JP7259677B2 - All-solid battery - Google Patents
All-solid battery Download PDFInfo
- Publication number
- JP7259677B2 JP7259677B2 JP2019173058A JP2019173058A JP7259677B2 JP 7259677 B2 JP7259677 B2 JP 7259677B2 JP 2019173058 A JP2019173058 A JP 2019173058A JP 2019173058 A JP2019173058 A JP 2019173058A JP 7259677 B2 JP7259677 B2 JP 7259677B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- solid
- negative electrode
- solid electrolyte
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
Description
本開示は、全固体電池に関する。 The present disclosure relates to all-solid-state batteries.
近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。
電池の中でもリチウム金属二次電池は、金属の中で最大のイオン化傾向を持つリチウムを負極として用いるため、正極との電位差が大きく、高い出力電圧が得られるという点で注目されている。
また、全固体電池は、正極と負極の間に介在する電解質として、有機溶媒を含む電解液に替えて固体電解質を用いるという点で注目されている。
2. Description of the Related Art In recent years, with the rapid spread of information-related equipment and communication equipment such as personal computers, video cameras, and mobile phones, the development of batteries used as power sources for these devices has been emphasized. In addition, in the automobile industry and the like, development of high-output and high-capacity batteries for electric vehicles or hybrid vehicles is underway.
Among batteries, lithium metal secondary batteries are attracting attention because they use lithium, which has the highest ionization tendency among metals, as the negative electrode, resulting in a large potential difference with the positive electrode and high output voltage.
In addition, all-solid-state batteries are attracting attention in that they use a solid electrolyte instead of an electrolyte solution containing an organic solvent as an electrolyte interposed between a positive electrode and a negative electrode.
リチウム金属二次電池の分野において、デンドライトに起因する短絡の発生が知られている。短絡は、充電時に負極層に析出したリチウムが、正極層の方向へ成長し、物理的に負極層及び正極層が接触することによって生じる。デンドライトの成長に起因する短絡を防止することを目的とした開発が進められている。 In the field of lithium metal secondary batteries, the occurrence of short circuits caused by dendrites is known. A short circuit occurs when lithium deposited on the negative electrode layer during charging grows toward the positive electrode layer, and the negative electrode layer and the positive electrode layer physically contact each other. Developments are underway aimed at preventing short circuits caused by dendrite growth.
特許文献1には、負極集電体と固体電解質層との間に炭素材料と樹脂からなるLi吸蔵層を備えるLi析出負極を有するリチウム固体電池が開示されている。 Patent Literature 1 discloses a lithium solid state battery having a Li-deposited negative electrode provided with a Li-absorbing layer made of a carbon material and a resin between a negative electrode current collector and a solid electrolyte layer.
また、特許文献2には、Liを含有する負極活物質を含む負極活物質層と、前記負極活物質層の固体電解質層側とは反対側に設けられ、導電性粉末を含む導電性粉末層と、を有する負極を備える非水電解質電池が開示されている。 Further, in Patent Document 2, a negative electrode active material layer containing a negative electrode active material containing Li and a conductive powder layer containing a conductive powder provided on the side opposite to the solid electrolyte layer side of the negative electrode active material layer and a non-aqueous electrolyte battery comprising a negative electrode having
特許文献1に記載のリチウム固体電池は、負極集電体と固体電解質層の間に炭素材料と樹脂からなるLi吸蔵層を備えることで短絡抑制を図り、リチウム固体電池の可逆容量が向上するが、充放電効率には更なる向上の余地があった。
本開示は、上記実情に鑑み、充放電効率が高い全固体電池を提供することを目的とする。
The lithium solid-state battery described in Patent Document 1 is provided with a Li-absorbing layer made of a carbon material and a resin between the negative electrode current collector and the solid electrolyte layer to suppress short circuits and improve the reversible capacity of the lithium solid-state battery. , there is room for further improvement in charge-discharge efficiency.
An object of the present disclosure is to provide an all-solid-state battery with high charge-discharge efficiency in view of the above circumstances.
本開示は、負極の反応として金属リチウムの析出-溶解反応を利用した全固体電池であって、
負極集電体、固体電解質層、及び、正極層をこの順に有し、
前記負極集電体と前記固体電解質層との間に繊維状炭素材料と樹脂を含むLi吸蔵層を有することを特徴とする全固体電池を提供する。
The present disclosure is an all-solid-state battery that uses a deposition-dissolution reaction of metallic lithium as a negative electrode reaction,
Having a negative electrode current collector, a solid electrolyte layer, and a positive electrode layer in this order,
Provided is an all-solid battery characterized by having a Li-occlusion layer containing a fibrous carbon material and a resin between the negative electrode current collector and the solid electrolyte layer.
本開示は、充放電効率が高い全固体電池を提供することができる。 The present disclosure can provide an all-solid-state battery with high charge-discharge efficiency.
本開示は、負極の反応として金属リチウムの析出-溶解反応を利用した全固体電池であって、
負極集電体、固体電解質層、及び、正極層をこの順に有し、
前記負極集電体と前記固体電解質層との間に繊維状炭素材料と樹脂を含むLi吸蔵層を有することを特徴とする全固体電池を提供する。
The present disclosure is an all-solid-state battery that uses a deposition-dissolution reaction of metallic lithium as a negative electrode reaction,
Having a negative electrode current collector, a solid electrolyte layer, and a positive electrode layer in this order,
Provided is an all-solid battery characterized by having a Li-occlusion layer containing a fibrous carbon material and a resin between the negative electrode current collector and the solid electrolyte layer.
本開示において、リチウム金属二次電池とは、負極活物質に金属リチウム及びリチウム合金の少なくともいずれか一方を用い、負極の反応として金属リチウムの析出-溶解反応を利用した電池を意味する。また、本開示において負極とは、負極層を含むものを意味する。
本開示において、全固体電池の満充電時とは、全固体電池の充電状態値(SOC:State of Charge)が100%の状態の時を意味する。SOCは、電池の満充電容量に対する充電容量の割合を示すものであり、満充電容量がSOC100%である。
SOCは、例えば、全固体電池の開放電圧(OCV:Open Circuit Voltage)から推定してもよい。
In the present disclosure, a lithium metal secondary battery means a battery that uses at least one of metallic lithium and a lithium alloy as a negative electrode active material, and that utilizes a deposition-dissolution reaction of metallic lithium as a negative electrode reaction. Further, in the present disclosure, a negative electrode means one including a negative electrode layer.
In the present disclosure, when the all-solid-state battery is fully charged means when the state-of-charge (SOC) value of the all-solid-state battery is 100%. The SOC indicates the ratio of the charge capacity to the full charge capacity of the battery, and the full charge capacity is
The SOC may be estimated, for example, from the open circuit voltage (OCV) of the all-solid-state battery.
図1は、本開示の全固体電池の一例を示す断面模式図である。
図1に示すように、全固体電池100は、負極集電体11と固体電解質層12と正極層13と正極集電体14をこの順に備え、負極集電体11と固体電解質層12との間にLi吸蔵層15を備える。なお、図1において負極層は図示していないが、本開示においては、負極集電体11と固体電解質層12との間には負極層が存在していてもよい。また、負極層は負極集電体11と固体電解質層12との間であれば、負極集電体11とLi吸蔵層15との間、及び、Li吸蔵層15と固体電解質層12との間の少なくともいずれか一方の位置に存在していてもよい。さらに、負極層が金属リチウムからなる場合、満充電時の全固体電池100は、負極層が存在していてもよく、初回充電前や完全放電後の全固体電池100は、負極層が溶解して消失していてもよい。
FIG. 1 is a cross-sectional schematic diagram showing an example of an all-solid-state battery of the present disclosure.
As shown in FIG. 1, the all-solid-
[負極集電体]
負極集電体の材料は、Liと合金化しない材料であってもよく、例えばSUS、銅、及び、ニッケル等を挙げることができる。負極集電体の形態としては、例えば、箔状、及び、板状等を挙げることができる。負極集電体の平面視形状は、特に限定されるものではないが、例えば、円状、楕円状、矩形状、及び、任意の多角形状等を挙げることができる。また、負極集電体の厚さは、形状によって異なるものであるが、例えば1μm~50μmの範囲内であり、5μm~20μmの範囲内であってもよい。
[Negative electrode current collector]
The material of the negative electrode current collector may be a material that does not alloy with Li, such as SUS, copper, and nickel. Examples of the shape of the negative electrode current collector include a foil shape and a plate shape. The shape of the negative electrode current collector in a plan view is not particularly limited, but examples thereof include a circular shape, an elliptical shape, a rectangular shape, and an arbitrary polygonal shape. The thickness of the negative electrode current collector varies depending on the shape, but is, for example, within the range of 1 μm to 50 μm, and may be within the range of 5 μm to 20 μm.
[Li吸蔵層]
Li吸蔵層は、繊維状炭素材料と樹脂を含む混合体の層であり、負極集電体と固体電解質層との間に配置される層である。
繊維状炭素材料としては、例えば、VGCF(気相法炭素繊維)、カーボンナノチューブ、及び、カーボンナノファイバー等が挙げられる。
樹脂としては、例えば、アクリロニトリルブタジエンゴム(ABR)、ブタジエンゴム(BR)、ポリフッ化ビニリデン(PVdF)、及び、スチレンブタジエンゴム(SBR)等を例示することができる。
Li吸蔵層中の繊維状炭素材料と樹脂の質量比率は、特に限定されないが、これら2種類の材料の総質量を100質量%としたときの質量比が、繊維状炭素材料:樹脂=10:90~90:10であってもよく、繊維状炭素材料:樹脂=25:75~75:25であってもよい。
繊維状炭素材料と樹脂から構成される混合体を作製する方法としては、例えば、乳鉢と乳棒を用いた手混ぜ混合や、ホモジナイザー、メカニカルミリング等を挙げることができる。メカニカルミリングは、乾式メカニカルミリングであっても良く、湿式メカニカルミリングであっても良い。
メカニカルミリングは、繊維状炭素材料と樹脂を、機械的エネルギーを付与しながら混合する方法であれば特に限定されるものではないが、例えばボールミル、振動ミル、ターボミル、メカノフュージョン、ディスクミル等を挙げることができ、中でもボールミルであってもよく、特に遊星型ボールミルであってもよい。
ホモジナイザーを用いて混合体を作製する際に用いられる液体としては、極性の非プロトン性液体、無極性の非プロトン性液体等の非プロトン性液体を挙げることができる。
Li吸蔵層の厚みは、特に限定されないが14~33μmであってもよい。
[Li storage layer]
The Li occlusion layer is a layer of a mixture containing a fibrous carbon material and a resin, and is a layer arranged between the negative electrode current collector and the solid electrolyte layer.
Examples of fibrous carbon materials include VGCF (vapor-grown carbon fiber), carbon nanotubes, and carbon nanofibers.
Examples of resins include acrylonitrile-butadiene rubber (ABR), butadiene rubber (BR), polyvinylidene fluoride (PVdF), and styrene-butadiene rubber (SBR).
The mass ratio of the fibrous carbon material and the resin in the Li storage layer is not particularly limited, but the mass ratio when the total mass of these two types of materials is 100% by mass is fibrous carbon material:resin=10: It may be 90 to 90:10, or fibrous carbon material:resin=25:75 to 75:25.
Examples of methods for producing a mixture composed of a fibrous carbon material and a resin include manual mixing using a mortar and pestle, homogenizer, mechanical milling, and the like. The mechanical milling may be dry mechanical milling or wet mechanical milling.
Mechanical milling is not particularly limited as long as it is a method of mixing a fibrous carbon material and a resin while applying mechanical energy. It may be, inter alia, a ball mill, in particular a planetary ball mill.
Examples of liquids used in preparing a mixture using a homogenizer include aprotic liquids such as polar aprotic liquids and non-polar aprotic liquids.
The thickness of the Li absorption layer is not particularly limited, but may be 14 to 33 μm.
[負極層]
本開示においては、例えば組み立て時にLi吸蔵層と負極集電体の間に負極層を設けた全固体電池、または、組み立て時にLi吸蔵層と負極集電体の間に負極層を設けず、その後充電により、負極活物質として金属リチウムを析出させてなる負極層を設けた全固体電池であっても良い。また初回充電後、負極集電体と固体電解質層との間に析出した金属リチウムは、負極活物質として用いられる。
負極層は、負極活物質を含む。
負極活物質としては、金属リチウム(Li)及びリチウム合金等が挙げられ、リチウム合金としては、Li-Au、Li-Mg、Li-Sn、Li-Si、Li-Al、Li-B、Li-C、Li-Ca、Li-Ga、Li-Ge、Li-As、Li-Se、Li-Ru、Li-Rh、Li-Pd、Li-Ag、Li-Cd、Li-In、Li-Sb、Li-Ir、Li-Pt、Li-Hg、Li-Pb、Li-Bi、Li-Zn、Li-Tl、Li-Te、及びLi-At等が挙げられる。負極層には負極活物質として金属リチウム又はリチウム合金が主成分として含まれていれば、その他、従来公知の負極活物質が含まれていてもよい。本開示において、主成分とは、負極層の総質量を100質量%としたとき50質量%以上含まれる成分を意味する。
負極層の厚みは、特に限定されないが、30nm以上5000nm以下であってもよい。
[Negative electrode layer]
In the present disclosure, for example, an all-solid-state battery in which a negative electrode layer is provided between the Li absorption layer and the negative electrode current collector during assembly, or a negative electrode layer is not provided between the Li absorption layer and the negative electrode current collector during assembly, and then It may be an all-solid battery provided with a negative electrode layer formed by depositing metallic lithium as a negative electrode active material by charging. After the initial charge, metallic lithium deposited between the negative electrode current collector and the solid electrolyte layer is used as a negative electrode active material.
The negative electrode layer contains a negative electrode active material.
Examples of the negative electrode active material include metallic lithium (Li) and lithium alloys. Examples of lithium alloys include Li—Au, Li—Mg, Li—Sn, Li—Si, Li—Al, Li—B, Li— C, Li—Ca, Li—Ga, Li—Ge, Li—As, Li—Se, Li—Ru, Li—Rh, Li—Pd, Li—Ag, Li—Cd, Li—In, Li—Sb, Li--Ir, Li--Pt, Li--Hg, Li--Pb, Li--Bi, Li--Zn, Li--Tl, Li--Te and Li--At. As long as the negative electrode layer contains metallic lithium or a lithium alloy as a negative electrode active material as a main component, it may also contain other conventionally known negative electrode active materials. In the present disclosure, the main component means a component contained in the negative electrode layer in an amount of 50% by mass or more when the total mass of the negative electrode layer is 100% by mass.
The thickness of the negative electrode layer is not particularly limited, but may be 30 nm or more and 5000 nm or less.
[固体電解質層]
固体電解質層は、少なくとも固体電解質を含む。
固体電解質層に含有させる固体電解質としては、全固体電池に使用可能な公知の固体電解質を適宜用いることができ、酸化物系固体電解質、及び硫化物系固体電解質等が挙げられる。
硫化物系固体電解質としては、例えば、Li2S-P2S5、Li2S-SiS2、LiX-Li2S-SiS2、LiX-Li2S-P2S5、LiX-Li2O-Li2S-P2S5、LiX-Li2S-P2O5、LiX-Li3PO4-P2S5、及びLi3PS4等が挙げられる。なお、上記「Li2S-P2S5」の記載は、Li2SおよびP2S5を含む原料組成物を用いてなる材料を意味し、他の記載についても同様である。また、上記LiXの「X」は、ハロゲン元素を示す。上記LiXを含む原料組成物中にLiXは1種又は2種以上含まれていてもよい。LiXが2種以上含まれる場合、2種以上の混合比率は特に限定されるものではない。
硫化物系固体電解質における各元素のモル比は、原料における各元素の含有量を調整することにより制御できる。また、硫化物系固体電解質における各元素のモル比や組成は、例えば、ICP発光分析法で測定することができる。
[Solid electrolyte layer]
The solid electrolyte layer contains at least a solid electrolyte.
As the solid electrolyte to be contained in the solid electrolyte layer, known solid electrolytes that can be used in all-solid-state batteries can be appropriately used, and examples thereof include oxide-based solid electrolytes and sulfide-based solid electrolytes.
Examples of sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , LiX—Li 2 S—SiS 2 , LiX—Li 2 SP 2 S 5 , LiX—Li 2 O—Li 2 SP 2 S 5 , LiX—Li 2 SP 2 O 5 , LiX—Li 3 PO 4 —P 2 S 5 , Li 3 PS 4 and the like. The above description of "Li 2 SP 2 S 5 " means a material obtained by using a raw material composition containing Li 2 S and P 2 S 5 , and the same applies to other descriptions. "X" in LiX above represents a halogen element. One or more kinds of LiX may be contained in the raw material composition containing LiX. When two or more types of LiX are included, the mixing ratio of the two or more types is not particularly limited.
The molar ratio of each element in the sulfide-based solid electrolyte can be controlled by adjusting the content of each element in the raw material. Also, the molar ratio and composition of each element in the sulfide-based solid electrolyte can be measured, for example, by ICP emission spectrometry.
硫化物系固体電解質は、硫化物ガラスであってもよく、結晶化硫化物ガラス(ガラスセラミックス)であってもよく、原料組成物に対する固相反応処理により得られる結晶質材料であってもよい。
硫化物系固体電解質の結晶状態は、例えば、硫化物系固体電解質に対してCuKα線を使用した粉末X線回折測定を行うことにより確認することができる。
The sulfide-based solid electrolyte may be sulfide glass, crystallized sulfide glass (glass ceramics), or a crystalline material obtained by solid-phase reaction treatment of a raw material composition. .
The crystalline state of the sulfide-based solid electrolyte can be confirmed, for example, by subjecting the sulfide-based solid electrolyte to powder X-ray diffraction measurement using CuKα rays.
硫化物ガラスは、原料組成物(例えばLi2SおよびP2S5の混合物)を非晶質処理することにより得ることができる。非晶質処理としては、例えば、メカニカルミリングが挙げられる。 Sulfide glass can be obtained by subjecting a raw material composition (for example, a mixture of Li 2 S and P 2 S 5 ) to amorphous processing. Examples of amorphous processing include mechanical milling.
ガラスセラミックスは、例えば、硫化物ガラスを熱処理することにより得ることができる。
熱処理温度は、硫化物ガラスの熱分析測定により観測される結晶化温度(Tc)よりも高い温度であればよく、通常、195℃以上である。一方、熱処理温度の上限は特に限定されない。
硫化物ガラスの結晶化温度(Tc)は、示差熱分析(DTA)により測定することができる。
熱処理時間は、ガラスセラミックスの所望の結晶化度が得られる時間であれば特に限定されるものではないが、例えば1分間~24時間の範囲内であり、中でも、1分間~10時間の範囲内が挙げられる。
熱処理の方法は特に限定されるものではないが、例えば、焼成炉を用いる方法を挙げることができる。
Glass-ceramics can be obtained, for example, by heat-treating sulfide glass.
The heat treatment temperature may be any temperature higher than the crystallization temperature (Tc) observed by thermal analysis measurement of sulfide glass, and is usually 195° C. or higher. On the other hand, the upper limit of the heat treatment temperature is not particularly limited.
The crystallization temperature (Tc) of sulfide glass can be measured by differential thermal analysis (DTA).
The heat treatment time is not particularly limited as long as the desired crystallinity of the glass-ceramics is obtained. is mentioned.
The method of heat treatment is not particularly limited, but for example, a method using a kiln can be mentioned.
酸化物系固体電解質としては、例えばLi6.25La3Zr2Al0.25O12、Li3PO4、及びLi3+xPO4-xNx(1≦x≦3)等が挙げられる。 Examples of oxide-based solid electrolytes include Li 6.25 La 3 Zr 2 Al 0.25 O 12 , Li 3 PO 4 and Li 3+x PO 4-x N x (1≦x≦3).
固体電解質の形状は、取扱い性が良いという観点から粒子状であってもよい。
また、固体電解質の粒子の平均粒径(D50)は、特に限定されないが、下限が0.5μm以上であってもよく、上限が2μm以下であってもよい。
The shape of the solid electrolyte may be particulate from the viewpoint of ease of handling.
Moreover, the average particle diameter (D50) of the particles of the solid electrolyte is not particularly limited, but the lower limit may be 0.5 μm or more and the upper limit may be 2 μm or less.
本開示において、粒子の平均粒径は、特記しない限り、レーザー回折・散乱式粒子径分布測定により測定される体積基準のメディアン径(D50)の値である。また、本開示においてメディアン径(D50)とは、粒径の小さい粒子から順に並べた場合に、粒子の累積体積が全体の体積の半分(50%)となる径(体積平均径)である。 In the present disclosure, unless otherwise specified, the average particle diameter of particles is the volume-based median diameter (D50) measured by laser diffraction/scattering particle size distribution measurement. In the present disclosure, the median diameter (D50) is the diameter (volume average diameter) at which the cumulative volume of particles is half (50%) of the total volume when the particles are arranged in order from the smallest particle size.
固体電解質は、1種単独で、又は2種以上のものを用いることができる。また、2種以上の固体電解質を用いる場合、2種以上の固体電解質を混合してもよく、又は2層以上の固体電解質それぞれの層を形成して多層構造としてもよい。
固体電解質層中の固体電解質の割合は、特に限定されるものではないが、例えば50質量%以上であり、60質量%以上100質量%以下の範囲内であってもよく、70質量%以上100質量%以下の範囲内であってもよく、100質量%であってもよい。
Solid electrolytes can be used singly or in combination of two or more. Moreover, when using two or more kinds of solid electrolytes, two or more kinds of solid electrolytes may be mixed, or two or more layers of each solid electrolyte may be formed to form a multilayer structure.
The proportion of the solid electrolyte in the solid electrolyte layer is not particularly limited. It may be within the range of mass % or less, and may be 100 mass %.
固体電解質層には、可塑性を発現させる等の観点から、バインダーを含有させることもできる。そのようなバインダーとしては、Li吸蔵層に用いられる樹脂として例示した材料等を例示することができる。ただし、高出力化を図り易くするために、固体電解質の過度の凝集を防止し且つ均一に分散された固体電解質を有する固体電解質層を形成可能にする等の観点から、固体電解質層に含有させるバインダーは5質量%以下としてもよい。 The solid electrolyte layer may contain a binder from the viewpoint of exhibiting plasticity. As such a binder, the materials exemplified as the resin used for the Li occluding layer can be exemplified. However, in order to facilitate high output, it is contained in the solid electrolyte layer from the viewpoint of preventing excessive aggregation of the solid electrolyte and making it possible to form a solid electrolyte layer having a uniformly dispersed solid electrolyte. The binder may be 5% by mass or less.
固体電解質層の厚みは特に限定されるものではなく、通常0.1μm以上1mm以下である。
固体電解質層を形成する方法としては、固体電解質及び必要に応じ他の成分を含む固体電解質材料の粉末を加圧成形する方法等が挙げられる。固体電解質材料の粉末を加圧成形する場合には、通常、1MPa以上600MPa以下程度のプレス圧を負荷する。
加圧方法としては、特に制限されないが、後述する正極層の形成において例示する加圧方法が挙げられる。
The thickness of the solid electrolyte layer is not particularly limited, and is usually 0.1 μm or more and 1 mm or less.
Examples of the method for forming the solid electrolyte layer include a method of pressure-molding powder of a solid electrolyte material containing a solid electrolyte and, if necessary, other components. When the solid electrolyte material powder is pressure-molded, a press pressure of about 1 MPa to 600 MPa is normally applied.
The pressurization method is not particularly limited, but includes the pressurization method exemplified in the later-described formation of the positive electrode layer.
[正極層]
正極層は、正極活物質を含み、任意成分として、固体電解質、導電材、及びバインダー等が含まれていてもよい。
[Positive electrode layer]
The positive electrode layer contains a positive electrode active material, and may contain a solid electrolyte, a conductive material, a binder, and the like as optional components.
正極活物質の種類について特に制限はなく、全固体電池の活物質として使用可能な材料をいずれも採用可能である。全固体電池が全固体リチウム金属二次電池の場合は、正極活物質は、例えば、金属リチウム(Li)、リチウム合金、LiCoO2、LiNixCo1-xO2(0<x<1)、LiNi1/3Co1/3Mn1/3O2、LiMnO2、異種元素置換Li-Mnスピネル(例えばLiMn1.5Ni0.5O4、LiMn1.5Al0.5O4、LiMn1.5Mg0.5O4、LiMn1.5Co0.5O4、LiMn1.5Fe0.5O4、及びLiMn1.5Zn0.5O4等)、チタン酸リチウム(例えばLi4Ti5O12)、リン酸金属リチウム(例えばLiFePO4、LiMnPO4、LiCoPO4、及びLiNiPO4等)、LiCoN、Li2SiO3、及びLi4SiO4等のリチウム化合物、遷移金属酸化物(例えばV2O5、及びMoO3等)、TiS2、Si、SiO2、並びにリチウム貯蔵性金属間化合物(例えばMg2Sn、Mg2Ge、Mg2Sb、及びCu3Sb等)等を挙げることができる。リチウム合金としては、負極活物質に用いられるリチウム合金として例示したリチウム合金等が挙げられる。
正極活物質の形状は特に限定されるものではないが、粒子状であってもよい。
正極活物質の表面には、Liイオン伝導性酸化物を含有するコート層が形成されていても良い。正極活物質と、固体電解質との反応を抑制できるからである。
Liイオン伝導性酸化物としては、例えば、LiNbO3、Li4Ti5O12、及び、Li3PO4等が挙げられる。コート層の厚さは、例えば、0.1nm以上であり、1nm以上であっても良い。一方、コート層の厚さは、例えば、100nm以下であり、20nm以下であっても良い。正極活物質の表面におけるコート層の被覆率は、例えば、70%以上であり、90%以上であっても良い。
There are no particular restrictions on the type of positive electrode active material, and any material that can be used as an active material for an all-solid-state battery can be used. When the all-solid battery is an all-solid lithium metal secondary battery, the positive electrode active material is, for example, metallic lithium (Li), a lithium alloy, LiCoO 2 , LiNi x Co 1-x O 2 (0<x<1), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMnO 2 , heteroelement-substituted Li—Mn spinels (e.g., LiMn 1.5 Ni 0.5 O 4 , LiMn 1.5 Al 0.5 O 4 , LiMn 1.5Mg0.5O4 , LiMn1.5Co0.5O4 , LiMn1.5Fe0.5O4 , and LiMn1.5Zn0.5O4 , etc. ) , lithium titanate ( Li 4 Ti 5 O 12 ), lithium metal phosphates (e.g. LiFePO 4 , LiMnPO 4 , LiCoPO 4 and LiNiPO 4 ), lithium compounds such as LiCoN, Li 2 SiO 3 and Li 4 SiO 4 , transition metal oxides materials (such as V2O5 and MoO3 ), TiS2 , Si, SiO2 , and lithium-storing intermetallic compounds (such as Mg2Sn , Mg2Ge , Mg2Sb , and Cu3Sb ), etc. can be mentioned. Examples of lithium alloys include the lithium alloys exemplified as the lithium alloys used for the negative electrode active material.
Although the shape of the positive electrode active material is not particularly limited, it may be particulate.
A coat layer containing a Li ion conductive oxide may be formed on the surface of the positive electrode active material. This is because the reaction between the positive electrode active material and the solid electrolyte can be suppressed.
Li ion conductive oxides include, for example, LiNbO 3 , Li 4 Ti 5 O 12 , Li 3 PO 4 and the like. The thickness of the coat layer is, for example, 0.1 nm or more, and may be 1 nm or more. On the other hand, the thickness of the coat layer is, for example, 100 nm or less, and may be 20 nm or less. The coverage of the coat layer on the surface of the positive electrode active material is, for example, 70% or more, and may be 90% or more.
固体電解質としては、上述した固体電解質層に含有させることが可能な固体電解質を例示することができる。
正極層における固体電解質の含有量は、特に限定されないが、正極層の総質量を100質量%としたとき、例えば1質量%~80質量%の範囲内であってもよい。
Examples of the solid electrolyte include solid electrolytes that can be contained in the solid electrolyte layer described above.
The content of the solid electrolyte in the positive electrode layer is not particularly limited, but may be in the range of, for example, 1% by mass to 80% by mass when the total mass of the positive electrode layer is 100% by mass.
導電材としては、公知のものを用いることができ、例えば、炭素材料、及び金属粒子等が挙げられる。炭素材料としては、例えば、アセチレンブラックやファーネスブラック等のカーボンブラック、VGCF、カーボンナノチューブ、及び、カーボンナノファイバーからなる群より選ばれる少なくとも一種を挙げることができ、中でも、電子伝導性の観点から、VGCF、カーボンナノチューブ、及び、カーボンナノファイバーからなる群より選ばれる少なくとも一種であってもよい。金属粒子としては、Ni、Cu、Fe、及びSUS等の粒子が挙げられる。
正極層における導電材の含有量は特に限定されるものではない。
As the conductive material, a known material can be used, and examples thereof include carbon materials, metal particles, and the like. Examples of the carbon material include at least one selected from the group consisting of carbon black such as acetylene black and furnace black, VGCF, carbon nanotubes, and carbon nanofibers. At least one selected from the group consisting of VGCF, carbon nanotubes, and carbon nanofibers may be used. Metal particles include particles of Ni, Cu, Fe, SUS, and the like.
The content of the conductive material in the positive electrode layer is not particularly limited.
バインダーとしては、Li吸蔵層に用いられる樹脂として例示した材料等を例示することができる。正極層におけるバインダーの含有量は特に限定されるものではない。 As the binder, the materials exemplified as the resin used for the Li occluding layer can be exemplified. The content of the binder in the positive electrode layer is not particularly limited.
正極層の厚みについては特に限定されるものではない。 The thickness of the positive electrode layer is not particularly limited.
正極層は、従来公知の方法で形成することができる。
例えば、正極活物質、及び、必要に応じ他の成分を溶媒中に投入し、撹拌することにより、正極層用スラリーを作製し、当該正極層用スラリーを正極集電体等の支持体の一面上に塗布して乾燥させることにより、正極層が得られる。
溶媒は、例えば酢酸ブチル、酪酸ブチル、ヘプタン、及びN-メチル-2-ピロリドン等が挙げられる。
正極集電体等の支持体の一面上に正極層用スラリーを塗布する方法は、特に限定されず、ドクターブレード法、メタルマスク印刷法、静電塗布法、ディップコート法、スプレーコート法、ロールコート法、グラビアコート法、及びスクリーン印刷法等が挙げられる。
支持体としては、自己支持性を有するものを適宜選択して用いることができ、特に限定はされず、例えばCu及びAlなどの金属箔等を用いることができる。
The positive electrode layer can be formed by a conventionally known method.
For example, the positive electrode active material and, if necessary, other components are put into a solvent and stirred to prepare a positive electrode layer slurry. The positive electrode layer is obtained by coating on top and drying.
Solvents include, for example, butyl acetate, butyl butyrate, heptane, N-methyl-2-pyrrolidone, and the like.
The method for applying the positive electrode layer slurry onto one surface of a support such as a positive electrode current collector is not particularly limited, and may be a doctor blade method, a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, or the like. Examples include a coating method, a gravure coating method, and a screen printing method.
As the support, one having self-supporting properties can be appropriately selected and used, and there is no particular limitation. For example, metal foils such as Cu and Al can be used.
また、正極層の形成方法の別の方法として、正極活物質及び必要に応じ他の成分を含む正極合剤の粉末を加圧成形することにより正極層を形成してもよい。正極合剤の粉末を加圧成形する場合には、通常、1MPa以上600MPa以下程度のプレス圧を負荷する。
加圧方法としては、特に制限されないが、例えば、平板プレス、及びロールプレス等を用いて圧力を付加する方法等が挙げられる。
As another method of forming the positive electrode layer, the positive electrode layer may be formed by pressure-molding a powder of a positive electrode mixture containing the positive electrode active material and, if necessary, other components. When the powder of the positive electrode mixture is pressure-molded, a press pressure of about 1 MPa to 600 MPa is normally applied.
The pressurizing method is not particularly limited, but examples thereof include a method of applying pressure using a flat plate press, a roll press, and the like.
[正極集電体]
全固体電池は、通常、正極層の集電を行う正極集電体を有する。
正極集電体としては、全固体電池の集電体として使用可能な公知の金属を用いることができる。そのような金属としては、Cu、Ni、Al、V、Au、Pt、Mg、Fe、Ti、Co、Cr、Zn、Ge、及びInからなる群から選択される一又は二以上の元素を含む金属材料を例示することができる。正極集電体としては、例えばSUS、アルミニウム、ニッケル、鉄、チタンおよびカーボン等が挙げられる。
正極集電体の形態は特に限定されるものではなく、箔状、及びメッシュ状等、種々の形態とすることができる。
[Positive collector]
An all-solid-state battery usually has a positive electrode current collector that collects the current of the positive electrode layer.
A known metal that can be used as a current collector for an all-solid battery can be used as the positive electrode current collector. Such metals include one or more elements selected from the group consisting of Cu, Ni, Al, V, Au, Pt, Mg, Fe, Ti, Co, Cr, Zn, Ge, and In. A metal material can be exemplified. Examples of positive electrode current collectors include SUS, aluminum, nickel, iron, titanium and carbon.
The shape of the positive electrode current collector is not particularly limited, and various shapes such as a foil shape and a mesh shape can be used.
全固体電池は、必要に応じ、正極層、負極層、及び、固体電解質層等を収容する外装体を備える。
外装体の材質は、電解質に安定なものであれば特に限定されないが、ポリプロピレン、ポリエチレン、及び、アクリル樹脂等の樹脂等が挙げられる。
An all-solid-state battery is provided with an exterior body that accommodates a positive electrode layer, a negative electrode layer, a solid electrolyte layer, and the like, if necessary.
The material of the exterior body is not particularly limited as long as it is stable in the electrolyte, and examples thereof include polypropylene, polyethylene, and resins such as acrylic resins.
全固体電池としては、一次電池であっても良く、二次電池であっても良いが、中でも二次電池であってもよい。繰り返し充放電でき、例えば車載用電池として有用だからである。また、全固体電池は、全固体リチウム金属二次電池であってもよい。
全固体電池の形状としては、例えば、コイン型、ラミネート型、円筒型、及び角型等を挙げることができる。
The all-solid-state battery may be a primary battery, a secondary battery, or a secondary battery. This is because they can be repeatedly charged and discharged, and are useful, for example, as batteries for vehicles. Also, the all-solid battery may be an all-solid lithium metal secondary battery.
Examples of the shape of the all-solid-state battery include coin type, laminate type, cylindrical type, rectangular type, and the like.
本開示の全固体電池の製造方法は、例えば、まず、固体電解質材料の粉末を加圧成形することにより固体電解質層を形成する。そして、固体電解質層の一面上で金属リチウム、リチウム合金及びリチウム化合物からなる群より選ばれる少なくとも一種の正極活物質を含む正極合剤の粉末を加圧成形することにより正極層を得る。その後、負極集電体の一面上にLi吸蔵層材料を含むスラリーを塗布して乾燥させLi吸蔵層を形成し負極集電体-Li吸蔵層積層体を得て、固体電解質層の正極層を形成した面とは反対側の面上にLi吸蔵層が固体電解質層と接するように負極集電体-Li吸蔵層積層体を取り付ける。そして、必要に応じて正極層の固体電解質層とは反対側の面上に正極集電体を取り付けて本開示の全固体電池としてもよい。
この場合、固体電解質材料の粉末、及び正極合剤の粉末を加圧成形する際のプレス圧は、通常1MPa以上600MPa以下程度である。
加圧方法としては、特に制限されないが、正極層の形成において例示した加圧方法が挙げられる。
In the manufacturing method of the all-solid-state battery of the present disclosure, for example, first, the solid electrolyte layer is formed by pressure-molding the powder of the solid electrolyte material. Then, on one surface of the solid electrolyte layer, a positive electrode layer is obtained by pressure-molding a positive electrode mixture powder containing at least one positive electrode active material selected from the group consisting of metallic lithium, lithium alloys and lithium compounds. Thereafter, a slurry containing a material for the Li occlusion layer is applied to one surface of the negative electrode current collector and dried to form a Li occlusion layer to obtain a negative electrode current collector-Li occlusion layer laminate, and the positive electrode layer of the solid electrolyte layer is formed. The negative electrode current collector-Li occlusion layer laminate is mounted on the surface opposite to the formed surface so that the Li occlusion layer is in contact with the solid electrolyte layer. Then, if necessary, a positive electrode current collector may be attached on the surface of the positive electrode layer opposite to the solid electrolyte layer to form the all-solid-state battery of the present disclosure.
In this case, the press pressure when the powder of the solid electrolyte material and the powder of the positive electrode material mixture is pressure-molded is usually about 1 MPa or more and 600 MPa or less.
The pressurization method is not particularly limited, but includes the pressurization method exemplified in the formation of the positive electrode layer.
(実施例1)
[Li吸蔵層の作製]
繊維状炭素材料としてVGCFと樹脂としてPVDFを質量比で75:25となるように秤量し、手混ぜ混合後、ヘプタンを加え、ホモジナイザー(株式会社エスエムテー製、UH-50)を用い3分間混合し、Li吸蔵層の材料であるLi吸蔵層材料を得た。
負極集電体としてCu箔を準備し、Li吸蔵層材料をCu箔の一面上に塗工し、乾燥させ、Li吸蔵層をCu箔の一面上に形成し、負極集電体-Li吸蔵層積層体を得た。Li吸蔵層の厚みを14μmとした。
(Example 1)
[Preparation of Li storage layer]
VGCF as a fibrous carbon material and PVDF as a resin were weighed at a mass ratio of 75:25, mixed by hand, heptane was added, and mixed for 3 minutes using a homogenizer (manufactured by SMTE Co., Ltd., UH-50). , to obtain a Li occlusion layer material, which is the material for the Li occlusion layer.
A Cu foil is prepared as a negative electrode current collector, and a Li occluding layer material is applied on one side of the Cu foil and dried to form a Li occluding layer on one side of the Cu foil. A laminate was obtained. The thickness of the Li absorption layer was set to 14 μm.
[正極合剤の調製]
正極活物質にLiNi1/3Co1/3Mn1/3O2(日亜化学工業社製)の粒子を使用した。この正極活物質の粒子には、予めLiNbO3の表面処理が施されている。この正極活物質、導電材としてVGCF(昭和電工社製)および硫化物系固体電解質(LiBrおよびLiIを含むLi2S-P2S5系材料)を質量比で85.3:1.3:13.4となるように秤量し、混合したものを正極合剤とした。
[Preparation of positive electrode mixture]
Particles of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nichia Corporation) were used as the positive electrode active material. The particles of the positive electrode active material are previously surface-treated with LiNbO 3 . This positive electrode active material, VGCF (manufactured by Showa Denko) as a conductive material, and a sulfide-based solid electrolyte (Li 2 SP 2 S 5- based material containing LiBr and LiI) were mixed in a mass ratio of 85.3:1.3: The positive electrode mixture was obtained by weighing and mixing so as to obtain 13.4.
[全固体電池の作製]
セラミックス製の型(断面積:1cm2、円筒型の容器を使用)に硫化物系固体電解質(LiBrおよびLiIを含むLi2S-P2S5系材料)の粉末101.7mgを準備し、1ton/cm2の圧力でプレス成型し、固体電解質層を得た。
固体電解質層の片面に対し、上記正極合剤31.3mgを加え、6ton/cm2でプレスすることにより正極層を形成した。
固体電解質層の正極層とは反対側の面上に上記Li吸蔵層が固体電解質層と接するように負極集電体-Li吸蔵層積層体を配置し1ton/cm2でプレスすることにより圧粉電池にした。
圧粉電池の正極層の固体電解質層とは反対側の面上に正極集電体(アルミ箔)を配置し、拘束することによって、実施例1の全固体リチウム金属二次電池が得られた。なお、硫化物系固体電解質を用いる作業は、いずれも、乾燥Ar雰囲気のグローブボックス中で行った。
[Fabrication of all-solid-state battery]
101.7 mg of powder of a sulfide-based solid electrolyte (Li 2 SP 2 S 5- based material containing LiBr and LiI) was prepared in a ceramic mold (cross-sectional area: 1 cm 2 , using a cylindrical container), Press molding was performed at a pressure of 1 ton/cm 2 to obtain a solid electrolyte layer.
A positive electrode layer was formed by adding 31.3 mg of the above positive electrode mixture to one side of the solid electrolyte layer and pressing at 6 ton/cm 2 .
The negative electrode current collector-Li occlusion layer laminate is placed on the surface of the solid electrolyte layer opposite to the positive electrode layer so that the Li occlusion layer is in contact with the solid electrolyte layer, and pressed at 1 ton/cm 2 to compact. turned into a battery.
An all-solid lithium metal secondary battery of Example 1 was obtained by placing a positive electrode current collector (aluminum foil) on the surface of the positive electrode layer of the dust battery opposite to the solid electrolyte layer and restraining it. . All operations using the sulfide-based solid electrolyte were performed in a glove box in a dry Ar atmosphere.
(実施例2)
Li吸蔵層の厚みを18μmとしたこと以外は実施例1と同様の方法で全固体リチウム金属二次電池を得た。
(Example 2)
An all-solid lithium metal secondary battery was obtained in the same manner as in Example 1, except that the thickness of the Li absorption layer was 18 μm.
(実施例3)
Li吸蔵層の厚みを25μmとしたこと以外は実施例1と同様の方法で全固体リチウム金属二次電池を得た。
(Example 3)
An all-solid lithium metal secondary battery was obtained in the same manner as in Example 1, except that the thickness of the Li occluding layer was 25 μm.
(実施例4)
Li吸蔵層の厚みを28μmとしたこと以外は実施例1と同様の方法で全固体リチウム金属二次電池を得た。
(Example 4)
An all-solid lithium metal secondary battery was obtained in the same manner as in Example 1, except that the thickness of the Li absorption layer was 28 μm.
(実施例5)
Li吸蔵層の厚みを33μmとしたこと以外は実施例1と同様の方法で全固体リチウム金属二次電池を得た。
(Example 5)
An all-solid lithium metal secondary battery was obtained in the same manner as in Example 1, except that the thickness of the Li absorption layer was 33 μm.
(比較例1)
Li吸蔵層を形成しなかったこと以外は実施例1と同様の方法で全固体リチウム金属二次電池を得た。
(Comparative example 1)
An all solid lithium metal secondary battery was obtained in the same manner as in Example 1, except that no Li absorption layer was formed.
(比較例2)
Li吸蔵層の炭素材料としてVGCFの代わりに球状のケッチェンブラック(KB)を用いて、Li吸蔵層の厚みを11μmとしたこと以外は実施例1と同様の方法で全固体リチウム金属二次電池を得た。
(Comparative example 2)
An all-solid lithium metal secondary battery was fabricated in the same manner as in Example 1, except that spherical Ketjenblack (KB) was used instead of VGCF as the carbon material for the Li occlusion layer, and the thickness of the Li occlusion layer was set to 11 μm. got
(比較例3)
Li吸蔵層の炭素材料としてVGCFの代わりに球状のケッチェンブラックを用いて、Li吸蔵層の厚みを18μmとしたこと以外は実施例1と同様の方法で全固体リチウム金属二次電池を得た。
(Comparative Example 3)
An all-solid lithium metal secondary battery was obtained in the same manner as in Example 1, except that spherical Ketjenblack was used instead of VGCF as the carbon material for the Li occlusion layer, and the thickness of the Li occlusion layer was set to 18 μm. .
(比較例4)
Li吸蔵層の炭素材料としてVGCFの代わりに球状のケッチェンブラックを用いて、Li吸蔵層の厚みを25μmとしたこと以外は実施例1と同様の方法で全固体リチウム金属二次電池を得た。
(Comparative Example 4)
An all-solid lithium metal secondary battery was obtained in the same manner as in Example 1, except that spherical Ketjenblack was used instead of VGCF as the carbon material for the Li occlusion layer, and the thickness of the Li occlusion layer was set to 25 μm. .
(比較例5)
Li吸蔵層の炭素材料としてVGCFの代わりに球状のケッチェンブラックを用いて、Li吸蔵層の厚みを40μmとしたこと以外は実施例1と同様の方法で全固体リチウム金属二次電池を得た。
(Comparative Example 5)
An all-solid lithium metal secondary battery was obtained in the same manner as in Example 1, except that spherical ketjen black was used instead of VGCF as the carbon material for the Li occlusion layer, and the thickness of the Li occlusion layer was set to 40 μm. .
[評価]
(充放電測定)
実施例1で得られた全固体リチウム金属二次電池を用い、予め60℃の恒温槽で3時間放置した後に充放電測定を行った。測定条件として、60℃、電流密度8.7mA/cm2(レート:2C)で定電流(CC)充電し、充電容量が4.35mAh/cm2に到達すると充電を終了し、10分間電池を休止させた。その後、60℃、電流密度0.435mA/cm2(レート:0.1C)でCC放電し、下限電圧が3.0Vに到達すると放電を終了した。
充放電測定で得られた実施例1の全固体リチウム金属二次電池の放電容量と充電容量から下記の式より充放電効率を求めた。
充放電効率(%)=(放電容量÷充電容量)×100
実施例2~実施例5と、比較例1~比較例5で得られた各全固体リチウム金属二次電池についても実施例1の全固体リチウム金属二次電池と同様に充放電試験を実施し、各充放電効率を求めた。
結果を表1及び図2に示す。
[evaluation]
(Charge/discharge measurement)
Using the all-solid lithium metal secondary battery obtained in Example 1, charging and discharging measurements were performed after being left in a constant temperature bath at 60° C. for 3 hours. As the measurement conditions, constant current (CC) charging was performed at 60° C. and a current density of 8.7 mA/cm 2 (rate: 2C) . paused. After that, CC discharge was performed at 60° C. and a current density of 0.435 mA/cm 2 (rate: 0.1 C), and when the lower limit voltage reached 3.0 V, the discharge was terminated.
From the discharge capacity and charge capacity of the all-solid lithium metal secondary battery of Example 1 obtained by charge-discharge measurement, the charge-discharge efficiency was obtained from the following formula.
Charge/discharge efficiency (%) = (discharge capacity/charge capacity) x 100
The all-solid lithium metal secondary batteries obtained in Examples 2 to 5 and Comparative Examples 1 to 5 were also charged and discharged in the same manner as the all-solid lithium metal secondary battery of Example 1. , each charge-discharge efficiency was obtained.
The results are shown in Table 1 and FIG.
[評価結果]
充放電効率は充電容量に対する放電容量の割合であり、短絡が発生したり、Liイオンの移動が阻害されたりすると、充放電効率が低くなる。
まず、炭素材料の形状問わず、炭素材料と樹脂を含むLi吸蔵層を有する比較例2~4、実施例1~5の全固体リチウム金属二次電池は、Li吸蔵層を有さない比較例1の全固体リチウム金属二次電池よりも高い充放電効率を示した。これは、Li吸蔵層を有することにより、リチウムデンドライト成長に伴う短絡発生を抑制できたことによるものと考えられる。
次に、Li吸蔵層に含まれる炭素材料の形状に着目すると、実施例1~5の炭素材料として繊維状炭素材料であるVGCFを含むLi吸蔵層を用いた全固体リチウム金属二次電池は、比較例2~5の炭素材料として球状炭素材料であるKBを含むLi吸蔵層を用いた全固体リチウム金属二次電池と比較して、良好な充放電効率を示した。このような結果となった理由は以下の通りと推察される。炭素材料はLiイオンと接触すると、Liイオンと反応して、表面がイオン伝導性を示すようになる。炭素材料が繊維状であれば、球状の場合に比べて、イオン伝導性を示す表面積が広くなるため、金属リチウムの溶解時にイオン伝導パスが確保されやすくなり、Liイオンが正極に移動しやすくなったと考えられる。
また、KBを含むLi吸蔵層を用いた比較例5の全固体リチウム金属二次電池はLi吸蔵層が存在しているにも関わらず、Li吸蔵層を有さない比較例1の全固体リチウム金属二次電池よりも充放電効率が低かった。KBを含むLi吸蔵層を用いた比較例2~5の全固体リチウム金属二次電池を比べると、Li吸蔵層の厚さが18μmを超えると厚くなるにしたがって充放電効率が大きく減少する傾向が認められた。VGCFを含むLi吸蔵層でも厚さが18μmを超えると少し充放電効率は減少したが、KBを含むLi吸蔵層の全固体リチウム金属二次電池の場合と比較して減少幅は小さく、厚さ33μmでも良好な充放電効率を示した。この結果から、繊維状炭素材料をLi吸蔵層に用いるとLi吸蔵層を厚膜化しても全固体リチウム金属二次電池の充放電効率を向上させることができることが分かる。KBなどの球状の炭素材料を用いる場合には、均一なLi吸蔵層を形成するためにはバインダーで炭素材料の粒子同士を結合させることが必要である。Li吸蔵層を厚くしていくと、一定の厚さを超えると、バインダーによる炭素材料の粒子同士の結合力が不足してしまい、Li吸蔵層にクラックが生じると考えられる。その結果、Li吸蔵層と固体電解質層との接触面積が減少する。当該Li吸蔵層を有する全固体リチウム金属二次電池を充電すると、Li吸蔵層と固体電解質層とが接触した箇所で電流が集中するため、電池の短絡が起こりやすくなるため、Li吸蔵層の厚さが厚くなると大幅に充放電効率が下がったと考えられる。対して、VGCFなどの繊維状炭素材料では炭素材料同士の結合の必要性が低いため、Li吸蔵層を厚くしても、Li吸蔵層にクラックが発生し難い。そのため、球状炭素材料を含むLi吸蔵層に比べて、Li吸蔵層と固体電解質層との接触面積を広く保つことができ、Li吸蔵層の厚みを問わず、全固体電池の充放電効率を向上させることができると考えられる。
したがって、本開示によれば、充放電効率が高い全固体電池を提供することができることが実証された。
[Evaluation results]
The charge/discharge efficiency is the ratio of the discharge capacity to the charge capacity, and the charge/discharge efficiency decreases when a short circuit occurs or the movement of Li ions is inhibited.
First, regardless of the shape of the carbon material, the all-solid lithium metal secondary batteries of Comparative Examples 2 to 4 and Examples 1 to 5, which have a Li absorption layer containing a carbon material and a resin, are comparative examples having no Li absorption layer. 1 showed higher charge-discharge efficiency than the all-solid-state lithium metal secondary battery of No. 1. It is considered that this is because the presence of the Li occluding layer suppresses the occurrence of a short circuit due to the growth of lithium dendrites.
Next, focusing on the shape of the carbon material contained in the Li occlusion layer, the all-solid lithium metal secondary battery using the Li occlusion layer containing VGCF, which is a fibrous carbon material, as the carbon material of Examples 1 to 5, As compared with the all-solid lithium metal secondary battery using the Li absorption layer containing KB, which is a spherical carbon material, as the carbon material of Comparative Examples 2 to 5, good charge-discharge efficiency was exhibited. The reason for such a result is presumed to be as follows. When the carbon material comes into contact with the Li ions, it reacts with the Li ions and the surface exhibits ionic conductivity. When the carbon material is fibrous, the surface area exhibiting ionic conductivity is larger than when the carbon material is spherical. Therefore, when metallic lithium is dissolved, an ionic conduction path is easily secured, and Li ions easily move to the positive electrode. It is thought that
In addition, although the all-solid lithium metal secondary battery of Comparative Example 5 using the Li occlusion layer containing KB has the Li occlusion layer, the all-solid lithium metal secondary battery of Comparative Example 1 having no Li occlusion layer The charge/discharge efficiency was lower than that of the metal secondary battery. Comparing the all-solid-state lithium metal secondary batteries of Comparative Examples 2 to 5 using the Li occlusion layer containing KB, when the thickness of the Li occlusion layer exceeds 18 μm, the charging and discharging efficiency tends to decrease significantly as the thickness increases. Admitted. Even with the Li occlusion layer containing VGCF, the charge-discharge efficiency decreased slightly when the thickness exceeded 18 μm, but the decrease was smaller than in the case of the all-solid-state lithium metal secondary battery with the Li occlusion layer containing KB. Good charge/discharge efficiency was shown even at 33 μm. From this result, it can be seen that the use of the fibrous carbon material for the Li-absorbing layer can improve the charge-discharge efficiency of the all-solid-state lithium metal secondary battery even if the Li-absorbing layer is thickened. When a spherical carbon material such as KB is used, it is necessary to bond particles of the carbon material together with a binder in order to form a uniform Li-absorbing layer. If the thickness of the Li occlusion layer is increased beyond a certain value, the binding force between the particles of the carbon material due to the binder will become insufficient, and cracks will occur in the Li occlusion layer. As a result, the contact area between the Li storage layer and the solid electrolyte layer is reduced. When an all-solid-state lithium metal secondary battery having the Li occlusion layer is charged, the current concentrates at the point where the Li occlusion layer and the solid electrolyte layer are in contact, so that the battery is likely to short circuit. It is considered that the charge-discharge efficiency decreased significantly as the thickness increased. On the other hand, in fibrous carbon materials such as VGCF, the need for bonding between carbon materials is low, so cracks are less likely to occur in the Li occlusion layer even if the Li occlusion layer is thickened. As a result, the contact area between the Li occlusion layer and the solid electrolyte layer can be kept wider than when the Li occlusion layer contains a spherical carbon material, and the charge/discharge efficiency of the all-solid-state battery is improved regardless of the thickness of the Li occlusion layer. It is thought that it is possible to
Therefore, according to the present disclosure, it was demonstrated that an all-solid-state battery with high charge-discharge efficiency can be provided.
11 負極集電体
12 固体電解質層
13 正極層
14 正極集電体
15 Li吸蔵層
100 全固体電池
11 negative electrode
Claims (1)
負極集電体、固体電解質層、及び、正極層をこの順に有し、
前記負極集電体と前記固体電解質層との間に繊維状炭素材料と樹脂を含むLi吸蔵層を有し、
前記繊維状炭素材料は、気相法炭素繊維であり、
前記樹脂は、ポリフッ化ビニリデンであり、
前記Li吸蔵層中の前記繊維状炭素材料と前記樹脂の質量比率は、繊維状炭素材料:樹脂=75:25であり、
前記Li吸蔵層の厚みは、14~33μmであることを特徴とする全固体電池。 An all-solid-state battery that utilizes a deposition-dissolution reaction of metallic lithium as a negative electrode reaction,
Having a negative electrode current collector, a solid electrolyte layer, and a positive electrode layer in this order,
a Li occlusion layer containing a fibrous carbon material and a resin between the negative electrode current collector and the solid electrolyte layer ;
The fibrous carbon material is a vapor-grown carbon fiber,
The resin is polyvinylidene fluoride,
The mass ratio of the fibrous carbon material and the resin in the Li storage layer is fibrous carbon material:resin=75:25,
The all-solid-state battery , wherein the thickness of the Li absorption layer is 14 to 33 μm .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019173058A JP7259677B2 (en) | 2019-09-24 | 2019-09-24 | All-solid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019173058A JP7259677B2 (en) | 2019-09-24 | 2019-09-24 | All-solid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021051864A JP2021051864A (en) | 2021-04-01 |
JP7259677B2 true JP7259677B2 (en) | 2023-04-18 |
Family
ID=75156227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019173058A Active JP7259677B2 (en) | 2019-09-24 | 2019-09-24 | All-solid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7259677B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240150219A (en) * | 2023-04-07 | 2024-10-15 | 삼성에스디아이 주식회사 | Negative electrode for all solid-state battery and all solid-state battery including same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014035888A (en) | 2012-08-09 | 2014-02-24 | Toyota Motor Corp | Solid state battery and manufacturing method thereof |
JP2018063850A (en) | 2016-10-13 | 2018-04-19 | 凸版印刷株式会社 | Laminate green sheet, all-solid type secondary battery, and method for fabricating the same |
JP2019033053A (en) | 2017-08-10 | 2019-02-28 | トヨタ自動車株式会社 | Lithium solid battery and manufacturing method thereof |
JP2019036391A (en) | 2017-08-10 | 2019-03-07 | トヨタ自動車株式会社 | All-solid battery and negative electrode |
JP2019036537A (en) | 2017-08-10 | 2019-03-07 | トヨタ自動車株式会社 | Lithium solid battery |
-
2019
- 2019-09-24 JP JP2019173058A patent/JP7259677B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014035888A (en) | 2012-08-09 | 2014-02-24 | Toyota Motor Corp | Solid state battery and manufacturing method thereof |
JP2018063850A (en) | 2016-10-13 | 2018-04-19 | 凸版印刷株式会社 | Laminate green sheet, all-solid type secondary battery, and method for fabricating the same |
JP2019033053A (en) | 2017-08-10 | 2019-02-28 | トヨタ自動車株式会社 | Lithium solid battery and manufacturing method thereof |
JP2019036391A (en) | 2017-08-10 | 2019-03-07 | トヨタ自動車株式会社 | All-solid battery and negative electrode |
JP2019036537A (en) | 2017-08-10 | 2019-03-07 | トヨタ自動車株式会社 | Lithium solid battery |
Also Published As
Publication number | Publication date |
---|---|
JP2021051864A (en) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7327005B2 (en) | All-solid-state battery and manufacturing method thereof | |
JP7331443B2 (en) | All-solid battery | |
JP7207248B2 (en) | All-solid battery | |
JP7167752B2 (en) | All-solid battery | |
JP2020035607A (en) | Lithium niobate and manufacturing method thereof | |
JP6954250B2 (en) | Method for producing composite active material particles | |
JP2020087783A (en) | Negative electrode | |
JP2020035608A (en) | Manufacturing method of positive electrode layer | |
JP7364359B2 (en) | All-solid-state battery and its manufacturing method | |
JP7318511B2 (en) | All-solid battery | |
JP7263977B2 (en) | All-solid battery | |
JP7259677B2 (en) | All-solid battery | |
JP7424261B2 (en) | Negative electrode materials and solid-state batteries | |
JP7259703B2 (en) | Non-aqueous electrolyte battery | |
JP2021197302A (en) | Solid battery | |
JP7259639B2 (en) | All-solid battery | |
JP7524875B2 (en) | Solid-state battery and method for manufacturing the same | |
JP7524751B2 (en) | electrode | |
JP7552635B2 (en) | How to restore capacity in solid-state batteries | |
WO2023132304A1 (en) | Positive electrode material and battery | |
JP2023031440A (en) | Solid-state battery | |
JP2022093889A (en) | Solid-state battery | |
JP2023039468A (en) | Negative electrode active material | |
JP2023039466A (en) | negative electrode layer | |
JP2023121871A (en) | electrode mixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220913 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220914 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230320 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7259677 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |