Nothing Special   »   [go: up one dir, main page]

JP7263621B2 - Joining method - Google Patents

Joining method Download PDF

Info

Publication number
JP7263621B2
JP7263621B2 JP2022512997A JP2022512997A JP7263621B2 JP 7263621 B2 JP7263621 B2 JP 7263621B2 JP 2022512997 A JP2022512997 A JP 2022512997A JP 2022512997 A JP2022512997 A JP 2022512997A JP 7263621 B2 JP7263621 B2 JP 7263621B2
Authority
JP
Japan
Prior art keywords
joined
members
resin
base material
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022512997A
Other languages
Japanese (ja)
Other versions
JPWO2021199287A5 (en
JPWO2021199287A1 (en
Inventor
浩庸 秋山
輝一 西口
了太 尾▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JPWO2021199287A1 publication Critical patent/JPWO2021199287A1/ja
Publication of JPWO2021199287A5 publication Critical patent/JPWO2021199287A5/ja
Application granted granted Critical
Publication of JP7263621B2 publication Critical patent/JP7263621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本開示は、繊維強化熱可塑性プラスチック(FRTP)の接合方法に関するものである。 The present disclosure relates to methods for joining fiber reinforced thermoplastics (FRTP).

FRTPで構成された被接合部材を接合する方法として、ボルト結合、融着および接着(特許文献1参照)が知られている。 As a method for joining members to be joined made of FRTP, bolting, fusion and adhesion (see Patent Document 1) are known.

ボルト結合では、被接合部材同士をボルトおよびナットで固定する。融着では、FRTPの母材(熱可塑性樹脂)を溶融させて被接合部材同士を接合させる。接着では、接着剤を用いて被接合部材同士を接合させる。 In bolt connection, members to be joined are fixed with bolts and nuts. In fusion bonding, members to be joined are joined together by melting the base material (thermoplastic resin) of FRTP. In adhesion, members to be joined are joined together using an adhesive.

特開2016-175331号公報JP 2016-175331 A

しかしながら、上記接合方法は、それぞれ課題を有している。 However, the above joining methods each have their own problems.

ボルト結合は、ボルト継手強度が低く、被接合部材の板厚を厚くする必要がある。また、穴あけ、ボルト取り付け、シーリング作業を多数の箇所で行う場合には、組み立て工数が増大し、製品の重量が増加する。さらに、ボルトおよびナットの使用では、強化繊維として炭素繊維を用いた場合に電食の懸念がある。 Bolted joints have a low bolted joint strength, and it is necessary to increase the plate thickness of the members to be joined. Moreover, when drilling, bolting, and sealing operations are performed at many locations, the number of assembling man-hours increases and the weight of the product increases. Furthermore, in the use of bolts and nuts, there is concern about electrolytic corrosion when using carbon fibers as reinforcing fibers.

融着では、FRTPの母材を一旦溶融させるため、板厚および形状の制御が難しい。また、母材を溶融させることで、被接合部材に含まれる強化繊維がうねる恐れがある。 In fusion bonding, since the base material of FRTP is once melted, it is difficult to control the plate thickness and shape. In addition, the melting of the base material may cause the reinforcing fibers contained in the members to be joined to undulate.

接着では、接着剤として被着材と異なる材料を使用するため、接着界面の劣化、追加のコストが必要になるなどの問題がある。構造用接着剤としては、主に熱硬化性樹脂が用いられる。構造用接着剤として用いられる熱硬化性樹脂としては、エポキシ樹脂がある。エポキシ樹脂では吸湿による強度低下があり、耐熱性およびじん性などが被着材(母材)と大きく異なる場合がある。 In adhesion, since a material different from the adherend is used as an adhesive, there are problems such as deterioration of the adhesion interface and additional costs. Thermosetting resins are mainly used as structural adhesives. Thermosetting resins used as structural adhesives include epoxy resins. Epoxy resin loses strength due to moisture absorption, and its heat resistance and toughness may differ greatly from those of the adherend (base material).

FRTPで構成された被接合部材の接合方法として上記以外にプラズマ処理を用いる接合が検討されている。FRTPで構成された被接合部材にプラズマを照射すると、部材表面が活性化され、ヒドロキシ基などの官能基が導入される。官能基が導入された面同士を合わせ、加熱および加圧すると、近接する官能基同士が化学反応し結合される。プラズマ処理を用いた方法における加熱は、FRTPの母材の融点以下の温度で実施されることから、母材は溶融されない。そのため、溶融によって板厚および形状が変化せず、強化繊維のうねりも発生しない。 As a method for joining members to be joined made of FRTP, joining using plasma treatment is being considered as an alternative method. When a member to be joined made of FRTP is irradiated with plasma, the surface of the member is activated and a functional group such as a hydroxyl group is introduced. When the surfaces to which the functional groups have been introduced are brought together and heated and pressurized, adjacent functional groups are chemically reacted and bonded. Since the heating in the method using plasma treatment is performed at a temperature below the melting point of the base material of FRTP, the base material is not melted. Therefore, the plate thickness and shape do not change due to melting, and the reinforcing fibers do not undulate.

しかしながら、プラズマ処理を用いた方法でも、接合力のさらなる向上が要求されている。 However, even in the method using plasma treatment, further improvement in bonding strength is required.

本開示は、このような事情に鑑みてなされたものであって、被接合面を活性化させることによるFRTP同士の接合において、接合強度を向上させられる接合方法を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and an object thereof is to provide a bonding method capable of improving the bonding strength in bonding between FRTPs by activating the surfaces to be bonded.

上記課題を解決するために、本開示の接合方法は以下の手段を採用する。
本開示は、母材が熱可塑性樹脂である繊維強化熱可塑性プラスチックを被接合部材とし、前記被接合部材同士を接合する接合方法であって、前記被接合部材の表面を平滑化処理し、平滑にした前記表面を活性化処理して、化学結合を引き起こしうる活性官能基を導入し、活性化処理した前記表面同士を対向させて2つの前記被接合部材を重ね合わせ、前記母材の温度が融点未満に維持されるよう、重ね合わせた状態の前記被接合部材を加熱および加圧し、化学結合により接合させる接合方法を提供する。
In order to solve the above problems, the joining method of the present disclosure employs the following means.
The present disclosure relates to a joining method for joining members to be joined that are made of a fiber-reinforced thermoplastic whose base material is a thermoplastic resin, wherein the surfaces of the members to be joined are smoothed and smoothed. activating the surface that has been treated to introduce an active functional group capable of causing a chemical bond , and superimposing the two members to be joined with the surfaces that have been activated so that they face each other, and the temperature of the base material is Provided is a bonding method for bonding by chemical bonding by heating and pressurizing the members to be bonded in a superimposed state so as to maintain the temperature below the melting point.

本開示に係る接合方法によれば、活性化処理により被接合部材同士を接合するため、重量増加および電食の懸念がない。加熱および加圧を、母材の温度が融点未満に維持されるように実施することで、板厚および形状の制御がしやすくなり、かつ、強化繊維のうねりも抑制できる。活性化処理の前に、被接合部材の表面を平滑化することで、接合強度を向上させられる。 According to the joining method according to the present disclosure, since members to be joined are joined by activation treatment, there is no concern about weight increase and electrolytic corrosion. By performing heating and pressurization so that the temperature of the base material is maintained below the melting point, it becomes easier to control the plate thickness and shape, and the waviness of the reinforcing fibers can be suppressed. By smoothing the surfaces of the members to be joined before the activation treatment, the joining strength can be improved.

第1実施形態に係る重ね合わせについて説明する図である。It is a figure explaining superposition concerning a 1st embodiment. 図1のA-A断面視した分解図である。FIG. 2 is an exploded view taken along the line AA of FIG. 1; 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1; 従来法により、平坦化処理をしないで重ね合わせた被接合部材の断面を例示する図である。It is a figure which illustrates the cross section of the to-be-joined member which overlap|superposed without planarization processing by the conventional method. 第2実施形態に係る重ね合わせについて説明する図である。It is a figure explaining superposition concerning a 2nd embodiment. 接合部分を一例を示す断面図である。It is a cross-sectional view showing an example of a joint portion.

本開示に係る接合方法は、航空機の構成部材の接合に好適である。例えば、航空機の胴体または翼の外板と、それを補強するストリンガとを被接合部材とした接合に適用できる。 The joining method according to the present disclosure is suitable for joining components of an aircraft. For example, it can be applied to the joining of the skins of the fuselage or wings of an aircraft and the stringers that reinforce them as members to be joined.

〔第1実施形態〕
被接合部材同士を接合する接合方法について説明する。
[First Embodiment]
A method of joining members to be joined together will be described.

(被接合部材)
被接合部材は、繊維強化熱可塑性プラスチック(FRTP)製である。被接合部材は、単層のFRTPで構成されてもよいし、複数層のFRTPで構成されてもよい。本実施形態において、被接合部材は、FRTPを成形した後のものである。
(Member to be joined)
The members to be joined are made of fiber reinforced thermoplastic (FRTP). The member to be joined may be composed of a single layer of FRTP, or may be composed of a plurality of layers of FRTP. In this embodiment, the members to be joined are those after molding the FRTP.

FRTPは、熱可塑性樹脂および強化繊維を含む。熱可塑性樹脂は、FRTPの母材(マトリックス)である。 FRTP includes a thermoplastic resin and reinforcing fibers. Thermoplastic resin is the base material (matrix) of FRTP.

熱可塑性樹脂は、特に限定されるものではないが、ポリアリールエーテルケトン(PAEK)、ポリフェニレンスルフィド(PPS)、ポリエーテルイミド(PEI)、液晶ポリマー(LCP)等のスーパーエンジニアプラスチックであってよい。PAEKは、例えば、ポリエーテルエーテルケトン(PEK),ポリエーテルケトンケトン(PEKK),低融点PAEK(LM PAEK)である。 Thermoplastic resins are not particularly limited, but may be super-engineered plastics such as polyaryletherketone (PAEK), polyphenylene sulfide (PPS), polyetherimide (PEI), and liquid crystal polymer (LCP). PAEK is, for example, polyetheretherketone ( PEEK ), polyetherketoneketone (PEKK), low melting point PAEK (LM PAEK).

強化繊維は、無機系繊維または有機系繊維であってよい。無機系繊維は、炭素繊維,ガラス繊維,炭化ケイ素繊維などである。有機系繊維は、アラミド繊維,ポリパラフェニレン・ベンゾビス・オキサゾール(PBO)繊維,ポリアリレート繊維,PEEK繊維などである。強化繊維は、一方向に配向された繊維束,織物および不織布の形態であってよい。 The reinforcing fibers may be inorganic fibers or organic fibers. Inorganic fibers include carbon fibers, glass fibers, silicon carbide fibers, and the like. Organic fibers include aramid fibers, polyparaphenylene-benzobis-oxazole (PBO) fibers, polyarylate fibers, and PEEK fibers. The reinforcing fibers may be in the form of unidirectionally oriented fiber bundles, wovens and nonwovens.

接合される2つの被接合部材に含まれる熱可塑性樹脂は、同種または異種であってよい。接合される2つの被接合部材に含まれる強化繊維は、同種または異種であってよい。接合される2つの被接合部材に含まれる強化繊維の形態は、同じまたは異なっていてよい。 The thermoplastic resins contained in the two members to be joined may be the same or different. The reinforcing fibers contained in the two joined members to be joined may be of the same type or of different types. The forms of reinforcing fibers contained in the two members to be joined may be the same or different.

本実施形態に係る接合方法は、以下の工程を含む。
(S1)平滑化処理
(S2)活性化処理
(S3)重ね合わせ
(S4)接合
The joining method according to this embodiment includes the following steps.
(S1) Smoothing process (S2) Activation process (S3) Superposition (S4) Joining

(S1)平滑化処理
まず、被接合部材の表面を平滑化処理する。
平滑化処理では、サンディングおよびブラストなどの公知の機械的な研磨手段により、被接合部材の一部または全部の表面を研磨して、該表面の平滑度を向上させる。平滑化処理では、被接合面を、実施可能な範囲で鏡面に近づけることが望ましい。「平滑面」は、少なくともnmオーダーの凹凸の存在を許容する。
(S1) Smoothing Treatment First, the surfaces of the members to be joined are smoothed.
In the smoothing treatment, the surfaces of part or all of the members to be joined are polished by known mechanical polishing means such as sanding and blasting to improve the smoothness of the surfaces. In the smoothing treatment, it is desirable to bring the surfaces to be joined closer to a mirror surface within the practicable range. A "smooth surface" allows the presence of irregularities of at least nm order.

平滑化処理の条件は、被接合部材の材料に合わせて適宜設定する。
例えば、被接合部材にSiC繊維などの硬くて脆い強化繊維が含まれる場合、研磨材としてダイヤモンドを用いて被接合部材の表面を研磨するとよい。SiC繊維を含む被接合部材であっても、最表面が樹脂層(SiC繊維を含まない層)である、または最表層に含まれるSiC繊維量が少ない場合には、他の方法で研磨してもよい。
Conditions for the smoothing treatment are appropriately set according to the materials of the members to be joined.
For example, when the members to be joined contain hard and brittle reinforcing fibers such as SiC fibers, the surface of the members to be joined may be polished using diamond as an abrasive. Even if the member to be joined contains SiC fibers, if the outermost surface is a resin layer (a layer that does not contain SiC fibers) or if the amount of SiC fibers contained in the outermost layer is small, it should be polished by other methods. good too.

(S2)活性化処理
被接合部材の平滑面(被接合面)を活性化させる。「活性化」とは、化学結合を引き起こす活性官能基が導入されることを意味する。活性化は、プラズマ処理、紫外線(UV)処理、真空紫外線(VUV)処理、火炎処理、薬液処理などの方法で実施されうる。本実施形態では、プラズマ処理により被接合面を活性化させるものとして、以降を説明する。
(S2) Activation treatment The smooth surface (surface to be joined) of the member to be joined is activated. By "activated" is meant the introduction of active functional groups that cause chemical bonding. Activation can be performed by methods such as plasma treatment, ultraviolet (UV) treatment, vacuum ultraviolet (VUV) treatment, flame treatment, and chemical solution treatment. In the present embodiment, the following description is based on the assumption that the surfaces to be bonded are activated by plasma processing.

プラズマ照射には、公知のプラズマ発生技術を利用したプラズマ照射装置が用いられうる。大物の部品(部材)へのプラズマ照射は、大気圧プラズマ照射装置で実施することが望ましい。小物の部材へのプラズマ照射は、減圧プラズマ照射装置で実施してもよい。 A plasma irradiation apparatus using a known plasma generation technique can be used for plasma irradiation. Plasma irradiation to large parts (members) is desirably carried out by an atmospheric pressure plasma irradiation apparatus. Plasma irradiation to the small member may be carried out by a low-pressure plasma irradiation apparatus.

プラズマは、任意のガスにより形成されうる。プラズマは、例えば、空気、酸素、窒素、二酸化炭素、水蒸気、ヘリウム、ネオン、アルゴンなど、常温で気体となる物質の少なくとも1つから形成されうる。 A plasma can be formed by any gas. The plasma can be formed from at least one substance that is gaseous at room temperature, such as air, oxygen, nitrogen, carbon dioxide, water vapor, helium, neon, argon, and the like.

プラズマを照射する際の条件は、プラズマ照射装置の種類、樹脂層および被接合部材の材料、要求される接合強度、および被接合面の状態などに応じて適宜選択されるとよい。 Conditions for plasma irradiation may be appropriately selected according to the type of plasma irradiation device, materials of the resin layer and members to be joined, required joining strength, condition of the surfaces to be joined, and the like.

被接合面にプラズマを照射することで、該被接合面の分子が活性化され、活性官能基(以降、官能基)が生成される。酸素を含むプラズマを照射することで生成されうる官能基は、ヒドロキシ基、カルボキシ基、カルボニル基などである。接合される被接合部材同士において、それぞれの被接合面には同種の官能基が生成されてもよいし、異種の官能基が生成されてもよい。照射するプラズマの種類を選択することで、生成される官能基の種類を管理できる。 By irradiating the surfaces to be bonded with plasma, the molecules on the surfaces to be bonded are activated to generate active functional groups (hereinafter referred to as functional groups). A hydroxyl group, a carboxy group, a carbonyl group, and the like are functional groups that can be generated by irradiation with oxygen-containing plasma. The same type of functional groups or different types of functional groups may be generated on the surfaces to be bonded between the members to be bonded. By selecting the type of plasma to be irradiated, the type of functional groups generated can be controlled.

(S3)重ね合わせ
活性化処理後、図1に示すように、被接合部材1と被接合部材2とを重ね合わせる。図2は、図1のA-A断面視した分解図である。被接合部材1,2は、プラズマが照射された後の平滑面(被接合面S,S)が向かい合うように配置される。
(S3) Overlapping After the activation process, as shown in FIG. 1, the member to be joined 1 and the member to be joined 2 are overlapped. FIG. 2 is an exploded view taken along the line AA of FIG. The members to be joined 1 and 2 are arranged such that the smooth surfaces (surfaces to be joined S 1 and S 2 to be joined) after being irradiated with plasma face each other.

図2に示されるように、平滑化した領域Fでは、汚染物質Cおよび離型剤Rが除かれている。汚染物質Cは、例えば、油、シリコーン等である。離型剤Rは、例えば、シリコーン、フッ素樹脂等である。 As shown in FIG. 2, in smoothed area F, contaminant C and release agent R have been removed. Contaminant C is, for example, oil, silicone, or the like. The release agent R is, for example, silicone, fluororesin, or the like.

(S4)接合
図3に示すように、重ね合わせた状態で、被接合部材1および被接合部材2を、加熱しながら加圧する。これにより、被接合面Sにある官能基と被接合面Sにある官能基(不図示)とが化学反応して結合される。その結果、被接合部材1と被接合部材2とが接合される。
(S4) Joining As shown in FIG. 3, the member to be joined 1 and the member to be joined 2 are pressed while being heated while being superimposed. As a result, the functional groups on the surface to be bonded S1 and the functional groups (not shown) on the surface to be bonded S2 are chemically reacted and bonded. As a result, the member to be joined 1 and the member to be joined 2 are joined.

加熱および加圧は、特に限定されるものではないが、例えば加熱加圧プレス機、ローラー等で実施されうる。なお、加熱と加圧は機構の組合せとしてもよい。例えば、透明なブロックで加圧してレーザで加熱すること、ブロックで挟み通電することなどが挙げられる。 Heating and pressing are not particularly limited, but can be carried out, for example, with a hot press machine, rollers, or the like. It should be noted that the heating and pressurization may be a combination of mechanisms. For example, it can be pressurized with a transparent block and heated with a laser, sandwiched between blocks and energized, and the like.

加熱および加圧は、被接合部材1,2の母材が融点以上の温度にならない(融点未満の温度を維持できる)条件で実施される。ここで「母材が融点以上の温度にならない」とは、「母材が溶融されない」と同義である。FRTPの母材として非晶質の熱可塑性樹脂を用いる場合、「母材が溶融されない」は、「母材のガラス転移温度を超え、弾性率が大幅に低下し、形状保持が不可能になる温度にならない」と同義である。 Heating and pressing are performed under the condition that the temperature of the base material of the members to be joined 1 and 2 does not exceed the melting point (the temperature can be maintained below the melting point). Here, "the temperature of the base material does not reach the melting point or higher" is synonymous with "the base material is not melted." When an amorphous thermoplastic resin is used as the base material of FRTP, "the base material is not melted" means "the glass transition temperature of the base material is exceeded, the elastic modulus is significantly reduced, and shape retention becomes impossible. It is synonymous with "not reaching the temperature".

加熱および加圧は、反応可能な距離にある官能基同士が化学反応可能な条件で実施される。官能基同士が化学反応可能な加熱および加圧条件は、被接合面に導入された官能基同士の間で生じる化学反応の活性化エネルギーに基づき、その活性化エネルギーを超えて化学反応が進むのに十分な温度を算出することで設定できる。 Heating and pressurization are performed under conditions that allow chemical reaction between functional groups that are within a reactable distance. The heating and pressurizing conditions under which the functional groups can chemically react with each other are based on the activation energy of the chemical reaction that occurs between the functional groups introduced to the surfaces to be joined, and the chemical reaction proceeds beyond the activation energy. can be set by calculating a sufficient temperature for

上記条件は、予備試験等により予め取得しておくとよい。 The above conditions are preferably acquired in advance by preliminary tests or the like.

参考として、図4に、平坦化処理をしないで重ね合わせた被接合部材3,4の断面を例示する。 For reference, FIG. 4 illustrates cross sections of members to be joined 3 and 4 that are superimposed without being flattened.

製造の都合上、FRTP製の被接合部材の表面には、離型剤Rおよび他の汚染物質Cが残留することがある。また、離型剤Rおよび汚染物質Cが存在する被接合部材3,4の表面に対してプラズマを照射した場合、汚染物質Cおよび離型剤Rの表面が活性化され、それらの下に隠れている被接合部材3,4の表面を十分に活性化させられない。これが、接合力の向上を阻害する要因となると考えられる。 Due to manufacturing reasons, the release agent R and other contaminants C may remain on the surfaces of the FRTP members to be joined. Further, when the surfaces of the members to be joined 3 and 4 on which the release agent R and the contaminant C are present are irradiated with plasma, the surfaces of the contaminant C and the release agent R are activated and hidden beneath them. Therefore, the surfaces of the members 3 and 4 to be joined cannot be sufficiently activated. This is considered to be a factor that hinders the improvement of the bonding strength.

さらに、FRTP製の被接合部材3,4の表面は凹凸を有し、平坦ではない。平坦でない面を合わせると、被接合面Sと被接合面Sとの間に隙間Gが生じる。隙間G部分では、面同士が接合できないため、接合力が弱くなる。Furthermore, the surfaces of the members 3 and 4 to be joined made of FRTP have irregularities and are not flat. When the non-flat surfaces are brought together, a gap G is created between the surface to be bonded S3 and the surface to be bonded S4 . In the gap G portion, since the surfaces cannot be joined together, the joining force becomes weak.

本実施形態によれば、活性化処理する前に平滑化処理することで、該処理した領域から離型剤Rおよび汚染物質Cを除去できる。これにより、離型剤Rおよび汚染物質Cに阻害されずに、被接合面を十分に活性化できるため、接合力が向上する。 According to this embodiment, the release agent R and the contaminant C can be removed from the treated region by performing the smoothing treatment before the activation treatment. As a result, the surfaces to be bonded can be sufficiently activated without being inhibited by the release agent R and the contaminant C, so that the bonding strength is improved.

本実施形態によれば、活性化処理する前に平滑化処理することで、被接合部材間の隙間を小さくできる。これにより、対向する面にある近接する官能基同士が巡り合う確率を高められるため、接合力を向上させられる。 According to this embodiment, the smoothing process is performed before the activation process, so that the gap between the members to be joined can be reduced. This increases the probability that adjacent functional groups on the facing surfaces meet each other, thereby improving the bonding strength.

〔第2実施形態〕
本実施形態は、被接合部材と被接合部材との間に、樹脂フィルムを介在させる点が、第1実施形態と異なる。
[Second embodiment]
This embodiment differs from the first embodiment in that a resin film is interposed between members to be joined.

樹脂フィルムは、熱可塑性樹脂製である。樹脂フィルムは、被接合部材の母材と同等の耐熱性を有する。同等の耐熱性とは、被接合部材同士を接合した製品の運用環境温度で母材の強度および機能に実質的に影響を及ぼさないことを意味する。例えば、母材がPEEKである場合、樹脂フィルムの熱可塑性樹脂として、PEEKおよびPEKKなどのPAEKを用いることができる。 The resin film is made of thermoplastic resin. The resin film has heat resistance equivalent to that of the base material of the member to be joined. Equivalent heat resistance means that the strength and function of the base material are not substantially affected at the operating environmental temperature of the product in which the members to be joined are joined. For example, when the base material is PEEK, PEEK and PAEK such as PEKK can be used as the thermoplastic resin of the resin film.

樹脂フィルムに用いられる熱可塑性樹脂は、被接合部材の母材と同一の材料、被接合部材の母材よりも融点が低い材料、または被接合部材の母材と同等または若干融点の高い材料であってよい。
The thermoplastic resin used for the resin film is the same material as the base material of the member to be joined, a material with a lower melting point than the base material of the member to be joined, or a material with the same or slightly higher melting point than the base material of the member to be joined. It's okay.

樹脂フィルムに用いられる熱可塑性樹脂は、被接合部材の母材よりも融点が低いことが好ましい。該熱可塑性樹脂は、被接合部材の母材よりもガラス転移温度が低い。そのような熱可塑性樹脂は、母材が溶融しない温度域で分子運動が活性化されうる。これにより、樹脂フィルムが、被接合部材の凹凸に馴染みやすくなる。 The thermoplastic resin used for the resin film preferably has a lower melting point than the base material of the member to be joined. The thermoplastic resin has a lower glass transition temperature than the base material of the member to be joined. Molecular motion of such a thermoplastic resin can be activated in a temperature range in which the base material does not melt. This makes it easier for the resin film to conform to the irregularities of the member to be joined.

樹脂フィルムの厚さは、被接合部材に含まれる強化繊維の半径以上であるとよい。それにより、被接合部材の一表面に強化繊維が露出していた場合であっても、繊維束の隙間を埋めることができる。 The thickness of the resin film is preferably equal to or larger than the radius of the reinforcing fibers included in the members to be joined. As a result, even if the reinforcing fibers are exposed on one surface of the member to be joined, the gaps between the fiber bundles can be filled.

本実施形態に係る接合方法は、以下の工程を含む。
(S11)平滑化処理
(S12)活性化処理
(S13)重ね合わせ
(S14)接合
The joining method according to this embodiment includes the following steps.
(S11) smoothing process (S12) activation process (S13) superposition (S14) joining

(S11)平滑化処理
第1実施形態と同様に、被接合部材の一部または全部の表面を平滑化処理し、平滑面を形成する。平滑化処理では、被接合面を、実施可能な範囲で鏡面に近づけることが望ましい。「平滑面」は、nmオーダーの凹凸の存在を許容する。
(S11) Smoothing Treatment Similar to the first embodiment, a part or all of the surfaces of the members to be joined are smoothed to form a smooth surface. In the smoothing treatment, it is desirable to bring the surfaces to be joined closer to a mirror surface within the practicable range. A "smooth surface" allows the presence of unevenness on the order of nm.

(S12)活性化処理
被接合部材の表面、および樹脂フィルムの両面のそれぞれについて活性化させる。本実施形態では、プラズマ処理により被接合面を活性化させるものとして、以降を説明する。
(S12) Activation Treatment The surfaces of the members to be bonded and both surfaces of the resin film are activated. In the present embodiment, the following description is based on the assumption that the surfaces to be bonded are activated by plasma processing.

被接合部材の表面、および樹脂フィルムの両面のそれぞれにプラズマを照射する。照射は、一面ずつ行ってもよいし、まとめて行ってもよい。プラズマが照射された表面には、活性官能基(以降、官能基)が導入される。 Plasma is applied to the surface of the member to be joined and both surfaces of the resin film. Irradiation may be performed one surface at a time, or may be performed collectively. Active functional groups (hereinafter referred to as functional groups) are introduced into the plasma-irradiated surface.

プラズマ照射には、公知のプラズマ発生技術を利用したプラズマ照射装置が用いられうる。大物の部品(部材)へのプラズマ照射は、大気圧プラズマ照射装置で実施することが望ましい。小物の部材へのプラズマ照射は、減圧プラズマ照射装置で実施してもよい。 A plasma irradiation apparatus using a known plasma generation technique can be used for plasma irradiation. Plasma irradiation to large parts (members) is desirably carried out by an atmospheric pressure plasma irradiation apparatus. Plasma irradiation to the small member may be carried out by a low-pressure plasma irradiation apparatus.

プラズマを照射する際の条件は、プラズマ照射装置の種類、樹脂フィルムおよび被接合部材の材料、要求される接合強度、および被接合部材の一表面の状態などに応じて適宜選択されるとよい。 Conditions for plasma irradiation may be appropriately selected according to the type of plasma irradiation apparatus, the materials of the resin film and the member to be joined, the required joining strength, the state of one surface of the member to be joined, and the like.

プラズマの照射は、被照射物(被接合部材の母材または樹脂フィルム)の温度がガラス転移温度(Tg)を超える条件で実施するとよい。そうすることで、被照射物の表面に生成された官能基の、その後の潜り込みを抑制できる。 The plasma irradiation is preferably carried out under the condition that the temperature of the object to be irradiated (base material or resin film of the member to be joined) exceeds the glass transition temperature (Tg). By doing so, it is possible to suppress subsequent penetration of the functional groups generated on the surface of the object to be irradiated.

(S13)重ね合わせ
活性化処理後、図5に示すように、被接合部材11,樹脂フィルム12,被接合部材13を、順に重ね合わせる。被接合部材11,13は、プラズマが照射された後の平滑面(被接合面S11,S13)が向かい合うように配置される。
(S13) Overlapping After the activation process, as shown in FIG. 5, the member to be joined 11, the resin film 12, and the member to be joined 13 are overlapped in order. The members to be joined 11 and 13 are arranged so that their smooth surfaces (surfaces to be joined S 11 and S 13 ) after being irradiated with plasma face each other.

(S14)接合
重ね合わせた状態で、被接合部材11,樹脂フィルム12および被接合部材13を、加熱しながら加圧する。これにより、被接合面S11にある官能基(不図示)と樹脂フィルムの一方の面S12aにある官能基(不図示)、被接合面S13にある官能基(不図示)と樹脂フィルムの他方の面S12bにある官能基(不図示)とがそれぞれ化学結合する。その結果、被接合部材11と被接合部材13とが接合される。図6に、被接合部材11,13が接合された状態の断面を示す。
(S14) Bonding The member to be bonded 11, the resin film 12, and the member to be bonded 13 are pressed while being heated while being superimposed. As a result, the functional groups (not shown) on the surface to be joined S11 and the functional groups (not shown) on one surface S12a of the resin film, and the functional groups (not shown) on the surface to be joined S13 and the resin film are chemically bonded to the functional groups (not shown) on the other surface S 12b . As a result, the member to be joined 11 and the member to be joined 13 are joined. FIG. 6 shows a cross section of the joined members 11 and 13 joined together.

加熱および加圧は、特に限定されるものではないが、例えば加熱加圧プレス機、ローラー等で実施されうる。なお、加熱と加圧は機構の組合せとしてもよい。例えば、透明なブロックで加圧してレーザで加熱すること、ブロックで挟み通電することなどが挙げられる。 Heating and pressing are not particularly limited, but can be carried out, for example, with a hot press machine, rollers, or the like. It should be noted that the heating and pressurization may be a combination of mechanisms. For example, it can be pressurized with a transparent block and heated with a laser, sandwiched between blocks and energized, and the like.

加熱および加圧は、被接合部材11,13の母材が融点以上の温度にならない(融点未満の温度を維持できる)条件で実施される。加熱および加圧は、被接合面S11,S13,および樹脂フィルムの両面S12a,S12bにある近接する官能基同士が化学反応可能な条件で実施される。加熱および加圧は、樹脂フィルム12がガラス転移温度を超える条件で実施されるとよい。Heating and pressing are performed under the condition that the temperature of the base material of the members to be joined 11 and 13 does not exceed the melting point (the temperature can be maintained below the melting point). Heating and pressurization are carried out under conditions in which adjacent functional groups on surfaces S 11 and S 13 to be bonded and both surfaces S 12a and S 12b of the resin film can chemically react with each other. Heating and pressing are preferably performed under the condition that the resin film 12 exceeds the glass transition temperature.

ガラス転移温度を超えると、樹脂フィルム12の分子運動が活発になり、剛性が低下する。ガラス転移温度を超えた樹脂フィルム12は、被接合部材の凹凸に馴染みやすい状態となる。これにより、図6に示すように、加熱および加圧時に被接合部材11と被接合部材13の隙間を埋められるため、接合部分の強度が向上する。 When the glass transition temperature is exceeded, the molecular motion of the resin film 12 becomes active and the rigidity is lowered. The resin film 12 having a temperature higher than the glass transition temperature is in a state where it easily conforms to the irregularities of the member to be joined. As a result, as shown in FIG. 6, the gap between the member to be joined 11 and the member to be joined 13 can be filled during heating and pressurization, thereby improving the strength of the joint.

なお、上記では1バッチで接合する手順を説明しているが、本実施形態に係る接合方法における接合は、段階的に実施されてもよい。その場合、被接合部材11の平滑面上に樹脂フィルム12を重ね合わせ加熱および加圧した後、平滑面を樹脂フィルム12に向けて被接合部材13を樹脂フィルム12上に重ね合わせ、さらに加熱および加圧する。 In addition, although the procedure of joining in one batch is described above, the joining in the joining method according to the present embodiment may be performed stepwise. In this case, after the resin film 12 is overlaid on the smooth surface of the member to be joined 11 and heated and pressed, the member to be joined 13 is overlaid on the resin film 12 with the smooth surface facing the resin film 12, and then heated and pressed. pressurize.

〔第3実施形態〕
本実施形態は、被接合部材と被接合部材との間に、樹脂フィルムに替えて樹脂材を介在させる点が、第2実施形態と異なる。それ以外の構成は、第2実施形態と共通である。
[Third Embodiment]
This embodiment differs from the second embodiment in that a resin material is interposed between the members to be joined instead of the resin film. Other configurations are the same as those of the second embodiment.

樹脂材は、熱可塑性樹脂製である。樹脂材は、被接合部材の母材と同等の耐熱性を有する。樹脂材には、強化繊維が含まれていてもよい。 The resin material is made of thermoplastic resin. The resin material has heat resistance equivalent to that of the base material of the member to be joined. The resin material may contain reinforcing fibers.

樹脂材として、2種類以上の材料を組み合わせてもよい。例えば、母材よりも融点の低い材料と、母材と同じ材料を組み合わせる。この場合、樹脂材は3層構成(母材よりも融点の低い材料からなる2つの樹脂材で、母材と同じ材料からなる樹脂材を挟むような構成)にするとよい。 As the resin material, two or more kinds of materials may be combined. For example, a material with a melting point lower than that of the base material is combined with the same material as the base material. In this case, the resin material should preferably have a three-layer structure (a structure in which two resin materials made of a material having a lower melting point than the base material sandwich a resin material made of the same material as the base material).

樹脂材に用いられる熱可塑性樹脂は、母材と同じ材料で構成されることが好ましい。 The thermoplastic resin used for the resin material is preferably made of the same material as the base material.

樹脂材は、該樹脂材が介在される予定の被接合部材の被接合面の形状を模した表面(模倣表面)を有する。模倣表面は、樹脂材などによる型取りまたは三次元スキャナなどで平滑化処理後の被接合部材の被接合面を計測し、計測結果に基づき模倣することで形成されうる。 The resin material has a surface (imitation surface) that imitates the shape of the surface to be joined of the member to be joined in which the resin material is to be interposed. The simulated surface can be formed by measuring the surface to be bonded of the member to be bonded after the smoothing process using a mold using a resin material or the like or by using a three-dimensional scanner or the like, and by simulating the surface based on the measurement result.

スキン-ストリンガのような大物部材は、単品の部品精度を出すのが難しい。部品精度がよくない場合、樹脂フィルムを介在させて加熱および加圧しても、埋めきれない隙間が残ることが懸念される。本実施形態では、被接合部材と被接合部材同士の隙間に倣った表面形状を有する樹脂材を用い、該樹脂材が被接合面の形状に整合するよう配置する。これによって、より確実に被接合面同士の間に生じる隙間を埋めることができるため、接合強度が向上される。 For large members such as skin-stringers, it is difficult to obtain the precision of individual parts. If the precision of the part is not good, there is a concern that even if the resin film is interposed and the heat and pressure are applied, a gap that cannot be completely filled will remain. In this embodiment, a resin material having a surface shape that follows the gap between the members to be joined is used, and the resin material is arranged so as to match the shape of the surfaces to be joined. As a result, the gap generated between the surfaces to be joined can be more reliably filled, thereby improving the joining strength.

なお、上記第1実施形態~第3実施形態における加熱は、超音波振動を付与することにより実施されてもよい。 Note that the heating in the first to third embodiments may be performed by applying ultrasonic vibrations.

重ね合わせた被接合部材に圧力および超音波振動を付与すると、被接合面同士が接触する部分(接合部)等に摩擦熱が生じる。この摩擦熱により、官能基同士の化学反応が進み、被接合部材同士が接合される。 When pressure and ultrasonic vibration are applied to the superimposed members to be joined, frictional heat is generated at a portion (joining portion) where the surfaces to be joined are in contact with each other. Due to this frictional heat, the chemical reaction between the functional groups progresses, and the members to be joined are joined together.

圧力および超音波振動は、摩擦熱により被接合部材に含まれる熱可塑性樹脂が融けることのない条件で付与される。よって、被接合部材の板厚および形状の変化を抑制できる。 The pressure and ultrasonic vibration are applied under conditions that do not melt the thermoplastic resin contained in the members to be joined due to frictional heat. Therefore, changes in the plate thickness and shape of the members to be joined can be suppressed.

また、圧力および超音波振動の付与によって、被接合面同士の馴染みがよくなり、より強固な接合が期待できる。接合面同士を馴染ませることで、被接合面に凹凸がある場合でも、被接合面同士の間に生じる隙間を小さくなる。隙間が小さくなれば、官能基同士の距離も近くなり化学反応しやすい環境となる。また超音波振動は、官能基の分子運動を活性化させるため、反応相手に巡り合う確率が上がる。 In addition, by applying pressure and ultrasonic vibration, the surfaces to be joined become more familiar with each other, and stronger joining can be expected. By blending the surfaces to be bonded together, even when the surfaces to be bonded have irregularities, the gap generated between the surfaces to be bonded can be reduced. The smaller the gap, the closer the distance between the functional groups, creating an environment that facilitates chemical reactions. In addition, since ultrasonic vibration activates the molecular motion of functional groups, the probability of encountering a reaction partner increases.

<付記>
以上説明した各実施形態に記載の接合方法は例えば以下のように把握される。
<Appendix>
For example, the joining method described in each embodiment described above is grasped as follows.

本開示は、母材が熱可塑性樹脂である繊維強化熱可塑性プラスチックを被接合部材(1,2,11,13)とし、前記被接合部材同士を接合する接合方法に関する。本開示に係る接合方法では、(S1,S11)前記被接合部材の表面を平滑化処理し、(S2,S12)平滑にした前記表面を活性化処理し、(S3,S13)活性化処理した前記表面同士を対向させて2つの前記被接合部材を重ね合わせ、(S4,S14)前記母材の温度が融点未満に維持されるよう、重ね合わせた状態の前記被接合部材を加熱および加圧し、化学結合により接合させる。 The present disclosure relates to a joining method for joining members to be joined (1, 2, 11, 13) made of a fiber-reinforced thermoplastic whose base material is a thermoplastic resin. In the joining method according to the present disclosure, (S1, S11) smoothing the surface of the member to be joined, (S2, S12) activating the smoothed surface, and (S3, S13) activating. (S4, S14) heating and pressurizing the superimposed members to be joined so that the temperature of the base material is maintained below the melting point; , are joined by chemical bonding.

上記開示の一態様では、研磨により前記平滑化処理を実施できる。 In one aspect of the above disclosure, the smoothing treatment can be performed by polishing.

活性化処理した被接合部材の表面は活性化され、該表面に官能基が生成される。官能基が生成された面を合わせて、加熱および加圧することで、近接した官能基同士が化学反応により結合される。これにより被接合部材同士が接合される。 The surfaces of the members to be joined that have undergone the activation treatment are activated, and functional groups are generated on the surfaces. By matching the surfaces on which the functional groups are generated and applying heat and pressure, adjacent functional groups are bonded by chemical reaction. Thereby, the members to be joined are joined together.

上記開示では、被接合部材の表面(被接合面)を平滑化させることで、重ね合わせた際に被接合面と被接合面との間に生じる隙間をなくす、または小さくできる。隙間をなくすことで、対向する面同士で接触できる領域が増える。また、隙間が小さくなると、対向する面にある官能基同士が化学反応可能な距離まで近づくため、反応相手に巡り合う確率が上がる。対向する面にある官能基同士の化学結合が増えることで、被接合面間での接合力が向上する。 In the above disclosure, by smoothing the surfaces of the members to be joined (surfaces to be joined), it is possible to eliminate or reduce the gap that occurs between the surfaces to be joined when they are overlapped. Eliminating the gap increases the area where the opposing surfaces can contact each other. Further, when the gap is small, the functional groups on the facing surfaces are close to each other so that they can chemically react with each other, increasing the probability of encountering a reaction partner. The bonding strength between the surfaces to be bonded is improved by increasing the chemical bonds between the functional groups on the facing surfaces.

平滑化処理では、被接合面の凹凸だけでなく、表面に付着していた汚染物質を除去できる。これにより、汚染物質によって活性化処理が阻害されることを低減できるため、被接合面を十分に活性化させられる。活性化させた被接合面同士を合わせて接合させることで、より強固な接合が実現できる。 In the smoothing treatment, not only the unevenness of the surfaces to be joined but also the contaminants adhering to the surfaces can be removed. As a result, inhibition of the activation process by contaminants can be reduced, so that the surfaces to be joined can be sufficiently activated. By aligning the activated surfaces to be joined and joining them together, stronger joining can be realized.

上記開示の加熱および加圧は、母材の温度が融点を超えないよう実施されるため、被接合部材の母材が融けることはない。これにより、板厚および形状の変化を抑制できるため、繊維のうねりの発生も低減できる。 Since the heating and pressurization disclosed above are performed so that the temperature of the base material does not exceed the melting point, the base material of the members to be joined does not melt. As a result, changes in plate thickness and shape can be suppressed, and the occurrence of waviness in the fibers can also be reduced.

上記開示では、接着剤を使用せず、化学結合により被接合部材同士を接合させるため、材料コストの低減を実現できる。 In the above disclosure, since members to be joined are joined together by chemical bonding without using an adhesive, material costs can be reduced.

上記開示の一態様では、熱可塑性樹脂製の樹脂フィルム(12)の両面を活性化処理し、2つの前記被接合部材(11,13)の間に、活性化処理した前記樹脂フィルムを介在させ、前記被接合部材を接合してもよい。 In one aspect of the above disclosure, both surfaces of the thermoplastic resin film (12) are activated, and the activated resin film is interposed between the two members to be joined (11, 13). , the member to be joined may be joined.

熱可塑性樹脂製の樹脂フィルムは、加熱および加圧により、分子運動が活性化されて剛性が低下する。そのため、被接合部材間に介在させた樹脂フィルムは、加熱および加圧により、被接合部材の表面の凹部に入り込むことができる。被接合部材間の隙間が埋まると接触する領域が増えるとともに、隙間が小さくなるため、接合強度が高まる。 Heating and pressurizing the resin film made of thermoplastic resin activates the molecular motion and reduces the rigidity. Therefore, the resin film interposed between the members to be joined can enter recesses on the surfaces of the members to be joined by heating and pressurizing. When the gap between the members to be joined is filled, the contact area increases and the gap becomes smaller, thereby increasing the joint strength.

樹脂フィルムは、両面が活性化処理されているため、樹脂フィルムと、それに接する被接合部材とは化学的に結合されうる。 Since both surfaces of the resin film are activated, the resin film can be chemically bonded to the member to be joined in contact therewith.

上記開示の一態様では、前記被接合部材の前記表面の形状に倣った模倣表面を有する、熱可塑性樹脂製の樹脂材の両面を活性化処理し、前記被接合部材の前記表面の形状と前記樹脂材の前記表面の形状が整合するよう位置合わせして、2つの前記被接合部材の間に前記活性化処理した前記樹脂材を介在させ、前記被接合部材を接合してもよい。 In one aspect of the above disclosure, both surfaces of a resin material made of a thermoplastic resin having a simulated surface that follows the shape of the surface of the member to be joined are activated, and the shape of the surface of the member to be joined and the shape of the surface of the member are activated. The members to be joined may be joined by interposing the resin material subjected to the activation treatment between the two members to be joined by aligning the surfaces so that the shapes of the surfaces of the resin materials match.

これにより、より確実に隙間を埋め、接合強度を向上させることができる。 Thereby, the gap can be more reliably filled and the bonding strength can be improved.

1,2,3,4,11,13 被接合部材
12 樹脂フィルム
1, 2, 3, 4, 11, 13 member to be joined 12 resin film

Claims (4)

母材が熱可塑性樹脂である繊維強化熱可塑性プラスチックを被接合部材とし、前記被接合部材同士を接合する接合方法であって、
前記被接合部材の表面を平滑化処理し、
平滑にした前記表面を活性化処理して、化学結合を引き起こしうる活性官能基を導入し
活性化処理した前記表面同士を対向させて2つの前記被接合部材を重ね合わせ、
前記母材の温度が融点未満に維持されるよう、重ね合わせた状態の前記被接合部材を加熱および加圧し、
化学結合により接合させる接合方法。
A joining method for joining members to be joined, wherein the members to be joined are made of a fiber-reinforced thermoplastic whose base material is a thermoplastic resin,
Smoothing the surface of the member to be joined,
activating the smoothed surface to introduce active functional groups capable of causing chemical bonding ;
overlapping the two members to be joined with the activated surfaces facing each other;
heating and pressurizing the members to be joined in a state of being overlapped so that the temperature of the base material is maintained below the melting point;
A joining method that joins by chemical bonding.
研磨により前記平滑化処理を実施する請求項1に記載の接合方法。 The joining method according to claim 1, wherein the smoothing treatment is performed by polishing. 熱可塑性樹脂製の樹脂フィルムの両面を前記活性化処理し、
2つの前記被接合部材の間に、前記活性化処理した前記樹脂フィルムを介在させ、
前記被接合部材を接合する請求項1または請求項2に記載の接合方法。
Both sides of the resin film made of thermoplastic resin are subjected to the activation treatment,
interposing the activated resin film between the two members to be joined;
3. The joining method according to claim 1, wherein the members to be joined are joined.
前記被接合部材の前記表面の形状に倣った模倣表面を有する、熱可塑性樹脂製の樹脂材の両面を前記活性化処理し、
前記被接合部材の前記表面の形状と前記樹脂材の前記表面の形状が整合するよう位置合わせして、2つの前記被接合部材の間に前記活性化処理した前記樹脂材を介在させ、
前記被接合部材を接合する請求項1または請求項2に記載の接合方法。
Both surfaces of a resin material made of a thermoplastic resin having a simulated surface that follows the shape of the surface of the member to be joined is subjected to the activation treatment,
Aligning the shape of the surface of the member to be joined with the shape of the surface of the resin material so that the shape of the surface of the resin material is aligned, interposing the activated resin material between the two members to be joined;
3. The joining method according to claim 1, wherein the members to be joined are joined.
JP2022512997A 2020-03-31 2020-03-31 Joining method Active JP7263621B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014824 WO2021199287A1 (en) 2020-03-31 2020-03-31 Joining method

Publications (3)

Publication Number Publication Date
JPWO2021199287A1 JPWO2021199287A1 (en) 2021-10-07
JPWO2021199287A5 JPWO2021199287A5 (en) 2022-06-16
JP7263621B2 true JP7263621B2 (en) 2023-04-24

Family

ID=77930190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022512997A Active JP7263621B2 (en) 2020-03-31 2020-03-31 Joining method

Country Status (2)

Country Link
JP (1) JP7263621B2 (en)
WO (1) WO2021199287A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175331A (en) 2015-03-20 2016-10-06 三菱重工業株式会社 Surface treatment method of composite material, joint structure, surface treatment unit for composite material, and joint processing unit
JP2019188789A (en) 2017-05-08 2019-10-31 学校法人金沢工業大学 Manufacturing method of bonded article, bonded article, and bonding object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175331A (en) 2015-03-20 2016-10-06 三菱重工業株式会社 Surface treatment method of composite material, joint structure, surface treatment unit for composite material, and joint processing unit
JP2019188789A (en) 2017-05-08 2019-10-31 学校法人金沢工業大学 Manufacturing method of bonded article, bonded article, and bonding object

Also Published As

Publication number Publication date
WO2021199287A1 (en) 2021-10-07
JPWO2021199287A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US5643390A (en) Bonding techniques for high performance thermoplastic compositions
Villegas et al. Ultrasonic welding of carbon/epoxy and carbon/PEEK composites through a PEI thermoplastic coupling layer
Tsiangou et al. Investigation on energy director-less ultrasonic welding of polyetherimide (PEI)-to epoxy-based composites
JP6411359B2 (en) Joining composite parts using low temperature thermoplastic film fusion.
JP4434731B2 (en) Polymer or polymer composite element welding technology
AU2002249955B2 (en) Forming structural assemblies with 3-D woven joint pre-forms
US6585839B2 (en) Method of fabricating a polymer-matrix fiber-reinforced composite and the product thereof
US20060198980A1 (en) Method and apparatus for repairing a composite article
Cavalcanti et al. Performance enhancement of adhesive joints of additive manufactured parts by using different types of fibre reinforcements
JP7263621B2 (en) Joining method
Pizzorni et al. Adhesive bonding of CFRP with a 3D-printed short-fiber composite: An experimental study on the effects of geometry and adhesive system on joint performance
EP3981581B1 (en) Method for producing composite material conjugate
JP7263620B2 (en) Joining method
JP7263619B2 (en) Joining method and joined body
Srinivasan et al. Temperature-dependent peel performance of adhesively rebonded hybrid joints
CA2813893C (en) Contour caul with expansion region
Mirzaei et al. Experimental investigation of the effect of adhesive-impregnated pins on the mechanical behavior of z-pinned lap shear joints
Hart-Smith et al. Surface preparations for ensuring that the glue will stick in bonded composite structures
JP7331260B2 (en) Joining method
US20220388259A1 (en) Apparatus, system, and method for reinforcing composite structure
EP1392503B1 (en) Adding glass to composite bonding surfaces
Roy et al. Tensile strength of multi-angle composite laminate scarf joints with FEM
Paton et al. A breakthrough in the assembly of aircraft composite structures
JP2022129376A (en) Method for bonding first thermoplastic substrate to second thermoplastic substrate
McCarville et al. Processing and joining of thermoplastic composites

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230412

R150 Certificate of patent or registration of utility model

Ref document number: 7263621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150