Nothing Special   »   [go: up one dir, main page]

JP7279774B2 - Information processing equipment - Google Patents

Information processing equipment Download PDF

Info

Publication number
JP7279774B2
JP7279774B2 JP2021214648A JP2021214648A JP7279774B2 JP 7279774 B2 JP7279774 B2 JP 7279774B2 JP 2021214648 A JP2021214648 A JP 2021214648A JP 2021214648 A JP2021214648 A JP 2021214648A JP 7279774 B2 JP7279774 B2 JP 7279774B2
Authority
JP
Japan
Prior art keywords
gate
information processing
matching
feature amount
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021214648A
Other languages
Japanese (ja)
Other versions
JP2022043277A (en
Inventor
剛人 古地
謙志 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019187096A external-priority patent/JP7006668B2/en
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2021214648A priority Critical patent/JP7279774B2/en
Publication of JP2022043277A publication Critical patent/JP2022043277A/en
Priority to JP2023074054A priority patent/JP7480885B2/en
Application granted granted Critical
Publication of JP7279774B2 publication Critical patent/JP7279774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Collating Specific Patterns (AREA)
  • Image Analysis (AREA)

Description

本発明は、情報処理装置、情報処理システム、プログラム、情報処理方法に関する。 The present invention relates to an information processing device, an information processing system, a program, and an information processing method.

オフィスやイベント会場などの特定場所に入退場する人物を制限したり管理する手段として、通過しようとする人物が予め登録された人物か否かを照合する照合システムが用いられる。特に、近年では、人物の顔認証技術の発達により、ゲートに設置したカメラで撮影した人物の顔画像から顔認証を行うウォークスルー顔認証システムが利用されている。 2. Description of the Related Art As means for restricting or managing persons entering and exiting a specific place such as an office or an event site, a verification system is used to verify whether or not a person trying to pass through is a pre-registered person. In particular, in recent years, with the development of human face recognition technology, a walk-through face recognition system that performs face recognition from a person's face image captured by a camera installed at a gate has been used.

特開2016-083225号公報JP 2016-083225 A

ここで、ウォークスルー顔認証システムにおいては、人物が円滑にゲートを通過できるよう、ゲートに並んでいる人物を順番通りに照合してゲートの開閉を行う必要がある。ところが、ゲートを通過しようとする人物はさまざまであり、順序を適切に判別することが困難である。その結果、ゲートの円滑な通過が困難である、という問題が生じる。 Here, in the walk-through face authentication system, it is necessary to check the people lined up at the gate in order to open and close the gate so that the people can pass through the gate smoothly. However, there are various people trying to pass through the gate, and it is difficult to properly determine the order. As a result, there arises a problem that smooth passage through the gate is difficult.

このため、本発明の目的は、上述した課題である、ゲートの円滑な通過が困難である、という問題を解決することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-described problem of difficulty in smoothly passing through a gate.

本発明の一形態である情報処理装置は、
ゲートの通過前領域を撮影した撮影画像内の対象の特徴量を抽出して、当該特徴量に基づく前記対象の照合に関する照合情報を記憶させる画像処理手段と、
前記ゲートから前記撮影画像内の対象までの距離を推定する距離推定手段と、
推定した前記距離と、当該距離を推定した前記対象の記憶されている前記照合情報と、に基づいて照合判定を行う照合手段と、
を備えた、
という構成をとる。
An information processing device according to one aspect of the present invention includes:
image processing means for extracting a feature amount of an object in a photographed image of an area before passage through a gate and storing matching information relating to matching of the target based on the feature amount;
distance estimating means for estimating a distance from the gate to an object in the captured image;
matching means for performing a matching determination based on the estimated distance and the stored matching information of the target for which the distance was estimated;
with
take the configuration.

また、本発明の一形態である情報処理システムは、
ゲートに対する通過前領域を撮影した撮影画像を取得する撮像手段と、
前記撮影画像内の対象の特徴量を抽出して、当該特徴量に基づく前記対象の照合に関する照合情報を記憶させる画像処理手段と、
前記ゲートから前記撮影画像内の対象までの距離を推定する距離推定手段と、
推定した前記距離と、当該距離を推定した前記対象の記憶されている前記照合情報と、に基づいて照合判定を行う照合手段と、
を備えた、
という構成をとる。
Further, an information processing system, which is one embodiment of the present invention,
an imaging means for acquiring a photographed image of the area before passing through the gate;
image processing means for extracting a feature amount of a target in the captured image and storing matching information relating to matching of the target based on the feature amount;
distance estimating means for estimating a distance from the gate to an object in the captured image;
matching means for performing a matching determination based on the estimated distance and the stored matching information of the target for which the distance was estimated;
with
take the configuration.

また、本発明の一形態であるプログラムは、
情報処理装置に、
ゲートの通過前領域を撮影した撮影画像内の対象の特徴量を抽出して、当該特徴量に基づく前記対象の照合に関する照合情報を記憶させる画像処理手段と、
前記ゲートから前記撮影画像内の対象までの距離を推定する距離推定手段と、
推定した前記距離と、当該距離を推定した前記対象の記憶されている前記照合情報と、に基づいて照合判定を行う照合手段と、
を実現させる、
という構成をとる。
Further, a program that is one embodiment of the present invention is
information processing equipment,
image processing means for extracting a feature amount of an object in a photographed image of an area before passage through a gate and storing matching information relating to matching of the target based on the feature amount;
distance estimating means for estimating a distance from the gate to an object in the captured image;
matching means for performing a matching determination based on the estimated distance and the stored matching information of the target for which the distance was estimated;
to realize
take the configuration.

また、本発明の一形態である情報処理方法は、
ゲートの通過前領域を撮影した撮影画像内の対象の特徴量を抽出して、当該特徴量に基づく前記対象の照合に関する照合情報を記憶させ、
前記ゲートから前記撮影画像内の対象までの距離を推定し、
推定した前記距離と、当該距離を推定した前記対象の記憶されている前記照合情報と、に基づいて照合判定を行う、
という構成をとる。
Further, an information processing method, which is one embodiment of the present invention, comprises:
extracting a feature amount of an object in a photographed image of an area before passing through a gate, and storing matching information relating to matching of the target based on the feature amount;
estimating a distance from the gate to an object in the captured image;
making a matching determination based on the estimated distance and the stored matching information of the target for which the distance was estimated;
take the configuration.

本発明は、以上のように構成されることにより、ゲートの円滑な通過を実現することができる情報処理装置を提供することができる。 ADVANTAGE OF THE INVENTION By being comprised as mentioned above, this invention can provide the information processing apparatus which can implement|achieve smooth passage of a gate.

本発明の実施形態1における顔認証システムの使用状況を示す図である。It is a figure which shows the usage condition of the face authentication system in Embodiment 1 of this invention. 本発明の実施形態1における顔認証システムの構成を示すブロック図である。1 is a block diagram showing the configuration of a face authentication system according to Embodiment 1 of the present invention; FIG. 図1に開示した顔認証システムによる撮像状況を示す図である。FIG. 2 is a diagram showing an imaging situation by the face authentication system disclosed in FIG. 1; FIG. 図1に開示した顔認証システムの使用状況を示す図である。FIG. 2 is a diagram showing usage of the face authentication system disclosed in FIG. 1; 図1に開示した顔認証システムによる処理動作を示すフローチャートである。2 is a flowchart showing processing operations by the face authentication system disclosed in FIG. 1; 図1に開示した顔認証システムによる処理動作を示すフローチャートである。2 is a flowchart showing processing operations by the face authentication system disclosed in FIG. 1; 本発明の実施形態2における顔認証システムの構成を示すブロック図である。It is a block diagram which shows the structure of the face authentication system in Embodiment 2 of this invention. 本発明の実施形態3における情報処理システムの構成を示すブロック図である。FIG. 10 is a block diagram showing the configuration of an information processing system according to Embodiment 3 of the present invention; 本発明の実施形態3における情報処理装置の構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of an information processing device according to Embodiment 3 of the present invention;

<実施形態1>
本発明の第1の実施形態を、図1乃至図6を参照して説明する。図1は、顔認証システムの使用状況を示す図である。図2は、顔認証システムの構成を示す図である。図3乃至図6は、顔認証システムの処理動作を説明するための図である。
<Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS. 1 to 6. FIG. FIG. 1 is a diagram showing usage of a face authentication system. FIG. 2 is a diagram showing the configuration of a face authentication system. 3 to 6 are diagrams for explaining the processing operation of the face authentication system.

[全体構成]
本発明における顔認証システム10(情報処理システム)は、オフィスやイベント会場などの特定場所において、人物(対象)の入退場を制限したり管理するために用いられるシステムである。例えば、顔認証システム10を構成する撮像装置Cは、人物の入退場の際に開閉されるゲート毎に、当該ゲートの配置箇所付近にそれぞれ設置されるものである。
[overall structure]
A face authentication system 10 (information processing system) according to the present invention is a system used to restrict or manage entry and exit of a person (object) in a specific place such as an office or an event venue. For example, the imaging device C that constitutes the face authentication system 10 is installed near each gate that is opened and closed when a person enters or exits.

図1に示す例では、複数のゲートGが並列に隣接して配置されており、図1の右側から各ゲートGに向かって、矢印に示す方向に人物が通行するよう構成されている。このため、各ゲートGに対する図1の右側領域は、人物がゲートを通過する前側の領域(通過前側領域)となっている。そして、各ゲートGの通過前側領域には、当該各ゲートGを通過しようとする人物が並んで通行する各レーンが、各ゲートGにそれぞれ対応して並列に位置している。なお、各レーンは、何らかの部材で仕切られていてもよく、仕切られていなくてもよい。また、本実施形態では、複数のゲートGが隣接して配置されている場合を例示しているが、ゲートGは1つだけであってもよい。 In the example shown in FIG. 1, a plurality of gates G are arranged in parallel and adjacent to each other, and people pass through in the direction indicated by the arrow from the right side of FIG. For this reason, the area on the right side of FIG. 1 with respect to each gate G is an area in front of the person passing through the gate (front area). In the area before passage of each gate G, lanes along which people who are going to pass through the gate G pass side by side are located in parallel corresponding to the respective gates G. As shown in FIG. Each lane may or may not be partitioned by some member. Also, in this embodiment, the case where a plurality of gates G are arranged adjacently is exemplified, but the number of gates G may be only one.

図1に示す状況において、本実施形態における顔認証システム10を構成する撮像装置Cは、対応する各ゲートG付近であり、各ゲートGに向かう人物から見て右側に設置されている。但し、撮像装置の設置位置は、図1に示す位置に限定されず、ゲートに向かって左側やゲートの上方など、いかなる位置に設置されていてもよい。なお、顔認証システム10は、各撮像装置Cの近辺に、表示装置Dも備えている。 In the situation shown in FIG. 1, the imaging device C that constitutes the face authentication system 10 in this embodiment is installed near each corresponding gate G and on the right side of the person heading to each gate G. As shown in FIG. However, the installation position of the imaging device is not limited to the position shown in FIG. 1, and may be installed in any position such as the left side facing the gate or above the gate. The face authentication system 10 also includes a display device D in the vicinity of each imaging device C. FIG.

そして、顔認証システム10は、装備している撮像装置CにてゲートGに向かう人物の画像を撮影する。そして、撮影画像に映る人物の顔画像から、かかる人物が予め登録された人物であるか否かを照合し、照合が成功すると、人物が通過可能なようゲートGを開く、という処理を行う。以下、顔認証システム10の構成について詳述する。 Then, the face authentication system 10 captures an image of a person heading to the gate G with the equipped imaging device C. Then, from the face image of the person appearing in the photographed image, it is collated whether or not the person is a pre-registered person, and if the collation is successful, the gate G is opened so that the person can pass through. The configuration of the face authentication system 10 will be described in detail below.

[顔認証システムの構成]
本実施形態における顔認証システム10は、撮像装置C(カメラ)及び表示装置D(ディスプレイ)と一体的に構成された演算装置及び記憶装置を有する情報処理装置である。逆に言うと、撮像装置Cに、顔認証処理を行う演算装置及び記憶装置を有する情報処理装置と表示装置Dが搭載されている。但し、顔認証システム10は、必ずしも撮像装置Cや表示装置Dと一体的に構成されていることに限定されない。例えば、撮像装置Cと表示装置Dと撮影画像を処理する情報処理装置とが別々の装置にて構成されており、別々の場所に設置されていてもよい。
[Configuration of face authentication system]
The face authentication system 10 according to the present embodiment is an information processing device having an arithmetic device and a storage device integrally configured with an imaging device C (camera) and a display device D (display). To put it the other way around, the imaging device C is equipped with an information processing device having an arithmetic device and a storage device for performing face authentication processing, and a display device D. FIG. However, the face authentication system 10 is not necessarily limited to being configured integrally with the imaging device C and the display device D. FIG. For example, the imaging device C, the display device D, and the information processing device that processes the captured image may be configured as separate devices and installed at separate locations.

具体的に、顔認証システム10は、図2に示すように、撮像装置C及び表示装置Dを備えると共に、演算装置がプログラムを実行することで構築された、特徴量抽出部11と、距離計測部12と、照合部13と、ゲート制御部14と、を備えている。また、顔認証システム10は、記憶装置に構築された、特徴量記憶部15と、照合データ記憶部16と、を備えている。 Specifically, as shown in FIG. 2, the face authentication system 10 includes an imaging device C and a display device D, and a feature amount extraction unit 11 constructed by an arithmetic device executing a program, and a distance measurement A unit 12 , a matching unit 13 , and a gate control unit 14 are provided. The face authentication system 10 also includes a feature quantity storage unit 15 and a matching data storage unit 16 built in a storage device.

上記撮像装置C(撮像手段)は、ゲートGに対する通過前側領域、つまり、対応するレーンのゲート前領域の撮影画像を、所定のフレームレートで取得するカメラ及びカメラ制御部を備えたものである。そして、撮像装置Cは、例えば図1に示すように、符号Ca線で挟まれた範囲が撮影領域となっている。例えば、図1のようにレーンに3人の人物P10,P11,P12が存在している場合には、撮像装置Cで撮影した撮影画像は図3(a)のようになる。なお、撮影画像は、撮像装置Cに対する遠近方向の予め設定された距離の範囲で、概ね焦点が合うよう設定されている。 The image pickup device C (image pickup means) includes a camera and a camera control unit for acquiring a photographed image of the front side area of the gate G, that is, the front gate area of the corresponding lane at a predetermined frame rate. As shown in FIG. 1, for example, the imaging apparatus C has an imaging area defined by the Ca line. For example, when there are three persons P10, P11, and P12 in the lane as shown in FIG. 1, the captured image captured by the imaging device C is as shown in FIG. 3(a). The photographed image is set so as to be generally in focus within a preset distance range with respect to the imaging device C in the perspective direction.

上記特徴量抽出部11(画像処理手段)は、撮像装置Cにて撮影画像が撮影されると、撮影画像内の人物を抽出して、まず人物の特徴量を抽出する処理を行う。具体的に、特徴量抽出部11は、撮影画像内の人物を抽出して、抽出された全ての人物を対象とし、かかる人物の顔領域から照合に必要な特徴量を生成する。なお、特徴量は、例えば後に照合部13にて、予め照合データ記憶部16に登録された人物の特徴量との類似度といった照合スコアを算出して照合処理を行うための情報である。なお、特徴量は、既存の顔照合技術で用いられる特徴量であってもよく、他の方法によって算出される特徴量であってもよい。 When the photographed image is captured by the imaging device C, the feature quantity extraction unit 11 (image processing means) extracts a person in the photographed image, and first performs processing for extracting the person's feature quantity. Specifically, the feature amount extraction unit 11 extracts persons in the captured image, targets all the extracted persons, and generates the feature amounts necessary for matching from the face regions of the persons. Note that the feature amount is information for later performing matching processing by calculating a matching score, for example, similarity to the feature amount of a person registered in advance in the matching data storage unit 16 in the matching unit 13 . Note that the feature amount may be a feature amount used in an existing face matching technique, or may be a feature amount calculated by another method.

そして、特徴量抽出部11は、抽出した特徴量を、人物の照合に関する情報つまり照合処理に用いる情報(照合情報)として特徴量記憶部15に記憶しておく。このとき、特徴量は、撮影画像内の人物を識別する情報と関連付けて特徴量記憶部15に記憶される。なお、撮影画像内の人物は、後続の撮影画像内で追跡されることもあるが、その場合には、追跡された人物と特徴量記憶部15内の特徴量とが関連付けられることとなる。 Then, the feature amount extraction unit 11 stores the extracted feature amount in the feature amount storage unit 15 as information (matching information) used for matching of a person, that is, information related to person matching. At this time, the feature amount is stored in the feature amount storage unit 15 in association with information identifying the person in the captured image. A person in a captured image may be tracked in a subsequent captured image. In that case, the tracked person and the feature amount in the feature amount storage unit 15 are associated with each other.

また、特徴量抽出部11は、1人の人物に対して、異なる撮影画像内からそれぞれ特徴量を抽出して、複数の特徴量を記憶してもよい。また、特徴量抽出部11は、異なる撮影画像内から特徴量を抽出した場合に、1つの特徴量のみを記憶してもよい。つまり、同一の人物について撮影画像が取得される毎に特徴量が抽出された場合には、1つの特徴量のみを更新して記憶してもよい。例えば、抽出された特徴量の品質を判定し、最も高品質な1つの特徴量のみを人物に関連付けて記憶してもよい。 Further, the feature amount extraction unit 11 may extract feature amounts from different photographed images for one person and store a plurality of feature amounts. Moreover, the feature amount extraction unit 11 may store only one feature amount when the feature amount is extracted from different photographed images. That is, if a feature amount is extracted each time a photographed image of the same person is acquired, only one feature amount may be updated and stored. For example, the quality of the extracted feature amounts may be determined, and only one feature amount with the highest quality may be stored in association with a person.

なお、特徴量抽出部11は、後述する照合部13を用いて照合処理を行ってもよい。この場合、特徴量抽出部11は、照合部13に照合指示を出し、上述したように抽出した撮影画像内の人物の特徴量と、予め登録された人物と、の照合処理を行う。そして、特徴量抽出部11は、照合部13による照合結果を取得し、かかる照合結果を、人物の照合に関する照合情報として特徴量記憶部15に記憶してもよい。このとき、特徴量は、撮影画像内の人物を識別する情報と関連付けて特徴量記憶部15に記憶される。なお、撮影画像内の人物は、後続の撮影画像内で追跡されることもあるが、その場合には、追跡された人物と特徴量記憶部15内の照合結果とが関連付けられることとなる。このとき、複数の撮影画像に対して特徴量の抽出及び照合処理が行われてもよく、その場合、1つの照合結果のみが更新されて人物に関連づけて記憶されてもよい。 Note that the feature quantity extraction unit 11 may perform matching processing using a matching unit 13, which will be described later. In this case, the feature amount extraction unit 11 issues a matching instruction to the matching unit 13, and performs matching processing between the feature amount of the person in the captured image extracted as described above and the person registered in advance. Then, the feature amount extraction unit 11 may acquire the matching result from the matching unit 13 and store the matching result in the feature amount storage unit 15 as matching information related to person matching. At this time, the feature amount is stored in the feature amount storage unit 15 in association with information identifying the person in the captured image. A person in a captured image may be tracked in a subsequent captured image. In that case, the tracked person is associated with the matching result in the feature amount storage unit 15 . At this time, feature amount extraction and matching processing may be performed on a plurality of captured images, and in that case, only one matching result may be updated and stored in association with the person.

上記距離計測部12(距離推定手段)は、上述したように特徴量を抽出した撮影画像内の人物までのゲートGからの距離を計測する。このとき、本実施形態では、撮影画像内の人物の画像部分を用いて、ゲートGから人物までの距離を計測する。具体的には、以下のようにして距離を計測する。 The distance measuring unit 12 (distance estimating means) measures the distance from the gate G to the person in the photographed image from which the feature amount is extracted as described above. At this time, in this embodiment, the distance from the gate G to the person is measured using the image portion of the person in the captured image. Specifically, the distance is measured as follows.

距離計測部12は、まず、撮影画像内の人物までの距離を計測するために必要な基準値を設定する。具体的に、距離計測部12は、撮影画像内から処理対象となる人物の顔領域の画像部分を抽出する。人物の顔領域の抽出は、例えば、動く人物の全体像に対する位置や色などから判定して行う。そして、距離計測部12は、顔領域の画像部分から、人物の属性を判別する属性解析処理を行う。ここで、人物の属性とは、例えば、性別、年齢(年代、大人、子供)、人種、などである。 The distance measurement unit 12 first sets a reference value necessary for measuring the distance to the person in the captured image. Specifically, the distance measurement unit 12 extracts the image portion of the face area of the person to be processed from within the captured image. Extraction of a person's face area is performed, for example, by judging from the position, color, etc. with respect to the whole image of a moving person. Then, the distance measurement unit 12 performs an attribute analysis process for determining attributes of the person from the image portion of the face area. Here, the attributes of a person are, for example, sex, age (age, adult, child), race, and the like.

上記属性解析処理は、例えば、顔領域の画像部分から属性を判別するために必要な情報である属性判別情報を抽出し、かかる抽出した属性判別情報と予め登録されている属性判別基準情報とを比較して、人物の属性を判別する。ここで、属性判別情報は、例えば、性別や年齢といった属性毎に人物の顔領域に一般的に表れる身体的特徴を表す情報である。なお、人物の性別や年齢(年代)といった属性を判別する属性解析処理は、既存技術で実現可能であるため、かかる処理についての詳細な説明は省略する。また、判別可能な属性は、上述した属性に限定されず、いかなる属性であってもよい。 In the attribute analysis process, for example, attribute discrimination information, which is information necessary to discriminate attributes from the image portion of the face region, is extracted, and the extracted attribute discrimination information and pre-registered attribute discrimination reference information are combined. A person's attribute is determined by comparison. Here, the attribute discrimination information is, for example, information representing physical characteristics generally appearing in a person's face region for each attribute such as gender and age. Attribute analysis processing for determining attributes such as gender and age (age) of a person can be realized with existing technology, so detailed description of such processing will be omitted. Also, the distinguishable attribute is not limited to the attributes described above, and may be any attribute.

そして、距離計測部12は、判別した人物の属性に対応する基準値を設定する。ここで、基準値は、顔認証システム10に装備された記憶装置に予め登録されており、例えば、本実施形態では、人物の両目の間の距離を表す目間距離の基準値が、属性毎に登録されている。一例として、「男性」といった属性の基準値である目間距離としてある数値が登録されている場合に、「女性」といった属性の基準値である目間距離は、男性の基準値よりも小さい値が設定されている。また、例えば、年齢が15歳から60代までの「大人」といった属性の基準値である目間距離としてある数値が登録されている場合に、年齢が15歳未満の「子供」といった属性の基準値である目間距離は、大人の基準値よりも小さい値が設定されている。このように、基準値は、人物の属性の一般的な体格に応じた値となっている。そして、距離計測部12は、撮影画像内から抽出した人物について判別した属性に対応して登録されている基準値を、当該人物の基準値として設定する。 Then, the distance measurement unit 12 sets a reference value corresponding to the determined attribute of the person. Here, the reference value is registered in advance in a storage device installed in the face authentication system 10. For example, in the present embodiment, the reference value of the inter-eye distance representing the distance between the eyes of a person is set for each attribute. registered with. As an example, when a certain numerical value is registered as the distance between eyes, which is the reference value for an attribute such as "male", the distance between eyes, which is the reference value for an attribute such as "female", is smaller than the reference value for men. is set. Also, for example, if a certain numerical value is registered as the inter-eye distance, which is the reference value for the attribute "adult" age from 15 to 60 years old, the attribute reference for age under 15 "child" The inter-eye distance, which is the value, is set to a value smaller than the standard value for adults. In this way, the reference value is a value according to the general build of a person's attributes. Then, the distance measurement unit 12 sets a reference value registered corresponding to the attribute determined for the person extracted from the photographed image as the reference value of the person.

さらに、距離計測部12は、上述したように人物に設定した基準値を用いて、当該人物までの距離を計測する。具体的に、距離計測部12は、まず、撮影画像内の人物の特徴を表す対象情報として、当該人物の顔領域の画像部分から人物の両目の間の距離を表す目間距離を検出する。例えば、図3(b)の符号d10,d11,d12のように、撮影画像内の各人物P10,P11,P12の各目間距離を検出する。そして、検出した各目間距離d10,d11,d12を、各人物P10,P11,P12に設定した基準値と比較して、ゲートGから各人物までの距離を計測する。例えば、人物に設定した基準値に対する、当該人物から検出した目間距離の差や当該差の割合から、ゲートGから人物までの距離を計測する。なお、距離計測部12は、撮影画像内の人物の相対的な距離、つまり、ゲートGに対する順番、をゲートGに対する距離として計測してもよい。 Furthermore, the distance measurement unit 12 measures the distance to the person using the reference value set for the person as described above. Specifically, the distance measurement unit 12 first detects the distance between the eyes of the person from the image portion of the face area of the person as the target information representing the characteristics of the person in the captured image. For example, as indicated by d10, d11, and d12 in FIG. 3B, the inter-eye distances of the persons P10, P11, and P12 in the captured image are detected. Then, the detected inter-eye distances d10, d11, d12 are compared with the reference values set for each person P10, P11, P12, and the distance from the gate G to each person is measured. For example, the distance from the gate G to the person is measured from the difference in the inter-eye distance detected from the person and the ratio of the difference with respect to the reference value set for the person. Note that the distance measurement unit 12 may measure the relative distance of the person in the captured image, that is, the order with respect to the gate G, as the distance with respect to the gate G.

ここで、ゲートGから人物P10,P11,P12までの距離計測の一例を説明する。図1の例では、ゲートGに向かって人物P10,P11,P12の順番で並んでおり、撮像画像は図3(b)のように撮影される。このとき、各人物P10,P11,P12の体格や顔の大きさがほぼ同一であれば、各人物P10,P11,P12の各目間距離d10,d11,d12は、一般的にd10>d11>d12となる。一方で、仮に人物P10が子供であり、人物P11,P12が大人である場合には、一般的に子供の顔は小さく、目間距離が短いと考えられ、実際に計測した目間距離も、d11>d12>d10となってしまう。このような状況で、本実施形態では、人物P10は属性が「子供」と判別され、小さい値の基準値が設定され、かかる基準値と検出した目間距離d10とを用いて距離が計測される。そして、人物P11,P12は属性が「大人」と判別され、子供の基準値よりも大きい値の基準値が設定され、かかる基準値と検出した目間距離d11,d12とを用いて距離が計測される。これにより、図4に示すように、ゲートGに対する実際の順番と同じく、ゲートGに対して人物P10,P11,P12の順番となるよう各人物までの距離D10,D11,D12を計測できる。 Here, an example of distance measurement from the gate G to the persons P10, P11, P12 will be described. In the example of FIG. 1, the persons P10, P11, and P12 are arranged in order toward the gate G, and the captured image is taken as shown in FIG. 3(b). At this time, if the physiques and face sizes of the persons P10, P11, and P12 are substantially the same, the inter-eye distances d10, d11, and d12 of the persons P10, P11, and P12 are generally d10>d11>. d12. On the other hand, if the person P10 is a child and the persons P11 and P12 are adults, the face of a child is generally considered to be small and the distance between the eyes is short. d11>d12>d10. Under such circumstances, in the present embodiment, the attribute of the person P10 is determined to be "child", a small reference value is set, and the distance is measured using this reference value and the detected inter-eye distance d10. be. The attributes of the persons P11 and P12 are determined to be "adult", a reference value larger than that of a child is set, and the distance is measured using this reference value and the detected inter-eye distances d11 and d12. be done. As a result, as shown in FIG. 4, the distances D10, D11, and D12 to each person can be measured so that the persons P10, P11, and P12 are in the same order as the actual order with respect to the gate G.

そして、距離計測部12は、計測した距離を撮影画像内の人物と関連付けることにより、当該距離が、特徴量記憶部15に記憶されている同一人物の特徴量にも関連付けられることとなる。なお、撮影画像内の人物は、後続の撮影画像内で追跡されることもあるが、その場合には追跡された人物に対して上記同様に距離が計測され、当該人物に関連付ける距離を更新する。なお、時間的に前後する撮影画像内における人物の対応付けは、特徴点の追跡などによって実現可能である。 By associating the measured distance with the person in the captured image, the distance measurement unit 12 associates the distance with the feature amount of the same person stored in the feature amount storage unit 15 . The person in the captured image may be tracked in the subsequent captured image. In that case, the distance to the tracked person is measured in the same manner as described above, and the distance associated with the person is updated. . It should be noted that the association of persons in captured images that change in time can be realized by tracking feature points or the like.

なお、距離計測部12による目間距離の検出方法は上述した方法に限定されず、いかなる方法で検出してもよい。また、距離計測部12は、目間距離ではなく、人物の他の部位の大きさや他の特徴を対象情報として検出して、距離を計測してもよい。この場合、上述した基準値も、対象情報に対応した値となる。 The method of detecting the inter-eye distance by the distance measuring unit 12 is not limited to the method described above, and any method may be used. Further, the distance measurement unit 12 may detect the size of other parts of the person or other characteristics as object information instead of the distance between the eyes, and measure the distance. In this case, the reference value described above also becomes a value corresponding to the target information.

ここで、距離計測部12は、必ずしもゲートGから人物までの距離を計測することに限定されない。例えば、距離計測部12は、ゲートに対する人物間の相対的な位置関係を推定してもよい。一例として、距離計測部12は、上述した目間距離などの対象情報と基準値とに基づいて、各人物のゲートまでの近さ、つまり、ゲートGに対する人物間の遠近関係を推定してもよい。 Here, the distance measurement unit 12 is not necessarily limited to measuring the distance from the gate G to the person. For example, the distance measurement unit 12 may estimate the relative positional relationship between the persons with respect to the gate. As an example, the distance measurement unit 12 estimates the proximity of each person to the gate, that is, the perspective relationship between the persons with respect to the gate G, based on the above-described object information such as the distance between the eyes and the reference value. good.

上記照合部13(照合手段)は、撮影画像内の人物と、予め登録された人物と、の照合処理を行う。このとき、照合部13は、上述したように計測した人物までの距離に基づいて照合処理を行う。例えば、照合部13は、ゲートGの直前に設定されたゲートGから予め設定された距離に位置する所定範囲に人物が位置し、かかる人物が撮影画像内でゲートGに対して最も近くに位置する場合に、かかる人物の照合処理を行う。なお、照合部13は、単にゲートGの直前に設定されたゲートGから予め設定された距離に位置する所定範囲に人物が位置している場合に、かかる人物の照合処理を行ってもよく、あるいは、人物までの距離に応じて他の基準に基づいてかかる人物の照合処理を行ってもよい。また、照合部13は、上述したように距離計測部12がゲートGに対する人物間の相対的な位置関係のみを推定している場合には、かかる位置関係からゲートGに最も近い人物に対して照合処理を行ってもよい。 The collation unit 13 (collation means) performs collation processing between the person in the photographed image and the person registered in advance. At this time, the matching unit 13 performs matching processing based on the distance to the person measured as described above. For example, the matching unit 13 determines that a person is located in a predetermined range located at a preset distance from a gate G that is set immediately before the gate G, and that person is located closest to the gate G in the captured image. If so, the matching process for the person is performed. Note that the collation unit 13 may perform collation processing for a person simply when the person is located within a predetermined range located at a preset distance from the gate G set immediately before the gate G. Alternatively, matching processing for a person may be performed based on other criteria according to the distance to the person. In addition, when the distance measurement unit 12 estimates only the relative positional relationship between the persons with respect to the gate G as described above, the matching unit 13 determines the person closest to the gate G from the positional relationship. A matching process may be performed.

照合部13による照合処理は、上述したように距離に基づいて処理対象となった人物の特徴量記憶部15に記憶されている特徴量を用いて行う。つまり、照合部13は、撮像画像内の人物の顔領域から新たに特徴量の生成は行わず、特徴量記憶部15に記憶されている特徴量と、予め照合データ記憶部16に登録された人物の特徴量と、の類似度といった照合スコアを算出し、照合スコアがしきい値よりも高いか否か判定することで照合を行う。照合スコアがしきい値より高い場合には、照合成功とし、ゲートGを通過しようとしている人物が、予め登録されている人物であると判断する。なお、照合方法はいかなる方法であってもよい。 The matching process by the matching unit 13 is performed using the feature amount stored in the feature amount storage unit 15 of the person who is the processing target based on the distance as described above. That is, the collation unit 13 does not generate a new feature amount from the face region of the person in the captured image, and compares the feature amount stored in the feature amount storage unit 15 with the feature amount registered in the collation data storage unit 16 in advance. A matching score, which is the degree of similarity between the person's feature quantity and the similarity, is calculated, and matching is performed by determining whether or not the matching score is higher than a threshold value. If the collation score is higher than the threshold value, the collation is considered successful, and it is determined that the person who is about to pass through the gate G is a pre-registered person. It should be noted that any collation method may be used.

なお、照合部13は、距離に基づいて処理対象となった人物が、上述したように既に特徴量抽出部11からの指示によって照合処理が行われており、特徴量記憶部15に照合結果が記憶されている場合には、照合結果の確認だけを行う。つまり、照合部13は、距離によって処理対象となった人物について記憶されている照合情報である照合結果の成否を調べ、照合が成功しているか否かを判定する。 Note that the matching unit 13 has already performed the matching process on the person to be processed based on the distance based on the instruction from the feature amount extraction unit 11 as described above, and the feature amount storage unit 15 stores the matching result. If it is stored, only the collation result is confirmed. That is, the collation unit 13 examines the success or failure of the collation result, which is the collation information stored for the person to be processed according to the distance, and determines whether or not the collation is successful.

上記ゲート制御部14(ゲート制御手段)は、まず、上記照合部13による照合結果に基づいて、ゲートGに対する人物の通過可否を判定する。具体的には、照合部13による照合が成功した人物に対しては通過可能と判定する。また、ゲート制御部14は、照合結果つまり照合の成否を表示装置Dに表示する機能を有する。さらに、ゲート制御部14は、ゲートGの開閉を行うゲート制御機能も有しており、通過可能と判断した人物に対してはゲートGを開くよう制御する。 The gate control unit 14 (gate control means) first determines whether or not a person can pass through the gate G based on the collation result of the collation unit 13 . Specifically, it is determined that a person for whom collation by the collating unit 13 is successful is passable. Further, the gate control unit 14 has a function of displaying on the display device D the result of collation, that is, the success or failure of the collation. Further, the gate control unit 14 also has a gate control function of opening and closing the gate G, and controls the gate G to be opened for a person determined to be able to pass through.

なお、上記表示装置Dは、ゲートGを通過しようとする人物が視認可能なよう、当該ゲートGの通過前側領域に表示面を向けて配置されている。但し、表示装置Dは、必ずしも装備されていなくてもよい。 The display device D is arranged with its display surface facing the front area of the gate G so that a person who is about to pass through the gate G can see it. However, the display device D may not necessarily be provided.

[動作]
次に、上述した顔認証システム10の動作を、図5乃至図6のフローチャートを参照して説明する。ここでは、ゲートGに対応する顔認証システム10の動作について説明し、ゲートGに対して人物が図3及び図4に示すように並んでいる場合を一例に説明する。
[motion]
Next, the operation of the face authentication system 10 described above will be described with reference to the flow charts of FIGS. 5 and 6. FIG. Here, the operation of the face authentication system 10 corresponding to the gate G will be described, and the case where people are lined up for the gate G as shown in FIGS. 3 and 4 will be described as an example.

ゲートGに対応する撮像装置Cは、ゲートGの通過前側領域の画像を撮影し続ける。そして、顔認証システム10は、撮影した撮影画像に対して、常に以下の処理を行う。 The imaging device C corresponding to the gate G continues to capture the image of the region on the front side of the gate G. Then, the face authentication system 10 always performs the following processing on the captured image.

まず、特徴量抽出部11が、撮影画像内から処理対象となる人物(対象)P10,P11,P12を抽出する(ステップS1)。そして、特徴量抽出部11は、撮影画像の状況から、抽出した人物の特徴量を抽出可能であれば(ステップS2でYes)、かかる人物の顔領域から照合に必要な特徴量を生成する(ステップS3)。そして、特徴量抽出部11は、抽出した特徴量を撮影画像内の人物と関連付けて特徴量記憶部15に記憶しておく。なお、撮影画像に人物の顔領域が鮮明に写っていなかったり、顔の正面が映っていないなど、撮影画像から人物の特徴量を十分に生成することができない場合には(ステップS2でNo)、後の撮影画像に対して特徴量の生成を行う。 First, the feature amount extraction unit 11 extracts persons (objects) P10, P11, and P12 to be processed from within the photographed image (step S1). Then, if the feature amount of the extracted person can be extracted from the situation of the captured image (Yes in step S2), the feature amount extraction unit 11 generates the feature amount necessary for matching from the face region of the person ( step S3). Then, the feature amount extraction unit 11 stores the extracted feature amount in the feature amount storage unit 15 in association with the person in the captured image. Note that if the captured image does not clearly show the face area of the person or the front of the face is not captured, or if the feature amount of the person cannot be sufficiently generated from the captured image (No in step S2). , the feature amount is generated for the subsequent captured image.

続いて、距離計測部12が、特徴量を抽出した撮影画像内の人物までのゲートGからの距離を計測する(ステップS4)。ここで、距離計測部12による距離を計測する処理を、図6のフローチャートを参照して説明する。 Subsequently, the distance measuring unit 12 measures the distance from the gate G to the person in the photographed image from which the feature amount has been extracted (step S4). Here, the process of measuring the distance by the distance measuring unit 12 will be described with reference to the flowchart of FIG.

距離計測部12は、撮影画像内の人物の顔領域の画像部分に対して属性解析処理を行い、人物の属性を判別する。例えば、図1及び図3の例では、人物P10の属性を子供、人物P11,P12の属性を大人、と判別したとする。すると、距離計測部12は、判別した人物の属性に対応して予め顔認証システム10に記憶されている基準値を、かかる人物の基準値として設定する(ステップS11)。例えば、図3及び図4の例では、人物P10には、子供に対応する基準値を設定し、人物P11,P12には、大人に対応する基準値を設定する。 The distance measurement unit 12 performs an attribute analysis process on the image portion of the person's face area in the captured image to determine the person's attribute. For example, in the examples of FIGS. 1 and 3, it is assumed that the attribute of the person P10 is determined to be child, and the attributes of the persons P11 and P12 are determined to be adults. Then, the distance measuring unit 12 sets a reference value stored in advance in the face authentication system 10 corresponding to the determined attribute of the person as the reference value of the person (step S11). For example, in the examples of FIGS. 3 and 4, a reference value corresponding to a child is set for the person P10, and a reference value corresponding to an adult is set to the persons P11 and P12.

続いて、距離計測部12は、撮影画像内の人物のゲートGまでの距離を計測するために必要な対象情報としての人物の特徴となる所定部位の大きさ、ここでは、人物の目間距離を検出する(ステップS12)。例えば、各人物P10,P11,P12の各目間距離を、図3(b)の符号d10,d11,d12のように検出する。 Subsequently, the distance measurement unit 12 calculates the size of a predetermined part that is characteristic of the person as target information necessary for measuring the distance to the gate G of the person in the photographed image, here, the distance between the eyes of the person. is detected (step S12). For example, the inter-eye distances of the persons P10, P11 and P12 are detected as indicated by d10, d11 and d12 in FIG. 3(b).

そして、距離計測部12は、上述したように各人物P10,P11,P12に設定した基準値と、各人物P10,P11,P12の目間距離d10,d11,d12とを、人物毎に比較して、ゲートGから各人物P10,P11,P12までの距離を計測する(ステップS13)。例えば、図3(b)の例では、3人のうちゲートから2番目に人物P11の目間距離d11が最も大きく映っているが、各人物P10,P11,P12に設定された基準値が異なるため、ゲートGに対する実際の順番と同じく、図4に示すように人物P10,P11,P12の順番となるよう、各人物までの距離D10,D11,D12が計測される。 Then, the distance measuring unit 12 compares the reference value set for each of the persons P10, P11, P12 as described above with the inter-eye distances d10, d11, d12 of each of the persons P10, P11, P12 for each person. Then, the distances from the gate G to each person P10, P11, P12 are measured (step S13). For example, in the example of FIG. 3B, the inter-eye distance d11 of the person P11 is the second from the gate among the three persons, but the reference values set for the persons P10, P11, and P12 are different. Therefore, the distances D10, D11, and D12 to each person are measured so that the order of the persons P10, P11, and P12 is the same as the actual order with respect to the gate G, as shown in FIG.

続いて、照合部13は、上述したように計測した各人物P10,P11,P12までの距離に基づいて、各人物の照合処理を行う。このとき、照合部13は、ゲートGの直前に設定されたゲートGから予め設定された距離に人物が位置し、かかる人物が撮影画像内でゲートGに対して最も近くに位置する場合に、かかる人物の照合処理を行う(ステップS5でYes、ステップS6)。このため、図4の例では、ゲートGに対して最も近い人物P10の照合処理を行う。具体的に、照合部13は、照合処理の対象となる撮影画像内の人物に関連付けられて特徴量記憶部15に記憶されている特徴量と、予め照合データ記憶部16に登録された人物の特徴量と、の類似度といった照合スコアを算出し、照合スコアがしきい値よりも高いか否か判定することで行う(ステップS6)。照合スコアがしきい値より高い場合には、照合成功とし(ステップS7でYes)、ゲートGを通過しようとしている人物が、予め登録されている人物であると判断する。 Subsequently, the matching unit 13 performs matching processing for each person based on the distance to each person P10, P11, P12 measured as described above. At this time, when the person is located at a preset distance from the gate G set immediately before the gate G, and the person is located closest to the gate G in the photographed image, the matching unit 13 Such person verification processing is performed (Yes in step S5, step S6). Therefore, in the example of FIG. 4, the person P10 closest to the gate G is collated. Specifically, the collation unit 13 compares the feature amount stored in the feature amount storage unit 15 in association with the person in the captured image to be collated, and the person registered in the collation data storage unit 16 in advance. This is performed by calculating a matching score, which is the degree of similarity between the feature amount and, and determining whether or not the matching score is higher than a threshold value (step S6). If the collation score is higher than the threshold value, the collation is considered successful (Yes in step S7), and it is determined that the person who is about to pass through the gate G is a pre-registered person.

照合部13による照合処理の結果、ゲートGの直前に位置する人物P10の照合に成功すると(ステップS7でYes)、ゲート制御部14がゲートGに対する人物P10の通過を許可し、ゲートGを開くよう制御する(ステップS8)。このとき、ゲート制御部14は、通過可否を表示装置Dに表示する。 As a result of the collation processing by the collation unit 13, when the person P10 positioned in front of the gate G is successfully collated (Yes in step S7), the gate control unit 14 permits the person P10 to pass through the gate G and opens the gate G. (step S8). At this time, the gate control unit 14 displays on the display device D whether or not the passage is permitted.

以上のように、本実施形態の顔認証システム10によると、ゲートGの通過前領域において事前に人物の顔領域から特徴量を抽出しておき、ゲート直前に照合処理を行うため、人物に対して適切にゲートの開閉を行うことができる。その結果、人物によるゲートGの円滑な通過を実現することができる。 As described above, according to the face authentication system 10 of the present embodiment, the feature amount is extracted in advance from the face area of the person in the area before passing through the gate G, and the matching process is performed immediately before the gate. The gate can be properly opened and closed by As a result, smooth passage through the gate G by a person can be realized.

また、ゲートGの直前だけでなく、人物がゲートGに向かう任意のタイミングで撮影した撮影画像から人物の特徴量を抽出して記憶しているため、信頼性の高い特徴量を抽出でき、精度よく照合を行うことができる。その結果、人物によるゲートGの円滑な通過を実現することができる。 In addition, since the feature amount of the person is extracted and stored from the photographed image taken not only immediately before the gate G but also at any timing when the person is heading toward the gate G, it is possible to extract the feature amount with high reliability. Good matching can be done. As a result, smooth passage through the gate G by a person can be realized.

なお、上記では、ゲートGを通過しようとしている対象が人物である場合を例示したが、人物に限らずいかなる物体でもよい。例えば、荷物といった物体であってもよい。これに応じて、上述した基準値や対象の特徴を表す対象情報といったゲートGからの距離を計測するために用いる情報は、物体から検出できるいかなる特徴を表す情報であってもよい。また、照合処理を行う際には、物体から検出できるいかなる特徴量を利用してもよい。 In the above, the case where the target who is about to pass through the gate G is a person is exemplified. For example, it may be an object such as luggage. Accordingly, the information used to measure the distance from the gate G, such as the reference value described above and the object information representing the characteristics of the object, may be information representing any characteristics that can be detected from the object. Moreover, any feature amount that can be detected from an object may be used when performing the matching process.

<実施形態2>
次に、本発明の第2の実施形態を、図7を参照して説明する。図7は、顔認証システムの構成を示すブロック図である。
<Embodiment 2>
A second embodiment of the present invention will now be described with reference to FIG. FIG. 7 is a block diagram showing the configuration of the face authentication system.

本実施形態における顔認証システム10は、上述した実施形態1におけるものとほぼ同様の構成であるが、ゲートGから人物までの距離を、特徴量を抽出するための撮影画像を用いずに計測するという構成である。以下、主に実施形態1とは異なる構成について詳述する。 The face authentication system 10 of this embodiment has almost the same configuration as that of the above-described first embodiment, but measures the distance from the gate G to the person without using the captured image for extracting the feature amount. This is the configuration. Configurations different from those of the first embodiment will be mainly described in detail below.

図7に示すように、本実施形態における顔認証システム10は、実施形態1で説明した顔認証システム10に加えて、測距装置Eを備えている。測距装置Eは、例えば、赤外線深度センサであり、上述したように人物の特徴量を抽出するための撮影画像とは異なる情報である計測した深度を用いて、ゲートGの通過前領域に存在する人物までの距離を計測可能な装置である。 As shown in FIG. 7, the face authentication system 10 of this embodiment includes a distance measuring device E in addition to the face authentication system 10 described in the first embodiment. The distance measuring device E is, for example, an infrared depth sensor, and uses the measured depth, which is information different from the captured image for extracting the feature amount of the person as described above, to detect the presence in the area before the passage of the gate G. It is a device that can measure the distance to a person who does.

測距装置Eは、例えば、対応する各ゲートG付近であり、撮像装置Cと同様に各ゲートGに向かう人物から見て右側やゲートの上方などに設置されている。また、測距装置Eは、1台の装置で構成されるものであれば1台が設置され、複数台で構成されるものであれば複数台が設置される。なお、測距装置Eは、他の方法によって人物までの距離を計測する装置であってもよい。 The distance measuring device E is, for example, near each corresponding gate G, and is installed on the right side or above the gate when viewed from the person heading to each gate G, similar to the imaging device C. Further, if the distance measuring device E is composed of one device, one unit is installed, and if it is composed of multiple units, a plurality of units is installed. Note that the distance measuring device E may be a device that measures the distance to the person by another method.

そして、本実施形態における距離計測部12は、測距装置Eから計測した深度を取得し、撮影画像内の人物と関連付ける。例えば、距離計測部12は、ゲートGの通過前領域における位置毎の深度を特定し、撮影画像の位置と対応づける。これにより、撮影画像内に位置する各人物までの距離をそれぞれ特定することができ、当該人物に距離を関連付けることができる。このようにして、実施形態1と同様に、計測した距離を、特徴量記憶部15に記憶されている同一人物の特徴量にも関連付けることができる。 Then, the distance measurement unit 12 in this embodiment acquires the measured depth from the distance measuring device E and associates it with the person in the captured image. For example, the distance measuring unit 12 identifies the depth for each position in the area before passing the gate G, and associates it with the position of the captured image. Thereby, the distance to each person positioned in the captured image can be specified, and the distance can be associated with the person. In this manner, the measured distance can be associated with the feature amount of the same person stored in the feature amount storage unit 15, as in the first embodiment.

なお、撮影画像内の人物は、後続の撮影画像内で追跡されることもあるが、その場合には、追跡された人物に対して上述同様に距離が計測され、当該人物に関連付ける距離を更新する。なお、時間的に前後する撮影画像内における人物の対応付けは、特徴点の追跡などによって実現可能である。 The person in the captured image may be tracked in the subsequent captured image. In that case, the distance to the tracked person is measured in the same manner as described above, and the distance associated with the person is updated. do. It should be noted that the association of persons in captured images that change in time can be realized by tracking feature points or the like.

そして、本実施形態における照合部13は、上述したように計測した人物までの距離に基づいて照合処理を行う。かかる照合処理は実施形態1と同様であり、ゲートGの直前に人物が位置したときに、かかる人物について記憶されている特徴量を読み出して照合処理を行う。 Then, the collation unit 13 in this embodiment performs collation processing based on the distance to the person measured as described above. This collation processing is the same as in the first embodiment, and when a person is positioned in front of the gate G, the feature amount stored for the person is read out and collation processing is performed.

ここで、上記測距装置E及び距離計測部12は、必ずしもゲートGから人物までの距離を計測することに限定されない。例えば、測距装置E及び距離計測部12は、ゲートに対する人物間の相対的な位置関係を推定してもよい。つまり、測距装置E及び距離計測部12は、ゲートGに対する人物間の遠近関係を推定してもよい。そして、照合部13は、推定したゲートGに対する人物間の相対的な位置関係に基づいて、ゲートGに最も近い人物に対して照合処理を行ってもよい。 Here, the distance measuring device E and the distance measuring section 12 are not necessarily limited to measuring the distance from the gate G to the person. For example, the distance measuring device E and the distance measuring section 12 may estimate the relative positional relationship between the persons with respect to the gate. That is, the distance measuring device E and the distance measuring unit 12 may estimate the perspective relationship between the person and the gate G. Then, the collation unit 13 may perform collation processing on the person closest to the gate G based on the estimated relative positional relationship between the persons with respect to the gate G. FIG.

以上のようにしても、ゲート直前の人物に対して適切にゲートの開閉を行うことができ、人物によるゲートGの円滑な通過を実現することができる。 Even in the above manner, the gate can be appropriately opened and closed for the person in front of the gate, and the person can pass through the gate G smoothly.

<実施形態3>
次に、本発明の第3の実施形態を、図8及び図9を参照して説明する。図8は、実施形態3における情報処理システムの構成を示すブロック図である。図9は、実施形態3における情報処理装置の構成を示すブロック図である。なお、本実施形態では、実施形態1及び実施形態2で説明した顔認証システムの構成の概略を示している。
<Embodiment 3>
Next, a third embodiment of the invention will be described with reference to FIGS. 8 and 9. FIG. FIG. 8 is a block diagram showing the configuration of an information processing system according to the third embodiment. FIG. 9 is a block diagram showing the configuration of the information processing apparatus according to the third embodiment. It should be noted that this embodiment shows an outline of the configuration of the face authentication system described in the first and second embodiments.

図8に示すように、本実施形態おける情報処理システム100は、
ゲートに対する通過前領域を撮影した撮影画像を取得する撮像手段110と、
前記撮影画像内の対象の特徴量を抽出して、当該特徴量に基づく前記対象の照合に用いる照合情報を記憶させる画像処理手段120と、
前記ゲートから前記撮影画像内の対象までの距離を推定する距離推定手段130と、
推定した前記距離と、当該距離を推定した前記対象の記憶されている前記照合情報と、に基づいて、照合判定を行う照合手段140と、
を備えた、
という構成をとる。
As shown in FIG. 8, the information processing system 100 in this embodiment includes:
Imaging means 110 for acquiring a photographed image of a region before passing through the gate;
image processing means 120 for extracting a feature amount of a target in the captured image and storing matching information used for matching the target based on the feature amount;
distance estimation means 130 for estimating the distance from the gate to the object in the captured image;
A matching means 140 for performing a matching determination based on the estimated distance and the stored matching information of the target for which the distance was estimated;
with
take the configuration.

また、本実施形態では、図8に示す情報処理システム100から撮像手段110を取り除いてもよい。
つまり、本実施形態における情報処理装置200は、
ゲートの通過前領域を撮影した撮影画像内の対象の特徴量を抽出して、当該特徴量に基づく前記対象の照合に用いる照合情報を記憶させる画像処理手段220と、
前記ゲートから前記撮影画像内の対象までの距離を推定する距離推定手段230と、
推定した前記距離と、当該距離を推定した前記対象の記憶されている前記照合情報と、に基づいて照合判定を行う照合手段240と、
を備えた、
という構成をとる。
Further, in this embodiment, the imaging means 110 may be removed from the information processing system 100 shown in FIG.
That is, the information processing device 200 in this embodiment
An image processing means 220 for extracting a feature amount of an object in a photographed image of an area before passage through a gate and storing matching information used for matching the target based on the feature amount;
distance estimation means 230 for estimating the distance from the gate to the object in the captured image;
a matching means 240 for performing a matching determination based on the estimated distance and the stored matching information of the target for which the distance was estimated;
with
take the configuration.

なお、上述した画像処理手段120,220と距離推定手段130,230と照合手段140,240とは、演算装置がプログラムを実行することで構築されるものであってもよく、電子回路で構築されるものであってもよい。 Note that the image processing means 120, 220, the distance estimation means 130, 230, and the matching means 140, 240 described above may be constructed by an arithmetic unit executing a program, or may be constructed by an electronic circuit. can be anything.

そして、上記構成の情報処理システム100あるいは情報処理装置200は、
ゲートの通過前領域を撮影した撮影画像内の対象の特徴量を抽出して、当該特徴量に基づく前記対象の照合に用いる照合情報を記憶させ、
前記ゲートから前記撮影画像内の対象までの距離を推定し、
推定した前記距離と、当該距離を推定した前記対象の記憶されている前記照合情報と、に基づいて照合判定を行う、
という処理を行うよう作動する。
Then, the information processing system 100 or the information processing device 200 configured as described above,
extracting a feature amount of an object in a photographed image obtained by photographing a region before passing through a gate, and storing matching information used for matching the target based on the feature amount;
estimating a distance from the gate to an object in the captured image;
making a matching determination based on the estimated distance and the stored matching information of the target for which the distance was estimated;
It operates to perform the process of

上述した情報処理システム100あるいは情報処理装置200によると、ゲートの通過前領域において事前に人物の顔領域から特徴量を抽出したり、かかる特徴量を用いて事前に照合処理を行っておき、ゲート直前に照合判定を行うため、人物に対して適切にゲートの開閉を行うことができる。また、人物がゲートに向かう任意のタイミングで撮影した撮影画像から人物の特徴量を抽出して記憶しているため、信頼性の高い特徴量を抽出でき、精度よく照合を行うことができる。その結果、人物によるゲートの円滑な通過を実現することができる。 According to the information processing system 100 or the information processing apparatus 200 described above, the feature amount is extracted in advance from the face area of the person in the area before passage through the gate, or the matching process is performed in advance using the feature amount. Since the matching determination is performed immediately before, the gate can be appropriately opened and closed for the person. In addition, since the feature amount of the person is extracted from the photographed image taken at an arbitrary timing when the person goes to the gate and is stored, the feature amount with high reliability can be extracted and collation can be performed with high accuracy. As a result, smooth passage through the gate by a person can be realized.

<付記>
上記実施形態の一部又は全部は、以下の付記のようにも記載されうる。以下、本発明における情報処理装置、情報処理システム、プログラム、情報処理方法の構成の概略を説明する。但し、本発明は、以下の構成に限定されない。
<Appendix>
Some or all of the above embodiments may also be described as the following appendices. An outline of the configuration of an information processing apparatus, an information processing system, a program, and an information processing method according to the present invention will be described below. However, the present invention is not limited to the following configurations.

(付記1)
ゲートの通過前領域を撮影した撮影画像内の対象の特徴量を抽出して、当該特徴量に基づく前記対象の照合に関する照合情報を記憶させる画像処理手段と、
前記ゲートから前記撮影画像内の対象までの距離を推定する距離推定手段と、
推定した前記距離と、当該距離を推定した前記対象の記憶されている前記照合情報と、に基づいて照合判定を行う照合手段と、
を備えた情報処理装置。
(Appendix 1)
image processing means for extracting a feature amount of an object in a photographed image of an area before passage through a gate and storing matching information relating to matching of the target based on the feature amount;
distance estimating means for estimating a distance from the gate to an object in the captured image;
matching means for performing a matching determination based on the estimated distance and the stored matching information of the target for which the distance was estimated;
Information processing device with

(付記2)
付記1に記載の情報処理装置であって、
前記照合手段は、推定した前記距離に基づいて、当該距離を推定した前記対象の記憶されている前記照合情報である前記特徴量と、予め登録された特徴量と、の照合処理を行う、
情報処理装置。
(Appendix 2)
The information processing device according to Supplementary Note 1,
Based on the estimated distance, the matching means performs a matching process between the feature amount, which is the stored matching information of the target for which the distance is estimated, and a pre-registered feature amount.
Information processing equipment.

(付記3)
付記2に記載の情報処理装置であって、
前記照合手段は、前記ゲートに対して予め設定された距離に位置する前記対象の記憶されている前記特徴量と、予め登録された特徴量と、の照合処理を行う、
情報処理装置。
(Appendix 3)
The information processing device according to appendix 2,
The matching means performs a matching process between the stored feature amount of the target located at a preset distance from the gate and a pre-registered feature amount.
Information processing equipment.

(付記4)
付記2又は3に記載の情報処理装置であって、
前記照合手段は、前記ゲートに対して最も近くに位置する前記対象の記憶されている前記特徴量と、予め登録された特徴量と、の照合処理を行う、
情報処理装置。
(Appendix 4)
The information processing device according to appendix 2 or 3,
The matching means performs a matching process between the stored feature quantity of the object located closest to the gate and a pre-registered feature quantity,
Information processing equipment.

(付記5)
付記1に記載の情報処理装置であって、
前記画像処理手段は、記憶されている前記特徴量と予め登録された特徴量との照合処理を行って、照合結果を前記照合情報として記憶させ、
前記照合手段は、推定した前記距離と、当該距離を推定した前記対象の記憶されている前記照合情報である照合結果と、に基づいて照合判定を行う、
情報処理装置。
(Appendix 5)
The information processing device according to Supplementary Note 1,
The image processing means performs matching processing between the stored feature amount and a pre-registered feature amount, and stores the matching result as the matching information,
The matching means performs a matching determination based on the estimated distance and a matching result, which is the stored matching information of the target for which the distance was estimated.
Information processing equipment.

(付記6)
付記1乃至5のいずれかに記載の情報処理装置であって、
前記画像処理手段は、複数の前記撮影画像に対して前記対象の特徴量の抽出を行い、当該特徴量に基づく前記対象の前記照合情報を更新して記憶する、
情報処理装置。
(Appendix 6)
The information processing device according to any one of Appendices 1 to 5,
The image processing means extracts a feature amount of the target from a plurality of the captured images, and updates and stores the collation information of the target based on the feature amount.
Information processing equipment.

(付記7)
付記1乃至6のいずれかに記載の情報処理装置であって、
前記距離推定手段は、前記特徴量を抽出するための前記撮影画像とは異なる情報を用いて前記ゲートの通過前領域に存在する対象までの距離を推定する、
情報処理装置。
(Appendix 7)
The information processing device according to any one of Appendices 1 to 6,
The distance estimating means estimates a distance to an object existing in a region before passage of the gate using information different from the captured image for extracting the feature quantity.
Information processing equipment.

(付記8)
付記1乃至6のいずれかに記載の情報処理装置であって、
前記距離推定手段は、前記撮影画像内の対象の画像部分を用いて当該対象までの距離を推定する、
情報処理装置。
(Appendix 8)
The information processing device according to any one of Appendices 1 to 6,
The distance estimating means estimates the distance to the target using an image portion of the target in the captured image.
Information processing equipment.

(付記9)
付記8に記載の情報処理装置であって、
前記距離推定手段は、前記撮影画像内の対象の属性を判別して、当該属性に対応する基準値を設定し、当該基準値を用いて前記撮影画像内の対象までの距離を推定する、
情報処理装置。
(Appendix 9)
The information processing device according to appendix 8,
The distance estimating means determines an attribute of a target in the captured image, sets a reference value corresponding to the attribute, and uses the reference value to estimate a distance to the target in the captured image.
Information processing equipment.

(付記10)
付記9に記載の情報処理装置であって、
前記距離推定手段は、前記撮影画像内の対象の特徴を表す対象情報を検出して、前記基準値と前記対象情報とに基づいて前記撮影画像内の対象までの距離を推定する、
情報処理装置。
(Appendix 10)
The information processing device according to appendix 9,
The distance estimating means detects target information representing characteristics of the target in the captured image, and estimates a distance to the target in the captured image based on the reference value and the target information.
Information processing equipment.

(付記11)
付記10に記載の情報処理装置であって、
前記距離推定手段は、前記対象情報として前記撮影画像内の対象の所定部位の大きさを検出して、前記基準値に対する前記対象の所定部位の大きさに基づいて前記撮影画像内の対象までの距離を推定する、
情報処理装置。
(Appendix 11)
The information processing device according to Appendix 10,
The distance estimating means detects a size of a predetermined part of the object in the photographed image as the object information, and measures the distance to the object in the photographed image based on the size of the predetermined part of the object with respect to the reference value. to estimate the distance,
Information processing equipment.

(付記12)
ゲートに対する通過前領域を撮影した撮影画像を取得する撮像手段と、
前記撮影画像内の対象の特徴量を抽出して、当該特徴量に基づく前記対象の照合に関する照合情報を記憶させる画像処理手段と、
前記ゲートから前記撮影画像内の対象までの距離を推定する距離推定手段と、
推定した前記距離と、当該距離を推定した前記対象の記憶されている前記照合情報と、に基づいて照合判定を行う照合手段と、
を備えた情報処理システム。
(Appendix 12)
an imaging means for acquiring a photographed image of the area before passing through the gate;
image processing means for extracting a feature amount of a target in the captured image and storing matching information relating to matching of the target based on the feature amount;
distance estimating means for estimating a distance from the gate to an object in the captured image;
matching means for performing a matching determination based on the estimated distance and the stored matching information of the target for which the distance was estimated;
Information processing system with

(付記12.1)
付記12に記載の情報処理システムであって、
前記照合手段は、前記ゲートに対して予め設定された距離に位置する前記対象の記憶されている前記特徴量と、予め登録された特徴量と、の照合処理を行う、
情報処理システム。
(Appendix 12.1)
The information processing system according to Appendix 12,
The matching means performs a matching process between the stored feature amount of the target located at a preset distance from the gate and a pre-registered feature amount.
Information processing system.

(付記12.2)
付記12又は12.1に記載の情報処理システムであって、
前記照合手段は、前記ゲートに対して最も近くに位置する前記対象の記憶されている前記特徴量と、予め登録された特徴量と、の照合処理を行う、
情報処理システム。
(Appendix 12.2)
The information processing system according to Appendix 12 or 12.1,
The matching means performs a matching process between the stored feature quantity of the object located closest to the gate and a pre-registered feature quantity,
Information processing system.

(付記13)
情報処理装置に、
ゲートの通過前領域を撮影した撮影画像内の対象の特徴量を抽出して、当該特徴量に基づく前記対象の照合に関する照合情報を記憶させる画像処理手段と、
前記ゲートから前記撮影画像内の対象までの距離を推定する距離推定手段と、
推定した前記距離と、当該距離を推定した前記対象の記憶されている前記照合情報と、に基づいて照合判定を行う照合手段と、
を実現させるためのプログラム。
(Appendix 13)
information processing equipment,
image processing means for extracting a feature amount of an object in a photographed image of an area before passage through a gate and storing matching information relating to matching of the target based on the feature amount;
distance estimating means for estimating a distance from the gate to an object in the captured image;
matching means for performing a matching determination based on the estimated distance and the stored matching information of the target for which the distance was estimated;
program to make it happen.

(付記13.1)
付記13に記載のプログラムであって、
前記照合手段は、前記ゲートに対して予め設定された距離に位置する前記対象の記憶されている前記特徴量と、予め登録された特徴量と、の照合処理を行う、
プログラム。
(Appendix 13.1)
The program according to Appendix 13,
The matching means performs a matching process between the stored feature amount of the target located at a preset distance from the gate and a pre-registered feature amount.
program.

(付記13.2)
付記13又は13.1に記載のプログラムであって、
前記照合手段は、前記ゲートに対して最も近くに位置する前記対象の記憶されている前記特徴量と、予め登録された特徴量と、の照合処理を行う、
プログラム。
(Appendix 13.2)
The program according to Appendix 13 or 13.1,
The matching means performs a matching process between the stored feature quantity of the object located closest to the gate and a pre-registered feature quantity,
program.

(付記14)
ゲートの通過前領域を撮影した撮影画像内の対象の特徴量を抽出して、当該特徴量に基づく前記対象の照合に関する照合情報を記憶させ、
前記ゲートから前記撮影画像内の対象までの距離を推定し、
推定した前記距離と、当該距離を推定した前記対象の記憶されている前記照合情報と、に基づいて照合判定を行う、
情報処理方法。
(Appendix 14)
extracting a feature amount of an object in a photographed image of an area before passing through a gate, and storing matching information relating to matching of the target based on the feature amount;
estimating a distance from the gate to an object in the captured image;
making a matching determination based on the estimated distance and the stored matching information of the target for which the distance was estimated;
Information processing methods.

(付記15)
付記14に記載の情報処理方法であって、
推定した前記距離に基づいて、当該距離を推定した前記対象の記憶されている前記照合情報である前記特徴量と、予め登録された特徴量と、の照合処理を行う、
情報処理方法。
(Appendix 15)
The information processing method according to appendix 14,
Based on the estimated distance, matching processing is performed between the feature amount, which is the stored matching information of the target for which the distance is estimated, and a pre-registered feature amount.
Information processing methods.

(付記16)
付記15に記載の情報処理方法であって、
前記ゲートに対して予め設定された距離に位置する前記対象の記憶されている前記特徴量と、予め登録された特徴量と、の照合処理を行う、
情報処理方法。
(Appendix 16)
The information processing method according to appendix 15,
Performing a matching process between the stored feature amount of the target located at a preset distance from the gate and a pre-registered feature amount;
Information processing methods.

(付記17)
付記15又は16に記載の情報処理方法であって、
前記ゲートに対して最も近くに位置する前記対象の記憶されている前記特徴量と、予め登録された特徴量と、の照合処理を行う、
情報処理方法。
(Appendix 17)
The information processing method according to appendix 15 or 16,
Performing a matching process between the stored feature amount of the target located closest to the gate and a pre-registered feature amount,
Information processing methods.

(付記18)
付記15乃至17のいずれかに記載の情報処理方法であって、
前記特徴量を抽出するための前記撮影画像とは異なる情報を用いて前記ゲートの通過前領域に存在する対象までの距離を推定する、
情報処理方法。
(Appendix 18)
18. The information processing method according to any one of Appendices 15 to 17,
estimating a distance to an object existing in a region before passing through the gate using information different from the captured image for extracting the feature amount;
Information processing methods.

(付記19)
付記15乃至17のいずれかに記載の情報処理方法であって、
前記撮影画像内の対象の画像部分を用いて当該対象までの距離を推定する、
情報処理方法。
(Appendix 19)
18. The information processing method according to any one of Appendices 15 to 17,
estimating the distance to the target using the image portion of the target in the captured image;
Information processing methods.

(付記19.1)
付記19に記載の情報処理方法であって、
前記撮影画像内の対象の属性を判別して、当該属性に対応する基準値を設定し、当該基準値を用いて前記撮影画像内の対象までの距離を推定する、
情報処理装置。
(Appendix 19.1)
The information processing method according to Appendix 19,
determining an attribute of a target in the captured image, setting a reference value corresponding to the attribute, and estimating a distance to the target in the captured image using the reference value;
Information processing equipment.

(付記19.2)
付記19.1に記載の情報処理方法であって、
前記撮影画像内の対象の特徴を表す対象情報を検出して、前記基準値と前記対象情報とに基づいて前記撮影画像内の対象までの距離を推定する、
情報処理方法。
(Appendix 19.2)
The information processing method according to Appendix 19.1,
Detecting target information representing characteristics of the target in the captured image, and estimating a distance to the target in the captured image based on the reference value and the target information;
Information processing methods.

(付記19.3)
付記19.2に記載の情報処理方法であって、
前記対象情報として前記撮影画像内の対象の所定部位の大きさを検出して、前記基準値に対する前記対象の所定部位の大きさに基づいて前記対象画像内の対象までの距離を推定する、
情報処理方法。
(Appendix 19.3)
The information processing method according to Appendix 19.2,
Detecting a size of a predetermined part of the target in the photographed image as the target information, and estimating a distance to the target in the target image based on the size of the predetermined part of the target with respect to the reference value.
Information processing methods.

なお、上述したプログラムは、記憶装置に記憶されていたり、コンピュータが読み取り可能な記録媒体に記録されている。例えば、記録媒体は、フレキシブルディスク、光ディスク、光磁気ディスク、及び、半導体メモリ等の可搬性を有する媒体である。 The program described above is stored in a storage device or recorded in a computer-readable recording medium. For example, the recording medium is a portable medium such as a flexible disk, an optical disk, a magneto-optical disk, and a semiconductor memory.

以上、上記実施形態等を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解しうる様々な変更をすることができる。 Although the present invention has been described with reference to the above-described embodiments and the like, the present invention is not limited to the above-described embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.

10 顔認証システム
11 特徴量抽出部
12 距離計測部
13 照合部
14 ゲート制御部
15 特徴量記憶部
16 照合データ記憶部
100 情報処理システム
200 情報処理装置
110 撮像手段
120,220 画像処理手段
130,230 距離推定手段
140,240 照合手段
C 撮像装置
D 表示装置
E 測距装置
G ゲート
10 face authentication system 11 feature amount extraction unit 12 distance measurement unit 13 matching unit 14 gate control unit 15 feature amount storage unit 16 matching data storage unit 100 information processing system 200 information processing device 110 imaging means 120 and 220 image processing means 130 and 230 Distance estimating means 140, 240 Verification means C Imaging device D Display device E Distance measuring device G Gate

Claims (11)

ゲートの通過前領域を撮影した撮影画像内の対象の特徴量を抽出して記憶する画像処理手段と、
前記ゲートの直前に設定され当該ゲートに対して予め設定された距離に位置する所定範囲内に位置する対象に対し、当該対象が前記所定範囲に位置する前に前記抽出され記憶されている特徴量と、予め登録された特徴量と、の照合判定を行う照合手段と、
を備えた情報処理システム。
an image processing means for extracting and storing a feature amount of an object in a photographed image obtained by photographing a region before passage through a gate;
The feature amount extracted and stored before the target is positioned within the predetermined range set immediately before the gate and located at a preset distance from the gate, for the target located within the predetermined range and a pre-registered feature value, a matching means for performing a matching determination;
Information processing system with
請求項1に記載の情報処理システムであって、
前記画像処理手段は、前記撮影画像内の複数の対象の特徴量をそれぞれ抽出して記憶し、抽出された前記特徴量と予め登録された特徴量との照合処理を行って、照合結果を前記対象の照合情報として記憶し、
前記照合手段は、前記撮影画像内の前記特徴量を抽出した前記複数の対象の位置関係に基づき決定される前記ゲートから最も近くに位置する対象に対し、前記位置関係と、前記対象の記憶されている前記照合情報である照合結果と、に基づいて照合判定を行う、
情報処理システム。
The information processing system according to claim 1,
The image processing means extracts and stores feature amounts of a plurality of objects in the photographed image, performs collation processing between the extracted feature amounts and pre-registered feature amounts, and outputs the collation result as the Stored as matching information for the target,
The matching means compares an object located closest to the gate determined based on the positional relationship of the plurality of objects from which the feature amount is extracted in the photographed image, and the stored positional relationship of the object. Make a matching decision based on the matching result, which is the matching information
Information processing system.
請求項2に記載の情報処理システムであって、
前記画像処理手段は、複数の前記撮影画像に対して前記対象の特徴量の抽出を行い、当該特徴量に基づく前記対象の前記照合情報を更新して記憶させる、
情報処理システム。
The information processing system according to claim 2,
The image processing means extracts a feature amount of the target from a plurality of the captured images, updates and stores the collation information of the target based on the feature amount,
Information processing system.
請求項2又は3に記載の情報処理システムであって、
前記特徴量を抽出するための前記撮影画像とは異なる情報を用いて前記ゲートの通過前領域に存在する前記複数の対象の位置関係を推定する推定手段を備えた、
情報処理システム。
The information processing system according to claim 2 or 3 ,
estimating means for estimating the positional relationship of the plurality of targets existing in the area before passage of the gate using information different from the captured image for extracting the feature amount,
Information processing system.
請求項2又は3に記載の情報処理システムであって、
前記撮影画像内の対象の画像部分を用いて前記複数の対象の位置関係を推定する推定手段を備えた、
情報処理システム。
The information processing system according to claim 2 or 3 ,
An estimating means for estimating the positional relationship of the plurality of targets using the image portion of the target in the captured image,
Information processing system.
請求項5に記載の情報処理システムであって、
前記推定手段は、前記撮影画像内の対象の属性を判別して、当該属性に対応する前記対象の画像部分の基準値を設定し、当該基準値と前記対象の画像部分を比較することにより前記撮影画像内の前記複数の対象の位置関係を推定する、
情報処理システム。
The information processing system according to claim 5,
The estimating means discriminates an attribute of the object in the captured image, sets a reference value for the image portion of the object corresponding to the attribute, and compares the reference value with the image portion of the object. estimating the positional relationship of the plurality of targets in the captured image;
Information processing system.
請求項6に記載の情報処理システムであって、
前記推定手段は、前記撮影画像内の対象の特徴を表す対象情報を検出して、前記基準値と前記対象情報とに基づいて前記撮影画像内の前記複数の対象の位置関係を推定する、
情報処理システム。
The information processing system according to claim 6,
The estimating means detects target information representing characteristics of the target in the captured image, and estimates the positional relationship of the plurality of targets in the captured image based on the reference value and the target information.
Information processing system.
請求項7に記載の情報処理システムであって、
前記推定手段は、前記対象情報として前記撮影画像内の対象の所定部位の大きさを検出して、前記基準値に対する前記対象の所定部位の大きさに基づいて前記撮影画像内の前記複数の対象の位置関係を推定する、
情報処理システム。
The information processing system according to claim 7,
The estimating means detects a size of a predetermined portion of the object in the photographed image as the object information, and determines the plurality of objects in the photographed image based on the size of the predetermined portion of the object with respect to the reference value. Estimate the positional relationship of
Information processing system.
ゲートに対する通過前領域を撮影した撮影画像を取得する撮像手段と、
前記撮影画像内の対象の特徴量を抽出して記憶する画像処理手段と、
前記ゲートの直前に設定され当該ゲートに対して予め設定された距離に位置する所定範囲内に位置する対象に対し、当該対象が前記所定範囲に位置する前に前記抽出され記憶されている特徴量と、予め登録された特徴量と、の照合判定を行う照合手段と、
を備えた情報処理システム。
an imaging means for acquiring a photographed image of the area before passing through the gate;
image processing means for extracting and storing a feature amount of a target in the captured image;
The feature amount extracted and stored before the target is positioned within the predetermined range set immediately before the gate and located at a preset distance from the gate, for the target located within the predetermined range and a pre-registered feature value, a matching means for performing a matching determination;
Information processing system with
情報処理装置に、
ゲートの通過前領域を撮影した撮影画像内の対象の特徴量を抽出して記憶する画像処理手段と、
前記ゲートの直前に設定され当該ゲートに対して予め設定された距離に位置する所定範囲内に位置する対象に対し、当該対象が前記所定範囲に位置する前に前記抽出され記憶されている特徴量と、予め登録された特徴量と、の照合判定を行う照合手段と、
を実現させるためのプログラム。
information processing equipment,
an image processing means for extracting and storing a feature amount of an object in a photographed image obtained by photographing a region before passage through a gate;
The feature amount extracted and stored before the target is positioned within the predetermined range set immediately before the gate and located at a preset distance from the gate, for the target located within the predetermined range and a pre-registered feature value, a matching means for performing a matching determination;
program to make it happen.
ゲートの通過前領域を撮影した撮影画像内の対象の特徴量を抽出して記憶し、
前記ゲートの直前に設定され当該ゲートに対して予め設定された距離に位置する所定範囲内に位置する対象に対し、当該対象が前記所定範囲に位置する前に前記抽出され記憶されている特徴量と、予め登録された特徴量と、の照合判定を行う、
情報処理方法。
Extracting and storing the feature amount of the object in the photographed image obtained by photographing the region before passing through the gate,
The feature amount extracted and stored before the target is positioned within the predetermined range set immediately before the gate and located at a preset distance from the gate, for the target located within the predetermined range and a pre-registered feature value,
Information processing methods.
JP2021214648A 2019-10-10 2021-12-28 Information processing equipment Active JP7279774B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021214648A JP7279774B2 (en) 2019-10-10 2021-12-28 Information processing equipment
JP2023074054A JP7480885B2 (en) 2019-10-10 2023-04-28 Information processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019187096A JP7006668B2 (en) 2019-10-10 2019-10-10 Information processing equipment
JP2021214648A JP7279774B2 (en) 2019-10-10 2021-12-28 Information processing equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019187096A Division JP7006668B2 (en) 2019-10-10 2019-10-10 Information processing equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023074054A Division JP7480885B2 (en) 2019-10-10 2023-04-28 Information processing device

Publications (2)

Publication Number Publication Date
JP2022043277A JP2022043277A (en) 2022-03-15
JP7279774B2 true JP7279774B2 (en) 2023-05-23

Family

ID=87805573

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021214648A Active JP7279774B2 (en) 2019-10-10 2021-12-28 Information processing equipment
JP2023074054A Active JP7480885B2 (en) 2019-10-10 2023-04-28 Information processing device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023074054A Active JP7480885B2 (en) 2019-10-10 2023-04-28 Information processing device

Country Status (1)

Country Link
JP (2) JP7279774B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236244A (en) 2005-02-28 2006-09-07 Toshiba Corp Face authenticating device, and entering and leaving managing device
JP2007148987A (en) 2005-11-30 2007-06-14 Toshiba Corp Face authentication system, and entrance and exit management system
JP2007148988A (en) 2005-11-30 2007-06-14 Toshiba Corp Face authentication unit, face authentication method, and entrance/exit management device
JP2007328572A (en) 2006-06-08 2007-12-20 Matsushita Electric Ind Co Ltd Face authentication device and face authentication method
JP2009053914A (en) 2007-08-27 2009-03-12 Seiko Epson Corp Image processor and image processing method
JP2015001790A (en) 2013-06-14 2015-01-05 セコム株式会社 Face authentication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236244A (en) 2005-02-28 2006-09-07 Toshiba Corp Face authenticating device, and entering and leaving managing device
JP2007148987A (en) 2005-11-30 2007-06-14 Toshiba Corp Face authentication system, and entrance and exit management system
JP2007148988A (en) 2005-11-30 2007-06-14 Toshiba Corp Face authentication unit, face authentication method, and entrance/exit management device
JP2007328572A (en) 2006-06-08 2007-12-20 Matsushita Electric Ind Co Ltd Face authentication device and face authentication method
JP2009053914A (en) 2007-08-27 2009-03-12 Seiko Epson Corp Image processor and image processing method
JP2015001790A (en) 2013-06-14 2015-01-05 セコム株式会社 Face authentication system

Also Published As

Publication number Publication date
JP2022043277A (en) 2022-03-15
JP2023086948A (en) 2023-06-22
JP7480885B2 (en) 2024-05-10

Similar Documents

Publication Publication Date Title
JP6601513B2 (en) Information processing device
KR100831122B1 (en) Face authentication apparatus, face authentication method, and entrance and exit management apparatus
JP6409929B1 (en) Verification system
JP6148065B2 (en) Face recognition system
JP6148064B2 (en) Face recognition system
JP7006668B2 (en) Information processing equipment
JP7396375B2 (en) Gate system, gate device, its control method, and program
JP6544404B2 (en) Matching system
JP6915673B2 (en) Information processing system
JP6947202B2 (en) Matching system
JP7468779B2 (en) Information processing device, information processing method, and storage medium
JP7279774B2 (en) Information processing equipment
US20220136316A1 (en) Information processing device
JP7040578B2 (en) Collation system
JP6774036B2 (en) Collation system
JP2021193268A (en) Information processing system
WO2023145059A1 (en) Entry management device, entry management method, and program recording medium
JP2022008339A (en) Collation system
CN117011921A (en) Image processing method and system for improving face recognition rate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R151 Written notification of patent or utility model registration

Ref document number: 7279774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151