびステップS660の対象(対象特定物体)とする。
ステップS630では、領域生成部213は、対象特定物体ROIについて、特定物体を含まない状態でテーブルに登録されている期間長Tが閾値以上であるか否かを判断する。つまり領域生成部213は、ステップS610で検出した特定物体の何れも含まない特定物体ROIが、特定物体が検出されなくなってから現在までの経過時間が閾値以上であるか否かを判断する。この判断の結果、期間長Tが閾値以上であれば、処理はステップS640に進み、期間長Tが閾値未満であれば、処理はステップS535に進む。なお、この閾値は、本実施形態では固定値(例えば3分)とするが、状況に応じて変更するようにしても良い。
ステップS640では、領域生成部213は、対象特定物体ROIについてテーブルに登録されている情報(位置およびサイズ、期間長)を削除することによって、フレーム画像上における対象特定物体ROIを削除する。
一方、ステップS650では、領域生成部213は、対象特定物体が静止物体であるか否かを判断する。例えば、前回のステップS610で検出した対象特定物体の位置と、今回のステップS610で検出した対象特定物体の位置と、の間の距離(動き量)が閾値距離(位置誤差)未満であれば、対象特定物体は静止物体であると判断するようにしても良い。この場合、動き量が閾値距離以上であれば、対象特定物体は静止物体ではないと判断する。この閾値距離は、本実施形態では固定値(例えば3画素)とするが、画面内の位置に応じてかえるなど、状況に応じて変更するようにしても良い。なお、対象特定物体が静止物体であるか否かを判断するための方法は特定の方法に限らない。
この判断の結果、対象特定物体が静止物体であると判断した場合には、処理はステップS660に進み、対象特定物体が静止物体ではないと判断した場合には、処理はステップS535に進む。
ステップS660では領域生成部213は、対象特定物体の領域を包含する領域(例えば、縦横のサイズが対象特定物体の領域の縦横1.5倍のサイズ)を特定物体ROIとする。そして領域生成部213は、この特定物体ROIの位置およびサイズと、期間長(=0)を上記のテーブルに追加登録することによって、フレーム画像上に新たに、対象特定物体に基づく特定物体ROIを設定する。
図5に戻って、次に、ステップS535では、領域生成部213は、特定物体ROIが設定されているか否か(テーブルが空か否か)を判断する。この判断の結果、特定物体ROIが設定されている(テーブルが空ではない)場合には、処理はステップS540に進む。一方、この判断の結果、特定物体ROIは設定されていない(テーブルが空である)場合には、処理はステップS530に進む。
ステップS540では、第2検出部214は、選択フレーム画像から動体を検出する。フレーム画像からの動体の検出は、各フレームについて行っても良いし、数フレームおきに行っても良い。また、動体は、選択フレーム画像全体を範囲として該範囲から検出するようにしても良いし、領域生成部213により設定された特定物体ROIを範囲として該範囲から検出するようにしても良い。動体検出方法としては、上述したように、フレーム間差分法や背景差分法が知られている。以下、それぞれの方法を用いる場合の動体検出処理について説明する。
(1)フレーム間差分法を用いる場合の動体検出処理
フレーム間差分法を用いる場合は、第2検出部214は、次のように動作する。つまり、動体検出対象のフレーム(例えば現在のフレーム)の撮像画像の画素値と、そのフレームとは異なるタイミングに撮像されたフレーム(例えば1つ前のフレーム(基準のフレーム))の撮像画像の画素値と、の差分値を算出する。そして、該差分値が閾値以上である部分領域を動体の領域(動体領域)として検出する。なお、画素値は一例であって、フレーム画像における他の特徴量を用いてもよい。
(2)背景差分法を用いる場合の動体検出処理
背景差分法を用いる場合は、まず、第2検出部214は、動体が存在しないと想定される時に撮像されたフレーム(基準のフレーム)の撮像画像を背景画像とする。そして第2検出部214は、背景画像の画素値と、動体検出対象のフレーム(例えば現在のフレーム)の撮像画像の画素値と、の差分値を算出する。なお、画素値は一例であって、フレーム画像における他の特徴量を用いてもよい。そして第2検出部214は、差分値が閾値以上である部分領域を動体領域として検出する。なお、第2検出部214は、差分値が閾値以上となる画素の位置に基づいて、差分値が閾値よりも小さい画素から成る領域を動体領域として検出してもよい。例えば、差分値が閾値よりも小さい画素の周りが、差分値が閾値以上の画素によって囲まれている場合は、第2検出部214は、差分値が閾値よりも小さい画素も動体領域として検出してもよい。
また、背景差分法を用いる場合は、次のようにしてもよい。すなわち、第2検出部214は、フレーム画像を複数の領域(ブロック)に分割し、領域ごとに特徴量を抽出し、該特徴量と、背景画像における特徴量と、を比較することにより、該領域が背景か前景(動体領域)かを判定してもよい。1つの領域のサイズは、一例として、H.264のマクロブロックの単位である16画素×16画素とするが、フレーム画像のサイズ等によって変更することも可能である。また、特徴量としては、領域内のピクセル輝度値をDCT(離散コサイン変換)変換した場合の、低周波数側の変換係数などを用いることができる。また、特徴量として、色情報なども用いてもよい。
また、背景画像の特徴量として、複数のフレーム画像の特徴量の平均値等を用いてもよい。なお、背景画像の特徴量は、領域ごとに用意することができる。この領域ごとの特徴量は、画像が時間的に変化することに伴って、徐々に更新され得る。更新の方法としては、背景画像として参照される頻度が少なくなったものを新しい背景画像で置き換える方法を用いることができる。また、参照された際に現フレームの領域の特徴量が反映されるよう更新する方法も用いることができる。前者の更新方法は、背景自体がかわった場合に対応することができ、後者の更新方法は、日照の変化などで背景が徐々に変化していく場合に対応することが可能である。
第2検出部214は、領域ごとに、抽出した特徴量と、1つ以上の背景の特徴量と、を比較することで、背景(非動体領域)であるか、前景(動体領域)であるかを判断する。そして第2検出部214は、孤立点除去(前景と判断された画素に囲まれた背景を前景とする処理)等の後処理を施して、最終的な動体領域を決定する。
次に、ステップS550では、圧縮符号化部215は、上記のテーブルに登録されている各特定物体ROIの位置およびサイズから、選択フレーム画像上のそれぞれの特定物体ROIを特定する。そして圧縮符号化部215は、選択フレーム画像上の特定物体ROIのうち、ステップS540で検出した動体の領域の一部若しくは全部を含む特定物体ROIがあるか否かを判断する。この判断の結果、選択フレーム画像上の特定物体ROIのうち、ステップS540で検出した動体の領域の一部若しくは全部を含む特定物体ROIがある場合には、処理はステップS560に進む。一方、選択フレーム画像上の特定物体ROIの中に、ステップS540で検出した動体の領域の一部若しくは全部を含む特定物体ROIはない場合には、処理はステップS570に進む。
なお、動体を選択フレーム画像全体からではなく特定物体ROIから検出するようにした場合、ステップS550では、該特定物体ROIから動体が検出されたのか否かを判断するようにしても良い。
ステップS560では、圧縮符号化部215は、動体領域の一部若しくは全部を含む特定物体ROIに対しては、「ROI内のqP値」として「35」を設定する。一方、圧縮符号化部215は、選択フレーム画像において「動体領域の一部若しくは全部を含む特定物体ROI」以外の画像領域に対しては、「ROI外のqP値」として「43」を設定する。
なお、ステップS560では、圧縮符号化部215は更に、「動体領域の一部若しくは全部を含む特定物体ROI」に対して、高画質化する時間(高画質化処理の継続時間)を設定するようにしても良い。「高画質化処理の継続時間」は予め記憶部222に登録されているものとする。
ここで、高画質化処理の継続時間の意義について説明する。図3~図4を用いて説明したように、駐車場に止められた車の周囲では、人320が車のかげに隠れて動きが見え隠れする状況があるが、高画質化のターゲットである人320が車の周囲に存在する間は特定物体ROI内の高画質化を継続することが望ましい。更に、特定物体ROI内の画質が短期間で高画質と低画質に切り替わることは、映像の視認性を下げることになり得る。そのため、本実施形態では、一度、動体領域の少なくとも一部が特定物体ROIに含まれると判定されて高画質化された場合に、その後、動体が検出されなくなっても、高画質化処理の継続時間の間、高画質化処理を行う。すなわち、動体領域の少なくとも一部が特定物体ROIに含まれると判定された後に、該特定物体ROIから動体が検出されなくなった場合、または、動体領域が特定物体ROIに含まれないと判定された場合であっても、一定時間は高画質化処理が行われる。ここで、高画質化処理とは、他の画像領域よりも高画質で符号化する(例えばより小さい量子化ステップで量子化して符号化する)ことを意味する。高画質化処理の継続時間はシーンによっても異なり得るため、ユーザが設定できるようにしてもよい。もしくは、制御部223が過去の動体検出の履歴を管理し、イベントごとの高画質化処理の継続時間を設定するようにしてもよい。
ステップS570では、圧縮符号化部215は、特定物体ROIであっても、動体領域の一部若しくは全部を含まない特定物体ROIは、高画質化の対象とはせず、特定物体ROI内外で同じ画質となるような符号化の設定を行う。一例として、圧縮符号化部215は、特定物体ROI内外の共通のqP値「43」を選択フレーム画像に対して設定する。
ステップS580では、圧縮符号化部215は、ステップS560で設定したqP値もしくはステップS570で設定したqP値を用いて選択フレーム画像を量子化して符号化する圧縮符号化を行う。
ステップS560からステップS580に進んだ場合、圧縮符号化部215は、動体領域の一部若しくは全部を含む特定物体ROIをqP値「35」で量子化し、動体領域の一部若しくは全部を含む特定物体ROI以外の画像領域をqP値「43」で量子化する。ステップS570からステップS580に進んだ場合、圧縮符号化部215は、選択フレーム画像全体をqP値「43」で量子化する。
そして通信制御部216は通信部224を制御し、ステップS580で圧縮符号化部215により圧縮符号化されたフレーム画像を、例えば、ストリーム形式でネットワーク300を介してクライアント端末装置200に対して送信する。
ステップS590では、制御部223は、ステップS520で生成されたフレーム画像群の全てを選択フレーム画像として選択したか否かを判断する。この判断の結果、ステップS520で生成されたフレーム画像群の全てを選択フレーム画像として選択した場合には、図5のフローチャートに従った処理は完了する。一方、ステップS520で生成されたフレーム画像のうち、未だ選択フレーム画像として選択していないフレーム画像が残っている場合には、処理はステップS530に進む。
次に、図7(A)と図7(B)を参照して、図5のS550~ステップS570の処理を視覚的に説明する。図7(A)と図7(B)はそれぞれ、図3や図4と同様に、駐車場に駐車された車とその周囲におけるシーンが撮像されて生成されたフレーム画像70、フレーム画像71を示す。
図7(A)のフレーム画像70では、特定物体である車710に対する特定物体ROI740内に動体が含まれていない。このようなフレーム画像70は、例えば、夜間でだれもいない駐車場に車が駐車されているシーンを撮像して生成された撮像画像である。この場合、圧縮符号化部215は、特定物体ROI740であっても高画質化を行わない。すなわち、圧縮符号化部215は、特定物体ROI740内外で同じ画質となるような符号化の設定を行い(ステップS570)、該設定に従ってフレーム画像70の圧縮符号化を行う(ステップS580)。
図7(B)のフレーム画像71では、特定物体である車710に対する特定物体ROI740内に動体としての人720が含まれている。このようなフレーム画像71は、例えば、車710の所有者以外の人(不審者)720が車に近づき、車710の中を物色しているシーンに対応する撮像画像である。この場合、圧縮符号化部215は、特定物体ROI740内を高画質化する。すなわち、圧縮符号化部215は、特定物体ROI740が特定物体ROI740以外の画像領域よりも高画質で符号化されるように設定を行い(ステップS560)、該設定に従ってフレーム画像71の圧縮符号化を行う(ステップS580)。また、圧縮符号化部215は、高画質化処理の継続時間を設定した場合、該継続時間の間、特定物体ROI740内を高画質化する。これにより、例えば、不審者である人720が車の影に隠れて体の一部しか見えなくなったり、動きがほとんどなくなったりする場合であっても、特定物体ROI740内の高画質化が継続される。このため、不審者である人720が車710の周囲に存在する間は常に、特定物体ROI740内を高画質化することができる。
このように、本実施形態によれば、ROI内であっても何ら動きを伴うイベントが発生していない場合には、高画質化することがないため、ビットレートを低減させることができる。さらに、ROIが動体領域の少なくとも一部を含む場合には、必要な領域全体(すなわちROI)を高画質化することにより、動体検出の精度に依存して高画質化する領域が変動することを防ぎ、結果として、情報の取りこぼしを防止することができる。
[第2の実施形態]
本実施形態を含む以下の各実施形態では第1の実施形態との差分について説明し、以下で特に触れない限りは第1の実施形態と同様であるものとする。第1の実施形態では、駐車場のシーンを想定し、特定物体が車であるケースについて説明したが、特定物体はユースケースに応じて様々なものが考えられる。例えば駐輪場における自転車や空港シーンでのスーツケース、海上での船舶、車両基地の電車や飛行機、店頭や倉庫に保管される商品などがある。検出対象とする特定物体が異なると、検出結果に応じて特定物体ROIを生成する方法が異なる場合がある。このような場合の処理の手順について説明する。
本実施形態では、車に限らず、自転車やスーツケース、電車や飛行機など様々なものを特定物体とする。そのため、本実施形態に係るステップS610では、特定物体に該当する物体を選択フレーム画像から検出することになる。本実施形態においても、特定物体の検出方法としては、第1の実施形態と同様、機械学習をベースとしたオブジェクト検出方法を用いることができる。その際に学習画像として、特定物体が自転車であれば自転車の画像を収集する必要があり、スーツケースであればスーツケースの画像を収集する必要がある。それらの画像に対して、第1の実施形態と同様に、画像特徴量としてHaar-Like特徴量、学習アルゴリズムとしてAdaboostを用いることで、自転車やスーツケースを選択フレーム画像から検出する特定物体識別機を生成することができる。
本実施形態では、ステップS530において図8のフローチャートに従った処理を行う。図8において、図6に示した処理ステップと同じ処理ステップには同じステップ番号を付しており、該処理ステップに係る説明は省略する。
ステップS860では、領域生成部213は、対象特定物体の領域を包含する領域を特定物体ROIとして設定するが、その設定方法が第1の実施形態と異なる。つまり本実施形態では、特定物体の周辺に存在する人の動きの範囲を想定して特定物体ROIを設定する。
例えば、特定物体が自転車やスーツケースである場合、特定物体の重心位置に対して、それを扱う人の顔はより高い位置に存在することが考えられる。よって、特定物体が自転車やスーツケースである場合には、検出した特定物体の領域の重心を基準として、上方に拡大した領域を特定物体ROIとして設定することが望ましい。
特定物体としてスーツケースを検出した場合に設定される特定物体ROIの一例を図9に示す。空港などのシーンで人910がスーツケース920を持って歩いている。領域930は、スーツケース920の検出結果(スーツケース920の領域)である。図9に示す如く、領域930の縦のサイズおよび横のサイズをそれぞれa、bとする。このとき、スーツケース920に対して設定される特定物体ROI940の上辺は、領域930の上辺から上方に1.5aだけ移動した位置、特定物体ROI940の下辺は、領域930の下辺から下方に0.5aだけ移動した位置、に設定する。また、特定物体ROI940の左辺は、領域930の左辺から左方にbだけ移動した位置、特定物体ROI940の右辺は、領域930の右辺から右方にbだけ移動した位置、に設定する。つまり、領域930を、状況に応じた拡大率でもって上下左右に拡大した領域を特定物体ROI940としている。
なお、スーツケースには様々な大きさのタイプがあり、もっと小型のものも存在する。その場合に設定する特定物体ROIは、より高い拡大率でスーツケースの領域を拡大した領域となる。なお、特定物体の検出の際に、スーツケースのタイプを検出し、該タイプに応じて拡大率を変更することもできるし、カメラが設置された場所によって拡大率を変えることも考えられる。例えば、空港の手荷物カウンターを通過した後のスペースに設置されるカメラの場合には、手荷物として機内持ち込みが可能な大きさのスーツケースしか存在しないため、例えば、それに応じてより上方に拡大した特定物体ROIを設定する。
さらに、特定物体ROIは、カメラと被写体との位置関係に応じて拡大率を変えることも考えられる。被写体が図9に示すように真横に近い方向から撮影されている場合には、図9で示したような比率での拡大でよい。しかし、カメラが高い位置に設置され、被写体に対して上方から撮影されるような場合には、上下左右関係なく被写体の領域の重心を中心として周囲に拡大した領域を特定物体ROIとしてもよい。
他にも、特定物体の種類(属性)によって、特定物体ROIに関する様々なパラメータを変更することが考えられる。例えば、第1の実施形態における車検出において、車種によって異なるパラメータを設定する場合が考えられる。例えば、車上あらしなどの被害にあう件数が多いことが報告されている車種に関しては、特定物体ROIを大きくする他、特定物体ROIに動体が含まれなくなっても高画質化が継続する時間を長くすることなどが考えらえる。さらに、車種に応じて高画質化する際のqP値を変更することも可能である。つまり、特定物体ROI内(注目領域内)の特定物体の属性に応じて該特定物体ROIの画質を制御する。
また、第1の実施形態では、高画質化の継続時間や高画質化する際のqP値はすべての特定物体ROIに対して同じとしていたが、本実施形態では、検出された特定物体の属性(車の場合には車種)に応じて異なる値を設定することも可能とする。同様の対象としては、店頭や倉庫におかれる商品に対しても適応可能である。店頭や倉庫におかれる商品に関しては、盗難の被害が多い商品に関してのみ特定物体ROIを設定することも可能である。
このように、本実施形態では、特定物体とする対象には様々なものが適用可能である。特定物体の検出に用いる識別機は、対象とするターゲットの画像を大量に集めて学習することで構成することが可能である。同様に、特定物体の属性を特定することも、対応する学習データを集めることにより目的にあった識別機を構成することで可能となる。そして対象とするターゲットに応じて、特定物体ROIの生成方法や高画質化に関する各種パラメータの値を変更することができる。また、特定物体ROIとして高画質化したい対象と特定物体との位置関係により、特定物体ROIの拡大方法を設定してもよいし、カメラと被写体との位置関係に基づき特定物体ROIを設定してもよい。
[第3の実施形態]
路上駐車などを取り締まりたい場合に、路上に駐車された車に対して特定物体ROIを設定し、運転者が戻ったときに該特定物体ROIを高画質化したい場合を想定する。このとき、特定物体ROIは駐車禁止エリアに止められた車のみであり、信号待ちで止まっている車や、駐車可能エリアに止められている車は対象外としたい。
このような場合を想定した撮像装置100は、特定物体を検出する範囲を予めユーザが指定しておき、該指定した範囲内でのみ特定物体の検出を行うことが考えられる。もしくは、特定物体を検出する範囲をフレーム画像全体とした場合であっても、ユーザが指定した範囲内の特定物体についてのみ特定物体ROIを設定するようにしても良い。
[第4の実施形態]
第1~3の実施形態では、動体の種別に関係なく処理を行っていたが、フレーム画像内の動体のうち特定の種別の動体のみを対象とするようにしても良い。例えば、動体検出の対象を人などに限定するようにしても良い。このような制限を加えることにより、フレーム画像内に犬や猫などの小動物、カラスなどの鳥類が現れた場合であっても、これらが動体として検出されて高画質化のトリガとなることがなくなり、より無駄の少ない高画質化が可能となる。
[第5の実施形態]
第1~4の実施形態では、動体を含む特定物体ROI全体を高画質化するものとして説明したが、状況によっては、動体を含む特定物体ROIの部分領域のみを高画質化するようにしても良い。
具体的には、車両基地に置かれた飛行機など大型の特定物体に対しては、かなり大きな特定物体ROIを設定することになるが、そこに不審者が現れた場合であっても、飛行機全体を含む特定物体ROIの全体を高画質化するのは無駄が生じる。
そこで、そのような場合には、特定物体ROI内の動体領域のみを高画質化した方がより効率のよい符号化が可能になる。よってそのような場合を想定し、特定物体ROI内に動体が検出された場合に、特定物体ROI全体を高画質化するモードと、特定物体ROI内の動体領域のみを高画質化するモードと、を設けるようにしても良い。そして上記の設定コマンドに、何れのモードを使用するのかを指定するコマンドを含めておけば、撮像装置100は、クライアント端末装置200から受信した設定コマンドに応じて、指定されたモードで動作することになる。
[第6の実施形態]
第1~5の実施形態では、監視目的の撮像を例に説明したが、放送目的等、種々の目的の撮像技術に適用することも可能である。また、第1~5の実施形態では、撮像装置100はネットワーク300に接続されているものとして説明したが、ネットワーク300に接続されていなくても良い。
また、第1~5の実施形態では、撮像装置100が動画像を撮像し、該撮像した動画像の各フレームの撮像画像(フレーム画像)に対して画像処理を行って圧縮符号化するものとして説明したが、このような構成に限らない。例えば、撮像装置100は撮像を行い、該撮像装置100と接続されているコンピュータ装置が、該撮像された動画像の各フレームの撮像画像(フレーム画像)に対して画像処理を行って圧縮符号化するようにしても良い。この場合におけるコンピュータ装置には、例えば、図2(B)において撮像部221を除く構成を適用することができる。つまり、撮像装置100が行うものとして上述した各処理を複数台の装置で分担して実行するようにしても良い。
また、第1~5の実施形態において使用した具体的な数値は、より具体的な説明を行うために例示的に使用したものであって、この数値に限定されることを意図したものではない。
また、以上説明した各実施形態の一部若しくは全部を適宜組み合わせて使用しても構わない。また、以上説明した各実施形態の一部若しくは全部を選択的に使用しても構わない。
(その他の実施形態)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
211:画像取得部 212:第1検出部 213:領域生成部 214:第2検出部 215:圧縮符号化部 216:通信制御部

Claims (16)

  1. 動画像におけるフレーム画像から特定物体を検出する検出手段と、
    前記検出手段による前記特定物体の検出結果に基づいて、前記フレーム画像に対して注目領域を設定する設定手段と、
    前記設定手段により前記フレーム画像に設定された複数の注目領域のうち前記フレーム画像から検出された動体の領域を含まない注目領域を、第1符号化パラメータを用いて符号化し、前記複数の注目領域のうち前記フレーム画像から検出された動体の領域を含む注目領域前記第1符号化パラメータよりも相対的に高画質になるように符号化することが可能な第2符号化パラメータを用いて符号化する符号化手段と
    を備えることを特徴とする画像処理装置。
  2. 前記設定手段は、特定物体が規定時間以上検出されていない注目領域を削除することを特徴とする請求項1に記載の画像処理装置。
  3. 前記設定手段は、特定物体の領域を拡大した領域を注目領域として設定することを特徴とする請求項1または2に記載の画像処理装置。
  4. 前記設定手段は、特定物体の属性に応じて前記拡大の率を制御することを特徴とする請求項3に記載の画像処理装置。
  5. 前記設定手段は、注目領域に含まれていない静止物体として判定された特定物体の検出結果に基づいて注目領域を設定することを特徴とする請求項1乃至4の何れか1項に記載の画像処理装置。
  6. 注目領域に含まれていない静止物体として判定された特定物体は、ユーザにより指定された範囲内の特定物体であることを特徴とする請求項5に記載の画像処理装置。
  7. 前記符号化手段は、前記複数の注目領域のうち動体の領域を含む注目領域が一定時間、前記第2符号化パラメータを用いて符号化されるように、前記フレーム画像を符号化することを特徴とする請求項1乃至6の何れか1項に記載の画像処理装置。
  8. 前記符号化手段は、前記複数の注目領域のうち前記フレーム画像から検出された動体の領域を含む注目領域がない場合には、注目領域とその他の領域とが同じ画質で符号化されるように、前記フレーム画像を符号化することを特徴とする請求項1乃至7の何れか1項に記載の画像処理装置。
  9. 前記第1符号化パラメータは第1量子化パラメータであり、前記第2符号化パラメータは前記第1量子化パラメータより小さい第2量子化パラメータであることを特徴とする請求項1乃至8の何れか1項に記載の画像処理装置。
  10. 前記符号化手段は、注目領域内の特定物体の属性に応じて該注目領域の画質を制御することを特徴とする請求項1乃至の何れか1項に記載の画像処理装置。
  11. 更に、
    動画像におけるフレーム画像を撮像により取得する手段を備えることを特徴とする請求項1乃至10の何れか1項に記載の画像処理装置。
  12. 更に、
    動画像におけるフレーム画像を外部の装置から取得する手段を備えることを特徴とする請求項1乃至10の何れか1項に記載の画像処理装置。
  13. 前記特定物体は、検出する対象として予め指定された物体であることを特徴とする請求項1乃至12の何れか1項に記載の画像処理装置。
  14. 前記動体は、検出する対象として予め指定された物体であることを特徴とする請求項1乃至13の何れか1項に記載の画像処理装置。
  15. 動画像におけるフレーム画像から特定物体を検出する検出工程と、
    前記検出工程による前記特定物体の検出結果に基づいて、前記フレーム画像に対して注目領域を設定する設定工程と、
    前記設定工程で前記フレーム画像に設定された複数の注目領域のうち前記フレーム画像から検出された動体の領域を含まない注目領域を、第1符号化パラメータを用いて符号化し、前記複数の注目領域のうち前記フレーム画像から検出された動体の領域を含む注目領域前記第1符号化パラメータよりも相対的に高画質になるように符号化することが可能な第2符号化パラメータを用いて符号化する符号化工程と
    を備えることを特徴とする画像処理方法。
  16. コンピュータを、請求項1乃至14の何れか1項に記載の画像処理装置の各手段として機能させるためのコンピュータプログラム。
JP2018211699A 2018-11-09 2018-11-09 画像処理装置、画像処理方法 Active JP7213662B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018211699A JP7213662B2 (ja) 2018-11-09 2018-11-09 画像処理装置、画像処理方法
US16/670,008 US11281927B2 (en) 2018-11-09 2019-10-31 Image processing apparatus, image processing method, and non-transitory computer-readable recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018211699A JP7213662B2 (ja) 2018-11-09 2018-11-09 画像処理装置、画像処理方法

Publications (3)

Publication Number Publication Date
JP2020078031A JP2020078031A (ja) 2020-05-21
JP2020078031A5 JP2020078031A5 (ja) 2021-12-09
JP7213662B2 true JP7213662B2 (ja) 2023-01-27

Family

ID=70552175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018211699A Active JP7213662B2 (ja) 2018-11-09 2018-11-09 画像処理装置、画像処理方法

Country Status (2)

Country Link
US (1) US11281927B2 (ja)
JP (1) JP7213662B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11295541B2 (en) * 2019-02-13 2022-04-05 Tencent America LLC Method and apparatus of 360 degree camera video processing with targeted view
US11277626B2 (en) * 2020-02-21 2022-03-15 Alibaba Group Holding Limited Region of interest quality controllable video coding techniques
DE102021207643A1 (de) * 2021-07-16 2023-01-19 Robert Bosch Gesellschaft mit beschränkter Haftung Überwachungsanordnung und Verfahren zur Überwachung
KR102420821B1 (ko) * 2021-09-02 2022-07-15 렉스젠(주) 해상도 변환을 이용한 영상 분석 시스템 및 그에 관한 방법
KR102492679B1 (ko) * 2022-07-07 2023-01-27 주식회사 디케이앤트 객체 분석에 기반한 자동 감시 영상 생성 방법 및 그 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048243A (ja) 2006-08-18 2008-02-28 Sony Corp 画像処理装置、画像処理方法および監視カメラ
US20100119157A1 (en) 2007-07-20 2010-05-13 Fujifilm Corporation Image processing apparatus, image processing method and computer readable medium
US20130208784A1 (en) 2012-02-10 2013-08-15 Google Inc. Adaptive region of interest
JP2013187769A (ja) 2012-03-08 2013-09-19 Panasonic Corp 符号化装置
JP2017126896A (ja) 2016-01-14 2017-07-20 株式会社東芝 監視システム、監視装置、および再生装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095877B2 (en) 2003-07-30 2006-08-22 Xerox Corporation System and method for measuring and quantizing document quality
US7542613B2 (en) * 2004-09-21 2009-06-02 Sanyo Electric Co., Ltd. Image processing apparatus
JP4390671B2 (ja) 2004-09-21 2009-12-24 三洋電機株式会社 画像処理装置
US9224062B2 (en) * 2013-08-09 2015-12-29 Xerox Corporation Hybrid method and system of video and vision based access control for parking stall occupancy determination
US10157476B1 (en) * 2017-06-15 2018-12-18 Satori Worldwide, Llc Self-learning spatial recognition system
US10349060B2 (en) * 2017-06-30 2019-07-09 Intel Corporation Encoding video frames using generated region of interest maps
US10582196B2 (en) * 2017-06-30 2020-03-03 Intel Corporation Generating heat maps using dynamic vision sensor events
US20200162735A1 (en) * 2017-07-28 2020-05-21 Sony Semiconductor Solutions Corporation Image processing apparatus and method
US11023761B2 (en) * 2017-11-06 2021-06-01 EagleSens Systems Corporation Accurate ROI extraction aided by object tracking
KR101949676B1 (ko) * 2017-12-20 2019-02-19 이노뎁 주식회사 압축영상에 대한 신택스 기반의 객체 침입 감지 방법
JP7050509B2 (ja) 2018-01-31 2022-04-08 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
CN108986526A (zh) * 2018-07-04 2018-12-11 深圳技术大学(筹) 一种基于视觉传感跟踪车辆的智能停车方法及系统
IL260438B (en) * 2018-07-05 2021-06-30 Agent Video Intelligence Ltd A method and system for identifying objects in video
CN110830757B (zh) * 2018-08-07 2021-04-20 浙江宇视科技有限公司 图像码率处理方法、装置及计算机可读存储介质
WO2020036502A1 (en) * 2018-08-14 2020-02-20 Huawei Technologies Co., Ltd Machine-learning-based adaptation of coding parameters for video encoding using motion and object detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048243A (ja) 2006-08-18 2008-02-28 Sony Corp 画像処理装置、画像処理方法および監視カメラ
US20100119157A1 (en) 2007-07-20 2010-05-13 Fujifilm Corporation Image processing apparatus, image processing method and computer readable medium
US20130208784A1 (en) 2012-02-10 2013-08-15 Google Inc. Adaptive region of interest
JP2013187769A (ja) 2012-03-08 2013-09-19 Panasonic Corp 符号化装置
JP2017126896A (ja) 2016-01-14 2017-07-20 株式会社東芝 監視システム、監視装置、および再生装置

Also Published As

Publication number Publication date
US11281927B2 (en) 2022-03-22
JP2020078031A (ja) 2020-05-21
US20200151487A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
JP7213662B2 (ja) 画像処理装置、画像処理方法
US12051212B1 (en) Image analysis and motion detection using interframe coding
US10582196B2 (en) Generating heat maps using dynamic vision sensor events
US10349060B2 (en) Encoding video frames using generated region of interest maps
CN112534818B (zh) 使用运动和对象检测的用于视频编码的译码参数的基于机器学习的自适应
CN109587480B (zh) 图像处理设备、图像处理方法和记录介质
WO2016173277A1 (zh) 视频编码方法、解码方法及其装置
KR20190079574A (ko) 촬상장치, 화상 처리장치, 제어방법 및 기억매체
US10972663B2 (en) Methods for automatically switching video capturing and playing back frame rate
JP2021013146A (ja) 画像処理装置、画像処理方法
KR102127276B1 (ko) 복수의 고해상도 카메라들을 이용한 파노라마 영상 감시 시스템 및 그 방법
US10917648B2 (en) Image processing apparatus, image processing method, and non-transitory computer-readable storage medium
CN114157870A (zh) 编码方法、介质及电子设备
US20230188679A1 (en) Apparatus and method for transmitting images and apparatus and method for receiving images
JP2013090004A (ja) 画像受信装置
CN111542858B (zh) 动态图像解析装置、系统、方法、以及存储介质
US20210329285A1 (en) Image processing apparatus, image processing method, and non-transitory computer-readable storage medium
JP7143263B2 (ja) 符号化パラメータを用いて対象識別位置を決定する対象識別方法、装置及びプログラム
Rodriguez-Benitez et al. An IoT approach for efficient overtake detection of vehicles using H264/AVC video data
EP4195166A1 (en) Apparatus and method for transmitting images and apparatus and method for receiving images
CN116052047B (zh) 运动物体检测方法及其相关设备
KR20240134722A (ko) 비디오에서 검출된 객체의 콜라주의 전송
US20200252637A1 (en) Moving image processor, moving image processing system, and moving image processing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230117

R151 Written notification of patent or utility model registration

Ref document number: 7213662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151