Nothing Special   »   [go: up one dir, main page]

JP7138790B2 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP7138790B2
JP7138790B2 JP2021524546A JP2021524546A JP7138790B2 JP 7138790 B2 JP7138790 B2 JP 7138790B2 JP 2021524546 A JP2021524546 A JP 2021524546A JP 2021524546 A JP2021524546 A JP 2021524546A JP 7138790 B2 JP7138790 B2 JP 7138790B2
Authority
JP
Japan
Prior art keywords
refrigerant
valve
heat exchanger
refrigeration cycle
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021524546A
Other languages
English (en)
Other versions
JPWO2020245918A1 (ja
Inventor
康敬 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020245918A1 publication Critical patent/JPWO2020245918A1/ja
Application granted granted Critical
Publication of JP7138790B2 publication Critical patent/JP7138790B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、冷凍サイクル回路を備えた冷凍サイクル装置に関するものである。特に、回路内の弁の異常検知に係るものである。
従来、機器自身によって膨張弁の異常を検知する空気調和装置がある(たとえば、特許文献1参照)。この空気調和装置は、圧縮機、凝縮器、電子膨張弁および蒸発器を備える。電子膨張弁と蒸発器との間には、蒸発器の温度を検出する温度センサが設けられている。また、蒸発器の吸込口には、吸込空気温度を検出検知する温度センサが設けられている。異常検知装置では、各温度センサの検出温度に基づき、電子膨張弁の異常検知が行われる。
特開2000-274896号公報
たとえば、冷暖同時運転を実行可能なマルチ型の冷凍サイクル装置では、複数の室内熱交換器のそれぞれでの冷媒の流れ方向を切り替えるための2つの電磁弁が室内熱交換器毎に設けられる。このように1つの室内熱交換器に対して電子膨張弁および2つの電磁弁が設けられた冷凍サイクル装置では、電子膨張弁および電磁弁のうちのいずれかの弁に生じた異常を正確に検知することが困難な場合があるという課題があった。
本発明は、上述のような課題を解決するため、弁の異常をより正確に検知することができる冷凍サイクル装置を提供することを目的とする。
本発明に係る冷凍サイクル装置は、圧縮機、冷媒流路切替装置、室外熱交換器、膨張弁および室内熱交換器を接続して、冷媒を循環させる冷凍サイクル回路と、室外熱交換器と膨張弁との間で冷媒を分岐させる第1分岐部と、室内熱交換器と冷媒流路切替装置との間で冷媒を分岐させる第2分岐部と、第1分岐部と第2分岐部とを接続して、冷媒の流路となるバイパス配管と、第2分岐部と冷媒流路切替装置との間に設けられた第1弁と、バイパス配管に設けられた第2弁と、室内熱交換器を通過した空気が供給される室内の温度を検出する第1温度センサと、室内熱交換器の液側冷媒の温度を検出する第2温度センサと、冷凍サイクル回路が有する機器を制御する制御装置とを備え、制御装置は、圧縮機が動作し、膨張弁を全閉状態とし、第1弁を開状態とし、第2弁を閉状態とする運転状態において、第2温度センサの検出温度が、第1温度センサの検出温度よりも高いと判定すると、第2弁が異常であることを検知するものである。
本発明によれば、膨張弁を全閉状態とし、第1弁を開状態とし、第2弁を閉状態とする運転状態において、膨張弁および第2弁の少なくとも一方に異常が生じると、第1温度センサの検出温度と第2温度センサの検出温度とに温度差が生じる。したがって、本発明によれば、第1温度センサの検出温度と第2温度センサの検出温度とに温度差があるかどうかを判定することで、膨張弁および第2弁の少なくとも一方の弁が異常であることを、より正確に検知することができる。
実施の形態1に係る冷凍サイクル装置の構成を示す図である。 実施の形態1に係る冷凍サイクル装置において、電子膨張弁21a、低圧弁45aおよび高圧弁46aのそれぞれがとり得る状態の組合せパターンの例を示す図である。 実施の形態1に係る冷凍サイクル装置において、状態パターン1での電子膨張弁21a、低圧弁45aおよび高圧弁46aの動作を示す図である。 実施の形態1に係る冷凍サイクル装置における状態パターン1での室内熱交換器22a内の冷媒の温度分布を示すグラフを示す図である。 実施の形態1に係る冷凍サイクル装置における状態パターン2での電子膨張弁21a、低圧弁45aおよび高圧弁46aの動作を示す図である。 実施の形態1に係る冷凍サイクル装置における状態パターン2での室内熱交換器22a内の冷媒の温度分布を示すグラフを示す図である。 実施の形態1に係る冷凍サイクル装置における状態パターン3での電子膨張弁21a、低圧弁45aおよび高圧弁46aの動作を示す図である。 実施の形態1に係る冷凍サイクル装置における状態パターン3での室内熱交換器22a内の冷媒の温度分布を示すグラフを示す図である。 実施の形態1に係る冷凍サイクル装置の制御装置3で実行される第1異常検知処理の流れの例におけるフローチャートを示す図である。 実施の形態1に係る冷凍サイクル装置の制御装置3で実行される第2異常検知処理の流れの例におけるフローチャートを示す図である。 実施の形態1に係る冷凍サイクル装置の制御装置3で実行される第3異常検知処理の流れの例におけるフローチャートを示す図である。
以下、実施の形態に係る冷凍サイクル装置について、図面などを参照しながら説明する。各図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、図面では、各構成部材の大きさの関係が、実際のものとは異なる場合がある。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に、構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、圧力および温度などの高低については、特に絶対的な値との関係で高低が定まっているものではなく、装置などにおける状態、動作などにおいて相対的に定まるものとする。そして、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字などを省略して記載する場合がある。
実施の形態1.
図1は、実施の形態1に係る冷凍サイクル装置の構成を示す図である。本実施の形態では、冷凍サイクル装置として、冷暖同時運転を実行可能なマルチ型の空気調和装置を例示している。図1に示すように、本実施の形態の冷凍サイクル装置は、冷媒を循環させる冷凍サイクル回路10と、冷凍サイクル回路10を含む冷凍サイクル装置全体を制御する制御装置3とを有する。ここで、本実施の形態においては、図1に示すように、冷凍サイクル装置は、室外機1、室内機2aおよび室内機2bおよび分流コントローラ4を有する。冷凍サイクル回路10を構成する機器などは、室外機1、室内機2aおよび室内機2b並びに分流コントローラ4に分かれて収容される。
冷凍サイクル回路10は、圧縮機11、冷媒流路切替装置14、室外熱交換器12、電子膨張弁21aおよび電子膨張弁21b並びに室内熱交換器22aおよび室内熱交換器22bが、冷媒配管を介して環状に接続された構成を有する。冷凍サイクル回路10において、電子膨張弁21aおよび室内熱交換器22aの組と、電子膨張弁21bおよび室内熱交換器22bの組とは、互いに並列に接続されている。本実施の形態では、電子膨張弁21および室内熱交換器22の組の数が2つであるものとして説明するが、電子膨張弁21および室内熱交換器22の組の数は、1つまたは3つ以上であってもよい。
また、冷凍サイクル回路10には、電子膨張弁21aおよび電子膨張弁21b並びに室内熱交換器22aおよび室内熱交換器22bをバイパスして冷媒を通過させるバイパス配管で構成されるバイパス流路44を有する。バイパス流路44の一端側は、冷凍サイクル回路10のうち、室外熱交換器12と電子膨張弁21aおよび電子膨張弁21bとの間に設けられた第1分岐部41に接続されている。第1分岐部41には、気液分離器43が設けられている。
バイパス流路44の他端側は、バイパス配管の一部として構成される複数の分岐流路44aおよび分岐流路44bに分岐している。分岐流路44aおよび分岐流路44bは、後述する室内機2aおよび室内機2bにそれぞれ対応して設けられている。分岐流路44aおよび分岐流路44bの数は、室内機2aおよび室内機2bの台数、すなわち、室内熱交換器22aおよび室内熱交換器22bの数と同数である。分岐流路44aは、冷凍サイクル回路10のうち、室内熱交換器22aと冷媒流路切替装置14との間に設けられた第2分岐部42a側と接続されている。また、分岐流路44bは、冷凍サイクル回路10のうち、室内熱交換器22bと冷媒流路切替装置14との間に設けられた第2分岐部42b側と接続されている。第2分岐部42aおよび第2分岐部42bは、室内機2aおよび室内機2bにそれぞれ対応して設けられている。第2分岐部42aおよび第2分岐部42bの数は、室内機2aおよび室内機2bの台数、すなわち、室内熱交換器22aおよび室内熱交換器22bの数と同数である。
冷凍サイクル回路10のうち、第2分岐部42aと冷媒流路切替装置14との間には、低圧弁45aが設けられている。また、冷凍サイクル回路10のうち、第2分岐部42bと冷媒流路切替装置14との間には、低圧弁45bが設けられている。主として低圧の冷媒が通過する低圧弁45aおよび低圧弁45bは、それぞれ、第1弁の一例である。低圧弁45aおよび低圧弁45bは、室内機2aおよび室内機2bにそれぞれ対応して設けられている。低圧弁45aおよび低圧弁45bの数は、室内機2aおよび室内機2bの台数、すなわち、室内熱交換器22aおよび室内熱交換器22bの数と同数である。
また、バイパス流路44の分岐流路44aと第2分岐部42aとの間には、高圧弁46aが設けられている。また、バイパス流路44の分岐流路44bと第2分岐部42bとの間には、高圧弁46bが設けられている。主として高圧の冷媒が通過する高圧弁46aおよび高圧弁46bは、それぞれ、第2弁の一例である。高圧弁46aおよび高圧弁46bは、室内機2aおよび室内機2bにそれぞれ対応して設けられている。高圧弁46aおよび高圧弁46bの数は、室内機2aおよび室内機2bの台数、すなわち、室内熱交換器22aおよび室内熱交換器22bの数と同数である。
前述したように、冷凍サイクル装置は、室外機1と、分流コントローラ4と、2台の室内機2aおよび室内機2bとを有する。室外機1内の機器と分流コントローラ4内の機器との間は、2本の冷媒配管を介して接続されている。また、分流コントローラ4内の機器と2台の室内機2aおよび室内機2bのそれぞれの機器との間は、2本の冷媒配管を介して接続されている。ここで、本実施の形態では、1台の室外機1を例示しているが、室外機1の台数は2台以上であってもよい。また、本実施の形態では、1台の分流コントローラ4を例示しているが、分流コントローラ4の台数が2台以上であってもよい。さらに、本実施の形態では、2台の室内機2aおよび室内機2bを例示しているが、室内機2の台数は、1台または3台以上であってもよい。そして、室外機1と分流コントローラ4との間は、3本の冷媒配管を介して接続されていてもよい。
室外機1は、たとえば、屋外に設置される。室外機1には、上記した圧縮機11、冷媒流路切替装置14および室外熱交換器12並びに逆止弁171~逆止弁174が収容されている。また、室外機1には、室外ファン13、高圧圧力センサ15および低圧圧力センサ16が収容されている。
圧縮機11は、低圧低温のガス冷媒を吸入して圧縮し、高圧高温のガス冷媒として吐出する流体機械である。圧縮機11が動作すると、冷媒が冷凍サイクル回路10内を循環する。圧縮機11としては、運転周波数を調整可能なインバータ駆動の圧縮機が用いられる。圧縮機11の動作は、制御装置3により制御される。
冷媒流路切替装置14は、冷房主体運転時と暖房主体運転時とで冷媒の流れ方向を切り替える弁である。冷媒流路切替装置14は、制御装置3の制御により、冷房主体運転時には、図1の実線で示す流路が設定され、暖房主体運転時には、図1の破線で示す流路が設定される。冷房主体運転は、室内機2aおよび室内機2bでの冷房負荷が、暖房負荷よりも大きいときに実行される運転モードである。冷房主体運転には、全ての室内機2aおよび室内機2bで冷房運転が行われる全冷房運転も含まれるものとする。また、暖房主体運転は、室内機2aおよび室内機2bでの暖房負荷が、冷房負荷よりも大きいときに実行される運転モードである。暖房主体運転には、全ての室内機2aおよび室内機2bで暖房運転が行われる全暖房運転も含まれるものとする。冷媒流路切替装置14としては、たとえば四方弁が用いられる。
室外熱交換器12は、冷房主体運転時には凝縮器として機能し、暖房主体運転時には蒸発器として機能する熱交換器である。室外熱交換器12では、冷媒と室外空気との熱交換が行われる。
室外ファン13は、室外熱交換器12に室外空気を供給するように構成されている。室外ファン13としては、たとえば、モータ(図示せず)によって駆動するプロペラファンが用いられる。室外ファン13が動作すると、室外空気が室外機1の内部に吸入され、室外熱交換器12を通過した室外空気が、室外機1の外部に排出される。室外ファン13の動作は、制御装置3により制御される。
高圧圧力センサ15は、冷凍サイクル回路10のうち、圧縮機11と冷媒流路切替装置14との間の吐出配管、すなわち、圧縮機11の吐出側に設けられている。高圧圧力センサ15は、圧縮機11の吐出圧力となり、冷凍サイクル回路10内において高圧側となる高圧圧力Pdを検出し、検出信号を制御装置3に出力する。制御装置3では、冷凍サイクル回路10内の高圧圧力Pdに基づいて、冷凍サイクル回路10内の冷媒の凝縮温度Tcが演算される。
低圧圧力センサ16は、冷凍サイクル回路10のうち、冷媒流路切替装置14と圧縮機11との間の吸入配管、すなわち、圧縮機11の吸入側に設けられている。低圧圧力センサ16は、冷凍サイクル回路10内において低圧側となる低圧圧力Psを検出し、検出信号を制御装置3に出力する。制御装置3は、冷凍サイクル回路10内の低圧圧力Psに基づいて、冷凍サイクル回路10内の冷媒の蒸発温度Teを演算する。
室内機2aは、たとえば、屋内に設置される。室内機2aには、前述した電子膨張弁21aおよび室内熱交換器22aが収容されている。また、室内機2aには、室内ファン25a、第1温度センサTH1a、第2温度センサTH2aおよび第3温度センサTH3aが収容されている。
電子膨張弁21aは、冷媒を断熱膨張させる弁である。電子膨張弁21aの開度は、冷凍サイクル回路10内の冷媒の過熱度SHまたは過冷却度SCが目標値に近づくように、制御装置3によって制御される。電子膨張弁21aは、絞り装置の一例である。制御に基づいて、開度を調整できるものであれば、電子膨張弁でなくてもよい。
室内熱交換器22aは、室内機2aで冷房運転が実行される場合には、蒸発器として機能し、室内機2aで暖房運転が実行される場合には、凝縮器として機能する熱交換器である。室内熱交換器22aでは、冷媒と室内空気との熱交換が行われる。
室内ファン25aは、室内熱交換器22aに室内空気を供給するように構成される。室内ファン25aとしては、たとえば、モータ(図示せず)によって駆動する遠心ファンまたはクロスフローファンが用いられることが多い。室内ファン25aが動作すると、室内空気が室内機2aの内部に吸入され、室内熱交換器22aを通過した調和空気が室内に供給される。室内ファン25aの動作は、制御装置3により制御される。
第1温度センサTH1aは、室内機2aから調和に係る空気が供給される室内の室内温度TH1を検出し、検出温度を含む検出信号を制御装置3に出力する。第1温度センサTH1aは、たとえば、室内空気の流れにおいて、室内熱交換器22aの上流側となる室内機2aの吸込口に設けられている。
第2温度センサTH2aは、冷凍サイクル回路10のうち、電子膨張弁21aと室内熱交換器22aとの間に設けられている。第2温度センサTH2aは、室内熱交換器22aの液冷媒が流れる冷媒の温度である液側温度TH2温度を検出し、検出温度を含む検出信号を制御装置3に出力する。したがって、第2温度センサTH2aは、室内機2aの冷房運転時に室内熱交換器22aの冷媒入口側における、冷媒の温度を検出することになる。
第3温度センサTH3aは、冷凍サイクル回路10のうち、室内熱交換器22aと低圧弁45aおよび高圧弁46aとの間に設けられている。第3温度センサTH3aは、室内熱交換器22aのガス冷媒が流れる冷媒の温度であるガス側温度TH3を検出し、検出温度を含む検出信号を制御装置3に出力する。したがって、第3温度センサTH3aは、室内機2aの冷房運転時に室内熱交換器22aの冷媒出口側の温度を検出することになる。
室内機2bは、室内機2aと同様の構成を有する。室内機2bには、電子膨張弁21b、室内熱交換器22b、室内ファン25b、第1温度センサTH1b、第2温度センサTH2bおよび第3温度センサTH3bが収容されている。
分流コントローラ4は、たとえば、屋内に設置される。分流コントローラ4は、冷媒の流れにおいて、室外機1と室内機2aおよび室内機2bのそれぞれとの間に設けられる中継機である。分流コントローラ4には、前述した第1分岐部41、第2分岐部42aおよび第2分岐部42b、気液分離器43、バイパス流路44、分岐流路44aおよび分岐流路44b、低圧弁45aおよび低圧弁45b、高圧弁46aおよび高圧弁46b、弁47並びに低圧バイパス流路48が収容されている。
弁47は、開閉により、冷媒の流れを制御する。たとえば、全冷房運転時には、弁47は開放され、室外機1からの液冷媒が室内機2aおよび室内機2bに流れるようにする。また、たとえば、弁47が閉止されていると、室外機1から分流コントローラ4に流入したガス冷媒は、気液分離器43およびバイパス流路44を介して、室内機2aおよび室内機2bのうち、暖房運転中の室内機2に供給される。室内機2から流出した液冷媒は、たとえば、バイパス管となる低圧バイパス流路48を通過する。
低圧弁45aおよび低圧弁45b並びに高圧弁46aおよび高圧弁46bのそれぞれは、流路を開閉可能な開閉弁である。低圧弁45aおよび低圧弁45b並びに高圧弁46aおよび高圧弁46bとしては、電磁弁または電動弁などが用いられる。低圧弁45aおよび低圧弁45b並びに高圧弁46aおよび高圧弁46bのそれぞれの動作は、制御装置3により制御される。室内機2aで冷房運転が行われる場合には、低圧弁45aが開状態となり、高圧弁46aが閉状態となる。また、室内機2aで暖房運転が行われる場合には、低圧弁45aが閉状態となり、高圧弁46aが開状態となる。同様に、室内機2bで冷房運転が行われる場合には、低圧弁45bが開状態となり、高圧弁46bが閉状態となる。また、室内機2bで暖房運転が行われる場合には、低圧弁45bが閉状態となり、高圧弁46bが開状態となる。
制御装置3は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、I/Oポートなどを備えたマイクロコンピュータを有する。制御装置3は、冷凍サイクル回路10などに設けられた各種センサからの検出信号および操作部(図示せず)からの操作信号などに基づき、冷凍サイクル装置全体の動作を制御する。制御装置3は、たとえば、圧縮機11、冷媒流路切替装置14、室外ファン13、電子膨張弁21aおよび電子膨張弁21b、室内ファン25aおよび室内ファン25b、低圧弁45aおよび低圧弁45b並びに高圧弁46aおよび高圧弁46bなどの機器を制御する。図1に示すように、本実施の形態では、制御装置3を室外機1に設けているが、制御装置3の設置場所については、特に限定しない。たとえば、制御装置3は、室内機2aまたは室内機2bのいずれかに設けられていてもよいし、分流コントローラ4に設けられていてもよい。また、制御装置3が独立して設置されていてもよい。
本実施の形態における制御装置3は、特に、電子膨張弁21aおよび電子膨張弁21b並びに高圧弁46aおよび高圧弁46bの異常検知に関わる異常判定処理を行う。このため、制御装置3は、機能ブロックとして、記憶部31、抽出部32、演算部33、比較部34および判定部35を有する。記憶部31は、高圧圧力センサ15および低圧圧力センサ16のそれぞれの検出に係る圧力のデータを記憶する。また、記憶部31は、第1温度センサTH1aおよび第1温度センサTH1b、第2温度センサTH2aおよびTH2b並びに第3温度センサTH3aおよび第3温度センサTH3bのそれぞれの検出に係る温度のデータを記憶する。ここで、これらのデータは、冷凍サイクル回路10の運転中に定期的に取得される。また、記憶部31は、制御装置3が異常判定処理を行うために必要な各種データの記憶を行う。
抽出部32は、記憶部31に記憶されたデータの中から、異常判定処理を行うために必要となるデータを抽出する。たとえば、室内機2aに対応する電子膨張弁21aおよび高圧弁46aの異常検知を行う場合には、冷凍サイクル回路10および室内機2aが特定の運転状態で運転しているときのデータが用いられる。電子膨張弁21aおよび高圧弁46aの異常検知を行う際の特定の運転状態とは、圧縮機11が動作しているときに、室内機2aがサーモオフまたは停止状態にあり、電子膨張弁21aが全閉状態となり、低圧弁45aが開状態となり、高圧弁46aが閉状態となる運転状態のことである。たとえば、室内機2aが冷房運転のサーモオフ状態にあるときには、冷凍サイクル回路10および室内機2aは、特定の運転状態で運転している。このとき、冷凍サイクル回路10では、冷房運転または暖房主体運転のいずれが実行されていてもよい。
同様に、室内機2bに対応する電子膨張弁21bおよび高圧弁46bの異常検知には、冷凍サイクル回路10および室内機2bが特定の運転状態で運転しているときのデータが用いられる。電子膨張弁21bおよび高圧弁46bの異常検知を行う際の特定の運転状態とは、圧縮機11が動作しているときに、室内機2bがサーモオフまたは停止状態にあり、電子膨張弁21bが全閉状態となり、低圧弁45bが開状態となり、高圧弁46bが閉状態となる運転状態のことである。たとえば、室内機2bが冷房運転のサーモオフ状態にあるときには、冷凍サイクル回路10および室内機2bは特定の運転状態で運転している。このとき、冷凍サイクル回路10では、冷房運転または暖房主体運転のいずれが実行されていてもよい。本実施の形態では、後述するように、抽出部32は、運転モード切替部37において異常検知モードに切り替えられた場合に行われる特定の運転によって得られたデータを抽出する。
演算部33は、抽出部32で抽出されたデータに基づき、必要な演算を行う。また、比較部34は、演算部33が演算して得られた値と閾値との比較または演算部33での演算により得られた値同士の比較を行う。
判定部35は、比較部34での比較結果に基づき、電子膨張弁21aおよび電子膨張弁21b、低圧弁45aおよび低圧弁45b並びに高圧弁46aおよび高圧弁46bのうちの少なくとも1つについて、異常判定処理を行う。
また、制御装置3には、報知部36および運転モード切替部37が接続されている。報知部36および運転モード切替部37は、制御装置3の一部として制御装置3に備えられていてもよい。報知部36は、制御装置3からの指令により、電子膨張弁21aおよび電子膨張弁21b並びに高圧弁46aおよび高圧弁46bの異常などの各種情報を報知する。報知部36は、情報を視覚的に報知する表示部および情報を聴覚的に報知する音声出力部の少なくとも一方を有する。
運転モード切替部37は、ユーザによる運転モードの切替操作を受け付け、操作に係る信号を制御装置3に送る。運転モード切替部37で運転モードの切替操作が行われると、制御装置3は、運転モード切替部37から出力される信号に基づき、運転モードを切り替える。本実施の形態における冷凍サイクル装置の運転モードには、たとえば、通常運転モードと異常検知モードとが含まれている。通常運転モードでは、冷凍サイクル装置は、室内機2aおよび室内機2b側からの要求に応じた運転状態で運転する。たとえば、全ての室内機2aおよび室内機2bから冷房要求がある場合には、全冷房運転が行われる。
一方、異常検知モードでは、電子膨張弁21aおよび電子膨張弁21b並びに高圧弁46aおよび高圧弁46bの異常検知を行うためのモードである。このため、異常検知モードでは、室内機2aおよび室内機2b側からの要求に関わらず、室内機2aまたは室内機2bが冷房運転のサーモオフ状態になる。ここで、通常運転モードの実行中であっても、室内機2aが冷房運転のサーモオフ状態である場合には、電子膨張弁21aおよび高圧弁46aの異常検知が可能である。また、通常運転モードの実行中であっても、室内機2bが冷房運転のサーモオフ状態である場合には、電子膨張弁21bおよび高圧弁46bの異常検知が可能である。
次に、冷凍サイクル装置の動作について、冷房主体運転を例に挙げて説明する。冷房主体運転が行われる場合、冷媒流路切替装置14は、図1の実線で示す流路が形成されるように切り替えられる。ここでは、室内機2aがサーモオフまたは停止状態であり、室内機2bで冷房運転が行われる冷房運転を例に挙げる。ここで、室内機2aがサーモオフ状態では、室内ファン25aは駆動しているが、冷凍サイクルについては、停止しているときと同様の状態となる。したがって、室内機2aには、冷媒は流れない。このとき、室内機2aに係る弁については、低圧弁45aが、開状態に設定される。また、高圧弁46aが、閉状態に設定される。そして、電子膨張弁21aは、全閉状態になる。また、冷房運転が行われる室内機2bに係る弁については、低圧弁45bが、開状態に設定される。また、高圧弁46bが、閉状態に設定される。そして、電子膨張弁21bは、たとえば、室内熱交換器22aの出口での過熱度SHがそれぞれ目標過熱度SHmに近づくように、開度が制御される。ここで、図1並びに後述する図3、図5および図7では、低圧弁45aおよび低圧弁45b、高圧弁46aおよび高圧弁46b並びに電子膨張弁21aおよび電子膨張弁21bのうち、開状態の弁を白抜きで表しており、閉状態の弁を黒塗りで表している。
圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置14を通過し、室外熱交換器12に流入する。室外熱交換器12に流入したガス冷媒は、室外ファン13により供給される室外空気との熱交換によって凝縮し、高圧の液冷媒となる。室外熱交換器12を流出した高圧の液冷媒は、逆止弁171、気液分離器43、弁47および電子膨張弁21bを介して室内熱交換器22bに流入する。冷房主体運転時には、室内熱交換器22bおよび室内熱交換器22bは、蒸発器として機能する。
室内熱交換器22bに流入した液冷媒は、室内ファン25bにより供給される室内空気との熱交換によって蒸発し、低圧のガス冷媒となる。室内熱交換器22bで凝縮した冷媒は、低圧弁45b、逆止弁174および冷媒流路切替装置14を介して圧縮機11に吸引される。
次に、制御装置3が行う低圧圧力一定制御について説明する。本実施の形態のようなマルチ型の空気調和装置では、複数の室内機2aおよび室内機2bを能力不足なく冷房運転させる必要がある。そこで、圧縮機11の運転周波数は、冷凍サイクル回路10内の低圧圧力Psとなる圧縮機11の吸入圧力が一定になるように制御される。
さらに、制御装置3が行う室外ファン制御について説明する。冷房主体運転時において、制御装置3は、凝縮温度Tcと外気温度との温度差が一定となるように、室外ファン13の回転数を制御する。
室内機2aおよび室内機2bにおける冷房運転時の定常制御について、室内機2bを例に挙げて説明する。冷凍サイクル回路10では、低圧圧力Psが一定に制御される。このため、室内機2bの空調能力を変更する方法として、過熱度制御が実行される。過熱度制御では、室内機2bが所望の空調能力を得られるように、室内熱交換器22bの出口での過熱度SHの目標過熱度SHmを調整する。室内熱交換器22bにおける熱交換量は、過熱度SHの大小に応じて変化する。このため、過熱度SHの目標過熱度SHmが調整されることにより、室内機2bは、適正な空調能力を発揮することができる。室内機2bの設定温度と室内温度TH1との温度差が大きい場合、過熱度SHの目標過熱度SHmは、小さい値に設定される。室内機2bの設定温度と室内温度TH1との温度差が小さい場合、過熱度SHの目標過熱度SHmは、大きい値に設定される。電子膨張弁21bの開度は、室内熱交換器22bの出口での過熱度SHが目標過熱度SHmに近づくように制御される。これにより、必要な量の冷媒が、室内熱交換器22bに供給される。
次に、本実施の形態の冷凍サイクル装置における電子膨張弁21および高圧弁46の異常について説明する。以下の説明では、特定の運転状態において、運転を停止している室内機2aに対応する、電子膨張弁21a、室内熱交換器22a、第1温度センサTH1a、第2温度センサTH2a、第3温度センサTH3a、低圧弁45aおよび高圧弁46aを例に挙げて説明する。
図2は、実施の形態1に係る冷凍サイクル装置において、電子膨張弁21a、低圧弁45aおよび高圧弁46aのそれぞれがとり得る状態の組合せパターンの例を示す図である。ここで、冷凍サイクル装置は、前述した特定の運転状態となる制御が行われているものとする。したがって、室内機2aは、サーモオフまたは停止状態にある。ここで、冷凍サイクル回路10では、冷房主体運転または暖房主体運転のいずれが実行されていてもよい。
図3は、実施の形態1に係る冷凍サイクル装置において、状態パターン1での電子膨張弁21a、低圧弁45aおよび高圧弁46aの動作を示す図である。図2および図3に示すように、状態パターン1は、電子膨張弁21a、低圧弁45aおよび高圧弁46aがいずれも正常な状態にある。電子膨張弁21aは全閉状態にある。また、低圧弁45aは、開状態であり、高圧弁46aは、閉状態である。
図4は、実施の形態1に係る冷凍サイクル装置における状態パターン1での室内熱交換器22a内の冷媒の温度分布を示すグラフを示す図である。図4の横軸は、室内熱交換器22a内の冷媒流路における位置を表しており、図4の縦軸は、温度を表している。グラフの右端は、冷房運転時における室内熱交換器22aの冷媒入口を表している。グラフの右端での温度は、第3温度センサTH3aで検出される室内熱交換器22aのガス側温度TH3に相当する。グラフの左端は、冷房運転時における室内熱交換器22aの冷媒出口を表している。グラフの左端での温度は、第2温度センサTH2aで検出される室内熱交換器22aの液側温度TH2に相当する。
正常な状態パターン1では、電子膨張弁21aは閉じており、室内熱交換器22a内に冷媒が供給されない。したがって、正常な状態パターン1では、図4に示すように、液側温度TH2およびガス側温度TH3は、室内温度TH1に近づくこととなる(TH2=TH3=TH1)。
図5は、実施の形態1に係る冷凍サイクル装置における状態パターン2での電子膨張弁21a、低圧弁45aおよび高圧弁46aの動作を示す図である。図2および図5に示すように、状態パターン2は、電子膨張弁21aが開ロックとなった状態である。電子膨張弁21aの開ロックとは、電子膨張弁21aの異常の1つであり、電子膨張弁21a内の弁体の固着によって、電子膨張弁21aが開状態で固定されてしまう状態のことである。正常な状態パターン1では、電子膨張弁21aは、全閉しているのに対し、状態パターン2では、電子膨張弁21aは開状態に維持される。
図6は、実施の形態1に係る冷凍サイクル装置における状態パターン2での室内熱交換器22a内の冷媒の温度分布を示すグラフを示す図である。図6の横軸および縦軸は、図4と同様である。
正常な状態パターン1では、TH3が設置された部分では過熱ガス状態だが、電子膨張弁21aに開ロックが生じて状態パターン2になると、室内熱交換器22aには冷媒が流れる。このため、室内熱交換器22a内を通過する二相冷媒が室内空気との熱交換によって蒸発する。これにより、図6に示すように、液側温度TH2は蒸発温度と同等となる。一方、室内熱交換器22aの流出口付近になると冷媒は過熱される。このため、ガス側温度TH3は、蒸発温度よりも高い温度を検出する。以上より、状態パターン2になると、液側温度TH2は、蒸発温度Teと同等の温度となる。また、ガス側温度TH3と液側温度TH2とには、温度差が発生する(Te=TH2<TH3)。
図7は、実施の形態1に係る冷凍サイクル装置における状態パターン3での電子膨張弁21a、低圧弁45aおよび高圧弁46aの動作を示す図である。図2および図7に示すように、状態パターン3は、高圧弁46aが開ロックとなった状態である。高圧弁46aの開ロックとは、高圧弁46aの異常の1つであり、高圧弁46a内の弁体が固着することによって、高圧弁46aが開状態で固定されてしまう状態のことである。正常な状態パターン1では、高圧弁46aが閉状態であるのに対し、状態パターン3では、高圧弁46aは、開状態となっている。冷凍サイクル装置が、暖房運転から冷房運転に切り替わったとき、高圧弁46aに開ロックが生じていると、高圧弁46aが閉状態にならない。これにより、状態パターン1ではなく、状態パターン3になる。
図8は、実施の形態1に係る冷凍サイクル装置における状態パターン3での室内熱交換器22a内の冷媒の温度分布を示すグラフを示す図である。図8の横軸および縦軸は、図4と同様である。太実線の曲線C11は、状態パターン1から状態パターン3に変化してから十分に時間が経過したときの冷媒の温度分布を示している。細実線の曲線C131は、状態パターン1から状態パターン3に変化した直後の冷媒の温度分布を示している。細実線の曲線C12は、曲線C11で示す温度分布から曲線C13で示す温度分布に至るまでの冷媒の温度分布の変化を時系列で示している。
正常な状態パターン1では、ガス側温度TH3は、室内温度TH1と同等温度であるが、状態パターン3のように、高圧弁46aに開ロックが生じていると、室内熱交換器22aには高温の冷媒が流入して凝縮し、冷媒が貯留する。このため、室内熱交換器22a内において、ガス冷媒が室内空気との熱交換によって液化し、室内熱交換器22a内は、二相冷媒で徐々に満たされる。これにより、図8に示すように、ガス側温度TH3および液側温度TH2が、室内温度TH1から凝縮温度Tcに近づく。この温度差は、室内熱交換器22の冷却性能により変化する。
また、状態パターン3では、高圧弁46aが開状態であるため、高圧冷媒の一部が、バイパス流路44および分岐流路44aを通って、冷凍サイクル回路10の低圧側に流入する。これにより、冷凍サイクル回路10内の低圧圧力Psが上昇する。圧縮機11は、高圧圧力Pdが一定の目標高圧圧力Pdmに近づくように制御されており、低圧圧力Psの上昇に伴い、圧縮機11の運転周波数は増加する。したがって、圧縮機11を通過する冷媒量は、バイパス流路44を流通してしまう冷媒量の分だけ増加する。圧縮機11の運転周波数の増加によって冷凍サイクル回路10内の高圧圧力Pdを目標高圧圧力Pdmに維持できる場合、冷凍サイクル装置の運転効率が低下するものの、室内機2bは正常な状態パターン1と同様に動作する可能性がある。一方で、圧縮機11には運転周波数範囲が設定されているため、圧縮機11の運転周波数を、運転周波数範囲の上限である最大運転周波数よりも高くすることはできない。したがって、圧縮機11の運転周波数を最大運転周波数まで増加させても冷凍サイクル回路10内の高圧圧力Pdを目標高圧圧力Pdmに維持できなくなると、冷凍サイクル回路10の低圧圧力Psが上昇して、室内機2bの能力が低下してしまう。
状態パターン3では、圧縮機11から吐出された冷媒の一部が、室内機2aおよび室内機2bのいずれにも供給されず、バイパスして、圧縮機11に吸引される。このため、圧縮機11を通過する冷媒量と、全ての室内機2aおよび室内機2bの電子膨張弁21aおよび電子膨張弁21bのそれぞれを通過する冷媒量の総和とを比較すれば、状態パターン3であるか否かを判定することができる。
圧縮機11を通過する冷媒量Grocは、圧縮機11の運転周波数および圧縮機11に吸入される冷媒の密度などを用いて算出できる。次式(1)は、圧縮機11を通過する冷媒量Grocの算出式の一例である。式(1)において、Grocは、圧縮機11を通過する冷媒量[kg/h]である。また、Vstは、圧縮機11の押しのけ量[m]である。Fは、圧縮機11の運転周波数[Hz](=[1/S])である。ρsは、圧縮機11に吸入される冷媒の密度[kg/m]である。そして、ηvは、圧縮機11の体積効率であり、0≦ηv≦1の一定値である。
[数1]
Groc=Vst×F×ρs×ηv×3600 …(1)
電子膨張弁21aおよび電子膨張弁21bのそれぞれを通過する冷媒量の総和ΣGricは、電子膨張弁21aおよび電子膨張弁21bを通過する各冷媒量Gricの総和である。たとえば、電子膨張弁21aを通過する冷媒量Gricは、冷凍サイクル回路10内の高圧圧力Pdと低圧圧力Psとの圧力差および電子膨張弁21aのCv値などを用いて算出することができる。次式(2)は、電子膨張弁21aを通過する冷媒量Gricの算出式の一例である。ここで、Gricは、電子膨張弁21aを通過する冷媒量[kg/h]である。また、Cvは、電子膨張弁21aのCv値である。ΔPは、冷凍サイクル回路10内の高圧圧力Pdと低圧圧力Psとの圧力差[MPa(abs)]である。そして、ρLEVは、電子膨張弁21aの入口での冷媒の密度[kg/m]である。
[数2]
Gric=86.4×Cv×(ΔP×ρLEV)1/2 …(2)
この、式(2)は、流体の流量とCv値の関係式となる次式(3)に、密度ρをかけて変形させたものである。ここで、Cv値は、バルブなどの容量係数の1つである。JIS規格では、特定のトラベル(動作範囲)において、圧力差が1[psi(pound-force per square inch)]のとき、バルブを流れる華氏60度の清水を流した時の流量を、US[ガロン/min]で表す流量数値と定義される。また、QL[m/h]は、液体の流量(hは時間)である。さらに、ΔP[MPa(abs)]は、1次(入口)側絶対圧力P1-2次(出口)側絶対圧力P2である。そして、GLは、水を1としたときの液体の比重であり、GL=ρ(ref)ρ(water)で表される。ここで、ρ(ref)[kg/m]は、冷媒密度であり、ρ(water)[kg/m]は、水密度=約1000[kg/m]である。
[数3]
QL=Cv/{0.366×(GL/ΔP)1/2} …(3)
圧縮機11を通過する冷媒量Grocが、電子膨張弁21aおよび電子膨張弁21bのそれぞれを通過する冷媒量の総和ΣGricよりも大きい場合(Groc>ΣGric)には、状態パターン3であると判定することができる。ここで、本実施の形態のように、圧縮機11から吐出された冷媒が、1台の室内機2のみに供給される場合には、圧縮機11を通過する冷媒量Grocと電子膨張弁21を通過する冷媒量Gricとを用いて、状態パターン3であるか否かを判定することができる。すなわち、圧縮機11を通過する冷媒量Grocが、電子膨張弁21bを通過する冷媒量Gricよりも大きい場合(Groc>Gric)には、状態パターン3であると判定することができる。
また、冷凍サイクル回路10内の低圧圧力Psから目標低圧圧力Psmを減じた値が閾値よりも大きい場合にも、状態パターン3であると判定することができる。あるいは、冷凍サイクル回路10内の低圧圧力Psから目標低圧圧力Psmを減じた値が閾値よりも大きく、かつ圧縮機11が最大運転周波数で運転している場合にも、状態パターン3であると判定することができる。閾値は、たとえば、高圧一定制御で許容される高圧圧力Pdの誤差の絶対値よりも大きい値に設定される。
状態パターン2および状態パターン3についてまとめて説明する。状態パターン2および状態パターン3ではいずれも、ガス側温度TH3または液側温度TH2と室内温度TH1とに温度差が発生する。このため、ガス側温度TH3または液側温度TH2と室内温度TH1に温度差が発生した場合、状態パターン2または状態パターン3であると判定することができる。
さらに、ガス側温度TH3または液側温度TH2が、室内温度TH1よりも高い場合は、高圧弁46aの開ロック異常であり、ガス側温度TH3または液側温度TH2が、室内温度TH1よりも低い場合は、電子膨張弁21aの開ロック異常であると判定することができる。このとき、電子膨張弁21aまたは高圧弁46aのいずれかが異常であることを報知部36が報知するようにしてもよい。
次に、低圧弁45a、高圧弁46aおよび電子膨張弁21aのうちの少なくとも1つの異常検知に関し、制御装置3が実行する異常判定処理について説明する。制御装置3は、図9~図11に示す異常判定処理のうち、少なくとも1つの処理を、設定された時間間隔で繰り返し実行する。ここでは、制御装置3が、高圧弁46aまたは電子膨張弁21aの異常検知に係る異常判定処理を実行する場合について説明する。高圧弁46bまたは電子膨張弁21bの異常検知に係る異常判定処理についても、同様の流れで実行することができる。
図9は、実施の形態1に係る冷凍サイクル装置の制御装置3で実行される第1異常検知処理の流れの例におけるフローチャートを示す図である。第1異常検知処理では、制御装置3は、高圧弁46aおよび電子膨張弁21aの異常検知に係る異常判定処理を行う。図9に示すフローチャートでは、制御装置3が、高圧弁46aおよび電子膨張弁21aの異常判定処理を1つの流れで実行するものとするが、高圧弁46aの異常検知処理と電子膨張弁21aの異常検知処理とを別の流れで実行するようにしてもよい。
まず、ステップS001では、制御装置3は、指示された運転モードに基づき、圧縮機11が動作し、室外熱交換器12が凝縮器として機能しているかどうかを判定する。室外熱交換器12が凝縮器であるときは、冷凍サイクル装置は、冷房運転を行っていることになる。制御装置3は、圧縮機11が動作し、室外熱交換器12が凝縮器として機能していると判定すると、ステップS002に進み、それ以外の場合には、第1異常検知処理を終了する。
ステップS002では、制御装置3は、制御装置3は、室内機2aが冷房運転のサーモオフ状態または停止しているか否かを判定する。この判定は、電子膨張弁21aが閉状態、低圧弁45aが開状態および高圧弁46aが閉状態となる運転状態であるか否かの判定と言い換えることもできる。制御装置3は、室内機2aが冷房運転のサーモオフ状態または停止していると判定すると、ステップS003に進み、それ以外の場合には第1異常検知処理を終了する。
ステップS003では、室内温度TH1と、液側温度TH2またはガス側温度TH3とにおける温度のデータを取得する。液側温度TH2およびガス側温度TH3については、どちらか一方でよいが、両方の温度のデータを取得してもよい。室内温度TH1のデータは、第1温度センサTH1aの検出信号に基づき、取得される。液側温度TH2のデータは、第2温度センサTH2aの検出信号に基づき、取得される。ガス側温度TH3のデータは、第3温度センサTH3aの検出信号に基づき、取得される。
次に、ステップS004では、制御装置3は、ガス側温度TH3が室内温度TH1と等しいか否かおよび液側温度TH2が室内温度TH1と等しいか否かを判定する。ここで、ガス側温度TH3と室内温度TH1とが等しいおよび液側温度TH2と室内温度TH1とが等しいとは、温度差がないことを示す。温度差がないかどうかの判定については、温度差が0である必要はなく、マージンをもたせてもよい。制御装置3は、ガス側温度TH3が室内温度TH1と等しくないまたは液側温度TH2が室内温度TH1と等しくないの少なくとも一方であると判定すると、ステップS005に進む。また、制御装置3は、ガス側温度TH3または液側温度TH2が室内温度TH1と等しいと判定すると、第1異常検知処理を終了する。ここでは、制御装置3は、ガス側温度TH3が室内温度TH1と等しいか否かについて判定を行った。ただ、後述するステップS007において、制御装置3は、液側温度TH2と室内温度TH1との比較を判定を行っていることから、液側温度TH2が室内温度TH1と等しいか否かを判定する方が効率的である。
ステップS005では、制御装置3は、電子膨張弁21aまたは高圧弁46aが異常であると判定する。これは、ガス側温度TH3が、ガス側温度TH3が室内温度TH1と等しくないまたは液側温度TH2が室内温度TH1と等しくないときには、前述した正常な状態パターン1ではなく、状態パターン2または状態パターン3に該当するためである。
次に、ステップS006では、制御装置3は、電子膨張弁21aまたは高圧弁46aが異常であることを報知部36に報知させる処理を行う。ここで、たとえば、ステップS007~ステップS011の処理を行う場合、ステップS005およびステップS006の処理は、省略することも可能である。また、制御装置3が行う処理は、ステップS006で終了してもよい。
次に、ステップS007では、制御装置3は、液側温度TH2が室内温度TH1の温度よりも高いか否かを判定する。制御装置3が、液側温度TH2が室内温度TH1よりも高いと判定すると、ステップS008に進み、液側温度TH2が室内温度TH1よりも低いと判定すると、ステップS010に進む。ここで、ステップS007の判定処理は、ステップS004の判定を行ってからの経過時間が、あらかじめ設定された閾値時間を超えた後、すなわち、ガス側温度TH3が安定した後に行うようにしてもよい。また、ここでは、液側温度TH2と室内温度TH1とを比較処理する場合を例に示したが、ガス側温度TH3と室内温度TH1とを比較処理してもよい。ガス側温度TH3を用いた場合も液側温度TH2の場合と同様に、制御装置3は、ガス側温度TH3が室内温度TH1よりも高いと判定した場合はステップS008に進み、ガス側温度TH3が室内温度TH1よりも低いと判定した場合はステップS010に進む。
ステップS008では、制御装置3は、高圧弁46aが開ロックの異常であると判定する。これは、液側温度TH2が室内温度TH1よりも高い場合は、状態パターン3に該当するためである。
次に、ステップS009では、制御装置3は、高圧弁46aが異常であることを報知部36に報知させる処理を行う。そして、第1異常検知処理を終了する。
ステップS010では、制御装置3は、電子膨張弁21aが開ロックの異常であると判定する。これは、液側温度TH2が室内温度TH1よりも低い場合は、状態パターン2に該当するためである。
次に、ステップS011では、制御装置3は、電子膨張弁21aが異常であることを報知部36に報知させる処理を行う。その後、第1異常検知処理を終了する。
図10は、実施の形態1に係る冷凍サイクル装置の制御装置3で実行される第2異常検知処理の流れの例におけるフローチャートを示す図である。第2異常検知処理では、高圧弁46aの異常検知が行われる。ここで、制御装置3は、図10に示す第2異常検知処理および後述する図11に示す第3異常検知処理の少なくとも一方を、図9に基づいて説明した第1異常検知処理と共に実行するようにしてもよい。
まず、ステップS101では、制御装置3は、圧縮機11が動作し、室外熱交換器12が凝縮器として機能しているかどうかを判定する。制御装置3は、圧縮機11が動作し、室外熱交換器12が凝縮器として機能していると判定すると、ステップS102に進み、それ以外の場合には、第2異常検知処理を終了する。
ステップS102では、制御装置3は、制御装置3は、室内機2aが冷房運転のサーモオフ状態または停止しているか否かを判定する。この判定は、電子膨張弁21aが閉状態、低圧弁45aが開状態および高圧弁46aが閉状態となる運転状態であるか否かの判定と言い換えることもできる。制御装置3は、室内機2aが冷房運転のサーモオフ状態または停止していると判定すると、ステップS103に進み、それ以外の場合には第2異常検知処理を終了する。
ステップS103では、制御装置3は、圧縮機11を通過する冷媒量Grocのデータと、電子膨張弁21aおよび電子膨張弁21bのそれぞれを通過する冷媒量の総和ΣGricのデータとを取得する。室外機1側の冷媒量Grocのデータは、たとえば、前述した式(1)に基づき取得される。室内機2b側の冷媒量の総和ΣGricのデータは、たとえば、前述した式(2)などに基づき、取得される。
次に、ステップS104では、制御装置3は、室外機1側の冷媒量Grocが室内機2b側の冷媒量の総和ΣGricよりも大きいか否かを判定する。制御装置3は、冷媒量Grocが冷媒量の総和ΣGricよりも大きいと判定したときにはステップS105に進む。一方、制御装置3は、冷媒量Grocが冷媒量の総和ΣGricと等しいと判定したときには、第2異常検知処理を終了する。
ステップS105では、制御装置3は、高圧弁46aが異常であると判定する。これは、室外機1側の冷媒量Grocが室内機2b側の冷媒量の総和ΣGricよりも大きい場合には、状態パターン3に該当するためである。
次に、ステップS106では、制御装置3は、高圧弁46aが異常であることを報知部36に報知させる処理を行う。その後、第2異常検知処理を終了する。
図11は、実施の形態1に係る冷凍サイクル装置の制御装置3で実行される第3異常検知処理の流れの例におけるフローチャートを示す図である。第3異常検知処理では、高圧弁46aの異常検知が行われる。
まず、ステップS201では、制御装置3は、圧縮機11が動作し、室外熱交換器12が凝縮器として機能しているかどうかを判定する。制御装置3は、圧縮機11が動作し、室外熱交換器12が凝縮器として機能していると判定すると、ステップS202に進み、それ以外の場合には、第2異常検知処理を終了する。
ステップS202では、制御装置3は、制御装置3は、室内機2aが冷房運転のサーモオフ状態または停止しているか否かを判定する。この判定は、電子膨張弁21aが閉状態、低圧弁45aが開状態および高圧弁46aが閉状態となる運転状態であるか否かの判定と言い換えることもできる。制御装置3は、室内機2aが冷房運転のサーモオフ状態または停止していると判定すると、ステップS203に進み、それ以外の場合には第3異常検知処理を終了する。
ステップS203では、制御装置3は、低圧圧力Psおよび目標低圧圧力Psmの各データを取得する。低圧圧力Psのデータは、低圧圧力センサ16の検出信号に基づき取得される。目標低圧圧力Psmのデータは、あらかじめ記憶部31に記憶されている。
次に、ステップS204では、制御装置3は、低圧圧力Psから目標低圧圧力Psmを減じた値であるPs-Psmが、あらかじめ設定されている閾値圧力Pth31よりも大きいか否かを判定する。制御装置3は、低圧圧力Psから目標低圧圧力Psmを減じた値が、閾値圧力Pth31よりも大きいと判定すると、ステップS205に進む。一方、制御装置3は、閾値圧力Pth31以下であると判定すると、第3異常検知処理を終了する。
ステップS205では、制御装置3は、高圧弁46aが異常であると判定する。これは、低圧圧力Psから目標低圧圧力Psmを減じた値が閾値圧力Pth31よりも大きい場合には、状態パターン3に該当するためである。
次に、ステップS206では、制御装置3は、高圧弁46aが異常であることを報知部36に報知させる処理を行う。その後、第3異常検知処理を終了する。
ここで、制御装置3は、上記のステップS204において、低圧圧力Psから目標低圧圧力Psmを減じた値が閾値圧力Pth31よりも大きく、かつ、圧縮機11が最大運転周波数で動作しているか否かを判定してもよい。そして、制御装置3は、低圧圧力Psから目標低圧圧力Psmを減じた値が閾値圧力Pth31よりも大きく、かつ、圧縮機11が最大運転周波数で動作していると判定すると、ステップS205に進む。それ以外の場合には、第3異常検知処理を終了する。
以上、説明したように、実施の形態1に係る冷凍サイクル装置は、冷凍サイクル回路10と、バイパス流路44と、低圧弁45aと、高圧弁46aと、第1温度センサTH1aと、第2温度センサTH2aと、報知部36とを備えている。そして、冷凍サイクル回路10は、圧縮機11、冷媒流路切替装置14、室外熱交換器12、電子膨張弁21aおよび室内熱交換器22aを有する。バイパス流路44は、冷凍サイクル回路10において、室外熱交換器12と電子膨張弁21aとの間に設けられた第1分岐部41と、室内熱交換器22aと冷媒流路切替装置14との間に設けられた第2分岐部42aとの間を接続している。また、低圧弁45aは、冷凍サイクル回路10のうち、第2分岐部42aと冷媒流路切替装置14との間に設けられている。さらに、高圧弁46aは、バイパス流路44に設けられている。第1温度センサTH1aは、室内熱交換器22aを通過した空気が供給される室内の温度である室内温度TH1を検出する。第2温度センサTH2aは、室内熱交換器22aの液側冷媒の温度である液側温度TH2を検出する。第3温度センサTH3aは、室内熱交換器22aのガス側冷媒の温度であるガス側温度TH3を検出する。報知部36は、異常を報知するように構成されている。そして、冷凍サイクル装置は、圧縮機11が動作し、室内熱交換器22bが蒸発器として機能する。一方、室内熱交換器22aは、電子膨張弁21aが全閉状態となり、低圧弁45aが開状態となり、高圧弁46aが閉状態となる運転状態である、室内機2aが冷房運転のサーモオフまたは停止状態での運転を行う。このような運転状態において、制御装置3が、ガス側温度TH3が室内温度TH1と等しくないおよび液側温度TH2が室内温度TH1と等しくないの少なくとも一方であると判定すると、報知部36は、電子膨張弁21aまたは高圧弁46aの異常を報知する。ここで、高圧弁46aは、第2弁の一例である。低圧弁45aは、第1弁の一例である。電子膨張弁21aは、絞り装置の一例である。
以上のような本実施の形態の冷凍サイクル装置の構成により、電子膨張弁21aまたは高圧弁46aの異常をより正確に、かつ、より早期に検知することができる。また、本実施の形態の冷凍サイクル装置では、電子膨張弁21aまたは高圧弁46aの異常をより早期に報知できるため、電子膨張弁21aまたは高圧弁46aをより早期に復旧させることができる。したがって、本実施の形態の冷凍サイクル装置においては、室内機2aの不調期間を短縮することができる。
また、本実施の形態に係る冷凍サイクル装置では、前述した運転状態において、制御装置3が、液側温度TH2が室内温度TH1よりも低いと判定すると、報知部36は、電子膨張弁21aの異常を報知することができる。
また、本実施の形態に係る冷凍サイクル装置では、前述した運転状態において、制御装置3が、液側温度TH2が室内温度TH1高いと判定すると、報知部36は、高圧弁46aの異常を報知することができる。
また、本実施の形態に係る冷凍サイクル装置では、前述した運転状態において、制御装置3が、圧縮機11を通過する冷媒量が、電子膨張弁21bを通過する冷媒量よりも多いと判定すると、報知部36は、高圧弁46aの異常を報知することができる。
また、本実施の形態に係る冷凍サイクル装置では、制御装置3は、冷凍サイクル回路10内の低圧圧力Psが目標低圧圧力Psmに近づくように、圧縮機11を制御する。このため、前述した運転状態において、制御装置3が、低圧圧力Psから目標低圧圧力Psmを減じた値が閾値よりも大きいと判定すると、報知部36は、高圧弁46aの異常を報知することができる。
また、本実施の形態に係る冷凍サイクル装置では、制御装置3は、冷凍サイクル回路10内の低圧圧力Psが目標低圧圧力Psmに近づくように、圧縮機11を制御する。このため、前述した運転状態において、制御装置3が、低圧圧力Psから目標低圧圧力Psmを減じた値が閾値よりも大きく、かつ、圧縮機11が最大運転周波数で駆動していると判定すると、報知部36は、高圧弁46aの異常を報知することができる。
前述した運転状態において、低圧弁45aに異常が生じ、バイパス流路44を流通する冷媒量が増加してしまうと、圧縮機11の運転周波数を最大運転周波数まで増加させても、低圧圧力Psを目標低圧圧力Psmに維持できなくなる。したがって、本実施の形態に係る冷凍サイクル装置によれば、高圧弁46aの異常をより正確に検知できる。
また、本実施の形態に係る冷凍サイクル装置は、冷凍サイクル装置の運転モードを切り替える運転モード切替部37をさらに備えている。運転モード切替部37は、少なくとも、上記運転状態での運転が行われる運転モードに切り替え可能である。本実施の形態に係る冷凍サイクル装置によれば、室内機2aで冷房運転が行われる期間であっても、一時的にサーモオフにするなどして、高圧弁46aまたは電子膨張弁21aの異常を検知することができる。
実施の形態2.
上述した実施の形態1の冷凍サイクル装置では、制御装置3は、第2弁となる高圧弁46aおよび高圧弁46b並びに電子膨張弁21aおよび電子膨張弁21bのすべての弁について異常検知を行うものとした。ただし、これに限定するものではない。制御装置3は、あらかじめ定められたまたは選択された弁について、異常検知を行うようにしてもよい。
また、実施の形態1の冷凍サイクル装置においては、制御装置3が、冷凍サイクル回路10内の低圧圧力Psが目標低圧圧力Psmに近づくように、圧縮機11の運転周波数を制御する例について説明した。ただし、これに限定するものではない。たとえば、冷凍サイクル回路10内の高圧圧力Pdが目標高圧圧力Pdmに近づくように、圧縮機11の運転周波数を制御してもよい。この場合には、制御装置3は、高圧圧力Pdから目標高圧圧力Pdmを減じた値が閾値よりも大きく、かつ、圧縮機11が最大運転周波数で動作しているときに、高圧弁46aが異常であると判定し、報知部36に報知させる。
1 室外機、2,2a,2b 室内機、3 制御装置、4 分流コントローラ、10 冷凍サイクル回路、11 圧縮機、12 室外熱交換器、13 室外ファン、14 冷媒流路切替装置、15 高圧圧力センサ、16 低圧圧力センサ、171,172,173,174 逆止弁、21,21a,21b 電子膨張弁、22,22a,22b 室内熱交換器、25,25a,25b 室内ファン、31 記憶部、32 抽出部、33 演算部、34 比較部、35 判定部、36 報知部、37 運転モード切替部、41 第1分岐部、42a,42b 第2分岐部、43 気液分離器、44 バイパス流路、44a,44b 分岐流路、45,45a,45b 低圧弁、46,46a,46b 高圧弁、47 弁、48 低圧バイパス流路、TH1a,TH1b 第1温度センサ、TH2a,TH2b 第2温度センサ、TH3a,TH3b 第3温度センサ。

Claims (7)

  1. 圧縮機、冷媒流路切替装置、室外熱交換器、膨張弁および室内熱交換器を接続して、冷媒を循環させる冷凍サイクル回路と、
    前記室外熱交換器と前記膨張弁との間で前記冷媒を分岐させる第1分岐部と、
    前記室内熱交換器と前記冷媒流路切替装置との間で前記冷媒を分岐させる第2分岐部と、
    前記第1分岐部と前記第2分岐部とを接続して、前記冷媒の流路となるバイパス配管と、
    前記第2分岐部と前記冷媒流路切替装置との間に設けられた第1弁と、
    前記バイパス配管に設けられた第2弁と、
    前記室内熱交換器を通過した空気が供給される室内の温度を検出する第1温度センサと、
    前記室内熱交換器の液側冷媒の温度を検出する第2温度センサと、
    前記冷凍サイクル回路が有する機器を制御する制御装置とを備え、
    前記制御装置は、前記圧縮機が動作し、前記膨張弁を全閉状態とし、前記第1弁を開状態とし、前記第2弁を閉状態とする運転状態において、前記第2温度センサの検出温度が、前記第1温度センサの検出温度よりも高いと判定すると、前記第2弁が異常であることを検知する冷凍サイクル装置。
  2. 前記制御装置は、前記運転状態において、前記第2温度センサの検出温度が、前記第1温度センサの検出温度よりも低いと判定すると、前記膨張弁が異常であることを検知する請求項1に記載の冷凍サイクル装置。
  3. 圧縮機、冷媒流路切替装置、室外熱交換器、膨張弁および室内熱交換器を接続して、冷媒を循環させる冷凍サイクル回路と、
    前記室外熱交換器と前記膨張弁との間で前記冷媒を分岐させる第1分岐部と、
    前記室内熱交換器と前記冷媒流路切替装置との間で前記冷媒を分岐させる第2分岐部と、
    前記第1分岐部と前記第2分岐部とを接続して、前記冷媒の流路となるバイパス配管と、
    前記第2分岐部と前記冷媒流路切替装置との間に設けられた第1弁と、
    前記バイパス配管に設けられた第2弁と、
    前記冷凍サイクル回路が有する機器を制御する制御装置とを備え、
    前記制御装置は、前記圧縮機が動作し、前記膨張弁を全閉状態とし、前記第1弁を開状態とし、前記第2弁を閉状態とする運転状態において、
    前記圧縮機が、最大運転周波数で動作しているときには、前記第2弁が異常であることを検知する冷凍サイクル装置。
  4. 圧縮機、冷媒流路切替装置、室外熱交換器、膨張弁および室内熱交換器を接続して、冷媒を循環させる冷凍サイクル回路と、
    前記室外熱交換器と前記膨張弁との間で前記冷媒を分岐させる第1分岐部と、
    前記室内熱交換器と前記冷媒流路切替装置との間で前記冷媒を分岐させる第2分岐部と、
    前記第1分岐部と前記第2分岐部とを接続して、前記冷媒の流路となるバイパス配管と、
    前記第2分岐部と前記冷媒流路切替装置との間に設けられた第1弁と、
    前記バイパス配管に設けられた第2弁と、
    前記冷凍サイクル回路が有する機器を制御する制御装置とを備え、
    前記制御装置は、前記圧縮機が前記冷凍サイクル回路内における低圧側の前記冷媒の圧力を、目標低圧圧力とする制御を行い、前記膨張弁を全閉状態とし、前記第1弁を開状態とし、前記第2弁を閉状態とする運転状態において、
    前記低圧側の前記冷媒の圧力と前記目標低圧圧力とに差が発生しているときには、前記第2弁が異常であることを検知する冷凍サイクル装置。
  5. 圧縮機、冷媒流路切替装置、室外熱交換器、膨張弁および室内熱交換器を接続して、冷媒を循環させる冷凍サイクル回路と、
    前記室外熱交換器と前記膨張弁との間で前記冷媒を分岐させる第1分岐部と、
    前記室内熱交換器と前記冷媒流路切替装置との間で前記冷媒を分岐させる第2分岐部と、
    前記第1分岐部と前記第2分岐部とを接続して、前記冷媒の流路となるバイパス配管と、
    前記第2分岐部と前記冷媒流路切替装置との間に設けられた第1弁と、
    前記バイパス配管に設けられた第2弁と、
    前記冷凍サイクル回路が有する機器を制御する制御装置とを備え、
    前記制御装置は、前記圧縮機が前記冷凍サイクル回路内における高圧側の前記冷媒の圧力を、目標高圧圧力とする制御を行い、前記膨張弁を全閉状態とし、前記第1弁を開状態とし、前記第2弁を閉状態とする運転状態において、
    前記高圧側の前記冷媒の圧力と前記目標高圧圧力とに差が発生しているときには、前記第2弁が異常であることを検知する冷凍サイクル装置。
  6. 前記第2弁が異常である旨を報知する報知部を備える請求項1~請求項5のいずれか一項に記載の冷凍サイクル装置。
  7. 前記冷媒流路切替装置は、指示に基づいて少なくとも前記運転状態での運転が行われる運転モードに切り替えられる請求項1~請求項6のいずれか一項に記載の冷凍サイクル装置。
JP2021524546A 2019-06-04 2019-06-04 冷凍サイクル装置 Active JP7138790B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/022184 WO2020245918A1 (ja) 2019-06-04 2019-06-04 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JPWO2020245918A1 JPWO2020245918A1 (ja) 2021-10-28
JP7138790B2 true JP7138790B2 (ja) 2022-09-16

Family

ID=73652016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021524546A Active JP7138790B2 (ja) 2019-06-04 2019-06-04 冷凍サイクル装置

Country Status (4)

Country Link
US (1) US20220178603A1 (ja)
EP (1) EP3982063A4 (ja)
JP (1) JP7138790B2 (ja)
WO (1) WO2020245918A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117203474A (zh) * 2021-05-10 2023-12-08 三菱电机株式会社 检查装置以及检查方法
CN113551369B (zh) * 2021-07-09 2022-04-26 珠海格力电器股份有限公司 一种用于检测制冷系统堵塞的控制系统及堵塞检测方法
CN116045450B (zh) * 2022-12-22 2024-11-08 珠海格力电器股份有限公司 一种空调的控制方法、装置、空调和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274896A (ja) 1999-03-24 2000-10-06 Tokyo Gas Co Ltd 膨張弁の異常検知方法及び空調装置
JP2002071188A (ja) 2000-08-30 2002-03-08 Mitsubishi Electric Building Techno Service Co Ltd 熱媒供給異常検出装置
JP2016508590A (ja) 2013-02-28 2016-03-22 三菱電機株式会社 空気調和装置
CN106352472A (zh) 2016-08-19 2017-01-25 广东美的暖通设备有限公司 多联机系统及其联动故障检测方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755299A (ja) * 1993-08-20 1995-03-03 Mitsubishi Electric Corp 空気調和装置
KR100447204B1 (ko) * 2002-08-22 2004-09-04 엘지전자 주식회사 냉난방 동시형 멀티공기조화기 및 그 제어방법
JP3952951B2 (ja) * 2003-01-08 2007-08-01 ダイキン工業株式会社 冷凍装置
KR100539767B1 (ko) * 2004-05-31 2006-01-12 엘지전자 주식회사 냉난방 동시형 멀티 에어컨의 밸브 고장검출장치 및 그고장검출방법
US8943849B2 (en) * 2009-03-23 2015-02-03 Mitsubishi Electric Corporation Air-conditioning apparatus
CN104838211B (zh) * 2012-12-28 2018-09-04 三菱电机株式会社 空气调节装置
KR20180085275A (ko) * 2017-01-18 2018-07-26 엘지전자 주식회사 멀티형 공기조화기의 제어방법
WO2020174639A1 (ja) * 2019-02-28 2020-09-03 三菱電機株式会社 冷凍サイクル装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274896A (ja) 1999-03-24 2000-10-06 Tokyo Gas Co Ltd 膨張弁の異常検知方法及び空調装置
JP2002071188A (ja) 2000-08-30 2002-03-08 Mitsubishi Electric Building Techno Service Co Ltd 熱媒供給異常検出装置
JP2016508590A (ja) 2013-02-28 2016-03-22 三菱電機株式会社 空気調和装置
CN106352472A (zh) 2016-08-19 2017-01-25 广东美的暖通设备有限公司 多联机系统及其联动故障检测方法

Also Published As

Publication number Publication date
EP3982063A1 (en) 2022-04-13
US20220178603A1 (en) 2022-06-09
EP3982063A4 (en) 2022-06-08
WO2020245918A1 (ja) 2020-12-10
JPWO2020245918A1 (ja) 2021-10-28

Similar Documents

Publication Publication Date Title
KR101479458B1 (ko) 냉동 장치
EP3205954B1 (en) Refrigeration cycle device
JP7138790B2 (ja) 冷凍サイクル装置
JP6628911B1 (ja) 冷凍サイクル装置
WO2008032581A1 (en) Refrigeration device
JP6577264B2 (ja) 空調調和機
EP3591311B1 (en) Refrigeration cycle device
JP6733424B2 (ja) 空気調和装置
JP7150135B2 (ja) 冷凍サイクル装置
KR101329752B1 (ko) 공기조화 시스템
KR20120114997A (ko) 공기 조화기
JP7278065B2 (ja) 冷凍サイクル装置
KR20190041091A (ko) 공기조화기
KR101392316B1 (ko) 공기조화 시스템
JP6732087B1 (ja) 冷凍サイクル装置
KR101450545B1 (ko) 공기조화 시스템
KR102422010B1 (ko) 냉난방 멀티 공기조화기
JP2024076528A (ja) 空気調和装置
KR101450544B1 (ko) 공기조화 시스템
KR200304217Y1 (ko) 매개 열교환기를 갖는 열펌프식 공기조화 장치
KR20150137877A (ko) 공기조화기
JPH04194555A (ja) 多室形空気調和機

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220906

R150 Certificate of patent or registration of utility model

Ref document number: 7138790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150