JP7255299B2 - Rubber composition and studless tire using the same - Google Patents
Rubber composition and studless tire using the same Download PDFInfo
- Publication number
- JP7255299B2 JP7255299B2 JP2019070055A JP2019070055A JP7255299B2 JP 7255299 B2 JP7255299 B2 JP 7255299B2 JP 2019070055 A JP2019070055 A JP 2019070055A JP 2019070055 A JP2019070055 A JP 2019070055A JP 7255299 B2 JP7255299 B2 JP 7255299B2
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- mass
- parts
- rubber composition
- polylactic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Landscapes
- Tires In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、ゴム組成物およびそれを用いたスタッドレスタイヤに関するものであり、詳しくは、破断強度および氷上性能を共に向上させ得るゴム組成物およびそれを用いたスタッドレスタイヤに関するものである。 TECHNICAL FIELD The present invention relates to a rubber composition and a studless tire using the same, and more particularly to a rubber composition capable of improving both breaking strength and performance on ice and a studless tire using the same.
従来、スタッドレスタイヤの氷上性能(氷上での制動性)を向上させるために多くの手段が提案されている。例えば、ゴムに硬質異物や中空ポリマーを配合し、これによりゴム表面にミクロな凹凸を形成することによって氷の表面に発生する水膜を除去し、氷上摩擦を向上させる手法が知られている(例えば特許文献1参照)。
しかし、中空ポリマーを配合するとトレッドゴム中に空洞が形成され、ゴム強度が低下するという問題点がある。
Conventionally, many means have been proposed to improve the on-ice performance (braking performance on ice) of studless tires. For example, it is known to add hard foreign substances or hollow polymers to rubber to form micro-roughness on the rubber surface, thereby removing the water film generated on the ice surface and improving friction on ice ( For example, see Patent Document 1).
However, when a hollow polymer is compounded, voids are formed in the tread rubber, resulting in a problem of reduced rubber strength.
したがって本発明の目的は、破断強度および氷上性能を共に向上させ得るゴム組成物およびそれを用いたスタッドレスタイヤを提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a rubber composition capable of improving both breaking strength and performance on ice, and a studless tire using the same.
本発明者らは鋭意研究を重ねた結果、特定の組成を有するジエン系ゴムに対し、無機充填剤および特定のポリ乳酸多孔質粒子を特定量でもって配合することにより、上記課題を解決できることを見出し、本発明を完成することができた。
すなわち本発明は以下の通りである。
As a result of extensive studies, the inventors of the present invention have found that the above problems can be solved by blending specific amounts of an inorganic filler and specific polylactic acid porous particles into a diene rubber having a specific composition. I found it and was able to complete the present invention.
That is, the present invention is as follows.
1.ポリブタジエンゴムを30質量部以上かつ天然ゴムおよび/または合成イソプレンゴムを30質量部以上含むジエン系ゴム100質量部に対し、無機充填剤を20質量部以上、および平均粒径が20μm以下のポリ乳酸多孔質粒子を1~15質量部配合してなることを特徴とするゴム組成物。
2.前記ポリ乳酸多孔質粒子の空隙率が、50~95%であることを特徴とする前記1に記載のゴム組成物。
3.前記ゴム組成物のガラス転移温度が-60℃以下であり、かつ20℃における硬度が60以下であることを特徴とする前記1または2に記載のゴム組成物。
4.請求項1~3のいずれかに記載のゴム組成物をトレッドに使用したスタッドレスタイヤ。
1. 100 parts by mass of diene rubber containing 30 parts by mass or more of polybutadiene rubber and 30 parts by mass or more of natural rubber and/or synthetic isoprene rubber, 20 parts by mass or more of inorganic filler, and polylactic acid having an average particle size of 20 μm or less A rubber composition comprising 1 to 15 parts by mass of porous particles.
2. 2. The rubber composition as described in 1 above, wherein the polylactic acid porous particles have a porosity of 50 to 95%.
3. 3. The rubber composition as described in 1 or 2 above, wherein the rubber composition has a glass transition temperature of −60° C. or lower and a hardness at 20° C. of 60 or lower.
4. A studless tire using the rubber composition according to any one of claims 1 to 3 for a tread.
本発明のゴム組成物は、ポリブタジエンゴムを30質量部以上かつ天然ゴムおよび/または合成イソプレンゴムを30質量部以上含むジエン系ゴム100質量部に対し、無機充填剤を20質量部以上、および平均粒径が20μm以下のポリ乳酸多孔質粒子を1~15質量部配合してなることを特徴としているので、破断強度および氷上性能を共に向上させることができる。
また、本発明のゴム組成物をトレッドに用いたスタッドレスタイヤは、優れた氷上性能を有し、また十分な破断強度も維持できることから、耐摩耗性にも優れる。
The rubber composition of the present invention contains 100 parts by mass of a diene rubber containing 30 parts by mass or more of polybutadiene rubber and 30 parts by mass or more of natural rubber and/or synthetic isoprene rubber, and 20 parts by mass or more of an inorganic filler, and an average Since 1 to 15 parts by mass of polylactic acid porous particles having a particle size of 20 μm or less are blended, both breaking strength and performance on ice can be improved.
In addition, a studless tire using the rubber composition of the present invention for the tread has excellent performance on ice and can maintain sufficient breaking strength, and thus has excellent abrasion resistance.
以下、本発明をさらに詳細に説明する。 The present invention will now be described in more detail.
(ジエン系ゴム)
本発明で使用されるジエン系ゴムは、氷上性能向上の観点から、ポリブタジエンゴム(BR)を含み、また破断強度向上の観点から、天然ゴム(NR)および/または合成イソプレンゴム(IR)を含む。本発明では、該ジエン系ゴムの全体を100質量部としたときに、BRが30質量部以上を占め、かつNRおよび/またはIRが30質量部以上を占めることが必要である。なお、BRはジエン系ゴム100質量部中、30~70質量部であることが好ましく、NRおよび/またはIRが30~70質量部であることが好ましい。
(Diene rubber)
The diene rubber used in the present invention contains polybutadiene rubber (BR) from the viewpoint of improving performance on ice, and natural rubber (NR) and/or synthetic isoprene rubber (IR) from the viewpoint of improving breaking strength. . In the present invention, it is necessary that BR accounts for 30 parts by mass or more and NR and/or IR accounts for 30 parts by mass or more when the diene rubber is 100 parts by mass as a whole. BR is preferably 30 to 70 parts by mass and NR and/or IR is preferably 30 to 70 parts by mass in 100 parts by mass of the diene rubber.
なおBR、NR、IR以外にも、必要に応じてゴム組成物に配合することができる任意のジエン系ゴムを用いることができ、例えば、スチレン-ブタジエン共重合体ゴム(SBR)、アクリロニトリル-ブタジエン共重合体ゴム(NBR)、エチレン-プロピレン-ジエンターポリマー(EPDM)等を配合してもよい。本発明で使用されるジエン系ゴムにおいて、その分子量やミクロ構造はとくに制限されず、アミン、アミド、シリル、アルコキシシリル、カルボキシル、ヒドロキシル基等で末端変性されていても、エポキシ化されていてもよい。 In addition to BR, NR, and IR, any diene rubber that can be blended into a rubber composition can be used as needed. Copolymer rubber (NBR), ethylene-propylene-diene terpolymer (EPDM), etc. may be blended. In the diene rubber used in the present invention, its molecular weight and microstructure are not particularly limited, and it may be terminally modified with an amine, amide, silyl, alkoxysilyl, carboxyl, hydroxyl group, or the like, or epoxidized. good.
(無機充填剤)
本発明で使用される無機充填剤としては、例えばシリカ、クレー、マイカ、タルク、シラス、炭酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、硫酸バリウム等を挙げることができる。
(Inorganic filler)
Examples of inorganic fillers used in the present invention include silica, clay, mica, talc, shirasu, calcium carbonate, magnesium carbonate, aluminum hydroxide and barium sulfate.
(ポリ乳酸多孔質粒子)
本発明で使用されるポリ乳酸多孔質粒子は、公知のものであり、公知技術に基づき合成してもよいが、下記で説明するような市販品を利用することもできる。
(polylactic acid porous particles)
The polylactic acid porous particles used in the present invention are known and may be synthesized based on known techniques, but commercially available products such as those described below can also be used.
ポリ乳酸多孔質粒子は、本発明の効果を良好に奏するという観点から、空隙率が50~95%であることが好ましく、55~90%であることがさらに好ましい。なお空隙率は、以下の式により計算される。
[1-{ポリ乳酸多孔質粒子の比重/同一素材を用いかつ孔部を有しない中実のポリ乳酸粒子の比重}] × 100(%)
なおこれとは別に、SEM等により、例えば100個のポリ乳酸多孔質粒子の断面の空隙面積を画像解析により割り出し、粒子断面の平均面積に対する空隙の平均面積の割合を百分率として算出することによっても、空隙率を求めることができる。
The polylactic acid porous particles preferably have a porosity of 50 to 95%, more preferably 55 to 90%, from the viewpoint of exhibiting the effects of the present invention well. The porosity is calculated by the following formula.
[1-{specific gravity of polylactic acid porous particles/specific gravity of solid polylactic acid particles using the same material and having no pores}] × 100 (%)
Separately from this, the void area of the cross section of, for example, 100 polylactic acid porous particles is determined by image analysis using an SEM or the like, and the ratio of the average area of voids to the average area of the cross section of the particle is calculated as a percentage. , the porosity can be determined.
また、本発明で使用されるポリ乳酸多孔質粒子は、平均粒径が20μm以下であることが必要である。平均粒径が20μmを超えると、破断強度が悪化する。該平均粒径は、2μm~18μmであるのが好ましく、4μm~15μmであるものがさらに好ましい。なおポリ乳酸多孔質粒子の平均粒径は、SEM等により、例えば100個の粒子の画像解析により求めることができる。 Moreover, the polylactic acid porous particles used in the present invention must have an average particle size of 20 μm or less. If the average particle size exceeds 20 μm, the breaking strength will deteriorate. The average particle size is preferably 2 μm to 18 μm, more preferably 4 μm to 15 μm. The average particle diameter of the polylactic acid porous particles can be determined by image analysis of 100 particles, for example, by SEM.
本発明で使用されるポリ乳酸多孔質粒子は、市販されているものを使用することができ、例えば東レ株式会社製トレパールUP10(平均粒径=8μm、空隙率=85%)が挙げられる。 As the polylactic acid porous particles used in the present invention, commercially available ones can be used.
本発明で使用されるポリ乳酸多孔質粒子は、空隙率が高く、その空隙の存在により、氷路面とタイヤトレッド面との間に発生する水の排水効果が大きくなり、結果として氷上性能が向上するものと考えられる。 The polylactic acid porous particles used in the present invention have a high porosity, and the presence of the voids increases the effect of draining water generated between the icy road surface and the tire tread surface, resulting in improved performance on ice. It is considered that
(ゴム組成物の配合割合)
本発明のゴム組成物は、ジエン系ゴム100質量部に対し、無機充填剤を20質量部以上、および平均粒径が20μm以下のポリ乳酸多孔質粒子を1~15質量部配合してなることを特徴とする。
(Mixing ratio of rubber composition)
The rubber composition of the present invention comprises 100 parts by mass of a diene rubber, 20 parts by mass or more of an inorganic filler, and 1 to 15 parts by mass of polylactic acid porous particles having an average particle size of 20 μm or less. characterized by
前記無機充填剤の配合量が20質量部未満であると、耐摩耗性が悪化する。
前記ポリ乳酸多孔質粒子の配合量が1質量部未満であると配合量が少な過ぎて本発明の効果を奏することができな。逆に15質量部を超えると耐摩耗性が悪化する。
If the amount of the inorganic filler to be blended is less than 20 parts by mass, wear resistance deteriorates.
If the blending amount of the polylactic acid porous particles is less than 1 part by mass, the blending amount is too small and the effects of the present invention cannot be obtained. Conversely, if it exceeds 15 parts by mass, the abrasion resistance will deteriorate.
前記無機充填剤の配合量は、ジエン系ゴム100質量部に対し、25~80質量部が好ましい。
前記ポリ乳酸多孔質粒子の配合量は、ジエン系ゴム100質量部に対し、2~18質量部が好ましい。
The amount of the inorganic filler compounded is preferably 25 to 80 parts by mass with respect to 100 parts by mass of the diene rubber.
The blending amount of the polylactic acid porous particles is preferably 2 to 18 parts by mass with respect to 100 parts by mass of the diene rubber.
(その他成分)
本発明におけるゴム組成物には、前記した成分に加えて、加硫又は架橋剤、加硫又は架橋促進剤、シリカ、シランカップリング剤、酸化亜鉛、カーボンブラック、老化防止剤、可塑剤などのゴム組成物に一般的に配合されている各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量も、本発明の目的に反しない限り、従来の一般的な配合量とすることができる。
(Other ingredients)
In addition to the components described above, the rubber composition of the present invention may contain vulcanizing or cross-linking agents, vulcanization or cross-linking accelerators, silica, silane coupling agents, zinc oxide, carbon black, antioxidants, plasticizers, and the like. Various additives that are generally blended in rubber compositions can be blended, and such additives can be kneaded by a common method to form a composition and used for vulcanization or cross-linking. The blending amount of these additives can also be a conventional general blending amount as long as it does not contradict the object of the present invention.
本発明のゴム組成物は、平均ガラス転移温度(平均Tg)が-60℃以下であり、かつ20℃における硬度が60以下であることが好ましい。このように平均Tgおよび硬度を規定することにより、氷上性能が向上する。
なお本明細書で言う平均Tgは、各成分のガラス転移温度に、各成分の重量分率を乗じた積の合計、すなわち加重平均に基づき算出される値である。なお計算時には各成分の重量分率の合計を1.0とする。また、前記各成分とは、ジエン系ゴム、可塑剤および樹脂を意味する。なお、樹脂は、ゴム組成物に含まれない場合もあり得る。また、ポリ乳酸多孔質粒子はここで言う樹脂に含まない。本発明で言うガラス転移温度(Tg)は、示差走査熱量測定(DSC)により20℃/分の昇温速度条件によりサーモグラムを測定し、転移域の中点の温度を指すものとする。また硬度は、JIS K6253に準拠して測定される。
さらに好ましい前記平均Tgは、-62℃以下であり、さらに好ましい前記硬度は58以下である。
The rubber composition of the present invention preferably has an average glass transition temperature (average Tg) of -60°C or lower and a hardness of 60 or lower at 20°C. By defining the average Tg and hardness in this way, on-ice performance is improved.
The average Tg referred to in this specification is the sum of products obtained by multiplying the glass transition temperature of each component by the weight fraction of each component, that is, the value calculated based on the weighted average. Note that the sum of the weight fractions of each component is assumed to be 1.0 when calculating. Further, each component means a diene rubber, a plasticizer and a resin. In addition, resin may not be contained in a rubber composition. In addition, polylactic acid porous particles are not included in the resin referred to herein. The glass transition temperature (Tg) referred to in the present invention refers to the temperature at the midpoint of the transition region measured by differential scanning calorimetry (DSC) under the conditions of a temperature increase rate of 20° C./min and measuring a thermogram. Further, hardness is measured according to JIS K6253.
More preferably, the average Tg is −62° C. or less, and the hardness is more preferably 58 or less.
また本発明のゴム組成物は従来の空気入りタイヤの製造方法に従って空気入りタイヤを製造するのに適しており、スタッドレスタイヤのトレッド、とくにキャップトレッドに適用するのがよい。 Further, the rubber composition of the present invention is suitable for manufacturing pneumatic tires according to conventional pneumatic tire manufacturing methods, and is preferably applied to treads of studless tires, particularly cap treads.
以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されるものではない。 The present invention will be further described below with reference to examples and comparative examples, but the present invention is not limited to the following examples.
実施例1~3および比較例1~3
サンプルの調製
表1に示す配合(質量部)において、加硫促進剤と硫黄を除く成分を1.7リットルの密閉式バンバリーミキサーで5分間混練した後、混練物をミキサー外に放出させて室温冷却させた。その後、同バンバリーミキサーにおいて加硫促進剤および硫黄を加えてさらに混練し、ゴム組成物を得た。次に得られたゴム組成物を所定の金型中で160℃、20分間プレス加硫して加硫ゴム試験片を得、以下に示す試験法で加硫ゴム試験片の物性を測定した。
Examples 1-3 and Comparative Examples 1-3
Sample preparation In the formulation (parts by mass) shown in Table 1, the components except the vulcanization accelerator and sulfur were kneaded in a 1.7-liter closed Banbury mixer for 5 minutes, then the kneaded product was discharged out of the mixer and allowed to cool to room temperature. Let cool. Thereafter, a vulcanization accelerator and sulfur were added and further kneaded in the same Banbury mixer to obtain a rubber composition. Next, the obtained rubber composition was press-vulcanized in a predetermined mold at 160° C. for 20 minutes to obtain a vulcanized rubber test piece, and the physical properties of the vulcanized rubber test piece were measured by the following test methods.
破断強度:JIS K6251に準拠して、上記加硫ゴム試験片から3号ダンベル状のサンプル片を打ち抜き、500mm/分の引張速度にて引張試験を行い、破断伸び(%)を測定した。結果は比較例1の値を100として指数表示した。この指数が大きいほど破断強度に優れることを示す。
氷上性能:上記加硫ゴム試験片を偏平円柱状の台ゴムにはりつけ、インサイドドラム型氷上摩擦試験機にて氷上摩擦係数を測定した。測定温度は-1.5℃、荷重5.5kg/cm3、ドラム回転速度は25km/hである。結果は比較例1の値を100として指数で示した。指数が大きいほど、ゴムと氷の摩擦力が良好であり、氷上性能に優れることを示す。
結果を表1に併せて示す。
Breaking strength: According to JIS K6251, a No. 3 dumbbell-shaped sample piece was punched out from the above vulcanized rubber test piece, and a tensile test was performed at a tensile speed of 500 mm/min to measure breaking elongation (%). The results are indexed with the value of Comparative Example 1 set to 100. The larger this index, the better the breaking strength.
Performance on ice: The vulcanized rubber test piece was attached to a flat columnar base rubber, and the coefficient of friction on ice was measured with an inside drum type friction tester on ice. The measurement temperature is −1.5° C., the load is 5.5 kg/cm 3 , and the drum rotation speed is 25 km/h. The results are shown as an index with the value of Comparative Example 1 set to 100. The larger the index, the better the frictional force between the rubber and the ice, and the better the performance on ice.
The results are also shown in Table 1.
*1:NR(TSR20。Tg=-73℃)
*2:BR(日本ゼオン株式会社製Nipol BR1220。Tg=-106℃)
*3:カーボンブラック(キャボットジャパン社製ショウブラックN339)
*4:シリカ(ローディア社製Zeosil 1165MP、CTAB比表面積=159m2/g)
*5:ポリ乳酸多孔質粒子1(東レ株式会社製トレパールUP10、平均粒径=8μm、Tg=60℃、空隙率=85%、比重=0.2)
*6:微粒子(松本油脂製薬株式会社製マイクロスフェアーF100、平均粒径=10μm、Tg=-40℃、空隙率=0%、比重=1.0)
*7:ポリ乳酸多孔質粒子2(東レ社製商品名SP200、平均粒径=200μm、Tg=-40℃、空隙率=40%、比重=0.6)
*8:シランカップリング剤(Evonik Degussa社製Si69)
*9:オイル(昭和シェル石油株式会社製エキストラクト4号S。Tg=-41℃)
*10:老化防止剤(Solutia Europe社製SANTOFLEX 6PPD)
*11:ワックス(大内新興化学工業株式会社製パラフィンワックス)
*12:硫黄(鶴見化学工業株式会社製金華印油入微粉硫黄)
*13:加硫促進剤(大内新興化学工業株式会社製ノクセラーCZ-G)
*1: NR (TSR20, Tg = -73°C)
*2: BR (Nipol BR1220 manufactured by Nippon Zeon Co., Ltd. Tg = -106°C)
*3: Carbon black (Show Black N339 manufactured by Cabot Japan)
*4: Silica (Rhodia Zeosil 1165MP, CTAB specific surface area = 159 m 2 /g)
*5: Polylactic acid porous particles 1 (Toray Pearl UP10, average particle diameter = 8 µm, Tg = 60°C, porosity = 85%, specific gravity = 0.2)
*6: Microparticles (Microsphere F100 manufactured by Matsumoto Yushi Seiyaku Co., Ltd., average particle size = 10 µm, Tg = -40°C, porosity = 0%, specific gravity = 1.0)
*7: Polylactic acid porous particles 2 (trade name SP200 manufactured by Toray Industries, average particle size = 200 µm, Tg = -40°C, porosity = 40%, specific gravity = 0.6)
*8: Silane coupling agent (Si69 manufactured by Evonik Degussa)
* 9: Oil (Extract No. 4 S manufactured by Showa Shell Sekiyu K.K. Tg = -41 ° C.)
* 10: Anti-aging agent (SANTOFLEX 6PPD manufactured by Solutia Europe)
*11: Wax (paraffin wax manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.)
*12: Sulfur (fine powdered sulfur with Kinkain oil manufactured by Tsurumi Chemical Industry Co., Ltd.)
*13: Vulcanization accelerator (Noccellar CZ-G manufactured by Ouchi Shinko Chemical Industry Co., Ltd.)
表1の結果から、実施例のゴム組成物は、ポリブタジエンゴムを30質量部以上かつ天然ゴムおよび/または合成イソプレンゴムを30質量部以上含むジエン系ゴム100質量部に対し、無機充填剤を20質量部以上、および平均粒径が20μm以下のポリ乳酸多孔質粒子を1~15質量部配合しているので、比較例1と比べると、破断強度および氷上性能が共に向上していることが分かる。
比較例2は、多孔質粒子ではない粒子を使用した例であるので、比較例1と比べると破断強度が悪化した。
比較例3は、ポリ乳酸多孔質粒子の平均粒径が本発明の上限を超えた例であるので、比較例1と比べると破断強度が悪化した。
From the results in Table 1, the rubber compositions of the examples are 100 parts by mass of diene rubber containing 30 parts by mass or more of polybutadiene rubber and 30 parts by mass or more of natural rubber and/or synthetic isoprene rubber, and 20 parts by mass of inorganic filler. Since 1 to 15 parts by mass of polylactic acid porous particles having an average particle size of 20 μm or less are blended, it can be seen that both breaking strength and performance on ice are improved compared to Comparative Example 1. .
Comparative Example 2 is an example using particles that are not porous particles, so compared to Comparative Example 1, the breaking strength was worse.
Comparative Example 3 was an example in which the average particle size of the polylactic acid porous particles exceeded the upper limit of the present invention, so compared with Comparative Example 1, the breaking strength was worse.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019070055A JP7255299B2 (en) | 2019-04-01 | 2019-04-01 | Rubber composition and studless tire using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019070055A JP7255299B2 (en) | 2019-04-01 | 2019-04-01 | Rubber composition and studless tire using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020169239A JP2020169239A (en) | 2020-10-15 |
JP7255299B2 true JP7255299B2 (en) | 2023-04-11 |
Family
ID=72745333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019070055A Active JP7255299B2 (en) | 2019-04-01 | 2019-04-01 | Rubber composition and studless tire using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7255299B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7380505B2 (en) | 2020-10-06 | 2023-11-15 | 株式会社デンソー | valve device |
JP7569201B2 (en) | 2020-10-30 | 2024-10-17 | 株式会社Eneosマテリアル | Polymer composition, crosslinked product and tire |
CN114539645A (en) * | 2021-12-17 | 2022-05-27 | 山东玲珑轮胎股份有限公司 | Wear-resistant tire and preparation method thereof |
CN114539644A (en) * | 2021-12-17 | 2022-05-27 | 山东玲珑轮胎股份有限公司 | Low-noise tire and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008143129A1 (en) | 2007-05-15 | 2008-11-27 | Sun Allomer Ltd. | Flame retardant, flame-retardant composition using the same, molded article of the composition, and coated electric wire |
JP2010018641A (en) | 2008-07-08 | 2010-01-28 | Toyo Tire & Rubber Co Ltd | Rubber composition for tire tread and pneumatic tire |
JP2011012110A (en) | 2009-06-30 | 2011-01-20 | Toyo Tire & Rubber Co Ltd | Rubber composition and pneumatic tire |
WO2012105140A1 (en) | 2011-01-31 | 2012-08-09 | 東レ株式会社 | Method for producing microparticles of polylactic acid-based resin, microparticles of polylactic acid-based resin and cosmetic using same |
JP2012184361A (en) | 2011-03-07 | 2012-09-27 | Toyo Tire & Rubber Co Ltd | Rubber composition and pneumatic tire |
JP2015214690A (en) | 2014-04-25 | 2015-12-03 | 東レ株式会社 | Aliphatic polyester resin particle and method for manufacturing the same |
JP2018532008A (en) | 2015-08-31 | 2018-11-01 | 株式会社ブリヂストン | Rubber compound for tread manufacturing |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2676544B2 (en) * | 1989-02-07 | 1997-11-17 | 横浜ゴム株式会社 | Rubber composition for tire tread |
-
2019
- 2019-04-01 JP JP2019070055A patent/JP7255299B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008143129A1 (en) | 2007-05-15 | 2008-11-27 | Sun Allomer Ltd. | Flame retardant, flame-retardant composition using the same, molded article of the composition, and coated electric wire |
JP2010018641A (en) | 2008-07-08 | 2010-01-28 | Toyo Tire & Rubber Co Ltd | Rubber composition for tire tread and pneumatic tire |
JP2011012110A (en) | 2009-06-30 | 2011-01-20 | Toyo Tire & Rubber Co Ltd | Rubber composition and pneumatic tire |
WO2012105140A1 (en) | 2011-01-31 | 2012-08-09 | 東レ株式会社 | Method for producing microparticles of polylactic acid-based resin, microparticles of polylactic acid-based resin and cosmetic using same |
JP2012184361A (en) | 2011-03-07 | 2012-09-27 | Toyo Tire & Rubber Co Ltd | Rubber composition and pneumatic tire |
JP2015214690A (en) | 2014-04-25 | 2015-12-03 | 東レ株式会社 | Aliphatic polyester resin particle and method for manufacturing the same |
JP2018532008A (en) | 2015-08-31 | 2018-11-01 | 株式会社ブリヂストン | Rubber compound for tread manufacturing |
Also Published As
Publication number | Publication date |
---|---|
JP2020169239A (en) | 2020-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7255299B2 (en) | Rubber composition and studless tire using the same | |
US20190062538A1 (en) | Rubber composition | |
JP6863527B2 (en) | Rubber composition for studless tires and studless tires using it | |
JP2010126672A (en) | Rubber composition for tire tread | |
JP2011094012A (en) | Rubber composition for tread and pneumatic tire | |
JP2012158710A (en) | Rubber composition and pneumatic tire using the same | |
JP2008138086A (en) | Rubber composition for tire tread | |
JP2005146115A (en) | Tire tread rubber composition | |
JP6926711B2 (en) | Rubber composition for tires, treads and tires | |
JP7159566B2 (en) | Rubber composition for tire | |
JP2008297445A (en) | Rubber composition for tire tread | |
JP7473795B2 (en) | Rubber composition and studless tire using same | |
JP6863061B2 (en) | Rubber composition for tires | |
JP7255298B2 (en) | Rubber composition and studless tire using the same | |
JP2008297449A (en) | Rubber composition for tire tread | |
JP2009051975A (en) | Rubber composition for tire | |
JP6424594B2 (en) | Rubber composition and pneumatic tire using the same | |
JP6863060B2 (en) | Rubber composition for tires | |
JP7356004B2 (en) | Rubber composition for studless tires and studless tires using the same | |
JP7457252B2 (en) | Rubber composition for tires | |
JP5625964B2 (en) | Pneumatic tire | |
JP7081709B2 (en) | Rubber composition for studless tires and studless tires using it | |
JP7485971B2 (en) | Rubber composition and studless tire using same | |
JP7397362B2 (en) | Rubber composition for tires | |
JP2019081872A (en) | Rubber composition and tire containing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230313 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7255299 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |