Nothing Special   »   [go: up one dir, main page]

JP7125227B2 - Method for producing lithium-containing cobalt oxide having spinel crystal phase - Google Patents

Method for producing lithium-containing cobalt oxide having spinel crystal phase Download PDF

Info

Publication number
JP7125227B2
JP7125227B2 JP2018144316A JP2018144316A JP7125227B2 JP 7125227 B2 JP7125227 B2 JP 7125227B2 JP 2018144316 A JP2018144316 A JP 2018144316A JP 2018144316 A JP2018144316 A JP 2018144316A JP 7125227 B2 JP7125227 B2 JP 7125227B2
Authority
JP
Japan
Prior art keywords
lithium
crystal phase
positive electrode
containing cobalt
cobalt oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018144316A
Other languages
Japanese (ja)
Other versions
JP2020019674A (en
Inventor
悠基 由井
嘉也 牧村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2018144316A priority Critical patent/JP7125227B2/en
Publication of JP2020019674A publication Critical patent/JP2020019674A/en
Application granted granted Critical
Publication of JP7125227B2 publication Critical patent/JP7125227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本願はスピネル型結晶相を有するリチウム含有コバルト酸化物の製造方法等を開示する。 The present application discloses a method for producing a lithium-containing cobalt oxide having a spinel-type crystal phase, and the like.

特許文献1及び非特許文献1~5に開示されているように、スピネル型結晶相を有するリチウム含有金属酸化物が知られている。特に、非特許文献1に開示されたようなスピネル型結晶相を有するリチウム含有コバルト酸化物は、リチウムイオン電池用の新たな正極活物質として期待されている。 As disclosed in Patent Document 1 and Non-Patent Documents 1 to 5, lithium-containing metal oxides having a spinel crystal phase are known. In particular, a lithium-containing cobalt oxide having a spinel crystal phase as disclosed in Non-Patent Document 1 is expected as a new positive electrode active material for lithium ion batteries.

特開平6-203834号公報JP-A-6-203834

Eungje Lee et al., ACS Appl. Mater. Interfaces, 8, 27720-27729 (2016)Eungje Lee et al., ACS Appl. Mater. Interfaces, 8, 27720-27729 (2016) S. Choi et al., Journal of The Electrochemical Society, 149(2), A162-A166 (2002)S. Choi et al., Journal of The Electrochemical Society, 149(2), A162-A166 (2002) Hong-Yang Lu et al., Applied Surface Science, 177, 103-113 (2001)Hong-Yang Lu et al., Applied Surface Science, 177, 103-113 (2001) Wen-jie Peng et al., Journal of Power Sources, 153, 174-176 (2006)Wen-jie Peng et al., Journal of Power Sources, 153, 174-176 (2006) S. Choi et al., Journal of Solid State Chemistry, 164, 332-338 (2002)S. Choi et al., Journal of Solid State Chemistry, 164, 332-338 (2002)

特許文献1や非特許文献3及び4等に開示されているように、コバルト以外の遷移金属とリチウムとの複合酸化物については、スピネル型結晶相が熱的に安定であることから、高温且つ短時間でスピネル型結晶相を有するリチウム含有遷移金属酸化物を製造することができる。一方、リチウムとコバルトとの複合酸化物については、スピネル型結晶相よりも層状岩塩型結晶相のほうが熱的に安定であることから、スピネル型結晶相を得る場合に高温での焼成が困難である。例えば、非特許文献1においては、スピネル型結晶相を有するリチウム含有コバルト酸化物を製造するにあたり、固相法にて、400℃~500℃で6日間の焼成を行っている。このように、スピネル型結晶相を有するリチウム含有コバルト酸化物は、製造に長時間を要するという課題がある。 As disclosed in Patent Document 1, Non-Patent Documents 3 and 4, etc., the composite oxide of lithium and a transition metal other than cobalt has a spinel-type crystal phase that is thermally stable. A lithium-containing transition metal oxide having a spinel crystal phase can be produced in a short period of time. On the other hand, as for the composite oxide of lithium and cobalt, since the layered rock salt type crystal phase is more thermally stable than the spinel type crystal phase, it is difficult to sinter at a high temperature to obtain the spinel type crystal phase. be. For example, in Non-Patent Document 1, in producing a lithium-containing cobalt oxide having a spinel-type crystal phase, firing is performed at 400° C. to 500° C. for 6 days by a solid-phase method. Thus, the lithium-containing cobalt oxide having a spinel-type crystal phase has the problem that it takes a long time to produce.

本願は上記課題を解決するための手段の一つとして、金属酢酸塩をプロトン性極性溶媒に溶解させて混合溶液を得る工程と、前記混合溶液を蒸発乾固して前駆体を得る工程と、前記前駆体を焼成する工程とを備える、スピネル型結晶相を有するリチウム含有コバルト酸化物の製造方法を開示する。 As one means for solving the above problems, the present application provides a step of dissolving a metal acetate in a protic polar solvent to obtain a mixed solution, a step of evaporating the mixed solution to dryness to obtain a precursor, and calcining the precursor.

「スピネル型結晶相を有する」とは、X線回折において少なくともスピネル型結晶相に由来する回折ピークが確認されることを意味する。 “Having a spinel-type crystal phase” means that at least a diffraction peak derived from a spinel-type crystal phase is confirmed in X-ray diffraction.

本開示の製造方法によれば、金属酢酸塩と溶媒とを用いた蒸発乾固法により均一かつ微粒子状の前駆体を得て、当該前駆体を焼成することで、スピネル型結晶相を有するリチウム含有コバルト酸化物を短時間で製造することができる。 According to the production method of the present disclosure, a homogeneous and particulate precursor is obtained by an evaporation to dryness method using a metal acetate and a solvent, and the precursor is calcined to obtain lithium having a spinel crystal phase. The containing cobalt oxide can be produced in a short time.

本開示の製造方法の流れの一例を説明するための図である。It is a figure for demonstrating an example of the flow of the manufacturing method of this indication. 実施例1及び比較例1に係るコバルト酸リチウムのX線回折ピークを示す図である。1 is a diagram showing X-ray diffraction peaks of lithium cobaltate according to Example 1 and Comparative Example 1. FIG. 実施例1及び比較例1に係るコバルト酸リチウムを用いたリチウムイオン電池の充放電曲線(4.2V-2.5V)を示す図である。2 is a diagram showing charge/discharge curves (4.2V-2.5V) of lithium ion batteries using lithium cobaltate according to Example 1 and Comparative Example 1. FIG.

1.スピネル型結晶相を有するリチウム含有コバルト酸化物の製造方法
図1に本開示の製造方法の一例を示す。図1に示す製造方法S10は、金属酢酸塩をプロトン性極性溶媒に溶解させて混合溶液を得る工程S1と、混合溶液を蒸発乾固して前駆体を得る工程S2と、前駆体を焼成する工程S3とを備える。工程S1~S3を経て、スピネル型結晶相を有するリチウム含有コバルト酸化物を短時間で製造することができる。
1. Method for Producing Lithium-Containing Cobalt Oxide Having Spinel Crystalline Phase FIG. 1 shows an example of the production method of the present disclosure. The production method S10 shown in FIG. 1 comprises a step S1 of dissolving a metal acetate in a protic polar solvent to obtain a mixed solution, a step S2 of evaporating the mixed solution to dryness to obtain a precursor, and calcining the precursor. and step S3. Through steps S1 to S3, a lithium-containing cobalt oxide having a spinel crystal phase can be produced in a short time.

1.1.工程S1
工程S1においては、金属酢酸塩をプロトン性極性溶媒に溶解させて混合溶液を得る。 金属酢酸塩は、少なくともリチウム源及びコバルト源を含む。具体的には、酢酸リチウム及び酢酸コバルトを含むことが好ましい。尚、上記課題を解決できる範囲で、金属酢酸塩には、酢酸リチウム及び酢酸コバルト以外の金属酢酸塩が含まれていてもよい。例えば、コバルト以外の遷移金属をドープする場合、当該コバルト以外の遷移金属の酢酸塩が含まれていてもよい。各金属酢酸塩の混合比は、目的とする組成に応じて適宜調整すればよい。例えば、最終的に得られるリチウム含有コバルト酸化物が、LiCo2±δ(MはCo以外の遷移金属であり、0.8≦x≦1.2、0≦y≦0.15、0.8≦z≦1.2、0.8≦y+z≦1.2である)で表される組成を有するように、各金属酢酸塩の混合比を調整することが好ましい。尚、リチウム含有コバルト酸化物においては、Liに対する遷移金属のモル比が1(すなわち(y+z)/x=1)であることが好ましいが、遷移金属に対してLiが多少過剰であったとしても、或いは、Liが多少不足していたとしても、スピネル型結晶相を生成させることが可能である。この点、例えば上記の組成式で示されるように、0.8≦x≦1.2、0≦y≦0.15、0.8≦z≦1.2、0.8≦y+z≦1.2であることが好ましい。特に、Liに対する遷移金属のモル比((y+z)/x)が0.8以上1.2以下であることがより好ましい。モル比((y+z)/x)は下限がより好ましくは0.9以上、さらに好ましくは0.95以上、上限がより好ましくは1.1以下、さらに好ましくは1.05以下である。また、リチウム含有コバルト酸化物においては、Liに対するOのモル比(O/Li)が2であることが好ましいが、これよりも酸素が過剰であったとしても、或いは、酸素が一部欠損していたとしても、スピネル型結晶相を生成させることが可能である。この点、Liに対するOのモル比(O/Li)は、例えば1.8以上2.2以下とすることが好ましい。或いは、上記の組成式においてδは0.2以下であることが好ましい。プロトン性極性溶媒は、上記の金属酢酸塩を溶解可能な溶媒であればよい。例えば、水やアルコール等が挙げられる。特に水が好ましい。混合溶液における金属酢酸塩とプロトン性極性溶媒との混合比は特に限定されるものではない。
1.1. process S1
In step S1, a metal acetate is dissolved in a protic polar solvent to obtain a mixed solution. Metal acetates contain at least a lithium source and a cobalt source. Specifically, it preferably contains lithium acetate and cobalt acetate. The metal acetate may contain metal acetates other than lithium acetate and cobalt acetate as long as the above problems can be solved. For example, when a transition metal other than cobalt is doped, an acetate of the transition metal other than cobalt may be included. The mixing ratio of each metal acetate may be appropriately adjusted according to the desired composition. For example, the finally obtained lithium-containing cobalt oxide is Li x My Co z O 2±δ ( M is a transition metal other than Co, 0.8≦x≦1.2, 0≦y≦0 .15, 0.8≦z≦1.2, and 0.8≦y+z≦1.2). In the lithium-containing cobalt oxide, the molar ratio of the transition metal to Li is preferably 1 (that is, (y + z) / x = 1), but even if the amount of Li is slightly excessive relative to the transition metal, Alternatively, even if Li is somewhat deficient, it is possible to generate a spinel crystal phase. In this respect, for example, as shown in the above composition formula, 0.8≤x≤1.2, 0≤y≤0.15, 0.8≤z≤1.2, 0.8≤y+z≤1. 2 is preferred. In particular, it is more preferable that the molar ratio ((y+z)/x) of the transition metal to Li is 0.8 or more and 1.2 or less. The lower limit of the molar ratio ((y+z)/x) is preferably 0.9 or more, more preferably 0.95 or more, and the upper limit is more preferably 1.1 or less, still more preferably 1.05 or less. In the lithium-containing cobalt oxide, the molar ratio of O to Li (O/Li) is preferably 2. It is possible to form a spinel-type crystal phase even if the In this regard, it is preferable that the molar ratio of O to Li (O/Li) is, for example, 1.8 or more and 2.2 or less. Alternatively, in the above composition formula, δ is preferably 0.2 or less. The protic polar solvent may be any solvent capable of dissolving the above metal acetate. Examples include water and alcohol. Water is particularly preferred. The mixing ratio of the metal acetate and the protic polar solvent in the mixed solution is not particularly limited.

1.2.工程S2
工程S2においては、工程S1にて得られた混合溶液を蒸発乾固して前駆体を得る。混合液の蒸発乾固は一般的な加熱手段を用いて行えばよい。蒸発乾固の温度は上記の溶媒を蒸発可能な温度であればよい。プロトン性極性溶媒の種類にもよるが、例えば80℃以上280℃以下とすることができる。蒸発乾固の時間は特に限定されるものではなく、上記の溶媒を十分に除去できる程度の時間であればよい。蒸発乾固の雰囲気も特に限定されるものではない。例えば、大気雰囲気とすることができる。圧力についても特に限定されない。蒸発乾固の時間を短縮するために減圧を行ってもよい。工程S2により得られる前駆体は、固相法による粉体混合物とは異なり、リチウムやコバルト等が原子レベルで均一に混合されているものいえる。また、固相法による粉体混合物よりも細かな微粒子状で比表面積の大きなものといえる。
1.2. process S2
In step S2, the mixed solution obtained in step S1 is evaporated to dryness to obtain a precursor. Evaporation of the mixed solution to dryness may be carried out using a general heating means. The temperature for evaporation to dryness may be any temperature at which the solvent can be evaporated. Depending on the type of protic polar solvent, the temperature can be, for example, 80° C. or higher and 280° C. or lower. The time for evaporation to dryness is not particularly limited, and may be any time that can sufficiently remove the solvent. The atmosphere for evaporation to dryness is not particularly limited either. For example, it can be an air atmosphere. The pressure is also not particularly limited. A reduced pressure may be applied to shorten the time to evaporate to dryness. It can be said that the precursor obtained in step S2 is a homogeneous mixture of lithium, cobalt, etc. at the atomic level, unlike the powder mixture obtained by the solid-phase method. In addition, it can be said that it is in the form of finer particles and has a larger specific surface area than the powder mixture obtained by the solid-phase method.

1.3.工程S3
工程S3においては、工程S2にて得られた前駆体を焼成する。通常、スピネル型結晶相よりも層状岩塩型結晶相のほうが熱に対して安定であることから、工程S3における焼成温度が高過ぎると、スピネル型結晶相よりも層状岩塩型結晶相が生成してしまう。すなわち、上記の前駆体において所望のスピネル型結晶相を得るためには、工程S3における焼成温度を低温とすることが好ましい。特に、本発明者の知見では、工程S3における焼成温度を200℃以上550℃以下とすることで、スピネル型結晶相が得られ易い。焼成温度の下限はより好ましくは250℃、さらに好ましくは280℃以上であり、上限がより好ましくは430℃以下、さらに好ましくは410℃以下である。工程S3における焼成時間は、焼成温度によって調整すればよい。製造方法S10においては、蒸発乾固法を採用していることから、従来の固相法よりも焼成時間を短縮することができる。例えば、焼成時間を120時間以下とすることが好ましい。工程S3における焼成雰囲気は、リチウム含有コバルト酸化物を生成可能な雰囲気であればよい。例えば、大気雰囲気や酸素雰囲気等とすることができる。工程S3における圧力は特に限定されるものではない。
1.3. Step S3
In step S3, the precursor obtained in step S2 is fired. Since the layered rock salt type crystal phase is generally more stable to heat than the spinel type crystal phase, if the firing temperature in step S3 is too high, the layered rock salt type crystal phase is generated rather than the spinel type crystal phase. put away. That is, in order to obtain the desired spinel crystal phase in the above precursor, it is preferable to set the firing temperature in step S3 to a low temperature. In particular, according to the findings of the present inventor, the spinel-type crystal phase is easily obtained by setting the firing temperature in step S3 to 200° C. or higher and 550° C. or lower. The lower limit of the calcination temperature is more preferably 250° C., more preferably 280° C. or higher, and the upper limit is more preferably 430° C. or lower, still more preferably 410° C. or lower. The firing time in step S3 may be adjusted according to the firing temperature. Since the manufacturing method S10 employs the evaporation-to-dryness method, the baking time can be shortened as compared with the conventional solid-phase method. For example, it is preferable to set the firing time to 120 hours or less. The firing atmosphere in step S3 may be any atmosphere capable of producing lithium-containing cobalt oxide. For example, an air atmosphere, an oxygen atmosphere, or the like can be used. The pressure in step S3 is not particularly limited.

以上の通り、製造方法S10によれば、金属酢酸塩と溶媒とを用いた蒸発乾固法により均一かつ微粒子状の前駆体を得て、当該前駆体を焼成することで、スピネル型結晶相を有するリチウム含有コバルト酸化物を短時間で製造することができる。 As described above, according to the manufacturing method S10, a uniform and fine particle precursor is obtained by an evaporation to dryness method using a metal acetate and a solvent, and the precursor is calcined to form a spinel crystal phase. It is possible to produce lithium-containing cobalt oxide having a short time.

1.4.その他
製造方法S10により製造されるリチウム含有コバルト酸化物はスピネル型結晶相の結晶性が高い。例えば、CuKαを線源とするX線回折測定において、(044)面に相当する回折ピークの半値幅を1度以下とすることも可能である。スピネル型結晶相の結晶性を高めることにより、例えば、リチウムイオン電池の正極活物質として適用した場合に抵抗が低減し、電池の容量の向上等が期待できる。
1.4. Others The lithium-containing cobalt oxide produced by the production method S10 has a spinel-type crystal phase with high crystallinity. For example, in X-ray diffraction measurement using CuKα as a radiation source, it is possible to set the half width of the diffraction peak corresponding to the (044) plane to 1 degree or less. By increasing the crystallinity of the spinel-type crystal phase, for example, when it is applied as a positive electrode active material for a lithium-ion battery, the resistance is reduced, and an improvement in the capacity of the battery can be expected.

製造方法S10により製造されるリチウム含有コバルト酸化物は、X線回折において少なくともスピネル型結晶相に由来する回折ピークが確認される。ここで、製造方法S10により製造されるリチウム含有コバルト酸化物においては、所望の性能を発揮できる範囲で、スピネル型結晶相以外の異相が若干含まれていてもよい。焼成温度等の合成条件によっては、例えば、スピネル型結晶相とともに層状岩塩型結晶相が含まれる場合もある。ただし、電池の正極活物質とした場合の容量向上等の観点からは、製造方法S10により製造されるリチウム含有コバルト酸化物は、X線回折においてスピネル型結晶相に由来する回折ピークのみが確認されることが好ましい。 In the lithium-containing cobalt oxide produced by production method S10, at least a diffraction peak derived from the spinel crystal phase is confirmed in X-ray diffraction. Here, the lithium-containing cobalt oxide produced by the production method S10 may contain a small amount of a different phase other than the spinel-type crystal phase within a range in which the desired performance can be exhibited. Depending on the synthesis conditions such as the firing temperature, for example, the spinel-type crystal phase and the layered rock salt-type crystal phase may be included. However, from the viewpoint of improving the capacity when used as a positive electrode active material for a battery, the lithium-containing cobalt oxide produced by the production method S10 has only a diffraction peak derived from the spinel crystal phase in X-ray diffraction. preferably.

2.用途
本開示の製造方法により製造されるリチウム含有コバルト酸化物は、上述の通り、リチウムイオン電池の正極活物質として好適に利用可能である。すなわち、本開示の技術は、リチウムイオン電池としての側面も有する。本開示のリチウムイオン電池は、正極と、負極と、電解質とを備え、前記正極が正極活物質として上記本開示のリチウム含有コバルト酸化物を備えることを特徴とする。
2. Applications As described above, the lithium-containing cobalt oxide produced by the production method of the present disclosure can be suitably used as a positive electrode active material for lithium ion batteries. That is, the technology of the present disclosure also has an aspect as a lithium ion battery. A lithium-ion battery of the present disclosure includes a positive electrode, a negative electrode, and an electrolyte, and the positive electrode includes the lithium-containing cobalt oxide of the present disclosure as a positive electrode active material.

2.1.正極
正極は、上記本開示の正極活物質を備えることを除き、従来と同様の構成とすればよい。例えば、正極は、正極集電体と、上記本開示の正極活物質を含む正極活物質層とを備える。正極集電体は、例えば、各種金属により構成すればよい。正極活物質層は正極活物質のほかに任意にバインダーや導電助剤が含まれていてもよい。本開示の正極活物質は、充放電に伴う活物質の膨張収縮率が小さく、粒子間の界面接触が重要となる固体電池において特に有利である。この点、リチウムイオン電池として固体電池を採用する場合、正極活物質層には固体電解質が含まれていることが好ましい。固体電解質としては、酸化物固体電解質や硫化物固体電解質等の無機固体電解質が好ましく、硫化物固体電解質がより好ましい。正極中に硫化物固体電解質を含ませる場合、正極活物質と硫化物固体電解質との界面における高抵抗層の形成等を抑制する観点から、正極活物質の表面にニオブ酸リチウム層等の被覆層が設けられていてもよい。正極活物質以外の構成については、技術常識から自明であることから、これ以上の説明を省略する。
2.1. Positive Electrode The positive electrode may have the same configuration as the conventional one, except that it includes the positive electrode active material of the present disclosure. For example, the positive electrode comprises a positive electrode current collector and a positive electrode active material layer containing the positive electrode active material of the present disclosure above. The positive electrode current collector may be made of, for example, various metals. The positive electrode active material layer may optionally contain a binder and a conductive aid in addition to the positive electrode active material. The positive electrode active material of the present disclosure has a small expansion/shrinkage rate of the active material during charging and discharging, and is particularly advantageous in a solid battery in which interfacial contact between particles is important. In this regard, when a solid battery is employed as the lithium ion battery, it is preferable that the positive electrode active material layer contains a solid electrolyte. As the solid electrolyte, an inorganic solid electrolyte such as an oxide solid electrolyte or a sulfide solid electrolyte is preferable, and a sulfide solid electrolyte is more preferable. When a sulfide solid electrolyte is included in the positive electrode, a coating layer such as a lithium niobate layer is provided on the surface of the positive electrode active material from the viewpoint of suppressing the formation of a high resistance layer at the interface between the positive electrode active material and the sulfide solid electrolyte. may be provided. Since the configuration other than the positive electrode active material is self-evident from common technical knowledge, further explanation is omitted.

2.2.負極
負極は、リチウムイオン電池の負極として公知のものを採用可能である。例えば、負極は、負極集電体と、負極活物質を含む負極活物質層とを備える。負極集電体は、例えば、各種金属により構成すればよい。負極活物質は、上記本開示の正極活物質よりもリチウムイオンの充放電電位が卑である物質を採用すればよい。負極活物質層は負極活物質のほかに任意にバインダーや導電助剤が含まれていてもよい。また、リチウムイオン電池として固体電池を採用する場合、負極活物質層には上記した固体電解質が含まれていることが好ましい。負極の構成は、技術常識から自明であることから、これ以上の説明を省略する。
2.2. Negative Electrode As the negative electrode, a known negative electrode for lithium-ion batteries can be employed. For example, the negative electrode includes a negative electrode current collector and a negative electrode active material layer containing a negative electrode active material. The negative electrode current collector may be made of, for example, various metals. As the negative electrode active material, a material having a lithium ion charge/discharge potential that is more base than the positive electrode active material of the present disclosure may be adopted. The negative electrode active material layer may optionally contain a binder and a conductive aid in addition to the negative electrode active material. Moreover, when a solid battery is employed as the lithium ion battery, the negative electrode active material layer preferably contains the solid electrolyte described above. Since the structure of the negative electrode is self-evident from common technical knowledge, further explanation is omitted.

2.3.電解質
電解質は、上記の正極と負極との間でリチウムイオンを伝導するためのものである。電解質としては電解液や固体電解質のいずれを採用してもよい。電解液を採用する場合、正極と負極との間にセパレータを配置し、これを電解液に含浸させればよい。一方、固体電解質を採用する場合、正極と負極との間に固体電解質層を配置すればよい。固体電解質層には上記した固体電解質と任意にバインダーとが含まれる。電解質の構成は、技術常識から自明であることから、これ以上の説明を省略する。
2.3. Electrolyte The electrolyte is for conducting lithium ions between the positive and negative electrodes described above. Either an electrolytic solution or a solid electrolyte may be used as the electrolyte. When an electrolytic solution is employed, a separator may be arranged between the positive electrode and the negative electrode and impregnated with the electrolytic solution. On the other hand, when using a solid electrolyte, a solid electrolyte layer may be arranged between the positive electrode and the negative electrode. The solid electrolyte layer contains the solid electrolyte described above and optionally a binder. Since the structure of the electrolyte is self-evident from common technical knowledge, further explanation is omitted.

2.4.その他の構成
リチウムイオン電池は、上記の正極、負極及び電解質を備えていればよく、これ以外に必要に応じて端子や電池ケース等が備えられる。これらの構成については技術常識から自明であることから、これ以上の説明を省略する。
2.4. Other Configurations A lithium-ion battery may include the positive electrode, the negative electrode, and the electrolyte described above, and may also include terminals, a battery case, and the like, if necessary. Since these configurations are self-evident from common technical knowledge, further explanation is omitted.

以上の通り、本開示のリチウムイオン電池は、正極において上記本開示の正極活物質が採用されており、正極活物質の結晶性が高い。このため、正極における抵抗を低減でき、容量等を向上させることができる。本開示のリチウムイオン電池は、一次電池としてだけでなく、二次電池としても好適に用いられる。 As described above, the lithium ion battery of the present disclosure employs the positive electrode active material of the present disclosure in the positive electrode, and the positive electrode active material has high crystallinity. Therefore, the resistance in the positive electrode can be reduced, and the capacity and the like can be improved. The lithium ion battery of the present disclosure is suitably used not only as a primary battery but also as a secondary battery.

1.スピネル型結晶相を有するリチウム含有コバルト酸化物の合成
(実施例1)
金属酢酸塩として酢酸リチウムと酢酸コバルトとをモル比で1:1となるように秤量し、プロトン性極性溶媒であるイオン交換水中に溶解させて混合溶液を得た。得られた混合溶液をスターラーで攪拌しながら、ホットプレート上で250℃に加熱し、蒸発乾固させて前駆体を得た。得られた前駆体を大気雰囲気下で300℃で120時間焼成することで、リチウム含有コバルト酸化物を合成した。
1. Synthesis of Lithium-Containing Cobalt Oxide Having Spinel Crystalline Phase (Example 1)
As metal acetates, lithium acetate and cobalt acetate were weighed so that the molar ratio was 1:1, and dissolved in deionized water, which is a protic polar solvent, to obtain a mixed solution. While stirring the obtained mixed solution with a stirrer, it was heated to 250° C. on a hot plate and evaporated to dryness to obtain a precursor. A lithium-containing cobalt oxide was synthesized by baking the obtained precursor at 300° C. for 120 hours in an air atmosphere.

(実施例2)
焼成温度を400℃とし、焼成時間を2時間としたこと以外は、実施例1と同様にしてリチウム含有コバルト酸化物を合成した。
(Example 2)
A lithium-containing cobalt oxide was synthesized in the same manner as in Example 1, except that the firing temperature was 400° C. and the firing time was 2 hours.

(比較例1)
酸化コバルト(Co)と炭酸リチウム(LiCO)とを化学量論比にて混合後、ペレット化し、大気雰囲気下、300℃で120時間焼成し、その後、ボールミル(BM)処理を590rpmで8時間行った。ペレット化、焼成及びBM処理を5回行うことで、リチウム含有コバルト酸化物を得た。
(Comparative example 1)
Cobalt oxide (Co 3 O 4 ) and lithium carbonate (Li 2 CO 3 ) are mixed in a stoichiometric ratio, pelletized, fired at 300° C. for 120 hours in an air atmosphere, and then ball milled (BM). was performed at 590 rpm for 8 hours. A lithium-containing cobalt oxide was obtained by performing pelletization, firing and BM treatment five times.

2.結晶相の確認
実施例1、2及び比較例1に係るリチウム含有コバルト酸化物に対してCuKαを線源とするX線回折測定を行い回折ピークを確認した。いずれについてもスピネル型結晶相に由来する回折ピークが確認された。
2. Confirmation of Crystal Phase The lithium-containing cobalt oxides according to Examples 1 and 2 and Comparative Example 1 were subjected to X-ray diffraction measurement using CuKα as a radiation source, and diffraction peaks were confirmed. Diffraction peaks derived from the spinel-type crystal phase were confirmed for all of them.

3.評価用セルの作製
実施例1、2及び比較例1に係るリチウム含有コバルト酸化物の正極活物質としての性能を評価するために、評価用のセルを作製した。具体的には、質量比で、リチウム含有コバルト酸化物:導電材:結着材=85:10:5となるように秤量し、NMP中に投入・混合してスラリーとした。得られたスラリーをAl箔上に塗工し、120℃で一晩乾燥させて正極を得た。得られた正極とセパレータと負極(Li箔)とF置換カーボネート系電解液とを用いて、CR2032コインセルを作製した。
3. Preparation of Evaluation Cell In order to evaluate the performance of the lithium-containing cobalt oxides according to Examples 1 and 2 and Comparative Example 1 as positive electrode active materials, evaluation cells were prepared. Specifically, they were weighed so that the mass ratio of lithium-containing cobalt oxide:conductive material:binder=85:10:5 was added and mixed into NMP to prepare a slurry. The obtained slurry was applied on an Al foil and dried overnight at 120° C. to obtain a positive electrode. Using the obtained positive electrode, separator, negative electrode (Li foil), and F-substituted carbonate-based electrolytic solution, a CR2032 coin cell was produced.

4.充放電試験
作製したコインセルを以下の条件で充電及び放電し、放電容量を確認した。
CC充電:電流0.1C、終了条件4.5V
CC放電:電流0.1C、終了条件2.5V
4. Charge/Discharge Test The prepared coin cell was charged and discharged under the following conditions, and the discharge capacity was confirmed.
CC charging: current 0.1C, termination condition 4.5V
CC discharge: current 0.1C, termination condition 2.5V

5.評価結果
下記表1にX線回折及び充放電試験に係る評価結果を示す。また、図2に、実施例1及び比較例1に係るリチウム含有コバルト酸化物のX線回折ピークを示す。さらに、図3に、実施例1及び比較例1に係るリチウム含有コバルト酸化物を用いたコインセルの充放電曲線(4.2V-2.5V)を示す。
5. Evaluation Results Table 1 below shows the evaluation results of X-ray diffraction and charge/discharge tests. 2 shows the X-ray diffraction peaks of the lithium-containing cobalt oxides according to Example 1 and Comparative Example 1. As shown in FIG. Furthermore, FIG. 3 shows charge-discharge curves (4.2V-2.5V) of coin cells using the lithium-containing cobalt oxides according to Example 1 and Comparative Example 1. As shown in FIG.

Figure 0007125227000001
Figure 0007125227000001

表1及び図2に示す結果から明らかなように、実施例1、2は比較例1に比べて回折ピークがシャープであり、スピネル型結晶相の結晶性の高いことが分かった。例えば、65°付近の(044)面に相当する回折ピークの半値幅が、比較例1よりも実施例1、2のほうが0.26°小さかった。蒸発乾固法による実施例1、2は、固相法による比較例1とは異なり、前駆体において原子レベルでリチウムとコバルトとが均一に混ざり合い、且つ、前駆体が細かな微粒子となることから、焼成時に結晶化が進行し易いと考えられる。 As is clear from the results shown in Table 1 and FIG. 2, Examples 1 and 2 had sharper diffraction peaks than Comparative Example 1, indicating that the crystallinity of the spinel crystal phase was high. For example, the half width of the diffraction peak corresponding to the (044) plane near 65° was smaller in Examples 1 and 2 than in Comparative Example 1 by 0.26°. In Examples 1 and 2 using the evaporation-to-drying method, unlike Comparative Example 1 using the solid-phase method, lithium and cobalt are uniformly mixed at the atomic level in the precursor, and the precursor becomes fine particles. Therefore, it is considered that crystallization tends to proceed during firing.

表1及び図3に示す結果から明らかなように、実施例1、2は比較例1に比べて過電圧が低く、容量が大きかった。上述の通り実施例1、2は比較例1よりも結晶性が高いことから、抵抗が低減したものと考えられる。 As is clear from the results shown in Table 1 and FIG. 3, Examples 1 and 2 had lower overvoltages and larger capacities than Comparative Example 1. As described above, the crystallinity of Examples 1 and 2 is higher than that of Comparative Example 1, so it is considered that the resistance is reduced.

本開示の製造方法により製造されるリチウム含有複合酸化物は、リチウムイオン電池の正極活物質として好適に利用できる。当該正極活物質を用いたリチウムイオン電池は、例えば、携帯機器用の小型電源から車搭載用の大型電源まで、広く利用できる。 The lithium-containing composite oxide produced by the production method of the present disclosure can be suitably used as a positive electrode active material for lithium ion batteries. Lithium ion batteries using the positive electrode active material can be widely used, for example, from small power sources for portable devices to large power sources for vehicles.

Claims (1)

金属酢酸塩を、前記金属酢酸塩を溶解可能なプロトン性極性溶媒のみに溶解させて混合溶液を得る工程と、
前記混合溶液を蒸発乾固して前駆体を得る工程と、
前記前駆体を200℃以上550℃以下の温度で焼成する工程と、
を備える、
スピネル型結晶相を有するリチウム含有コバルト酸化物の製造方法。
a step of dissolving a metal acetate only in a protic polar solvent capable of dissolving the metal acetate to obtain a mixed solution;
obtaining a precursor by evaporating the mixed solution to dryness;
calcining the precursor at a temperature of 200° C. or higher and 550° C. or lower ;
comprising
A method for producing a lithium-containing cobalt oxide having a spinel crystal phase.
JP2018144316A 2018-07-31 2018-07-31 Method for producing lithium-containing cobalt oxide having spinel crystal phase Active JP7125227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018144316A JP7125227B2 (en) 2018-07-31 2018-07-31 Method for producing lithium-containing cobalt oxide having spinel crystal phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018144316A JP7125227B2 (en) 2018-07-31 2018-07-31 Method for producing lithium-containing cobalt oxide having spinel crystal phase

Publications (2)

Publication Number Publication Date
JP2020019674A JP2020019674A (en) 2020-02-06
JP7125227B2 true JP7125227B2 (en) 2022-08-24

Family

ID=69589461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018144316A Active JP7125227B2 (en) 2018-07-31 2018-07-31 Method for producing lithium-containing cobalt oxide having spinel crystal phase

Country Status (1)

Country Link
JP (1) JP7125227B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146406A (en) 2003-10-23 2005-06-09 Zenhachi Okumi Method and device for producing fine particle
JP2014191963A (en) 2013-03-27 2014-10-06 Mitsubishi Materials Corp Precursor solution for lithium cobalt oxide film formation, and method for forming lithium cobalt oxide film by use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146406A (en) 2003-10-23 2005-06-09 Zenhachi Okumi Method and device for producing fine particle
JP2014191963A (en) 2013-03-27 2014-10-06 Mitsubishi Materials Corp Precursor solution for lithium cobalt oxide film formation, and method for forming lithium cobalt oxide film by use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Synthesis and characterization of silver/lithium cobalt oxide (Ag/LiCoO2) nanofibers via sol-gel electrospinning,Journal of Physics and Chemistry of Solids,2013年06月04日,Vol.74,p.1538-1545
Ultrafine lithium cobalt oxide powder derived from a water-in-oil emulsion process,J. Mater. Chem.,2000年,Vol.10,p.599-601

Also Published As

Publication number Publication date
JP2020019674A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP5957618B2 (en) Secondary battery including solid electrolyte layer
JP6744053B2 (en) High lithium concentration nickel manganese cobalt cathode powder for lithium ion batteries
WO2009060603A4 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery comprising the same
JP2000277116A (en) Lithium secondary battery
CN109119624B (en) Preparation method of lithium titanium phosphate coated lithium-rich manganese-based positive electrode material
JP7207261B2 (en) Method for manufacturing positive electrode active material, and method for manufacturing lithium ion battery
KR20200083445A (en) Manganese spinel doped with magnesium, cathode material containing the manganese spinel, their preparation method and lithium ion battery comprising the spinel
JP7056598B2 (en) Negative electrode layer and all-solid-state battery
JP4919147B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery
JP2021068556A (en) Method for producing positive electrode active material and method for manufacturing lithium ion battery
Habibi et al. The effect of calcination conditions on the crystal growth and battery performance of nanocrystalline Li (Ni 1/3 Co 1/3 Mn 1/3) O 2 as a cathode material for Li-ion batteries
JP4172024B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
JP2006318928A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP4296274B2 (en) Lithium manganate positive electrode active material and all-solid lithium secondary battery
JP2007258187A (en) Cathode material and lithium secondary battery using the same
JP7059951B2 (en) Negative electrode layer and all-solid-state battery
JP5086910B2 (en) Lithium secondary battery provided with Li-Sn-Mn compound positive electrode thin film, method for producing Li-Sn-Mn compound target, and method for forming positive electrode thin film using the same
JP2010248044A (en) LiNbO3 GLASS, METHOD FOR PRODUCING THE SAME AND NONAQUEOUS ELECTROLYTE CELL USING LiNbO3 GLASS
TWI827802B (en) Positive electrode active material for lithium ion secondary batteries, manufacturing method of positive electrode active material for lithium ion secondary batteries, lithium ion secondary batteries
JP7125227B2 (en) Method for producing lithium-containing cobalt oxide having spinel crystal phase
CN113439073A (en) Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
TW202044652A (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
CN110783565B (en) Positive electrode active material for lithium ion battery and lithium ion battery
KR20050047291A (en) Cathode material for lithium secondary battery and method for preparing the same
Ren et al. Aluminum doping and lithium tungstate surface coating double effect to improve the cycle stability of lithium-rich manganese-based cathode materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220811

R151 Written notification of patent or utility model registration

Ref document number: 7125227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151