Nothing Special   »   [go: up one dir, main page]

JP7276246B2 - Method for manufacturing carrier for double-side polishing machine and method for polishing both sides of wafer - Google Patents

Method for manufacturing carrier for double-side polishing machine and method for polishing both sides of wafer Download PDF

Info

Publication number
JP7276246B2
JP7276246B2 JP2020087470A JP2020087470A JP7276246B2 JP 7276246 B2 JP7276246 B2 JP 7276246B2 JP 2020087470 A JP2020087470 A JP 2020087470A JP 2020087470 A JP2020087470 A JP 2020087470A JP 7276246 B2 JP7276246 B2 JP 7276246B2
Authority
JP
Japan
Prior art keywords
polishing
double
carrier
wafer
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020087470A
Other languages
Japanese (ja)
Other versions
JP2021182586A (en
Inventor
容輝 吉田
佑宜 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2020087470A priority Critical patent/JP7276246B2/en
Priority to PCT/JP2021/010649 priority patent/WO2021235066A1/en
Priority to KR1020227039248A priority patent/KR20230011291A/en
Priority to CN202180031139.0A priority patent/CN115485813A/en
Priority to TW110110290A priority patent/TW202144121A/en
Publication of JP2021182586A publication Critical patent/JP2021182586A/en
Application granted granted Critical
Publication of JP7276246B2 publication Critical patent/JP7276246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/12Lapping plates for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/28Work carriers for double side lapping of plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Description

本発明は、両面研磨装置用キャリアの製造方法及びそれを用いたウェーハの両面研磨方法に関する。 The present invention relates to a method for manufacturing a carrier for a double-sided polishing apparatus and a method for polishing both sides of a wafer using the same.

両面研磨装置は1バッチ当り5枚程のウェーハの両面を同時に研磨するため、ウェーハ枚数と同数の保持孔を有する両面研磨装置用キャリアを下定盤の上に設置する。キャリアの保持孔によりウェーハが保持され、上下定盤に設けられた研磨布により両面からウェーハが挟み込まれ、研磨面に研磨剤を供給しながら研磨が行われる。 Since the double-sided polishing machine polishes both sides of about five wafers per batch at the same time, a carrier for the double-sided polishing machine having the same number of holding holes as the number of wafers is placed on the lower surface plate. The wafer is held by the holding holes of the carrier, the wafer is sandwiched from both sides by polishing cloths provided on the upper and lower platens, and polishing is performed while supplying an abrasive to the polishing surface.

ウェーハを保持するための保持孔を有する両面研磨装置用キャリア(以下、単にキャリアとも言う)は金属製のキャリアが主流である。ウェーハの外周部を金属製のキャリアから保護するために、キャリアのウェーハ保持孔内周部には樹脂インサートを有している。樹脂インサートはウェーハの外周部と接するため、ウェーハのエッジ形状を作り込む上で重要となる。樹脂インサートに関するパラメータの一つとして金属基板(キャリア母材)との段差がある。この段差の一例を以下に説明する。 Carriers for double-sided polishing apparatuses having holding holes for holding wafers (hereinafter simply referred to as carriers) are mainly made of metal. To protect the outer periphery of the wafer from the metal carrier, the carrier has a resin insert on the inner periphery of the wafer holding hole. Since the resin insert is in contact with the outer periphery of the wafer, it is important in shaping the edge shape of the wafer. One of the parameters regarding the resin insert is the difference in level with the metal substrate (carrier base material). An example of this step will be described below.

図6に、従来技術によるキャリアの立上研磨後の樹脂インサートとキャリア母材との段差プロファイルのグラフを示した。上段は樹脂インサートとキャリア母材との段差を示す概略図であり、樹脂インサートとキャリア母材の間にある段差の高さを、キャリアの表面と裏面でそれぞれ接触式測定によって探針を走査させて測定した。
その段差量の測定結果が中段のグラフであり、横軸にキャリアの半径方向の距離を、縦軸に段差量を示している。横軸の0mmはキャリア母材(マイナス)と樹脂インサート(プラス)の境目に該当する。段差量は、キャリア母材の部分ではほぼ0μmである。樹脂インサートの部分ではキャリア母材の表面又は裏面からの段差が示されており、プラスであればキャリア母材から突出しており、マイナスであればキャリア母材から凹んでいることを示す。
下段のグラフは、樹脂インサート上を90°ずつ移動した計4箇所について、表面と裏面の段差量と表裏差をそれぞれ測定した結果を示している。いずれの箇所においても、段差量の表裏差が大きくなっていることがわかる。
FIG. 6 shows a graph of the step profile between the resin insert and the carrier base material after the carrier is polished upright according to the prior art. The upper part is a schematic diagram showing the step between the resin insert and the carrier base material, and the height of the step between the resin insert and the carrier base material is measured by scanning the probe on the front and back sides of the carrier by contact measurement. measured by
The measurement result of the step amount is shown in the middle graph, in which the horizontal axis indicates the distance in the radial direction of the carrier and the vertical axis indicates the step amount. 0 mm on the horizontal axis corresponds to the boundary between the carrier base material (minus) and the resin insert (plus). The step amount is almost 0 μm at the carrier base material portion. In the portion of the resin insert, the step from the front surface or the rear surface of the carrier base material is indicated, and if it is positive, it indicates that it protrudes from the carrier base material, and if it is negative, it indicates that it is recessed from the carrier base material.
The lower graph shows the results of measurement of the amount of step between the front surface and the back surface and the difference between the front and back surfaces at a total of four locations moved by 90° on the resin insert. It can be seen that the difference between the front and back of the step amount is large at any location.

この段差がウェーハのエッジ形状の品質であるZDD(radial Double Derivative of Z-height)に影響することが分かっている。特にウェーハ表裏のZDDを同等とするためには、樹脂インサートと金属基板との表裏の段差量が同等であることが望ましい。そこで従来技術では、金属基板よりも厚い樹脂インサートを接着し、上下定盤の回転数を調整することで表裏の段差量の差を低減させていた(例えば特許文献1参照)。
なお、従来技術ではキャリアの樹脂インサート部分は、樹脂製の液剤による接着や金属基板へのアンカー導入など、脱落防止のため強固に固定されていた(例えば特許文献2参照)。
It is known that this step affects the ZDD (radial double derivative of Z-height), which is the edge shape quality of the wafer. In particular, in order to equalize the ZDD on the front and back of the wafer, it is desirable that the amount of level difference between the front and back of the resin insert and the metal substrate be the same. Therefore, in the conventional technology, a resin insert thicker than the metal substrate is adhered, and the number of rotations of the upper and lower surface plates is adjusted to reduce the difference in level difference between the front and back sides (see, for example, Patent Document 1).
In the prior art, the resin-inserted part of the carrier was firmly fixed to prevent it from coming off, such as by bonding with a resin liquid agent or by introducing an anchor into the metal substrate (see, for example, Patent Document 2).

特願2016-56089号公報Japanese Patent Application No. 2016-56089 特願2009-222183号公報Japanese Patent Application No. 2009-222183

上記方法はパッド(研磨布)の目詰まりやスラリー(研磨剤)の凝集状態などの部材のライフだけでなく、装置精度やキャリアの反りなどの影響まで受けるために、設定条件とは想定外に樹脂インサートの表面側もしくは裏面側のどちらかが優先的に削れてしまい、段差量の表裏差の低減を十分に達成できず、その結果、ウェーハ加工時にウェーハの表裏のZDDに差が生じてしまうケースが見受けられた。よって、上記の影響に依存しにくい、より容易な、樹脂インサートを有するキャリアの立上研磨方法が望まれた。 The above method is affected not only by the clogging of the pad (abrasive cloth) and the aggregated state of the slurry (abrasive), but also by the accuracy of the equipment and warping of the carrier. Either the front side or the back side of the resin insert is scraped preferentially, and it is not possible to sufficiently reduce the difference in level difference between the front and back sides, resulting in a difference in ZDD between the front and back sides of the wafer during wafer processing. A case was found. Therefore, there is a demand for a simpler method for start-up polishing of a carrier having a resin insert that is less dependent on the above effects.

本発明はこのような課題を解決するためになされたものであり、樹脂インサートとキャリア母材との段差量の表裏差を低減することができる両面研磨装置用キャリアの製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of manufacturing a carrier for a double-side polishing machine that can reduce the difference in level between the resin insert and the carrier base material. aim.

上記課題を解決するため、本発明では、研磨布が貼付された上定盤及び下定盤を有する両面研磨装置で用いられ、ウェーハを保持するための保持孔が形成されたキャリア母材と、前記保持孔の内周面に沿って配置され前記ウェーハの外周部と接する内周部が形成された樹脂インサートとを有する両面研磨装置用キャリアの製造方法であって、前記キャリア母材と、該キャリア母材よりも厚い前記樹脂インサートを準備する準備工程と、前記樹脂インサートを、前記保持孔の内周面に非接着かつ剥離強度が10N以上50N以下となるように形成する形成工程と、前記キャリア母材及び前記樹脂インサートからなるキャリアを、前記両面研磨装置を用いて、荷重が2段以上の多段である立上研磨を行う立上研磨工程とを有することを特徴とする両面研磨装置用キャリアの製造方法を提供する。 In order to solve the above-mentioned problems, the present invention provides a carrier base material for use in a double-sided polishing apparatus having an upper surface plate and a lower surface plate to which polishing cloths are attached, and having holding holes for holding wafers; A method of manufacturing a carrier for a double-sided polishing apparatus, comprising: a carrier base material; a preparation step of preparing the resin insert thicker than the base material; a forming step of forming the resin insert so as to be non-adherent to the inner peripheral surface of the holding hole and having a peel strength of 10 N or more and 50 N or less; A carrier for a double-sided polishing machine, characterized by comprising a rising polishing step in which a carrier comprising a base material and the resin insert is subjected to multi-stage rising polishing with a load of two or more stages using the double-sided polishing machine. to provide a method of manufacturing

樹脂インサートが保持孔の内周面に接着されておらず剥離強度が50N以下であれば、立上研磨を行うことで、樹脂インサートとキャリア母材との段差量の表面側と裏面側との差が小さくなるように、すなわち、樹脂インサートの突出具合がより一層表裏対称となるように樹脂インサートの上下方向の位置を調整することができる。また、剥離強度が10N以上であれば、研磨により樹脂インサートがキャリア母材から剥離するのを抑制することができる。
また、立上研磨の際の荷重を2段以上の多段とすることで、1段目の研磨で樹脂インサートとキャリア母材の段差量を低減しつつ、樹脂インサートを最適な位置に調整した上で、2段目以降の研磨で樹脂インサートとキャリア母材との段差量をさらに低減し、該段差量の表裏差を容易に低減することができる。さらにはこのようにして作られたキャリアを用いてウェーハを両面研磨することで、エッジのZDDの表裏差の小さい研磨ウェーハを得られる。なお、「立上研磨の際の荷重を2段以上の多段とする」とは、同じ荷重を掛けて複数回、立上研磨を行う場合も含む。
If the resin insert is not adhered to the inner peripheral surface of the holding hole and the peel strength is 50 N or less, the surface side and the back side of the step amount between the resin insert and the carrier base material can be removed by performing rising polishing. The vertical position of the resin insert can be adjusted so that the difference becomes smaller, that is, so that the projection of the resin insert becomes more symmetrical. Moreover, if the peel strength is 10 N or more, it is possible to suppress the peeling of the resin insert from the carrier base material due to polishing.
In addition, by increasing the load in two stages or more during the initial polishing, the difference in level between the resin insert and the carrier base material can be reduced in the first stage polishing, and the resin insert can be adjusted to the optimum position. Therefore, the amount of step between the resin insert and the carrier base material can be further reduced in the second and subsequent polishing steps, and the difference between the front and back of the amount of step can be easily reduced. Furthermore, by polishing both sides of the wafer using the carrier thus produced, a polished wafer with a small front-to-back ZDD difference at the edge can be obtained. It should be noted that "the load is applied in two or more steps during the rising polishing" includes the case where the same load is applied and the rising polishing is performed a plurality of times.

また、前記立上研磨工程において、前記2段以上の多段の1段目の荷重を150gf/cm以上250gf/cm以下とすることができる。
1段目の荷重が150gf/cm(14.7kPa)以上であれば、樹脂インサートの位置を調整するのに十分な荷重となる。また、250gf/cm(24.5kPa)以下であれば、非接着である樹脂インサートが研磨布との摩擦力によりキャリア母材から剥離するのをより効果的に抑制することができる。
Further, in the rising polishing step, the load of the first step of the multi-step of two or more steps can be 150 gf/cm 2 or more and 250 gf/cm 2 or less.
A load of 150 gf/cm 2 (14.7 kPa) or more on the first stage is sufficient to adjust the position of the resin insert. Further, when the pressure is 250 gf/cm 2 (24.5 kPa) or less, it is possible to more effectively suppress the peeling of the non-bonded resin insert from the carrier base material due to the frictional force with the polishing cloth.

また、前記立上研磨工程において、前記2段以上の多段の1段目の荷重を、2段目の荷重より大きくすることができる。
立上研磨の1段目の荷重が2段目の荷重より大きければ、1段目の研磨で調整した樹脂インサートの位置が、2段目の研磨で位置ズレしてしまうことをより効果的に抑制することができる。
Further, in the rising polishing step, the load on the first step of the multi-step of two or more steps can be made larger than the load on the second step.
If the load in the first stage of initial polishing is greater than the load in the second stage, the position of the resin insert adjusted in the first stage polishing will be more effectively prevented from being displaced in the second stage polishing. can be suppressed.

また、本発明では、ウェーハの両面研磨方法であって、上記の両面研磨装置用キャリアの製造方法により製造した両面研磨装置用キャリアの前記保持孔に前記ウェーハを保持し、前記両面研磨装置の前記上下定盤の間に挟み込んで前記上下定盤を回転させることにより、前記ウェーハの両面研磨を行い、該両面研磨後の前記ウェーハのエッジにおけるZDDの表裏差を5nm以下とすることを特徴とするウェーハの両面研磨方法を提供する。
このようなウェーハの両面研磨方法であれば、両面研磨後のウェーハのエッジにおけるZDDの表裏差が従来に比べて低減されたものとなる。
Further, according to the present invention, there is provided a double-side polishing method for a wafer, wherein the wafer is held in the holding hole of the carrier for a double-side polishing apparatus manufactured by the method for manufacturing a carrier for a double-side polishing apparatus, and the wafer is held in the holding hole of the double-side polishing apparatus. By sandwiching between the upper and lower surface plates and rotating the upper and lower surface plates, the double-sided polishing of the wafer is performed, and the difference between the front and back of the ZDD at the edge of the wafer after the double-sided polishing is 5 nm or less. A method for polishing both sides of a wafer is provided.
With such a double-side polishing method for a wafer, the front-back difference in ZDD at the edge of the wafer after double-side polishing is reduced as compared with the conventional method.

また、前記両面研磨において、荷重が2段以上の多段である両面研磨を行うことができる。
両面研磨を2段以上の多段研磨とすることで、1段目の研磨でキャリアの樹脂インサートの位置を安定させた上で、2段目以降の研磨でウェーハの研磨を行うことができ、より効果的にZDDの改善を図ることができる。
Further, in the double-sided polishing, double-sided polishing can be performed in which the load is applied in two or more stages.
By performing double-sided polishing in two or more stages of multistage polishing, the position of the resin insert in the carrier is stabilized in the first stage of polishing, and then the wafer can be polished in the second and subsequent stages of polishing. ZDD can be effectively improved.

また、前記両面研磨において、前記2段以上の多段の1段目の荷重を150gf/cm以上250gf/cm以下とすることができる。
このような荷重であれば、樹脂インサートの位置を安定させるのに十分な荷重であり、かつ、樹脂インサートがキャリア母材から剥離するのをより効果的に抑制することができる。
Further, in the double-side polishing, the load of the first step of the multi-step of two or more steps can be set to 150 gf/cm 2 or more and 250 gf/cm 2 or less.
Such a load is sufficient to stabilize the position of the resin insert, and more effectively prevents the resin insert from peeling off from the carrier base material.

また、前記両面研磨において、前記2段以上の多段の1段目の荷重を、2段目の荷重より大きくすることができる。
このような荷重であれば、1段目の研磨で安定させた樹脂インサートの位置が、2段目の研磨を行った際に位置ズレしてしまうことをより効果的に抑制することができる。
Further, in the double-sided polishing, the load in the first stage of the multiple stages of two or more stages can be made larger than the load in the second stage.
With such a load, it is possible to more effectively prevent the position of the resin insert stabilized in the first step of polishing from being displaced in the second step of polishing.

本発明の両面研磨装置用キャリアの製造方法及びウェーハの両面研磨方法であれば、樹脂インサートとキャリア母材との段差量の表裏差を容易に低減することができ、結果として、ウェーハの両面研磨に用いた際に研磨後のウェーハのZDDの表裏差を低減することができる。 According to the method for manufacturing a carrier for a double-sided polishing apparatus and the method for double-sided polishing of a wafer according to the present invention, it is possible to easily reduce the difference in level between the resin insert and the carrier base material. can reduce the front-to-back difference in ZDD of the wafer after polishing.

本発明の両面研磨装置用キャリアの製造方法及びウェーハの両面研磨方法の概略を示すフロー図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flowchart showing an outline of a method for manufacturing a carrier for a double-side polishing apparatus and a method for polishing both sides of a wafer according to the present invention; 本発明の製造方法で製造される両面研磨装置用キャリアの一例を示した上面図である。FIG. 2 is a top view showing an example of a carrier for a double-sided polishing apparatus manufactured by the manufacturing method of the present invention; 樹脂インサートの剥離強度の測定点を示した拡大図である。FIG. 4 is an enlarged view showing measurement points of the peel strength of the resin insert; 本発明の両面研磨装置用キャリアの製造方法で用いることができる両面研磨装置の一例を示した概略断面図である。1 is a schematic cross-sectional view showing an example of a double-sided polishing machine that can be used in the method of manufacturing a carrier for a double-sided polishing machine according to the present invention; FIG. 実施例1及び比較例1-5における両面研磨後のウェーハのエッジにおけるZDDの表裏差の測定結果を示したグラフである。5 is a graph showing the measurement results of the difference between the front and back of ZDD at the edge of the wafer after double-sided polishing in Example 1 and Comparative Examples 1-5. 従来技術によるキャリアの立上研磨後の樹脂インサートとキャリア母材との段差プロファイルを示すグラフである。FIG. 11 is a graph showing a step profile between a resin insert and a carrier base material after the carrier is polished upright according to the conventional technology; FIG.

上記したように、樹脂インサートとキャリア母材との段差量の表裏差を低減することができる両面研磨装置用キャリアの製造方法が求められていた。 As described above, there has been a demand for a method of manufacturing a carrier for a double-sided polishing apparatus that can reduce the difference in level difference between the resin insert and the carrier base material.

本発明者らは上記課題について鋭意検討を重ねた結果、従来技術のように樹脂インサートの接着を行わず、嵌合の楔形状の個数や樹脂インサートの外径などを調整することで、樹脂インサートのキャリア母材からの剥離強度が10N以上50N以下としたキャリアを用意し、樹脂インサートの立上研磨の際に荷重を2段以上の多段にすることによって課題を解決できることを見出し、本発明を完成させた。 As a result of extensive studies on the above problems, the inventors of the present invention have found that by adjusting the number of wedge-shaped fittings and the outer diameter of the resin insert, the resin insert is not glued as in the conventional technology. It was found that the problem can be solved by preparing a carrier having a peel strength of 10 N or more and 50 N or less from the carrier base material, and applying a load in two or more stages during the rising polishing of the resin insert. completed.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in detail as an example of embodiments with reference to the drawings, but the present invention is not limited thereto.

図2は本発明の製造方法で製造される両面研磨装置用キャリアの上面図である。
キャリア1はウェーハを保持する保持孔2が形成されたキャリア母材3と、保持孔2の内周部に非接着で形成された樹脂インサート4を有している。なお、ここでは保持孔2が1つのキャリア母材3を示すが、本発明はこれに限定されることはなく、複数の保持孔2を有するものでもよい。また、キャリア母材3の材質についても特に限定されず、例えば、金属基板とすることができる。樹脂インサート4の例としては、例えば図3に示すようにリング状部4aとリング状部4aから外方向に突き出た楔4bからなっているものとすることができる。楔4bの数やリング状部4aの外径は特に限定されない。ただし、後述する剥離強度が10N以上50N以下となるよう調整されて形成されている。さらに、段差の表裏差が小さいもの(例えば、段差量が11.034μm程度で、表裏差が11.77μm程度)となっている。
FIG. 2 is a top view of a carrier for a double-side polishing machine manufactured by the manufacturing method of the present invention.
The carrier 1 has a carrier base material 3 in which a holding hole 2 for holding a wafer is formed, and a resin insert 4 formed in the inner periphery of the holding hole 2 without bonding. Although the carrier base material 3 with one holding hole 2 is shown here, the present invention is not limited to this, and may have a plurality of holding holes 2 . Also, the material of the carrier base material 3 is not particularly limited, and for example, a metal substrate can be used. As an example of the resin insert 4, for example, as shown in FIG. 3, it may be composed of a ring-shaped portion 4a and a wedge 4b projecting outward from the ring-shaped portion 4a. The number of wedges 4b and the outer diameter of the ring-shaped portion 4a are not particularly limited. However, it is formed so that the peel strength, which will be described later, is adjusted to 10 N or more and 50 N or less. Furthermore, the difference between the front and back of the step is small (for example, the amount of step is about 11.034 μm and the difference between the front and back is about 11.77 μm).

このようなキャリア1は、例えば、図4に示すような4ウェイ式の両面研磨装置10においてウェーハWを両面研磨する際に用いられる。両面研磨装置10は、上下に相対向して設けられた上定盤11と下定盤12を備えている。上下定盤11、12には、それぞれ研磨布13が貼付されている。上定盤11と下定盤12の間の中心部にはサンギア14が、周縁部にはインターナルギア15が設けられている。
そして、サンギア14及びインターナルギア15の各歯部にはキャリア1の外周歯が噛合しており、上定盤11及び下定盤12が不図示の駆動源によって回転されるのに伴い、キャリア1は自転しつつサンギア14の周りを公転する。このとき、キャリア1の保持孔2で保持されたウェーハWの両面は、上下の研磨布13により同時に研磨される。ウェーハWの研磨時には、スラリー供給装置16からスラリー17がウェーハWの研磨面に供給される。
Such a carrier 1 is used, for example, when polishing both sides of a wafer W in a four-way type double-side polishing apparatus 10 as shown in FIG. The double-side polishing machine 10 has an upper surface plate 11 and a lower surface plate 12 which are provided facing each other vertically. A polishing cloth 13 is attached to each of the upper and lower surface plates 11 and 12 . A sun gear 14 is provided in the central portion between the upper surface plate 11 and the lower surface plate 12, and an internal gear 15 is provided in the peripheral portion.
The teeth of the sun gear 14 and the internal gear 15 are meshed with the outer peripheral teeth of the carrier 1. As the upper surface plate 11 and the lower surface plate 12 are rotated by a drive source (not shown), the carrier 1 is rotated. It revolves around the sun gear 14 while rotating. At this time, both surfaces of the wafer W held in the holding holes 2 of the carrier 1 are simultaneously polished by the upper and lower polishing cloths 13 . When polishing the wafer W, the slurry 17 is supplied to the polishing surface of the wafer W from the slurry supply device 16 .

以下、図4の両面研磨装置10を用いた、両面研磨装置用キャリアの製造方法及びウェーハの両面研磨方法について説明する。図1は本発明の両面研磨装置用キャリアの製造方法及びウェーハの両面研磨方法の概略を示すフロー図である。
まず、図1の工程1のように、キャリア母材3と、それよりも厚い樹脂インサート4を準備する。なお、ここでは保持孔2が1つのキャリア母材3を用いるが、本発明はこれに限定されることはなく、複数の保持孔2を有するものとしてもよい。
キャリア母材3及び樹脂インサート4の材質については特に限定されず、キャリア母材3は、例えば、ステンレスやチタンなどの金属製であるか、これに表面硬化処理を施したものとすることができる。また、樹脂インサート4は、例えば、硬質樹脂製のものとすることができる。
A method for manufacturing a carrier for a double-side polishing apparatus and a method for polishing both sides of a wafer using the double-side polishing apparatus 10 shown in FIG. 4 will be described below. FIG. 1 is a flowchart showing an outline of a method for manufacturing a carrier for a double-side polishing apparatus and a method for polishing both sides of a wafer according to the present invention.
First, as in step 1 of FIG. 1, a carrier base material 3 and a thicker resin insert 4 are prepared. Although the carrier base material 3 having one holding hole 2 is used here, the present invention is not limited to this, and may have a plurality of holding holes 2 .
The materials of the carrier base material 3 and the resin insert 4 are not particularly limited, and the carrier base material 3 may be made of metal such as stainless steel or titanium, or may be surface-hardened. . Moreover, the resin insert 4 can be made of hard resin, for example.

次に、図1の工程2のように、保持孔2の内周面に樹脂インサート4を形成する。樹脂インサート4の形成方法については特に限定されず、例えば、嵌め込みや射出成型により形成することができる。
ここで、樹脂インサート4とキャリア母材3との接着は行わず、図3に示すような嵌合の楔4bの個数及び形状や、樹脂インサート4の外径などを調整することで、剥離強度が10N以上50N以下となるようにする。
ここでいう剥離強度とは、例えば図3に示したような測定点5をフォースゲージで上面から押し、樹脂インサート4がキャリア母材3から剥離する最大荷重を言う。
Next, as in step 2 of FIG. 1, a resin insert 4 is formed on the inner peripheral surface of the holding hole 2 . The method of forming the resin insert 4 is not particularly limited, and for example, it can be formed by fitting or injection molding.
Here, the resin insert 4 and the carrier base material 3 are not adhered, and the peel strength is adjusted by adjusting the number and shape of the fitting wedges 4b as shown in FIG. is 10N or more and 50N or less.
The peel strength here means the maximum load at which the resin insert 4 peels from the carrier base material 3 when the measurement point 5 as shown in FIG.

剥離強度が50N以下であれば、次の立上研磨工程において、樹脂インサート4とキャリア母材3との段差量の表面側と裏面側の差が小さくなるように樹脂インサート4の上下方向の位置(キャリア母材3に対する厚さ方向の位置)を調整することができる。また、剥離強度が10N以上であれば、研磨により樹脂インサート4がキャリア母材3から剥離するのを抑制することができる。
なお、例えば、楔4bとして個数は100個以下、高さは5mm以下のものを用いることにより、より確実に50N以下の剥離強度を達成することができる。
If the peel strength is 50 N or less, the vertical position of the resin insert 4 is adjusted so that the difference in level difference between the resin insert 4 and the carrier base material 3 between the front side and the back side becomes small in the next rising polishing step. (the position in the thickness direction with respect to the carrier base material 3) can be adjusted. Moreover, if the peel strength is 10 N or more, it is possible to suppress the peeling of the resin insert 4 from the carrier base material 3 due to polishing.
For example, if the number of wedges 4b is 100 or less and the height is 5 mm or less, a peel strength of 50 N or less can be achieved more reliably.

次に、図1の工程3のように、キャリア1の立上研磨を行い、樹脂インサート4とキャリア母材3との段差量を低減するとともに、表裏で段差量の差が少ないキャリア1を製造する。立上研磨は、図4に示すような両面研磨装置10にキャリア1を装着し、保持孔2にウェーハWを保持しない状態で両面研磨を行うことで可能である。なお、研磨布13やスラリー17の種類については特に限定されず、従来の方法と同様のものを使用することができる。 Next, as in step 3 of FIG. 1, the carrier 1 is subjected to rising polishing to reduce the amount of step between the resin insert 4 and the carrier base material 3, and to manufacture the carrier 1 with a small difference in the amount of step between the front and back sides. do. Stand-up polishing can be performed by mounting the carrier 1 on a double-sided polishing apparatus 10 as shown in FIG. The types of polishing cloth 13 and slurry 17 are not particularly limited, and the same ones as in the conventional method can be used.

このとき、立上研磨の際の荷重を2段以上の多段とする。すなわち、荷重を掛けて複数回立上研磨する。これにより、まず1段目の研磨で樹脂インサート4とキャリア母材3との段差量を低減し、かつ、樹脂インサート4を最適な位置に調整することができる。ここでいう最適な位置とは、例えば表面側と裏面側での樹脂インサート4の突出具合の差がほぼ等しくなるような位置を言う。次に、2段目以降の研磨で樹脂インサート4とキャリア母材3との段差量をさらに低減することができる。その結果、表面側と裏面側の段差量の差が従来品より低減された優れたキャリアを得ることができる。なお、多段荷重の段数は複数であれば良く、2段のみでも良いし、あるいは3段以上とすることもできる。 At this time, the load during the rising polishing is multi-staged in two stages or more. That is, a load is applied and the rising polishing is performed multiple times. As a result, the amount of step between the resin insert 4 and the carrier base material 3 can be reduced in the first stage of polishing, and the resin insert 4 can be adjusted to the optimum position. Here, the optimum position means, for example, a position where the difference in the degree of protrusion of the resin insert 4 on the front side and the back side is substantially equal. Next, the step amount between the resin insert 4 and the carrier base material 3 can be further reduced in the second and subsequent polishing steps. As a result, it is possible to obtain an excellent carrier in which the difference in level difference between the front surface side and the back surface side is reduced compared to conventional products. It should be noted that the number of stages of the multi-stage load may be plural, and may be only two stages, or may be three or more stages.

このとき、例えば1段目の荷重を150gf/cm以上250gf/cm以下とすることができる。150gf/cm以上であれば、樹脂インサート4の位置を調整するのに十分な荷重となる。また、250gf/cm以下であれば、非接着である樹脂インサート4が研磨布との摩擦力によりキャリア母材3から剥離するのをより効果的に抑制することができる。
また、1段目の荷重を2段目の荷重より大きくすることができる。例えば、上記の150gf/cm以上250gf/cm以下の1段目の荷重に対し、2段目の荷重は200gf/cm(19.6kPa)以下で1段目の荷重より小さい値にすることができる。このようにすれば、1段目の研磨で調整した樹脂インサート4の位置が、2段目の研磨を行った際に移動して、位置がズレてしまうことをより効果的に抑制することができる。なお、荷重は各段で同じ値とすることもできるし、上記と逆に1段目の荷重を2段目の荷重より小さくすることもできるが、1段目の荷重を2段目の荷重より大きくすることで、効率良く段差量の表裏差を小さくできる。
At this time, for example, the load of the first stage can be set to 150 gf/cm 2 or more and 250 gf/cm 2 or less. A load of 150 gf/cm 2 or more is sufficient for adjusting the position of the resin insert 4 . Further, if the density is 250 gf/cm 2 or less, it is possible to more effectively suppress the peeling of the non-bonded resin insert 4 from the carrier base material 3 due to the frictional force with the polishing cloth.
Also, the load on the first stage can be made larger than the load on the second stage. For example, for the first stage load of 150 gf/cm 2 or more and 250 gf/cm 2 or less, the second stage load should be 200 gf/cm 2 (19.6 kPa) or less, which is smaller than the first stage load. be able to. By doing so, it is possible to more effectively prevent the position of the resin insert 4, which has been adjusted in the first stage of polishing, from being displaced due to movement during the second stage of polishing. can. It should be noted that the load in each stage can be the same value, or conversely, the load in the first stage can be made smaller than the load in the second stage. By making it larger, the difference between the front and back of the step amount can be efficiently reduced.

上記の工程1~3により、樹脂インサート4とキャリア母材3との段差量の表裏差が低減されたキャリア1を製造することができる。 Through the above steps 1 to 3, it is possible to manufacture the carrier 1 in which the difference between the front and back surfaces of the resin insert 4 and the carrier base material 3 is reduced.

そして、図1の工程4のように、製造したキャリア1を用いてウェーハの両面研磨を行う。ウェーハの両面研磨は、キャリア1の保持孔2にウェーハWを保持し、両面研磨装置10の上定盤11と下定盤12の間に挟み込んで、上定盤11と下定盤12を回転させることにより行う。なお、研磨布13やスラリー17の種類については特に限定されず、従来の方法と同様のものを使用することができる。本発明で製造したキャリア1を用いることで、容易に、ZDDの表裏差が十分に低減された研磨ウェーハを得ることができる。具体的には、エッジにおけるZDDの表裏差が5nm以下のウェーハを得ることができる。 Then, as in step 4 of FIG. 1, the manufactured carrier 1 is used to polish both sides of the wafer. Double-side polishing of the wafer is performed by holding the wafer W in the holding hole 2 of the carrier 1, sandwiching it between the upper surface plate 11 and the lower surface plate 12 of the double-side polishing apparatus 10, and rotating the upper surface plate 11 and the lower surface plate 12. done by The types of polishing cloth 13 and slurry 17 are not particularly limited, and the same ones as in the conventional method can be used. By using the carrier 1 manufactured according to the present invention, it is possible to easily obtain a polished wafer in which the front-to-back difference in ZDD is sufficiently reduced. Specifically, it is possible to obtain a wafer having a ZDD front-to-back difference of 5 nm or less at the edge.

このとき、工程3のキャリアの立上研磨と同様に、両面研磨の際の荷重を2段以上の多段とすることができる。このようにすれば、樹脂インサート4を最適な位置に安定させた上で、ウェーハの研磨を行うことができ、より効果的にZDDの改善を図ることができる。
また、1段目の荷重を150gf/cm以上250gf/cm以下とすることができる。このようにすれば、樹脂インサート4の位置を安定させるのに十分な荷重であり、かつ、樹脂インサートがキャリア母材から剥離するのをより効果的に抑制することができる。
また、1段目の荷重を2段目の荷重より大きくすることができる。このようにすれば、1段目の研磨で安定させた樹脂インサート4の位置が、2段目の研磨を行った際に移動して、位置がズレてしまうことをより効果的に抑制することができる。
At this time, in the same manner as the rising-up polishing of the carrier in step 3, the load during double-side polishing can be multi-stepped in two or more steps. By doing so, the wafer can be polished while the resin insert 4 is stabilized at the optimum position, and the ZDD can be improved more effectively.
Also, the load of the first stage can be set to 150 gf/cm 2 or more and 250 gf/cm 2 or less. By doing so, the load is sufficient to stabilize the position of the resin insert 4, and the separation of the resin insert from the carrier base material can be more effectively suppressed.
Also, the load on the first stage can be made larger than the load on the second stage. In this way, the position of the resin insert 4 that has been stabilized in the first stage of polishing can be more effectively suppressed from being displaced due to movement in the second stage of polishing. can be done.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to the examples.

(実施例1)
図1のフローに従って、本発明の両面研磨装置用キャリアの製造及び直径300mmのウェーハの両面研磨を行った。図2及び3に示すように、キャリア母材3(材質:チタン)の保持孔2の内周部に樹脂インサート4(材質:FRP)を非接着で形成した。その際、楔4bの数を80個にすることで、樹脂インサート4の剥離強度を40Nのものを製造した。
(Example 1)
According to the flow of FIG. 1, a carrier for a double-sided polishing apparatus of the present invention was manufactured and a wafer with a diameter of 300 mm was double-sided polished. As shown in FIGS. 2 and 3, a resin insert 4 (material: FRP) was formed in a non-bonded manner in the inner peripheral portion of the holding hole 2 of the carrier base material 3 (material: titanium). At that time, by setting the number of wedges 4b to 80, the peel strength of the resin insert 4 was manufactured to be 40N.

キャリア1の立上研磨及びウェーハの両面研磨には、図4に示すような両面研磨装置10として、4ウェイ方式の両面研磨装置である不二越機械製DSP-20Bを用いた。研磨布13にはショアA硬度90の発泡ウレタンパッドを、スラリー17にはシリカ砥粒含有・平均粒径35nm・砥粒濃度1.0wt%・pH10.5・KOHベースのものを用いた。
また、キャリアの立上研磨とウェーハの両面研磨の両方において、1段目で150gf/cmの荷重を掛けることでインサートの位置を安定させ、2段目で100gf/cm(9.8kPa)の荷重を掛けて研磨を行う2段荷重とした。
For start-up polishing of the carrier 1 and double-sided polishing of the wafer, DSP-20B manufactured by Nachi-Fujikoshi Machine Co., Ltd., which is a 4-way type double-sided polishing device, was used as the double-sided polishing device 10 shown in FIG. A urethane foam pad having a Shore A hardness of 90 was used as the polishing cloth 13, and a slurry 17 containing silica abrasive grains, having an average particle diameter of 35 nm, having an abrasive grain concentration of 1.0 wt %, having a pH of 10.5, and a KOH base was used.
In addition, in both the stand-up polishing of the carrier and the double-sided polishing of the wafer, the position of the insert was stabilized by applying a load of 150 gf/cm 2 in the first stage, and 100 gf/cm 2 (9.8 kPa) in the second stage. It was set as a two-stage load in which polishing was performed by applying a load of .

(比較例1)
立上研磨と両面研磨の両方において、100gf/cmの荷重を掛けて研磨を一度だけ行う1段荷重としたこと以外は、実施例1と同様にしてキャリアの製造及びウェーハの両面研磨を行った。
(Comparative example 1)
Carrier production and wafer double-sided polishing were performed in the same manner as in Example 1, except that a load of 100 gf/cm 2 was applied in both the rising polishing and the double-sided polishing, and a one-stage load was applied to perform polishing only once. rice field.

(比較例2)
キャリアの樹脂インサートの楔の数を130個にすることで、剥離強度を60Nに設定したこと以外は、実施例1と同様にしてキャリアの製造及びウェーハの両面研磨を行った。
(Comparative example 2)
The carrier was manufactured and the wafer was polished on both sides in the same manner as in Example 1, except that the peel strength was set to 60 N by setting the number of wedges in the resin insert of the carrier to 130.

(比較例3)
立上研磨と両面研磨の両方において、100gf/cmの荷重を掛けて研磨を一度だけ行う1段荷重としたこと以外は、比較例2と同様にしてキャリアの製造及びウェーハの両面研磨を行った。
(Comparative Example 3)
Carrier production and wafer double-sided polishing were carried out in the same manner as in Comparative Example 2, except that a load of 100 gf/cm 2 was applied in both the rising polishing and the double-sided polishing, and a one-stage load was applied to perform polishing only once. rice field.

(比較例4)
キャリアとして、樹脂インサート(形状:リング状で、楔なし)をキャリア母材に接着させて固定する接着キャリアを採用し、その剥離強度は200Nとした。それ以外は実施例1と同様にしてキャリアの製造及びウェーハの両面研磨を行った。
(Comparative Example 4)
As the carrier, an adhesive carrier in which a resin insert (shape: ring-shaped, without wedges) is adhered and fixed to the carrier base material was adopted, and its peel strength was set to 200N. Other than the above, carrier production and wafer double-sided polishing were carried out in the same manner as in Example 1.

(比較例5)
立上研磨と両面研磨の両方において、100gf/cmの荷重を掛けて研磨を一度だけ行う1段荷重としたこと以外は、比較例4と同様にしてキャリアの製造及びウェーハの両面研磨を行った。
(Comparative Example 5)
Carrier production and wafer double-sided polishing were performed in the same manner as in Comparative Example 4, except that a load of 100 gf/cm 2 was applied in both the rising polishing and the double-sided polishing, and a one-stage load was applied to perform polishing only once. rice field.

それぞれのキャリアの樹脂インサートとキャリア母材との段差量の表裏差は、実施例1:0.932μm、比較例1:7.192μm、比較例2:7.71μm、比較例3:6.286μm、比較例4:12.272μm、比較例5:14.378μmであった。 The difference in level between the resin insert and the carrier base material of each carrier is Example 1: 0.932 μm, Comparative Example 1: 7.192 μm, Comparative Example 2: 7.71 μm, Comparative Example 3: 6.286 μm. , Comparative Example 4: 12.272 μm, Comparative Example 5: 14.378 μm.

実施例1及び比較例1-5の両面研磨後のウェーハWに対しては、SC-1洗浄を条件NHOH:H:HO=1:1:15で行った。フラットネスについては、洗浄後ウェーハをKLA製のWafersight1を用いて測定し、ZDDはエッジから2mmを除外して算出し、Front部(表面側)とBack部(裏面側)の差について、1バッチ5枚の平均をとってプロットした。その結果を図5に示す。 The wafers W after double-sided polishing of Example 1 and Comparative Examples 1-5 were subjected to SC-1 cleaning under the condition of NH 4 OH:H 2 O 2 :H 2 O=1:1:15. For flatness, the wafer after cleaning is measured using Wafersight 1 manufactured by KLA, ZDD is calculated by excluding 2 mm from the edge, and the difference between the front part (front side) and the back part (back side) is measured for one batch An average of 5 sheets was taken and plotted. The results are shown in FIG.

立上研磨及び両面研磨を多段荷重で行わない比較例1や、樹脂インサートの剥離強度が大きい比較例2-5では、両面研磨後のウェーハのエッジにおけるZDDの表裏差が大きい(いずれも5nmより大きい)。一方、立上研磨及び両面研磨を多段荷重で行い、かつ、剥離強度が50N以下である実施例1のキャリアを用いてウェーハの両面研磨を行えば、ウェーハのエッジにおけるZDDの表裏差を5nm以下(より具体的には1nm程度)に低減できることがわかる。 In Comparative Example 1 in which rising polishing and double-sided polishing are not performed with a multi-stage load, and in Comparative Example 2-5 in which the peel strength of the resin insert is large, the difference between the front and back of the ZDD at the edge of the wafer after double-sided polishing is large (both are greater than 5 nm big). On the other hand, if rising polishing and double-sided polishing are performed with a multi-stage load and double-sided polishing of the wafer is performed using the carrier of Example 1 having a peel strength of 50 N or less, the difference between the front and back sides of the ZDD at the edge of the wafer is 5 nm or less. (More specifically, it can be reduced to about 1 nm).

(実施例2)
キャリアの樹脂インサートの楔の数を100個にすることで、剥離強度を50Nに設定したこと以外は、実施例1と同様にしてキャリアの製造及びウェーハの両面研磨を行った。
(Example 2)
The carrier was manufactured and the wafer was polished on both sides in the same manner as in Example 1, except that the peel strength was set to 50 N by setting the number of wedges in the resin insert of the carrier to 100.

(実施例3)
キャリアの樹脂インサートの楔の数を20個にすることで、剥離強度を10Nに設定したこと以外は、実施例1と同様にしてキャリアの製造及びウェーハの両面研磨を行った。
(Example 3)
The carrier was manufactured and the wafer was polished on both sides in the same manner as in Example 1, except that the peel strength was set to 10 N by setting the number of wedges of the resin insert of the carrier to 20.

(比較例6)
キャリアの樹脂インサートの楔の数を10個にすることで、剥離強度を5Nに設定したこと以外は、実施例1と同様にしてキャリアの製造を行ったところ、立上研磨中に樹脂インサートが外れてしまったため、製造を中止した。
(Comparative Example 6)
The carrier was manufactured in the same manner as in Example 1, except that the peel strength was set to 5N by setting the number of wedges of the resin insert of the carrier to 10. As a result, the resin insert was removed during start-up polishing. Production has been discontinued because it has fallen off.

それぞれのキャリアの樹脂インサートとキャリア母材との段差量の表裏差は、実施例2:3.912μm、実施例3:3.514μmであった。また、両面研磨後のウェーハのエッジにおけるZDDの表裏差は、実施例2:4.7nm、実施例3:4.5nmであった。また、剥離強度が10Nより小さい状態で研磨を行う比較例6では、研磨中に樹脂インサートが外れることを確認した。 The difference in level difference between the resin insert and the carrier base material of each carrier was 3.912 μm for Example 2 and 3.514 μm for Example 3. In addition, the difference between the front and back sides of the ZDD at the edge of the wafer after double-side polishing was 4.7 nm for Example 2 and 4.5 nm for Example 3. Moreover, in Comparative Example 6, in which polishing was performed with a peel strength of less than 10 N, it was confirmed that the resin insert was removed during polishing.

このように、本発明の両面研磨装置用キャリアの製造方法であれば、樹脂インサートとキャリア母材との段差量の表裏差を低減することができ、結果としてウェーハのZDDの表裏差を低減することができる。 As described above, according to the method for manufacturing a carrier for a double-sided polishing apparatus of the present invention, it is possible to reduce the difference in level between the resin insert and the carrier base material, and as a result, the difference in ZDD of the wafer is reduced. be able to.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 It should be noted that the present invention is not limited to the above embodiments. The above embodiment is an example, and any device that has substantially the same configuration as the technical idea described in the claims of the present invention and produces similar effects is the present invention. It is included in the technical scope of the invention.

1…両面研磨装置用キャリア、 2…保持孔、 3…キャリア母材、
4…樹脂インサート、 4a…リング状部、 4b…楔、 5…測定点、
10…両面研磨装置、 11…上定盤、 12…下定盤、 13…研磨布、
14…サンギア、 15…インターナルギア、 16…スラリー供給装置、
17…スラリー、 W…ウェーハ。
DESCRIPTION OF SYMBOLS 1... Carrier for double-sided polishing apparatus, 2... Holding hole, 3... Carrier base material,
4... Resin insert 4a... Ring-shaped part 4b... Wedge 5... Measuring point
DESCRIPTION OF SYMBOLS 10... Double-sided polishing apparatus, 11... Upper surface plate, 12... Lower surface plate, 13... Polishing cloth,
14... Sun gear, 15... Internal gear, 16... Slurry feeder,
17... Slurry, W... Wafer.

Claims (7)

研磨布が貼付された上定盤及び下定盤を有する両面研磨装置で用いられ、ウェーハを保持するための保持孔が形成されたキャリア母材と、前記保持孔の内周面に沿って配置され前記ウェーハの外周部と接する内周部が形成された樹脂インサートとを有する両面研磨装置用キャリアの製造方法であって、
前記キャリア母材と、該キャリア母材よりも厚い前記樹脂インサートを準備する準備工程と、
前記樹脂インサートを、前記保持孔の内周面に非接着かつ剥離強度が10N以上50N以下となるように形成する形成工程と、
前記キャリア母材及び前記樹脂インサートからなるキャリアを、前記両面研磨装置を用いて、荷重が2段以上の多段である立上研磨を行う立上研磨工程とを有することを特徴とする両面研磨装置用キャリアの製造方法。
A carrier base material, which is used in a double-sided polishing apparatus having an upper surface plate and a lower surface plate to which polishing cloths are attached, and has holding holes for holding wafers, and a carrier base material arranged along the inner peripheral surface of the holding holes. A method for manufacturing a carrier for a double-side polishing apparatus having a resin insert formed with an inner peripheral portion in contact with the outer peripheral portion of the wafer, the method comprising:
a preparation step of preparing the carrier base material and the resin insert thicker than the carrier base material;
a forming step of forming the resin insert on the inner peripheral surface of the holding hole so as to be non-adhesive and have a peel strength of 10 N or more and 50 N or less;
a double-sided polishing apparatus comprising: a rising polishing step in which the carrier comprising the carrier base material and the resin insert is subjected to multi-stage rising polishing with a load of two or more stages using the double-sided polishing apparatus. A method of manufacturing a carrier for
前記立上研磨工程において、前記2段以上の多段の1段目の荷重を150gf/cm以上250gf/cm以下とすることを特徴とする請求項1に記載の両面研磨装置用キャリアの製造方法。 2. Manufacturing a carrier for a double-side polishing apparatus according to claim 1, wherein in said rising polishing step, the load of said first stage of said multi-stage of said two or more stages is 150 gf/cm <2> or more and 250 gf/cm <2> or less. Method. 前記立上研磨工程において、前記2段以上の多段の1段目の荷重を、2段目の荷重より大きくすることを特徴とする請求項1または請求項2に記載の両面研磨装置用キャリアの製造方法。 3. The carrier for a double-side polishing apparatus according to claim 1, wherein in the rising polishing step, the load of the first stage of the multi-stage of two or more stages is made larger than the load of the second stage. Production method. ウェーハの両面研磨方法であって、
請求項1から請求項3のいずれか一項に記載の両面研磨装置用キャリアの製造方法により製造した両面研磨装置用キャリアの前記保持孔に前記ウェーハを保持し、前記両面研磨装置の前記上下定盤の間に挟み込んで前記上下定盤を回転させることにより、前記ウェーハの両面研磨を行い、該両面研磨後の前記ウェーハのエッジにおけるZDDの表裏差を5nm以下とすることを特徴とするウェーハの両面研磨方法。
A method for polishing both sides of a wafer,
The wafer is held in the holding hole of the carrier for a double-sided polishing machine manufactured by the method for manufacturing a carrier for a double-sided polishing machine according to any one of claims 1 to 3, and the vertical position of the double-sided polishing machine is adjusted. By sandwiching between the plates and rotating the upper and lower surface plates, the wafer is polished on both sides, and the difference between the front and back of the ZDD at the edge of the wafer after the double-side polishing is 5 nm or less. Double-sided polishing method.
前記両面研磨において、荷重が2段以上の多段である両面研磨を行うことを特徴とする請求項4に記載のウェーハの両面研磨方法。 5. The method of polishing both sides of a wafer according to claim 4, wherein in the double-side polishing, the load is applied in multiple stages of two or more stages. 前記両面研磨において、前記2段以上の多段の1段目の荷重を150gf/cm以上250gf/cm以下とすることを特徴とする請求項5に記載のウェーハの両面研磨方法。 6. The double-side polishing method of a wafer according to claim 5, wherein in the double-side polishing, the load of the first stage of the two or more stages is 150 gf/cm <2> or more and 250 gf/cm <2> or less. 前記両面研磨において、前記2段以上の多段の1段目の荷重を、2段目の荷重より大きくすることを特徴とする請求項5または請求項6に記載のウェーハの両面研磨方法。 7. The double-sided polishing method of a wafer according to claim 5, wherein in said double-sided polishing, the load in the first stage of said multiple stages of two or more stages is made larger than the load in the second stage.
JP2020087470A 2020-05-19 2020-05-19 Method for manufacturing carrier for double-side polishing machine and method for polishing both sides of wafer Active JP7276246B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020087470A JP7276246B2 (en) 2020-05-19 2020-05-19 Method for manufacturing carrier for double-side polishing machine and method for polishing both sides of wafer
PCT/JP2021/010649 WO2021235066A1 (en) 2020-05-19 2021-03-16 Method for manufacturing carrier for double-side polishing device, carrier for double-side polishing device, and method for wafer double-side polishing
KR1020227039248A KR20230011291A (en) 2020-05-19 2021-03-16 Method for manufacturing carrier for double-sided polishing device and method for polishing both sides of wafer
CN202180031139.0A CN115485813A (en) 2020-05-19 2021-03-16 Method for manufacturing carrier for double-side polishing device and method for double-side polishing wafer
TW110110290A TW202144121A (en) 2020-05-19 2021-03-23 Method for manufacturing carrier for double-side polishing device, carrier for double-side polishing device, and method for wafer double-side polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020087470A JP7276246B2 (en) 2020-05-19 2020-05-19 Method for manufacturing carrier for double-side polishing machine and method for polishing both sides of wafer

Publications (2)

Publication Number Publication Date
JP2021182586A JP2021182586A (en) 2021-11-25
JP7276246B2 true JP7276246B2 (en) 2023-05-18

Family

ID=78606760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020087470A Active JP7276246B2 (en) 2020-05-19 2020-05-19 Method for manufacturing carrier for double-side polishing machine and method for polishing both sides of wafer

Country Status (5)

Country Link
JP (1) JP7276246B2 (en)
KR (1) KR20230011291A (en)
CN (1) CN115485813A (en)
TW (1) TW202144121A (en)
WO (1) WO2021235066A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012086A (en) 2007-07-02 2009-01-22 Speedfam Co Ltd Workpiece carrier
JP2011240460A (en) 2010-05-20 2011-12-01 Shin Etsu Handotai Co Ltd Carrier for double-side polishing apparatus and double-side polishing apparatus using the same, and double-side polishing method
JP2014176954A (en) 2013-02-13 2014-09-25 Shin Etsu Handotai Co Ltd Method for manufacturing carrier for double-sided polishing device and double-sided polishing method for wafer
JP2016198864A (en) 2015-04-13 2016-12-01 信越半導体株式会社 Double-side polishing device carrier manufacturing method and wafer double-side polishing method
WO2017159213A1 (en) 2016-03-18 2017-09-21 信越半導体株式会社 Method for manufacturing carrier for dual-surface polishing device, and method for polishing dual surfaces of wafer
JP2019140156A (en) 2018-02-06 2019-08-22 信越半導体株式会社 Carrier manufacturing method and wafer double-sided polishing method for double-sided polishing device
JP2019195866A (en) 2018-05-08 2019-11-14 信越半導体株式会社 Storage method of double side polishing device carrier and double side polishing method of wafer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222183A (en) 2008-03-18 2009-10-01 Nok Corp Seal structure
KR20160056089A (en) 2014-11-11 2016-05-19 엘지이노텍 주식회사 Light emitting apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012086A (en) 2007-07-02 2009-01-22 Speedfam Co Ltd Workpiece carrier
JP2011240460A (en) 2010-05-20 2011-12-01 Shin Etsu Handotai Co Ltd Carrier for double-side polishing apparatus and double-side polishing apparatus using the same, and double-side polishing method
JP2014176954A (en) 2013-02-13 2014-09-25 Shin Etsu Handotai Co Ltd Method for manufacturing carrier for double-sided polishing device and double-sided polishing method for wafer
JP2016198864A (en) 2015-04-13 2016-12-01 信越半導体株式会社 Double-side polishing device carrier manufacturing method and wafer double-side polishing method
WO2017159213A1 (en) 2016-03-18 2017-09-21 信越半導体株式会社 Method for manufacturing carrier for dual-surface polishing device, and method for polishing dual surfaces of wafer
JP2017170536A (en) 2016-03-18 2017-09-28 信越半導体株式会社 Method for manufacturing carrier for double-sided polishing device and wafer double-sided polishing method
JP2019140156A (en) 2018-02-06 2019-08-22 信越半導体株式会社 Carrier manufacturing method and wafer double-sided polishing method for double-sided polishing device
JP2019195866A (en) 2018-05-08 2019-11-14 信越半導体株式会社 Storage method of double side polishing device carrier and double side polishing method of wafer

Also Published As

Publication number Publication date
CN115485813A (en) 2022-12-16
TW202144121A (en) 2021-12-01
JP2021182586A (en) 2021-11-25
WO2021235066A1 (en) 2021-11-25
KR20230011291A (en) 2023-01-20

Similar Documents

Publication Publication Date Title
JP3925580B2 (en) Wafer processing apparatus and processing method
EP2042267B1 (en) Carrier for double-side polishing apparatus, double-side polishing apparatus using the same,and double-side polishing method
US9293318B2 (en) Semiconductor wafer manufacturing method
JP5127882B2 (en) Semiconductor wafer double-side polishing method
JP2008078660A (en) Method for polishing semiconductor wafer, and polished semiconductor wafer producible according to the same
KR101240008B1 (en) Method for polishing a semiconductor wafer
JP5061694B2 (en) Polishing pad manufacturing method, polishing pad, and wafer polishing method
JP2009081186A (en) Method of manufacturing semiconductor wafer
SG174718A1 (en) Method for the double side polishing of a semiconductor wafer
JP5145131B2 (en) Manufacturing method of polishing head
JP2007173815A (en) Silicon wafer polishing machine, retaining assembly used for same, and method of correcting flatness of silicon wafer
JP7276246B2 (en) Method for manufacturing carrier for double-side polishing machine and method for polishing both sides of wafer
JP4103808B2 (en) Wafer grinding method and wafer
JP2007266068A (en) Polishing method and device
JP5286381B2 (en) Semiconductor wafer polishing method
US20200258735A1 (en) Wafer polishing method and apparatus
JP2007067179A (en) Mirror-finished surface polishing method and system for semiconductor wafer
JPH02208931A (en) Polishing process for compound semiconductor substrate
US11534889B2 (en) Polishing pad for wafer polishing apparatus and manufacturing method therefor
JP4781654B2 (en) Polishing cloth and wafer polishing equipment
JP2009269150A (en) Dressing plate for abrasive cloth, method of dressing abrasive cloth, and method of grinding semiconductor substrate
JP5287982B2 (en) Manufacturing method of silicon epitaxial wafer
JP2004241723A (en) Manufacturing method for semiconductor wafer, support ring and wafer with support ring
EP2192609A1 (en) Method of producing wafer for active layer
WO2023095503A1 (en) Template assembly, polishing head, and polishing method of wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R150 Certificate of patent or registration of utility model

Ref document number: 7276246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150