JP7290770B2 - Position adjustment method - Google Patents
Position adjustment method Download PDFInfo
- Publication number
- JP7290770B2 JP7290770B2 JP2022061830A JP2022061830A JP7290770B2 JP 7290770 B2 JP7290770 B2 JP 7290770B2 JP 2022061830 A JP2022061830 A JP 2022061830A JP 2022061830 A JP2022061830 A JP 2022061830A JP 7290770 B2 JP7290770 B2 JP 7290770B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- light source
- blue
- optical
- lens holder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Endoscopes (AREA)
Description
本発明は、内視鏡に照明光を供給する内視鏡用光源装置で行われる位置調整方法に関する。 The present invention relates to a position adjustment method performed in an endoscope light source device that supplies illumination light to an endoscope.
医療現場において、内視鏡システムを用いた内視鏡診断が盛んに行われている。内視鏡システムは、内視鏡と、内視鏡が出力する画像信号を処理するプロセッサ装置と、内視鏡に照明光を供給する内視鏡用光源装置(以下、単に光源装置という)とを備えている。 In the medical field, endoscopic diagnosis using an endoscopic system is actively performed. An endoscope system includes an endoscope, a processor device that processes image signals output by the endoscope, and an endoscope light source device (hereinafter simply referred to as a light source device) that supplies illumination light to the endoscope. It has
内視鏡は生体内に挿入される挿入部を有し、挿入部の先端には、観察対象に照明光を照射するための照明窓と、観察対象を撮像するための観察窓が配されている。内視鏡には、光ファイバをバンドル化したファイババンドルからなるライトガイドが内蔵されている。ライトガイドは、光源装置から供給された照明光を照明窓に導光する。照明光が入射するライトガイドの入射端は光源装置内に配置され、照明光が出射するライトガイドの出射端は照明窓の奥に配置されている。 An endoscope has an insertion section that is inserted into a living body, and an illumination window for irradiating an observation target with illumination light and an observation window for capturing an image of the observation target are arranged at the distal end of the insertion section. there is The endoscope incorporates a light guide made up of a fiber bundle in which optical fibers are bundled. The light guide guides the illumination light supplied from the light source device to the illumination window. The incident end of the light guide into which the illumination light is incident is arranged inside the light source device, and the exit end of the light guide through which the illumination light is emitted is arranged behind the illumination window.
観察窓の奥にはCCD(Charge Coupled Device)イメージセンサ等の撮像センサが配されている。撮像センサは、照明光が照射された観察対象を撮像し、画像信号を出力する。プロセッサ装置は画像信号に基づいて観察用の表示画像を生成し、これをモニタに表示させる。 An imaging sensor such as a CCD (Charge Coupled Device) image sensor is arranged behind the observation window. The imaging sensor captures an image of an observation target irradiated with illumination light and outputs an image signal. The processor device generates a display image for observation based on the image signal and displays it on the monitor.
内視鏡診断が終了すると、内視鏡はプロセッサ装置および光源装置から取り外されて洗浄・消毒される。そして、次回の内視鏡診断を開始する際に再びプロセッサ装置および光源装置に接続される。また、医療現場には、同一機種の内視鏡が複数台、あるいは内視鏡診断の内容に応じた仕様の内視鏡が複数種類用意されており、プロセッサ装置および光源装置は、同一機種の複数台の内視鏡や仕様が異なる複数種類の内視鏡を交換可能に接続することができる。 After the endoscope diagnosis is completed, the endoscope is removed from the processor unit and the light source unit and cleaned and disinfected. Then, when the next endoscopic diagnosis is started, the connection is made to the processor device and the light source device again. In medical practice, there are multiple endoscopes of the same model, or multiple types of endoscopes with specifications according to the details of endoscopic diagnosis. A plurality of endoscopes and a plurality of types of endoscopes with different specifications can be interchangeably connected.
従来、光源装置には、白色光を発するキセノンランプやハロゲンランプが光源として使用されてきたが、最近、これらに代えて、レーザダイオード(LD:Laser Diode)や発光ダイオード(LED:Light Emitting Diode)等の発光素子を有する半導体光源を用いた光源装置が提案されている(特許文献1参照)。 Conventionally, a xenon lamp or a halogen lamp that emits white light has been used as a light source for a light source device. A light source device using a semiconductor light source having a light emitting element such as a light source has been proposed (see Patent Document 1).
特許文献1には、青色光、緑色光、赤色光の3色の光をそれぞれ発する青色、緑色、赤色半導体光源を備え、3色の光を白色光として供給する光源装置が記載されている。特許文献1の光源装置には、3つの第1光学系(第1レンズ26a、第2レンズ26b、第3レンズ26c)、第2光学系(第4レンズ26d)、第3光学系(第1ダイクロイックミラー25a、第2ダイクロイックミラー25b)が設けられている。3つの第1光学系は、青色、緑色、赤色半導体光源からの3色の光をそれぞれ透過させる。第2光学系は、3色の光をライトガイドの入射端に集光する。第3光学系は、第1光学系を透過した3色の光の光路を結合する。
特許文献1のように複数の単色半導体光源からの複数色の光を照明光として供給する光源装置は、第2光学系から出射された複数色の光の全てが、ライトガイドの入射端、より正確にはライトガイドを構成するファイババンドルの入射端で焦点を結ぶ構成とすることが理想である。
In a light source device that supplies light of a plurality of colors from a plurality of monochromatic semiconductor light sources as illumination light, as in
しかしながら、特許文献1の光源装置では、図25に示すように、第2光学系200から出射された青色光BL(破線で示す)、緑色光GL(太い実線で示す)、赤色光RL(細い実線で示す)のそれぞれの焦点位置BFP、GFP、RFPが光軸OA上でずれ、これにより表示画像の色味が変わる、いわゆる色ずれが生じることがある。
However, in the light source device of
各焦点位置がずれる要因としては、青色、緑色、赤色半導体光源、第1~第3光学系といった照明光を供給する構成の各部の組立誤差や個体差がある。例えば、組立誤差によって、青色半導体光源と青色光BLを透過させる第1光学系との間隔がずれた場合は、青色光BLの焦点位置BFPもずれる。あるいは、赤色半導体光源の個体差によって赤色光RLの波長の範囲や中心波長がずれると、第1光学系、第3光学系における赤色光RLの屈折率が変化するため、赤色光RLの焦点位置もずれる。 Factors that cause each focal position to shift include assembly errors and individual differences in the components that supply the illumination light, such as the blue, green, and red semiconductor light sources, and the first to third optical systems. For example, if the gap between the blue semiconductor light source and the first optical system that transmits the blue light BL is displaced due to an assembly error, the focus position BFP of the blue light BL is also displaced. Alternatively, if the wavelength range or center wavelength of the red light RL shifts due to individual differences in the red semiconductor light source, the refractive index of the red light RL in the first optical system and the third optical system will change. deviate.
各焦点位置がずれると、図25の3色の光BL、GL、RLの光軸OA上における光量を表す光量波形BW(破線で示す)、GW(太い実線で示す)、RW(細い実線で示す)で示すように、光軸OA上において、各焦点位置に対応する3色の光BL、GL、RLの光量のピークもずれる。なお、光量波形は、焦点位置でピークとなり、焦点位置の前後で対称な落ち込み方をする山形の波形である。また、各光量波形BW、GW、RWは略同じ形である。 When each focal position shifts, the light amount waveforms BW (indicated by broken lines), GW (indicated by thick solid lines), and RW (indicated by thin solid lines) represent the light amounts on the optical axis OA of the three colors of light BL, GL, and RL in FIG. ), the peaks of the light amounts of the three colors of light BL, GL, and RL corresponding to each focal position are also shifted on the optical axis OA. The light amount waveform is a mountain-shaped waveform that peaks at the focal position and drops symmetrically before and after the focal position. Further, each light amount waveform BW, GW, RW has substantially the same shape.
各光量波形BW、GW、RWのピークがずれると、第2光学系200からの距離によって、3色の光BL、GL、RLの光量バランスが変動する。例えば赤色光RLの焦点位置RFPでは、赤色光RLの光量が最も高く、次いで緑色光GL、青色光BLの順に光量が低くなっている。反対に青色光BLの焦点位置BFPでは、青色光BLの光量が最も高く、次いで緑色光GL、赤色光RLの順に光量が低くなっている。
If the peaks of the light intensity waveforms BW, GW, and RW shift, the light intensity balance of the three colors of light BL, GL, and RL fluctuates depending on the distance from the second
こうした場合は、第2光学系200とライトガイド201の入射端202との位置関係によって、入射端202に入射する3色の光BL、GL、RLの光量バランスが変動し、結果として表示画像の色味が変わる色ずれが生じてしまう。例えばライトガイド201Bのように入射端202Bが緑色光GLの焦点位置GFPにあった場合は、緑色光GLの光量が最も高いため照明光は緑がかったものとなり、全体が緑味を帯びた表示画像203Gが生成される。また、ライトガイド201Aのように入射端202Aが赤色光RLの焦点位置RFPにあった場合は、全体が赤味を帯びた表示画像203Rが生成され、ライトガイド201Cのように入射端202Cが青色光BLの焦点位置BFPにあった場合は、全体が青味を帯びた表示画像203Bが生成される。
In such a case, depending on the positional relationship between the second
前述のように、内視鏡は、内視鏡診断の度に光源装置から取り外されたり、光源装置に接続されたりする。また、1台の光源装置で同一機種の複数台の内視鏡を共用する場合、同一機種であるとはいえ、複数台の内視鏡の個体差によって、第2光学系200と入射端202との位置関係は変わる。さらに、1台の光源装置で仕様が異なる複数種類の内視鏡を共用する場合、複数種類の内視鏡の中には、第2光学系200と入射端202との位置関係が異なるものも存在する。このため、第2光学系200と入射端202との位置関係は常に同じではなく、光源装置への接続具合や、内視鏡の個体差、仕様によって異なる。したがって、複数色の光の各焦点位置にずれが生じている場合は、内視鏡診断の度に表示画像の色味が変わってしまうという事態が起こり得る。
As described above, the endoscope is detached from or connected to the light source device each time an endoscope diagnosis is performed. Further, when a single light source device is shared by a plurality of endoscopes of the same model, the second
内視鏡診断は、観察対象の微妙な色味の変化に基づいて行われるので、内視鏡診断の各回の表示画像の色味の変化を小さくすることは非常に重要である。しかしながら、上記のように内視鏡診断の度に表示画像の色味が変わってしまうという事態が起こると、術者が違和感を覚え、内視鏡診断がしにくくなる。 Since endoscopic diagnosis is performed based on subtle changes in color of an object to be observed, it is very important to reduce changes in color of displayed images each time endoscopic diagnosis is performed. However, if the color tone of the displayed image changes each time an endoscopic diagnosis occurs as described above, the operator feels uncomfortable, making it difficult to perform an endoscopic diagnosis.
本発明は、複数色の光をそれぞれ発する複数の単色半導体光源を用いた場合に、内視鏡診断の各回で表示画像の色味の変化を小さくすることが可能な位置調整方法を提供することを目的とする。 The present invention provides a position adjustment method capable of reducing changes in color of a displayed image each time an endoscopic diagnosis is performed when a plurality of monochromatic semiconductor light sources that emit light of a plurality of colors are used. With the goal.
本発明の位置調整方法は、内視鏡のライトガイドに照明光を供給する内視鏡用光源装置が、照明光として複数色の光をそれぞれ発する複数の単色半導体光源、少なくとも1つの光学部材で構成され、複数の単色半導体光源からの複数色の光を、それぞれ透過させる複数の第1光学系、複数の第1光学系を透過した複数色の光をライトガイドの入射端に集光する第2光学系、及び、光学部材の位置を第1光学系の光軸方向に調整する位置調整機構を備え、検出用ライトガイドを備える検出ユニットに接続可能である場合において、ガイド機構及び移動機構を用いて、検出用ライトガイドの入射端の位置を光軸方向に移動させた際に、入射端の位置に対する、検出用ライトガイドを介した各色光の位置を示す各色光の光量波形のピークが一致するように、光学部材を保持するレンズホルダを光軸方向に移動させる移動ステップと、固定機構によって、レンズホルダを押え付けてレンズホルダ内の光学部材の位置を固定する固定ステップとを有する。 In the position adjustment method of the present invention, an endoscope light source device that supplies illumination light to a light guide of an endoscope includes a plurality of monochromatic semiconductor light sources each emitting light of a plurality of colors as illumination light, and at least one optical member. a plurality of first optical systems configured to transmit light of a plurality of colors from a plurality of monochromatic semiconductor light sources, respectively; 2 optical system, and a position adjustment mechanism for adjusting the position of the optical member in the optical axis direction of the first optical system , and in the case where it can be connected to a detection unit having a light guide for detection , the guide mechanism and the moving mechanism When the position of the incident end of the light guide for detection is moved in the optical axis direction using the It has a moving step of moving a lens holder holding the optical member in the optical axis direction so as to match, and a fixing step of pressing the lens holder by a fixing mechanism to fix the position of the optical member in the lens holder.
移動機構は、回転運動を直進運動に変換することによって、レンズホルダの前記光軸方向への移動を行うことが好ましい。レンズホルダには長穴が設けられ、移動ステップでは、偏心ドライバの偏心軸を長穴に嵌め込み、偏心ドライバに対して回転運動を付与することによって、偏心軸を前記長穴に沿って回転させて、レンズホルダを直進運動で前記光軸方向に移動させることが好ましい。固定ステップでは、固定具を用いて光学部材の位置を固定し、固定具は、レンズホルダの上部を押え付けることが好ましい。固定ステップでは、固定機構によって光軸方向に交差する方向からレンズホルダを押え付けることが好ましい。
Preferably, the moving mechanism moves the lens holder in the optical axis direction by converting rotational motion into linear motion. An elongated hole is provided in the lens holder, and in the moving step, the eccentric shaft of the eccentric driver is fitted into the elongated hole, and the eccentric shaft is rotated along the elongated hole by giving rotational motion to the eccentric driver. Preferably, the lens holder is moved in the direction of the optical axis by linear motion. Preferably, in the fixing step, the position of the optical member is fixed using a fixing tool, and the fixing tool presses the upper part of the lens holder . In the fixing step, the fixing mechanism preferably presses the lens holder from a direction intersecting the optical axis direction.
本発明によれば、内視鏡診断の各回で表示画像の色味の変化を小さくすることが可能となる。 Advantageous Effects of Invention According to the present invention, it is possible to reduce the change in color of a displayed image each time an endoscopic diagnosis is performed.
図1において、内視鏡システム10は、生体内の観察対象を撮像する内視鏡11と、撮像により得られた画像信号に基づいて観察用の表示画像を生成するプロセッサ装置12と、観察対象に照射する照明光を内視鏡11に供給する光源装置13とを備えている。プロセッサ装置12には、表示画像を表示するモニタ14と、キーボードやマウス等の操作入力部15とが接続されている。
In FIG. 1, an
内視鏡11は、生体内に挿入される挿入部16と、挿入部16の基端部分に設けられた操作部17と、内視鏡11とプロセッサ装置12および光源装置13を連結するユニバーサルコード18とを備えている。
The
挿入部16は、先端から順に連設された、先端部19、湾曲部20、可撓管部21で構成される。図2に示すように、先端部19の先端面には、観察対象に照明光を照射するための照明窓22、観察対象を撮像するための観察窓23、観察窓23を洗浄するために送気・送水を行う送気・送水ノズル24、鉗子や電気メスといった処置具を突出させて各種処置を行うための鉗子出口25が設けられている。観察窓23の奥には、撮像センサ56や結像用の対物光学系63(ともに図4参照)が内蔵されている。
The
湾曲部20は、連結された複数の湾曲駒からなり、操作部17のアングルノブ26を操作することにより、上下左右方向に湾曲動作する。図1では上方向の湾曲動作を破線で示している。湾曲部20が湾曲することにより、先端部19が所望の方向に向けられる。可撓管部21は、食道や腸等の曲がりくねった管道に挿入できるように可撓性を有している。挿入部16には、撮像センサ56を駆動する駆動信号や撮像センサ56が出力する画像信号を通信する通信ケーブル、光源装置13から供給される照明光を照明窓22に導光するライトガイド55(図4参照)等が挿通されている。
The bending
操作部17には、アンブルノブ26の他、処置具を挿入するための鉗子口27、送気・送水ノズル24から送気・送水を行う際に操作される送気・送水ボタン28、静止画像を撮影するためのレリーズボタン(図示せず)等が設けられている。
The
ユニバーサルコード18には、挿入部16から延設される通信ケーブルやライトガイド55が挿通されている。ユニバーサルコード18のプロセッサ装置12および光源装置13側の一端には、コネクタ29が取り付けられている。コネクタ29は、通信用コネクタ29Aと光源用コネクタ29Bからなる複合タイプのコネクタである。通信用コネクタ29Aと光源用コネクタ29Bはそれぞれ、プロセッサ装置12と光源装置13に着脱自在に接続される。通信用コネクタ29Aには通信ケーブルの一端が配設されており、光源用コネクタ29Bにはライトガイド55の入射端61(図4参照)が配設されている。
A communication cable extending from the
内視鏡診断が終了すると、コネクタ29の接続が解除され、内視鏡11はプロセッサ装置12および光源装置13から取り外されて洗浄・消毒される。そして、次回の内視鏡診断を開始する際に再びプロセッサ装置12および光源装置13に接続される。
When the endoscopic diagnosis is completed, the
図1では、内視鏡11を1台のみ図示しているが、図3に示すように、内視鏡11には、同一機種のものが複数台(符号11A~11Cで示す)、あるいは内視鏡診断の内容に応じた仕様の異なる複数種類(符号11D、11Eで示す)が用意されている。プロセッサ装置12および光源装置13は、同一機種の複数台の内視鏡11A~11Cや仕様が異なる複数種類の内視鏡11D、11Eを交換可能に接続することができる。
Although only one
図4において、光源装置13は、青色、緑色、赤色の3つの光をそれぞれ発する青色半導体光源35、緑色半導体光源36、赤色半導体光源37と、光学系群41と、各半導体光源35~37の駆動を制御する光源制御部42とを備えている。
4, the
各半導体光源35~37は、発光素子として、青色の波長帯域の光(青色光BL)を発する青色LED43、緑色の波長帯域の光(緑色光GL)を発する緑色LED44、赤色の波長帯域の光(赤色光RL)を発する赤色LED45をそれぞれ有している。各LED43~45は、周知のようにP型半導体とN型半導体を接合したものである。そして、電圧を掛けるとPN接合部付近においてバンドギャップを超えて電子と正孔が再結合して電流が流れ、再結合時にバンドギャップに相当するエネルギーを光として放出する。各LED43~45は、供給電力の増減に応じて発する光の光量が増減する。
Each of the
各LED43~45には、ドライバ50、51、52がそれぞれ接続されている。光源制御部42は、これら各ドライバ50~52を介して、各LED43~45の点灯、消灯および光量の制御を行う。光量の制御は、プロセッサ装置12からの露出制御信号に基づいて、各LED43~45への供給電力を変更することで行う。
各ドライバ50~52は、光源制御部42の制御の下、各LED43~45に駆動電流を連続的に与えることで各LED43~45を点灯させる。そして、露出制御信号に応じて、与える駆動電流の値を変化させることにより各LED43~45への供給電力を変更し、青色光BL、緑色光GL、赤色光RLの各色光の光量をそれぞれ制御する。なお、駆動電流を連続的に与えるのではなくパルス状に与え、駆動電流パルスの振幅を変化させるPAM(Pulse Amplitude Modulation)制御や、駆動電流パルスのデューティ比を変化させるPWM(Pulse Width Modulation)制御を行ってもよい。
Under the control of the light
光学系群41は、青色光BL、緑色光GL、赤色光RLの各色光の光路を1つの光路に結合し、各色光を内視鏡11のライトガイド55の入射端61に集光する。なお、図示は省略するが、光源用コネクタ29Bにはレセプタクルコネクタ54と係合するCリング等の係合部材が設けられ、レセプタクルコネクタ54には、光源用コネクタ29Bの外周面と当接して、レセプタクルコネクタ54への光源用コネクタ29Bの挿入量を規制する規制部材が設けられている。また、光源用コネクタ29Bとレセプタクルコネクタ54にはそれぞれ保護ガラスが設けられている。
The
内視鏡11は、ライトガイド55、撮像センサ56、アナログ処理回路57(AFE:Analog Front End)、および撮像制御部58を備えている。ライトガイド55は、複数本の光ファイバをバンドル化した円筒状のファイババンドル59と、ファイババンドル59の外周を覆う保護チューブ60とで構成される。光源用コネクタ29Bが光源装置13に接続されたときに、光源用コネクタ29Bに配置されたライトガイド55(ファイババンドル59)の入射端61が光学系群41と対向する。先端部19に位置するライトガイド55の出射端は、2つの照明窓22に光が導光されるように、照明窓22の前段で2本に分岐している。
The
照明窓22の奥には、照射レンズ62が配置されている。光源装置13から供給された照明光は、ライトガイド55により照射レンズ62に導光されて照明窓22から観察対象に向けて照射される。照射レンズ62は凹レンズからなり、ライトガイド55から出射する光の発散角を広げる。これにより、観察対象の広い範囲に照明光を照射することができる。
An illumination lens 62 is arranged behind the
観察窓23の奥には、対物光学系63と撮像センサ56が配置されている。観察対象の像は、観察窓23を通して対物光学系63に入射し、対物光学系63によって撮像センサ56の撮像面56Aに結像される。
Behind the
撮像センサ56は、CCDイメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等からなり、その撮像面56Aには、フォトダイオード等の画素を構成する複数の光電変換素子がマトリックス状に配列されている。撮像センサ56は、撮像面56Aで受光した光を光電変換して、各画素においてそれぞれの受光量に応じた信号電荷を蓄積する。信号電荷はアンプによって電圧信号に変換されて読み出される。電圧信号は画像信号として撮像センサ56からAFE57に出力される。
The imaging sensor 56 is composed of a CCD image sensor, a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, or the like, and on its imaging surface 56A, a plurality of photoelectric conversion elements, such as photodiodes, forming pixels are arranged in a matrix. there is The imaging sensor 56 photoelectrically converts the light received by the imaging surface 56A, and accumulates signal charges corresponding to the amount of received light in each pixel. The signal charge is converted into a voltage signal by an amplifier and read out. The voltage signal is output from the imaging sensor 56 to the
AFE57は、相関二重サンプリング回路、自動ゲイン制御回路、およびアナログ/デジタル変換器(いずれも図示省略)で構成されている。相関二重サンプリング回路は、撮像センサ56からのアナログの画像信号に対して相関二重サンプリング処理を施し、信号電荷のリセットに起因するノイズを除去する。自動ゲイン制御回路は、相関二重サンプリング回路によりノイズが除去された画像信号を増幅する。アナログ/デジタル変換器は、自動ゲイン制御回路で増幅された画像信号を、所定のビット数に応じた階調値を持つデジタルな画像信号に変換してプロセッサ装置12に出力する。
The
撮像制御部58は、プロセッサ装置12内のコントローラ65に接続されており、コントローラ65から入力される基準クロック信号に同期して、撮像センサ56に対して駆動信号を入力する。撮像センサ56は、撮像制御部58からの駆動信号に基づいて、所定のフレームレートで画像信号をAFE57に出力する。
The
撮像センサ56はカラー撮像センサであり、撮像面56Aには青色マイクロカラーフィルタ(Bフィルタ)、緑色マイクロカラーフィルタ(Gフィルタ)、赤色マイクロカラーフィルタ(Rフィルタ)の3色のマイクロカラーフィルタが設けられ、各フィルタが各画素に割り当てられている。各フィルタの配列は例えばベイヤー配列である。 The imaging sensor 56 is a color imaging sensor, and an imaging surface 56A is provided with micro color filters of three colors: a blue micro color filter (B filter), a green micro color filter (G filter), and a red micro color filter (R filter). and each filter is assigned to each pixel. The arrangement of each filter is, for example, a Bayer arrangement.
なお、以下の説明では、Bフィルタが割り当てられた画素をB画素、Gフィルタが割り当てられた画素をG画素、Rフィルタが割り当てられた画素をR画素という。また、B画素から出力された画像信号をB画像信号、G画素から出力された画像信号をG画像信号、R画素から出力された画像信号をR画像信号という。 In the following description, a pixel assigned with a B filter is referred to as a B pixel, a pixel assigned with a G filter is referred to as a G pixel, and a pixel assigned with an R filter is referred to as an R pixel. An image signal output from a B pixel is called a B image signal, an image signal output from a G pixel is called a G image signal, and an image signal outputted from an R pixel is called an R image signal.
プロセッサ装置12は、コントローラ65の他、DSP(Digital Signal Processor)66と、画像処理部67と、フレームメモリ68と、表示制御部69とを備えている。コントローラ65は、CPU(Central Processing Unit)、制御プログラムや制御に必要な設定データを記憶するROM(Read Only Memory)、プログラムをロードして作業メモリとして機能するRAM(Random Access Memory)等を有し、CPUが制御プログラムを実行することにより、プロセッサ装置12の各部を制御する。
The
DSP66は、撮像センサ56からの画像信号を取得する。DSP66は、B画素、G画素、R画素の各画素に対応するB画像信号、G画像信号、R画像信号に対してそれぞれ画素補間処理を行う。この他、DSP66は、ガンマ補正や、B、G、Rの各画像信号に対してホワイトバランス補正等の信号処理を施す。
The
また、DSP66は、各画像信号に基づいて露出値を算出して、画像全体の光量が不足している場合(露出アンダー)には照明光の光量を上げるように、一方、光量が高すぎる場合(露出オーバー)には照明光の光量を下げるように制御する露出制御信号をコントローラ65に出力する。コントローラ65は、光源装置13の光源制御部42に露出制御信号を送信する。
Further, the
フレームメモリ68は、DSP66が出力する画像信号や、画像処理部67が処理した処理済みの画像信号を記憶する。表示制御部69は、フレームメモリ68から画像処理済みの画像信号を読み出して、コンポジット信号やコンポーネント信号等のビデオ信号に変換してモニタ14に出力する。
The
画像処理部67は、B、G、Rの各画像信号に基づいて、表示画像を生成する。この表示画像が表示制御部69を通じてモニタ14に出力される。画像処理部67は、フレームメモリ68内の画像信号が更新される毎に、表示画像を生成する。
The
図5および図6に示すように、青色半導体光源35は、青色LED43が実装される基板75と、基板75上に形成され、青色LED43を収容するキャビティ76が形成されたモールド77と、キャビティ76に封入された樹脂78とで構成される。青色LED43は配線79によって基板75と接続される。このような青色半導体光源35の実装形態は、一般的に表面実装型と呼ばれる。
As shown in FIGS. 5 and 6, the blue
キャビティ76は矩形状の開口を有し、基板75側にいくにつれて幅が狭くなっている。このキャビティ76の矩形状の開口から青色光BLが発せられる。すなわち、キャビティ76の開口は青色光BLの発光部として機能する。また、キャビティ76の内面は青色光BLを反射するリフレクタとして機能する。キャビティ76の開口の寸法は、例えば長辺2mm、短辺1.5mmである。樹脂78には光を拡散する拡散材が分散されている。なお、各半導体光源35~37は基本的に同じ構成であるため、青色半導体光源35を例として挙げて説明し、緑色、赤色半導体光源36、37の説明は省略する。
The
図7に示すように、青色半導体光源35は、例えば青色の波長帯域である420nm~500nm付近の波長成分を有し、中心波長460±10nm、半値幅25±10nmの青色光BLを発光する。また、図8に示すように、緑色半導体光源36は、例えば緑色の波長帯域である480nm~600nm付近の波長成分を有し、中心波長550±10nm、半値幅100±10nmの緑色光GLを発光する。さらに図9に示すように、赤色半導体光源37は、例えば赤色の波長帯域である600nm~650nm付近の波長成分を有し、中心波長625±10nm、半値幅20±10nmの赤色光RLを発光する。なお、中心波長は各色光の発光スペクトルの幅の中心の波長を示し、半値幅は、各色光の発光スペクトルのピークの半分を示す波長の範囲である。
As shown in FIG. 7, the blue
光学系群41で光路が結合された青色光BL、緑色光GL、赤色光RLの混合光の発光スペクトルを図10に示す。この混合光は照明光である白色光WLとして利用される。白色光WLは、キセノン光源が発する白色光と同等の演色性を維持するために、その発光スペクトルには光強度成分がない波長帯域が生じないようにしている。
FIG. 10 shows the emission spectrum of mixed light of blue light BL, green light GL, and red light RL whose optical paths are combined by the
図11は、撮像センサ56の撮像面56Aに設けられるBフィルタ、Gフィルタ、Rフィルタの分光特性を示すグラフである。Bフィルタが割り当てられたB画素は約380nm~560nmの波長帯域の光に感応し、Gフィルタが割り当てられたG画素は約450nm~630nmの波長帯域の光に感応する。また、Rフィルタが割り当てられたR画素は約580nm~800nmの波長帯域の光に感応する。白色光WLを構成する青色光BL、緑色光GL、赤色光RLは、青色光BLに対応する反射光が主としてB画素、緑色光GLに対応する反射光が主としてG画素、赤色光RLに対応する反射光が主としてR画素でそれぞれ受光される。 FIG. 11 is a graph showing spectral characteristics of the B filter, G filter, and R filter provided on the imaging surface 56A of the imaging sensor 56. As shown in FIG. A B pixel assigned with a B filter is sensitive to light in a wavelength band of about 380 nm to 560 nm, and a G pixel assigned with a G filter is sensitive to light in a wavelength band of about 450 nm to 630 nm. Also, the R pixel assigned with the R filter is sensitive to light in the wavelength band of approximately 580 nm to 800 nm. The blue light BL, the green light GL, and the red light RL forming the white light WL are such that the reflected light corresponding to the blue light BL mainly corresponds to the B pixels, the reflected light corresponding to the green light GL mainly corresponds to the G pixels, and the red light RL. The reflected light is mainly received by the R pixels.
図12において、撮像センサ56は、1フレームの画像信号の取得期間内で、画素に信号電荷を蓄積する蓄積動作と、蓄積した信号電荷を読み出す読み出し動作とを行う。撮像センサ56の蓄積動作のタイミングに合わせて、各半導体光源35~37が点灯し、青色光BL、緑色光GL、赤色光RLの混合光からなる白色光WL(BL+GL+RL)が観察対象に照射され、その反射光が撮像センサ56に入射する。撮像センサ56は、白色光WLの反射光を各フィルタで色分離する。青色光BLに対応する反射光をB画素が受光し、緑色光GLに対応する反射光をG画素が、赤色光RLに対応する反射光をR画素がそれぞれ受光する。撮像センサ56は、読み出しタイミングに合わせて、1フレーム分の画像信号をフレームレートにしたがって順次出力する。
In FIG. 12, the imaging sensor 56 performs an accumulation operation of accumulating signal charges in pixels and a readout operation of reading out the accumulated signal charges within an image signal acquisition period of one frame. The
図13において、光学系群41は、各半導体光源35~37からの各色光を、それぞれ入射端61へと導光するコリメートレンズ75、76、77と、各コリメートレンズ75~77を透過した各色光の光路を結合するダイクロイックミラー78、79と、各色光を入射端61に集光する集光レンズ80とで構成される。
In FIG. 13, the
コリメートレンズ75~77は、各半導体光源35~37からの各色光を透過させて各色光を略平行光化する。コリメートレンズ75~77は複数の第1光学系を構成し、また、第1光学系を構成する光学部材に相当する。ダイクロイックミラー78、79は、透明なガラス板に所定の透過特性を有するダイクロイックフィルタを形成した光学部材である。ダイクロイックミラー78、79は、コリメートレンズ75~77と集光レンズ80の間に設けられている。ダイクロイックミラー78、79は第3光学系を構成する。集光レンズ80は第2光学系を構成する。
The
緑色半導体光源36は、その光軸がライトガイド55の光軸と一致する位置に配置されている。そして、緑色半導体光源36と赤色半導体光源37は、互いの光軸が直交するように配置されている。これら緑色半導体光源36と赤色半導体光源37の光軸が直交する位置に、ダイクロイックミラー78が設けられている。同様に、青色半導体光源35も、緑色半導体光源36の光軸と直交するように配置され、これらの光軸が直交する位置に、ダイクロイックミラー79が設けられている。
The green
ダイクロイックミラー78は緑色半導体光源36の光軸、赤色半導体光源37の光軸に対して、それぞれ45°傾けた姿勢で配置されている。また、ダイクロイックミラー79は青色半導体光源35の光軸、緑色半導体光源36の光軸に対して、それぞれ45°傾けた姿勢で配置されている。
The
ダイクロイックミラー78のダイクロイックフィルタは、例えば約600nm以上の赤色の波長帯域の光を反射し、約600nm未満の青色、緑色の波長帯域の光を透過する特性を有している。ダイクロイックミラー78は、緑色半導体光源36からの緑色光GLを下流側に透過させ、赤色半導体光源37からの赤色光RLを反射させる。これにより緑色光GLと赤色光RLの光路が結合される。
The dichroic filter of the
一方、ダイクロイックミラー79のダイクロイックフィルタは、例えば約480nm未満の青色の波長帯域の光を反射し、約480nm以上の緑色、赤色の波長帯域の光を透過する特性を有している。このため、ダイクロイックミラー79は、ダイクロイックミラー78を透過した緑色光GL、およびダイクロイックミラー78で反射した赤色光RLを透過させる。さらに、ダイクロイックミラー79は、青色半導体光源35からの青色光BLを反射させる。このダイクロイックミラー79の作用により、青色光BL、緑色光GL、および赤色光RLの全ての光路が結合され、白色光WLが生成される。
On the other hand, the dichroic filter of the
コリメートレンズ75~77のうち、緑色半導体光源36と対向するコリメートレンズ76を除く青色半導体光源35と対向するコリメートレンズ75、および赤色半導体光源37と対向するコリメートレンズ77には、位置調整機構(以下、単に調整機構という)81、82が設けられている。調整機構81、82は、コリメートレンズ75、77の位置を光軸方向に調整することで、集光レンズ80から出射される青色光BL、赤色光RLの焦点位置を調整して、青色光BL、緑色光GL、赤色光RLの各色光の焦点位置を一致させるための機構である。より具体的には、調整機構81、82は、コリメートレンズ75、77を光軸方向に移動することにより、各色光の焦点位置を一致させる。
Of the
本実施形態の青色半導体光源35、緑色半導体光源36、赤色半導体光源37を有する光源装置13のように、複数の単色半導体光源を有する光源装置では、図25を用いて説明したように、集光レンズ80から出射された青色光BL、緑色光GL、赤色光RLのそれぞれの焦点位置BFP、GFP、RFPが光軸OA上でずれることがある。調整機構81、82は、この各焦点位置のずれに起因して表示画像の色味が変化する色ずれを解消するために、集光レンズ80から出射される青色光BLの焦点位置BFP、赤色光RLの焦点位置RFPを、緑色光GLの焦点位置GFPに一致させる。つまり、本実施形態では、緑色光GLが1色の光に相当し、青色光BL、赤色光RLが残りの色の光に相当する。
Like the
調整機構81の具体的な構成を示す図14および図15において、コリメートレンズ75は、円筒状のレンズホルダ90に保持されて光学系群41のハウジング91に取り付けられる。レンズホルダ90の上部には長穴92が、長穴92と対向する下部にはガイド突起93がそれぞれ設けられている。長穴92は、光軸OAに対して垂直な方向に沿って形成されている。また、長穴92は、その中心が上方から見たときに光軸OAと一致し、かつ光軸OAに対して左右対称となるよう形成されている。長穴92は、レンズホルダ90、すなわちコリメートレンズ75を光軸OA方向に移動する移動機構として機能する。ガイド突起93は、光軸OAと平行な方向に沿って、レンズホルダ90の全幅にわたって形成されている。
14 and 15 showing the specific configuration of the adjustment mechanism 81, the collimating
ハウジング91には、レンズホルダ90が嵌め込まれる嵌入穴95が形成されている。嵌入穴95の上部には切り欠き96が、切り欠き96と対向する下部にはガイド溝97がそれぞれ設けられている。切り欠き96は、レンズホルダ90を嵌入穴95に嵌め込んだ場合に、長穴92が設けられたレンズホルダ90の上部を露呈させるために設けられている。ガイド溝97は、ガイド突起93と同じく、光軸OAと平行な方向に沿って、嵌入穴95の全幅にわたって形成されている。
A
ガイド溝97は、レンズホルダ90を嵌入穴95に嵌め込む際に、ガイド突起93を受け入れる。これらガイド突起93とガイド溝97とで、レンズホルダ90、すなわちコリメートレンズ75の光軸OA方向の移動をガイドする。つまり、ガイド突起93およびガイド溝97はガイド機構として機能する。
The
切り欠き96の上部には、軸受け部98が設けられている。軸受け部98は、切り欠き96によって露呈するレンズホルダ90の上部と対向する位置に設けられている。軸受け部98には軸受け穴99が形成されている。
A bearing
レンズホルダ90を嵌入穴95に嵌め込んだ後、ハウジング91には固定具100が取り付けられる。固定具100は、切り欠き96によって露呈するレンズホルダ90の上部に倣う形状を有する本体部101と、本体部101の両端から張り出した取付部102とを備える。取付部102には挿通穴104が形成されている。挿通穴104には、ネジ105が挿通される。ネジ105は、ハウジング91の上面に形成されたネジ穴106に螺合する。
After fitting the
ネジ105で固定具100をハウジング91に締結固定した場合、本体部101は、切り欠き96によって露呈したレンズホルダ90の上部と密着し、レンズホルダ90を上部から押さえ付ける。これによりレンズホルダ90の光軸OA方向への移動が規制され、レンズホルダ90、すなわちコリメートレンズ75の位置が固定される。これら固定具100、ネジ105、およびネジ穴106は固定機構として機能する。
When the
図15は、レンズホルダ90を嵌入穴95に嵌め込んで固定具100をハウジング91に取り付ける前の仮止めの状態を示している。この仮止めの状態においては、偏心ドライバ110を用いて、レンズホルダ90、すなわちコリメートレンズ75を光軸OA方向に移動させることが可能である。
FIG. 15 shows the state of temporary fixing before fitting the
偏心ドライバ110は、作業者が握るグリップ111と、グリップ111の下部から突出した回転軸112と、回転軸112の下部から突出した偏心軸113とで構成される。グリップ111、回転軸112、偏心軸113は、いずれも円柱状である。グリップ111と回転軸112の中心は一致している。偏心軸113の半径は、回転軸112の半径の1/2である。また、偏心軸113の中心は、回転軸112の中心に対して、偏心軸113の半径分ずれている。回転軸112は軸受け穴99に挿通され、偏心軸113は長穴92に嵌め込まれる(図16も参照)。
The
図16に、偏心ドライバ110を用いてレンズホルダ90を光軸OA方向に移動させる様子を示す。偏心軸113が長穴92の中心に位置し、かつレンズホルダ90とハウジング91の前面が一致する図16(A)に示す状態から、偏心ドライバ110を180°回転させると、図16(B)に示すように、偏心軸113が長穴92に沿って180°回転する。この偏心軸113の回転に伴い、偏心軸113の直径分、レンズホルダ90がハウジング91の前面から迫り出す。
FIG. 16 shows how the
両方向の矢印で示すように、レンズホルダ90は、図16(A)に示す状態と図16(B)に示す状態との間で遷移することが可能であり、光軸OA方向に関して、偏心軸113の直径分の調整代を有する。
As indicated by the double-headed arrow, the
調整機構81は、ガイド機構として機能するガイド突起93、ガイド溝97、移動機構として機能する長穴92、並びに固定機構として機能する固定具100、ネジ105、ネジ穴106により構成される。なお、調整機構82は、調整対象がコリメートレンズ75からコリメートレンズ77に代わるだけで、調整機構81と同じ構成を有するので、図示および説明を省略する。
The adjusting mechanism 81 includes a
図17において、調整機構81によりコリメートレンズ75が光軸OA方向に移動すると、集光レンズ80から出射される青色光BLの焦点位置BFPが変化する。具体的には、図17(A)に示す状態から、光軸OAに沿ってコリメートレンズ75が青色半導体光源35側に移動すると、図17(B)に示すように、集光レンズ80から出射される青色光BLの焦点距離が長くなり、焦点位置BFPは集光レンズ80から遠ざかる。反対に図17(A)に示す状態から、光軸OAに沿ってコリメートレンズ75が青色半導体光源35と反対側に移動すると、図17(C)に示すように、集光レンズ80から出射される青色光BLの焦点距離が短くなり、焦点位置BFPは集光レンズ80に近付く。本実施形態では、こうした光学的性質を利用して、調整機構81によりコリメートレンズ75を光軸OA方向に移動させることで、集光レンズ80から出射される青色光BLの焦点位置BFPを調整する。なお、図17では、煩雑を避けるためダイクロイックミラー79の図示を省略している。また、調整機構82による赤色光RLの焦点位置RFPの変化は、図17の場合と同様であるため説明を省略する。
In FIG. 17, when the
図18において、調整機構81、82による青色光BLの焦点位置BFP、赤色光RLの焦点位置RFPの調整は、検出ユニット120を用いて光源装置13の出荷前に行われる。
In FIG. 18 , adjustment of the focal position BFP of the blue light BL and the focal position RFP of the red light RL by the adjustment mechanisms 81 and 82 is performed using the
検出ユニット120は、検出用ライトガイド121と、入射端スキャン装置122と、光量波形検出装置123と、光量波形モニタ124とで構成される。検出用ライトガイド121は、内視鏡11に搭載されるライトガイド55と同じ仕様である。検出用ライトガイド121の入射端125には、内視鏡11の光源用コネクタ29Bと同様のコネクタ126が設けられており、コネクタ126は、光源装置13のレセプタクルコネクタ54に接続される。
The
入射端スキャン装置122は、検出用ライトガイド121の入射端125を、所定のスキャン幅および時間間隔で光軸OA方向に往復移動させ、光源装置13内の集光レンズ80と入射端125との位置関係を周期的に変化させる。スキャン幅には、例えば、同一機種の複数台の内視鏡11A~11Cにおける集光レンズ80とライトガイド55の入射端61との距離の公差が設定される。
The incident
光量波形検出装置123は、検出用ライトガイド121の出射端から出射する青色光BL、緑色光GL、赤色光RLの各色光の光量を所定のタイミングで検出し、光軸OA方向に関する各色光の光量を示す光量波形を出力する。
The light amount
光量波形モニタ124は、光量波形検出装置123から出力された各色光の光量波形(図18では緑色光GLの光量波形GW)を表示する。
The light
光量波形の横軸には光軸OA上の位置、縦軸には光強度がそれぞれ割り当てられている。横軸の「0」は、入射端スキャン装置122による入射端125のスキャン幅の中心位置を示す。横軸は左側のマイナス側にいくにつれ集光レンズ80から遠ざかる位置を示す。
The horizontal axis of the light amount waveform is assigned to the position on the optical axis OA, and the vertical axis is assigned to the light intensity. “0” on the horizontal axis indicates the center position of the scanning width of the
図18では、同一機種の複数台の内視鏡11A~11Cにおける集光レンズ80とライトガイド55の入射端61との距離の公差が例えば1.5mmで、入射端スキャン装置122による入射端125のスキャン幅が-1.5mm~1.5mmに設定された場合を示している。
In FIG. 18, the tolerance of the distance between the
以下、上記構成による作用について説明する。まず、レンズホルダ90を嵌入穴95に嵌め込む等の光源装置13の組立作業が行われる。組立作業後、集光レンズ80から出射される青色光BL、赤色光RLの焦点位置を調整して、青色光BL、緑色光GL、赤色光RLの各色光の焦点位置を一致させる色ずれ解消作業を含む出荷前の最終検査が行われる。
The operation of the above configuration will be described below. First, the
色ずれ解消作業では、まず、検出ユニット120の検出用ライトガイド121の入射端125に設けられたコネクタ126が、光源装置13のレセプタクルコネクタ54に接続される。
In the color shift elimination work, first, the
そして、検出ユニット120の入射端スキャン装置122、光量波形検出装置123、光量波形モニタ124が駆動される。これにより、検出用ライトガイド121の入射端125が、入射端スキャン装置122によって所定のスキャン幅および時間間隔で光軸OA方向に往復移動される。また、光量波形検出装置123により、検出用ライトガイド121の出射端から出射された光の光量が所定のタイミングで検出され、その検出結果である光量波形が光量波形モニタ124に表示される。
Then, the incident
作業者は、光量波形モニタ124に表示された光量波形を観察して、緑色光GLの焦点位置GFPを示す光量波形GWのピークに、青色光BLの焦点位置BFPを示す光量波形BWのピーク、および赤色光RLの焦点位置RFPを示す光量波形RWのピークが一致するよう、調整機構81、82でコリメートレンズ75、77の光軸OA上の位置を調整する。より具体的には、偏心ドライバ110の回転軸112を軸受け穴99に挿通し、偏心軸113を長穴92に嵌め込んだ後、偏心ドライバ110を回転させて、コリメートレンズ75、77を光軸OA方向に移動させる。
The operator observes the light intensity waveform displayed on the light
ここで、「各色光の焦点位置を一致させる」とは、各色光の焦点位置を完全に一致させる場合をもちろん含むが、所定の範囲内に各色光の焦点位置が収まっている場合も含む。この所定の範囲は、図18において符号128で示す線分で表示される。作業者は、各色光の光量波形GW、BW、RWのピークが、線分128で示す所定の範囲内に少なくとも収まるよう、より好ましくは各色光の光量波形GW、BW、RWのピークが完全に一致するように調整する。
Here, "matching the focal position of each color light" naturally includes the case of completely matching the focal position of each color light, but also includes the case where the focal position of each color light falls within a predetermined range. This predetermined range is indicated by a line segment denoted by
位置調整では、光量波形モニタ124に表示された光量波形を観察しつつ、光量波形BW、RWのピークを光量波形GWのピークに合せるべく偏心ドライバ110を回転させてコリメートレンズ75、77を光軸OA方向に移動させればよく、非常に簡単に青色光BL、緑色光GL、赤色光RLの各色光の焦点位置を一致させることができる。
In the position adjustment, while observing the light amount waveform displayed on the light
また、調整機構81、82をコリメートレンズ75、77にのみ設け、緑色光GLの焦点位置GFPを基準として、青色光BLの焦点位置BFP、赤色光RLの焦点位置RFPを緑色光GLの焦点位置GFPとそれぞれ一致させるので、コリメートレンズ75~77の各々に調整機構を設け、3色の光の各々の焦点位置を調整する場合よりも調整の手間を省くことができる。
Further, the adjustment mechanisms 81 and 82 are provided only for the
もちろん、コリメートレンズ76にも調整機構81、82と同じ調整機構を設けてもよい。コリメートレンズ76にも調整機構を設けた場合は、色ずれ解消作業において、最初にコリメートレンズ75~77のうちの1つ、例えばコリメートレンズ76の位置を調整し、光量波形GWのピークが最大となるコリメートレンズ76の位置を探索する。そして、探索した位置にコリメートレンズ76を固定した後、コリメートレンズ75、77の位置を調整してもよい。
Of course, the same adjustment mechanism as the adjustment mechanisms 81 and 82 may be provided for the
調整機構81、82は、ガイド機構としてのガイド突起93、ガイド溝97、移動機構としての長穴92、並びに固定機構としての固定具100、ネジ105、ネジ穴106というシンプルな構成である。したがって、調整機構81、82を設けることによる光源装置13の大型化およびコストアップを最小限に抑えることができる。
The adjustment mechanisms 81 and 82 have a simple configuration including a
コリメートレンズ75、77を光軸OA方向に移動させて、青色光BL、緑色光GL、赤色光RLの各色光の焦点位置を一致させた後、作業者は、ネジ105をネジ穴106に螺合して固定具100をハウジング91に締結固定し、コリメートレンズ75、77の位置を固定する。これにて色ずれ解消作業が終了する。
After moving the
色ずれ解消作業を含む最終検査が終了した後、光源装置13は客先に出荷される。
After the final inspection including the color deviation elimination work is completed, the
医療現場で内視鏡診断を行う場合には、内視鏡11をプロセッサ装置12と光源装置13に接続し、プロセッサ装置12と光源装置13の電源を入れて、内視鏡システム10を起動する。
When endoscopic diagnosis is performed at a medical site, the
内視鏡11の挿入部16を生体内に挿入して、生体内の観察を開始する。光源制御部42は、各LED43~45に与える駆動電流値を設定して、各半導体光源35~37の点灯を開始する。そして、目標とする発光スペクトルを維持しつつ光量制御を行う。
The
各半導体光源35~37は、各LED43~45による青色光BL、緑色光GL、赤色光RLをそれぞれ発する。青色光BL、緑色光GL、赤色光RLは光学系群41のコリメートレンズ75~77にそれぞれ入射する。
Each of the semiconductor light sources 35-37 emits blue light BL, green light GL, and red light RL from each of the LEDs 43-45. Blue light BL, green light GL, and red light RL
青色光BLはダイクロイックミラー79で反射する。緑色光GLはダイクロイックミラー78、79を透過する。赤色光RLはダイクロイックミラー78で反射し、ダイクロイックミラー79を透過する。ダイクロイックミラー78、79によって、青色光BL、緑色光GL、赤色光RLの光路が結合される。これら青色光BL、緑色光GL、赤色光RLは、集光レンズ80に入射する。これにより、青色光BL、緑色光GL、赤色光RLの混合光で構成される白色光WLが生成される。集光レンズ80は、白色光WLを内視鏡11のライトガイド55の入射端61に集光し、白色光WLを内視鏡11に供給する。
Blue light BL is reflected by
内視鏡11において、白色光WLはライトガイド55を通じて照明窓22に導光されて、照明窓22から観察対象に照射される。観察対象で反射した白色光WLの反射光は、観察窓23から撮像センサ56に入射する。撮像センサ56はB画像信号、G画像信号、R画像信号をプロセッサ装置12のDSP66に出力する。DSP66は各画像信号を色分離して、画像処理部67に入力する。撮像センサ56による撮像動作は所定のフレームレートで繰り返される。画像処理部67は、入力された各画像信号に基づいて表示画像を生成する。表示画像は表示制御部69を通じてモニタ14に出力される。表示画像は撮像センサ56のフレームレートにしたがって更新される。
In the
また、DSP66は、各画像信号に基づいて露出値を算出し、算出した露出値に応じた露出制御信号を光源装置13の光源制御部42に送信する。光源制御部42は、受信した露出制御信号に基づいて、各色光の光量の割合が一定となるよう(目標とする発光スペクトルが変化しないよう)各半導体光源35~37の駆動電流値を決定する。そして、決定した駆動電流値で各半導体光源35~37を駆動する。これにより、各半導体光源35~37による、白色光WLを構成する青色光BL、緑色光GL、赤色光RLの光量を、観察に適した割合に一定に保つことができる。
The
図19に示すように、もし色ずれ解消作業が行われず、例えば図25と同様の各焦点位置BFP、GFP、RFPのずれが生じたまま光源装置13が出荷された場合は、図25でも説明したように、表示画像の色味が変わってしまう。例えば同一機種の内視鏡11A~11Cにおいても、個体差によって集光レンズ80と入射端61との位置関係は変わる。内視鏡11Aのライトガイド55Aのように入射端61Aが赤色光RLの焦点位置RFPにあった場合は、全体が赤味を帯びた表示画像130Rが生成される。また、内視鏡11Bのライトガイド55Bのように入射端61Bが緑色光GLの焦点位置GFPにあった場合は、全体が緑味を帯びた表示画像130Gが生成され、内視鏡11Cのライトガイド55Cのように入射端61Cが青色光BLの焦点位置BFPにあった場合は、全体が青味を帯びた表示画像130Bが生成される。なお、図示は省略するが、仕様が異なる複数種類の内視鏡11D、11Eについても、集光レンズ80と入射端61との位置関係が互いに異なる場合は、内視鏡11Dと内視鏡11Eとで表示画像の色味が変わってしまう。
As shown in FIG. 19, if the color shift elimination work is not performed and, for example, the
対して本実施形態では、図20に示すように、色ずれ解消作業によって青色光BL、緑色光GL、赤色光RLの各色光の焦点位置BFP、GFP、RFPが一致しているので、同一機種の内視鏡11A~11Cにおいて、個体差によって集光レンズ80と入射端61A、61B、61Cとの位置関係が変わっても、入射端61A、61B、61Cに入射する各色光の光量バランスは変動せず、結果として色味が変わらない表示画像130が生成される。図示は省略するが、仕様が異なる複数種類の内視鏡11D、11Eを使用する場合も同様である。したがって、内視鏡診断の度に表示画像の色味が変わってしまうという事態が起こることがなく、術者は違和感を覚えることなく、円滑に内視鏡診断を行うことができる。
On the other hand, in this embodiment, as shown in FIG. 20, the focal positions BFP, GFP, and RFP of the blue light BL, green light GL, and red light RL are matched by the color shift elimination work. In the
半導体光源35~37を用いた場合には、矩形状の発光部を有する半導体光源35~37を用いるため、集光レンズ80から出射される各色光の集光像も矩形状となる。こうした場合、円形状の発光部を有する半導体光源を用い、各色光の集光像が円形状である場合よりも、集光像が入射端61からはみ出しやすくなる。このため、こうした矩形状の発光部を有する半導体光源35~37を有する光源装置13において、本発明の調整機構81、82は特に有用である。
When the
上記実施形態では、コリメートレンズ75、77に調整機構81、82を設けているが、調整機構は、各半導体光源35~37から集光レンズ80に至る光路において、ダイクロイックミラー78、79よりも各半導体光源35~37側に設けられていればよい。例えば図21および図22に示すように、コリメートレンズ75、77に代えて、あるいは加えて、青色半導体光源35と赤色半導体光源37に調整機構131、132を設けてもよい。この場合、調整機構131、132は、青色半導体光源35、赤色半導体光源37を光軸OA方向に移動させる。図22のように、コリメートレンズ75、77に加えて、青色半導体光源35と赤色半導体光源37に調整機構を設けた場合は、コリメートレンズ75、77のみ、または図21の青色半導体光源35と赤色半導体光源37のみの場合よりも調整代を稼ぐことができる。
In the above embodiment, the
ただし、半導体光源には、コリメートレンズと異なり、光軸OA方向への移動の妨げとなりそうな配線等の部材が接続されているため、上記実施形態のように半導体光源には調整機構は設けず、コリメートレンズにのみ調整機構を設けて、コリメートレンズを光軸OA方向に移動することにより各色光の焦点位置を一致させることが好ましい。 However, unlike the collimator lens, the semiconductor light source is connected to wiring and other members that may hinder movement in the optical axis OA direction, so the semiconductor light source is not provided with an adjustment mechanism as in the above embodiment. Preferably, only the collimating lens is provided with an adjusting mechanism, and the collimating lens is moved in the direction of the optical axis OA to match the focal positions of the respective color lights.
上記実施形態では、1つのコリメートレンズ75~77で第1光学系を構成する例を記載したが、第1光学系を複数の光学部材で構成してもよい。第2光学系も同様に、上記実施形態で例示した1つの集光レンズ80ではなく、複数の光学部材で構成してもよい。第1光学系を複数の光学部材で構成した場合は、複数の光学部材のうちの少なくとも1つに調整機構を設ければよい。
In the above embodiment, an example in which the first optical system is configured with one
上記実施形態では、緑色光GLの焦点位置GFPを基準として、青色光BLの焦点位置BFP、赤色光RLの焦点位置RFPを緑色光GLの焦点位置GFPとそれぞれ一致させているが、青色光BLの焦点位置BFP、または赤色光RLの焦点位置RFPを基準としてもよい。青色光BLの焦点位置BFPを基準とする場合は、コリメートレンズ76、77には調整機構を設けるが、コリメートレンズ75には調整機構を設けても設けなくてもよい。赤色光RLの焦点位置RFPを基準とする場合は、コリメートレンズ75、76には調整機構を設けるが、コリメートレンズ77には調整機構を設けても設けなくてもよい。
In the above embodiment, with the focal position GFP of the green light GL as a reference, the focal position BFP of the blue light BL and the focal position RFP of the red light RL are matched with the focal position GFP of the green light GL. or the focal position RFP of the red light RL may be used as a reference. When the focal position BFP of the blue light BL is used as a reference, the
上記実施形態では、光源装置13の出荷前の最終検査時に、色ずれ解消作業を行うと説明したが、色ずれ解消作業の実施時期は特に限定されない。例えば、光源装置13の出荷後に、顧客の要請に応じて、作業者が検出ユニット120を携えて客先に出向いて色ずれ解消作業を行ってもよい。
In the above embodiment, it was explained that the color deviation elimination work is performed during the final inspection before shipment of the
調整機構は上記実施形態で例示した構成に限らない。例えばガイド機構は、上記実施形態のガイド突起93、ガイド溝97を設けずとも、レンズホルダ90と嵌入穴95自体で構成することが可能である。また、移動機構としては、上記実施形態の長穴92の代わりに、ボールネジ、押し引きボルト、偏心カム等、回転運動を直進運動に変換する周知の移動機構を利用してもよい。さらに、固定機構も、レンズホルダ90を両側から挟み込む一対のCリング、および一対のCリングを締結固定するネジで構成してもよい。要するに、コリメートレンズ75等の光学部材の光軸OA方向の移動をガイドし、光学部材を光軸方向に移動させ、光学部材の位置を固定することが可能であれば、如何なる機構を用いてもよい。
The adjustment mechanism is not limited to the configuration illustrated in the above embodiment. For example, the guide mechanism can be composed of the
上記実施形態では、単色半導体光源として青色、緑色、赤色の3つの半導体光源35~37を例示しているが、図23に示すように、表層血管を強調して観察するための紫色の波長帯域の光(紫色光VL)を発する紫色半導体光源135を追加してもよい。
In the above embodiment, three
図23において、紫色半導体光源135は、発光素子として、紫色光VLを発する紫色LED(図示せず)を有している。紫色半導体光源135の具体的な構造は、図5および図6に示す青色半導体光源35と同じである。図24に示すように、紫色半導体光源135は、例えば紫色の波長帯域である380nm~420nm付近の波長成分を有し、中心波長405±10nm、半値幅20±10nmの紫色光VLを発光する。
In FIG. 23, the violet
光学系群136は、上記実施形態の光学系群41に、紫色光VLを透過させて略平行光化するコリメートレンズ137と、青色光BLおよび紫色光VLの光路を結合するダイクロイックミラー138とを追加した構成である。青色半導体光源35と紫色半導体光源135は、互いの光軸が直交するように配置され、これらの光軸が直交する位置に、ダイクロイックミラー138が設けられている。ダイクロイックミラー138は青色半導体光源35、紫色半導体光源135の光軸に対して45°傾けた姿勢で配置されている。
The
ダイクロイックミラー138のダイクロイックフィルタは、例えば約430nm未満の紫色の波長帯域の光を反射し、それ以上の青色、緑色、赤色の波長帯域の光を透過する特性を有している。ダイクロイックミラー138は、青色半導体光源35からの青色光BLを下流側に透過させ、紫色半導体光源135からの紫色光VLを反射させる。これにより青色光BLと紫色光VLの光路が結合される。ダイクロイックミラー138で反射した紫色光VLは、ダイクロイックミラー79が前述のように約480nm未満の青色の波長帯域の光を反射する特性を有するので、ダイクロイックミラー79で反射して集光レンズ80に向かう。これにより、青色光BL、緑色光GL、赤色光RL、および紫色光VLの全ての光の光路が結合される。
The dichroic filter of the
コリメートレンズ137には、上記実施形態のコリメートレンズ75、77と同様に、調整機構139が設けられている。調整機構139は、コリメートレンズ137を光軸OA方向に移動することで、紫色光VLの焦点位置を、青色光BL、緑色光GL、赤色光RLの焦点位置と一致させる。
The
表層血管の反射率は、周知のように、450nmを下回る波長帯域で大きく落ち込み、405nm付近において最も落ち込む。反射率が低い波長帯域の光を観察対象に照射すると、血管においては吸収が大きいので、血管とそれ以外の部分とのコントラストに差がある表示画像が得られる。 As is well known, the reflectance of superficial blood vessels drops sharply in the wavelength band below 450 nm, and drops most around 405 nm. When an object to be observed is irradiated with light in a wavelength band with a low reflectance, a display image with a difference in contrast between the blood vessel and other parts is obtained because the blood vessel absorbs the light significantly.
また、生体組織の光の散乱特性にも波長依存性があり、短波長になるほど散乱係数は大きくなる。散乱は生体組織内への光の深達度に影響する。つまり、散乱が大きいほど生体組織の粘膜表層付近で反射される光が多く、中深層に到達する光が少ない。そのため、短波長であるほど深達度は低く、長波長になるほど深達度は高い。 Moreover, the light scattering properties of living tissue also have wavelength dependence, and the shorter the wavelength, the larger the scattering coefficient. Scattering affects the depth of light penetration into living tissue. That is, the greater the scattering, the more light is reflected near the surface layer of the mucous membrane of the living tissue, and the less light reaches the middle and deep layers. Therefore, the shorter the wavelength, the lower the penetration depth, and the longer the wavelength, the higher the penetration depth.
紫色半導体光源135が発する中心波長405±10nmの紫色光VLは、比較的短波長で深達度が低いので、表層血管による吸収が大きい。このため紫色光VLは表層血管強調用の特殊光として用いることができる。紫色光VLを用いることにより、表層血管が高コントラストで描出された表示画像を得ることができる。
The violet light VL with a center wavelength of 405±10 nm emitted by the violet
表層血管を強調観察する場合は、撮像センサ56の蓄積動作のタイミングに合わせて、各半導体光源35~37に加えて紫色半導体光源135を点灯させる。各半導体光源35~37、135が点灯すると、上記実施形態の白色光WLに紫色光VLが追加されて、これらの混合光(WL+VL)が照明光として観察対象に照射される。
When emphasizing superficial blood vessels, the purple
白色光WLに紫色光VLが追加された照明光は、撮像センサ56のマイクロカラーフィルタで分光される。B画素は、青色光BLに対応する反射光に加えて、紫色光VLに対応する反射光を受光する。G画素、R画素は、上記実施形態と同じく、緑色光GLに対応する反射光、赤色光RLに対応する反射光をそれぞれ受光する。撮像センサ56は、読み出しタイミングに合わせて、B、G、Rの各画像信号をフレームレートにしたがって順次出力する。 The illumination light obtained by adding the violet light VL to the white light WL is separated by the micro color filters of the imaging sensor 56 . The B pixels receive the reflected light corresponding to the violet light VL in addition to the reflected light corresponding to the blue light BL. The G pixel and the R pixel receive reflected light corresponding to the green light GL and reflected light corresponding to the red light RL, respectively, as in the above embodiment. The imaging sensor 56 sequentially outputs the B, G, and R image signals according to the frame rate in accordance with the readout timing.
この場合におけるB画像信号には、白色光WLを構成する青色光BLに対応する反射光の成分に加えて、紫色光VLに対応する反射光の成分が含まれているため、表層血管が高コントラストで描出される。癌等の病変においては、正常組織と比較して表層血管の密集度が高くなる傾向がある等、表層血管のパターンに特徴があるため、紫色半導体光源135を加えれば表層血管が鮮明に描出されて病変の見極めがしやすくなるので好ましい。 In this case, the B image signal includes a reflected light component corresponding to the violet light VL in addition to the reflected light component corresponding to the blue light BL constituting the white light WL. rendered in contrast. In lesions such as cancer, the density of surface blood vessels tends to be higher than in normal tissue, and the pattern of surface blood vessels is characteristic. This is preferable because it makes it easier to identify lesions.
上記実施形態では、プロセッサ装置12からの露出制御信号に基づいて、各LED43~45に与える駆動電流値を変化させることで各色光の光量制御を行っているが、LEDの発熱の影響や経時劣化の影響により、半導体光源は駆動電流値に対する出力光量が変動する場合がある。そこで、各色光の光量を測定する光量測定センサを光学系群内に設けて、光量測定センサが出力する光量測定信号に基づいて、各色光の光量が目標値に達しているか否かを監視してもよい。
In the above embodiment, the light amount of each color light is controlled by changing the driving current value applied to each
この場合、光源制御部は、光量測定信号と目標とする光量とを比較し、この比較結果に基づいて、光量が目標値となるように、露出制御で設定した各半導体光源35~37に与える駆動電流値を微調整する。このように各色光の光量を光量測定センサで常に監視し、光量の測定結果に基づき与える駆動電流値を微調整することで、常に目標値に沿うように光量を制御することができる。このため目標とする発光スペクトルの照明光をより安定して得ることができる。
In this case, the light source control unit compares the light intensity measurement signal with the target light intensity, and based on the comparison result, provides the
上記実施形態では、LEDのみで構成された半導体光源を挙げているが、例えば、緑色半導体光源を、紫色から青色の波長帯域の青色励起光を発する青色励起光LED、および青色励起光で励起されて緑色の波長帯域の緑色光を発する緑色蛍光体で構成された蛍光型半導体光源としてもよい。また、緑色半導体光源に代えて、あるいは加えて、赤色半導体光源を、紫色から青色の波長帯域の青色励起光を発する青色励起光LED、および青色励起光で励起されて赤色の波長帯域の赤色蛍光を発する赤色蛍光体で構成してもよい。赤色半導体光源を蛍光型半導体光源で構成する場合は、励起光LEDは紫色から青色の波長帯域の青色励起光を発する青色励起光発光素子に限らず、緑色の波長帯域の緑色励起光を発する緑色励起光発光素子であってもよい。この場合、図5および図6に示すキャビティ76に、樹脂78の代わりに蛍光体を封入して蛍光型半導体光源を構成する。
In the above embodiments, semiconductor light sources composed only of LEDs are mentioned. It is also possible to use a fluorescent semiconductor light source composed of a green phosphor that emits green light in a green wavelength band. Further, instead of or in addition to the green semiconductor light source, the red semiconductor light source is a blue excitation light LED that emits blue excitation light in a wavelength band from violet to blue, and a red fluorescence LED that is excited by the blue excitation light and has a red wavelength band. may be composed of a red phosphor that emits When the red semiconductor light source is composed of a fluorescent semiconductor light source, the excitation light LED is not limited to a blue excitation light emitting element that emits blue excitation light in a wavelength band from violet to blue, but a green excitation light emitting element that emits green excitation light in a green wavelength band. It may be an excitation light emitting device. In this case, instead of the
また、図5および図6に示したLEDの実装形態は1例であり、他の形態を採用してもよい。例えば、樹脂78の光出射面に発散角を調整するマイクロレンズを設けてもよいし、あるいは表面実装型でなく、マイクロレンズが形成された砲弾型のケースにLEDを収容した形態でもよい。また、緑色半導体光源や赤色半導体光源として蛍光型半導体光源を使用する場合は、蛍光型半導体光源は励起光LEDと蛍光体を一体的に設けたものに限らず、これらを別に設けたものでもよい。この場合には、励起光LEDと蛍光体の間にレンズや光ファイバ等の導光部材を追加して、導光部材を介して励起光LEDの励起光を蛍光体に導光する。
Moreover, the mounting form of the LED shown in FIGS. 5 and 6 is an example, and other forms may be adopted. For example, a microlens for adjusting the divergence angle may be provided on the light emitting surface of the
さらに、発光素子として、LEDの代わりに有機EL(Electro-Luminescence)素子を用いてもよい。 Furthermore, an organic EL (Electro-Luminescence) element may be used as the light emitting element instead of the LED.
上記実施形態における光学系群の構成は1例であり、種々の変更が可能である。例えば第3光学系を構成する光学部材として、透明なガラス板にダイクロイックフィルタを形成したダイクロイックミラーを用いているが、代わりにプリズムにダイクロイックフィルタを形成したダイクロイックプリズムを用いてもよい。また、ダイクロイックミラーやダイクロイックプリズムといった、ダイクロイックフィルタを形成した光学部材の代わりに、例えば、各半導体光源に対峙する複数の入射端と、内視鏡のライトガイドの入射端に対峙する1つの出射端を有する分岐型ライトガイドを用いて光路を結合してもよい。分岐型ライトガイドは、一端において光ファイバを所定本数ずつ複数に分割して、入射端を複数に分岐させたものである。この場合には、分岐した各入射端のそれぞれに対応させて各半導体光源を配置する。 The configuration of the optical system group in the above embodiment is an example, and various modifications are possible. For example, a dichroic mirror in which a dichroic filter is formed on a transparent glass plate is used as an optical member constituting the third optical system, but a dichroic prism in which a dichroic filter is formed on a prism may be used instead. Also, instead of optical members forming dichroic filters such as dichroic mirrors and dichroic prisms, for example, a plurality of incident ends facing each semiconductor light source and one emitting end facing the incident end of the light guide of the endoscope A bifurcated light guide may be used to combine the optical paths. A branch type light guide is obtained by dividing a predetermined number of optical fibers at one end into a plurality of fibers and branching the incident end into a plurality of branches. In this case, each semiconductor light source is arranged so as to correspond to each branched incident end.
上記実施形態では、3つの単色半導体光源35~37、あるいは4つの単色半導体光源35~37、135を有する光源装置13を例示したが、青色半導体光源と緑色半導体光源、緑色半導体光源と紫色半導体光源等、単色半導体光源を2つ有する光源装置にも本発明は適用可能である。青色光BLと緑色光GLの混合光や、緑色光GLと紫色光VLの混合光を観察対象に照射し、緑色光GLベースの表示画像を取得してもよい。
In the above embodiments, the
上記実施形態では、撮像センサ56として、B、G、Rのマイクロカラーフィルタによって照明光を色分離するカラー撮像センサを例示し、カラー撮像センサによってB、G、Rの各画像信号を同時に取得する同時式の内視鏡システムおよびそれに用いられる光源装置を例に説明したが、モノクロ撮像センサを有し、青色、緑色、赤色の各色光を順次照射して、B、G、Rの各画像信号を面順次で取得する面順次式の内視鏡システムおよびそれに用いられる光源装置に本発明を適用してもよい。 In the above embodiment, the image sensor 56 is an example of a color image sensor that separates illumination light by B, G, and R micro color filters, and the color image sensor acquires B, G, and R image signals at the same time. A simultaneous type endoscope system and a light source device used therein have been described as an example. The present invention may also be applied to a frame sequential endoscope system that acquires .
上記実施形態では、光源装置とプロセッサ装置が別体で構成される例で説明したが、これらの装置を一体で構成してもよい。また、本発明は、照明光の観察対象の反射光をイメージガイドで導光するファイバスコープや、撮像センサと超音波トランスデューサが先端部に内蔵された超音波内視鏡を用いた内視鏡システムおよびそれに用いられる光源装置にも適用することができる。 In the above embodiment, an example in which the light source device and the processor device are configured separately has been described, but these devices may be configured integrally. In addition, the present invention provides an endoscope system using a fiber scope that guides the reflected light of an observation target of illumination light with an image guide, and an ultrasonic endoscope that has an imaging sensor and an ultrasonic transducer built in the tip. and the light source device used therein.
10 内視鏡システム
11、11A~11E 内視鏡
13 光源装置
35 青色半導体光源
36 緑色半導体光源
37 赤色半導体光源
55、55A~55C ライトガイド
61、61A~61C 入射端
75~77、137 コリメートレンズ(第1光学系、光学部材)
78、79、138 ダイクロイックミラー(第3光学系)
80 集光レンズ(第2光学系)
81、82、139 調整機構
92 長穴
93 ガイド突起
97 ガイド溝
100 固定具
105 ネジ
106 ネジ穴
110 偏心ドライバ
120 検出ユニット
135 紫色半導体光源
BL 青色光
GL 緑色光
RL 赤色光
WL 白色光
VL 紫色光
BFP 青色光の焦点位置
GFP 緑色光の焦点位置
RFP 赤色光の焦点位置
BW 青色光の光量波形
GW 緑色光の光量波形
RW 赤色光の光量波形
10
78, 79, 138 dichroic mirror (third optical system)
80 condenser lens (second optical system)
81, 82, 139
Claims (5)
ガイド機構及び移動機構を用いて、前記検出用ライトガイドの入射端の位置を光軸方向に移動させた際に、前記入射端の位置に対する、前記検出用ライトガイドを介した各色光の位置を示す各色光の光量波形のピークが一致するように、前記光学部材を保持するレンズホルダを前記光軸方向に移動させる移動ステップと、
固定機構によって、前記レンズホルダを押え付けて前記レンズホルダ内の前記光学部材の位置を固定する固定ステップとを有する位置調整方法。 An endoscope light source device for supplying illumination light to a light guide of an endoscope, comprising a plurality of monochromatic semiconductor light sources each emitting light of a plurality of colors as the illumination light, and at least one optical member, a plurality of first optical systems that respectively transmit the plurality of colors of light from the semiconductor light source; and a second optical system that converges the plurality of colors of light transmitted through the plurality of first optical systems onto an incident end of the light guide. system and a position adjusting mechanism for adjusting the position of the optical member in the optical axis direction of the first optical system , and connectable to a detection unit including a light guide for detection ,
When the position of the incident end of the light guide for detection is moved in the optical axis direction using a guide mechanism and a moving mechanism, the position of each color light through the light guide for detection is changed with respect to the position of the incident end. a moving step of moving the lens holder holding the optical member in the optical axis direction so that the peaks of the light amount waveforms of the respective colored lights shown match ;
and a fixing step of fixing the position of the optical member in the lens holder by pressing the lens holder with a fixing mechanism.
前記移動ステップでは、偏心ドライバの偏心軸を前記長穴に嵌め込み、前記偏心ドライバに対して前記回転運動を付与することによって、前記偏心軸を前記長穴に沿って回転させて、前記レンズホルダを前記直進運動で前記光軸方向に移動させる請求項2記載の位置調整方法。 The lens holder is provided with an elongated hole,
In the moving step, the eccentric shaft of the eccentric driver is fitted into the elongated hole, and the rotational motion is imparted to the eccentric driver to rotate the eccentric shaft along the elongated hole, thereby moving the lens holder. 3. The position adjustment method according to claim 2, wherein the linear movement is performed in the direction of the optical axis.
前記固定具は、前記レンズホルダの上部を押え付ける請求項3記載の位置調整方法。 In the fixing step, a fixture is used to fix the position of the optical member;
4. The position adjusting method according to claim 3, wherein the fixture presses the upper part of the lens holder .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022061830A JP7290770B2 (en) | 2020-03-23 | 2022-04-01 | Position adjustment method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020051380A JP7054401B2 (en) | 2020-03-23 | 2020-03-23 | Light source device for endoscopes |
JP2022061830A JP7290770B2 (en) | 2020-03-23 | 2022-04-01 | Position adjustment method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020051380A Division JP7054401B2 (en) | 2020-03-23 | 2020-03-23 | Light source device for endoscopes |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022079732A JP2022079732A (en) | 2022-05-26 |
JP7290770B2 true JP7290770B2 (en) | 2023-06-13 |
Family
ID=87852320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022061830A Active JP7290770B2 (en) | 2020-03-23 | 2022-04-01 | Position adjustment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7290770B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000249935A (en) | 1999-03-04 | 2000-09-14 | Asahi Optical Co Ltd | Light source for endoscope |
JP2003029097A (en) | 2001-07-19 | 2003-01-29 | Furukawa Electric Co Ltd:The | Method for assembling optical module and optical module |
JP2013043027A (en) | 2011-08-26 | 2013-03-04 | Fujifilm Corp | Light source device |
WO2013150897A1 (en) | 2012-04-04 | 2013-10-10 | オリンパスメディカルシステムズ株式会社 | Light source device |
JP2016202441A (en) | 2015-04-20 | 2016-12-08 | 富士フイルム株式会社 | Endoscope light source device and endoscope system using the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2550970Y2 (en) * | 1991-08-20 | 1997-10-15 | オリンパス光学工業株式会社 | Lens position adjustment device |
-
2022
- 2022-04-01 JP JP2022061830A patent/JP7290770B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000249935A (en) | 1999-03-04 | 2000-09-14 | Asahi Optical Co Ltd | Light source for endoscope |
JP2003029097A (en) | 2001-07-19 | 2003-01-29 | Furukawa Electric Co Ltd:The | Method for assembling optical module and optical module |
JP2013043027A (en) | 2011-08-26 | 2013-03-04 | Fujifilm Corp | Light source device |
WO2013150897A1 (en) | 2012-04-04 | 2013-10-10 | オリンパスメディカルシステムズ株式会社 | Light source device |
JP2016202441A (en) | 2015-04-20 | 2016-12-08 | 富士フイルム株式会社 | Endoscope light source device and endoscope system using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2022079732A (en) | 2022-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7011000B2 (en) | Light source device for endoscopes | |
JP5997676B2 (en) | Endoscope light source device and endoscope system using the same | |
US20110172492A1 (en) | Medical apparatus and endoscope apparatus | |
JP6827512B2 (en) | Endoscope system | |
JP5997630B2 (en) | Light source device and endoscope system using the same | |
US20130053703A1 (en) | Endoscopic diagnosis system | |
JP2013198547A (en) | Light source device and endoscopic system | |
JP6438830B2 (en) | Position adjustment method | |
JP6234212B2 (en) | Endoscope light source device and endoscope system using the same | |
JP6681454B2 (en) | Endoscope light source device and endoscope system | |
JP2014121363A (en) | Light source device and endoscope system using the same | |
JP7290770B2 (en) | Position adjustment method | |
JP6560968B2 (en) | Endoscope system and operating method thereof | |
JP7054401B2 (en) | Light source device for endoscopes | |
JP7163487B2 (en) | Endoscope light source device and endoscope system | |
JP6359998B2 (en) | Endoscope | |
JP6109725B2 (en) | Endoscope light source device and endoscope system using the same | |
JP2014132918A (en) | Light source device and endoscope system using the same | |
WO2023276497A1 (en) | Processor for endoscope and endoscope system | |
JP6572065B2 (en) | Endoscope light source device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230530 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230601 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7290770 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |