Nothing Special   »   [go: up one dir, main page]

JP7112648B2 - Bottle can manufacturing method - Google Patents

Bottle can manufacturing method Download PDF

Info

Publication number
JP7112648B2
JP7112648B2 JP2020184600A JP2020184600A JP7112648B2 JP 7112648 B2 JP7112648 B2 JP 7112648B2 JP 2020184600 A JP2020184600 A JP 2020184600A JP 2020184600 A JP2020184600 A JP 2020184600A JP 7112648 B2 JP7112648 B2 JP 7112648B2
Authority
JP
Japan
Prior art keywords
diameter
cylindrical
neck
end side
bottle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020184600A
Other languages
Japanese (ja)
Other versions
JP2021035696A (en
Inventor
孝太朗 島田
一 実末
Original Assignee
アルテミラ製缶株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルテミラ製缶株式会社 filed Critical アルテミラ製缶株式会社
Priority to JP2020184600A priority Critical patent/JP7112648B2/en
Publication of JP2021035696A publication Critical patent/JP2021035696A/en
Application granted granted Critical
Publication of JP7112648B2 publication Critical patent/JP7112648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、ボトル缶の製造方法に関するものである。 The present invention relates to a method for manufacturing bottle cans.

このようなボトル缶の製造方法として、例えば特許文献1には、アルミニウム合金等の金属材料から絞り加工、絞りしごき加工またはインパクト成形によって造られ、かつ缶本体がキャップ取付部としてのねじ部を有する口部、テーパー状の肩部、胴部および底部から構成され、キャップを螺合して高い密封性を保持できるねじ付金属缶において、口部のねじ部下端から、半径方向に拡大するテーパー状の肩部上端周囲に、内側に滑らかに湾曲する凹部を形成するとともに、この凹部の下方の連続して外側に滑らかに湾曲する凸部を形成することが記載されている。さらに、この特許文献1では、凹部から連続する滑らかな凸部の湾曲の程度として、垂直方向すなわち缶軸に対して35°~60°の傾斜角、具体的には45°の傾斜角とするのが好ましいと記載されている。 As a method for manufacturing such a bottle can, for example, Patent Document 1 discloses that the can body is manufactured by drawing, drawing and ironing, or impact molding from a metal material such as an aluminum alloy, and the can body has a screw portion as a cap attachment portion. A threaded metal can that consists of a mouth, a tapered shoulder, a body and a bottom, and can maintain a high degree of sealing performance by screwing a cap onto it. A tapered shape that expands radially from the lower end of the threaded part of the mouth. It is described that a recess smoothly curved inward is formed around the upper end of the shoulder of the shoulder, and a protrusion smoothly curved outward is formed continuously below the recess. Furthermore, in Patent Document 1, the degree of curvature of the smooth convex portion continuing from the concave portion is set to a vertical direction, that is, an inclination angle of 35° to 60° with respect to the can axis, specifically an inclination angle of 45°. is described as being preferred.

また、例えば特許文献2には、有底筒状に形成されたアルミニウム合金等の金属製の缶体(有底円筒体)の開口部を縮径してなる口金部の上部外周にねじ部が設けられるとともに、このねじ部よりも下方にキャップ本体下部を巻き締めるための膨出部が形成されたボトル缶の製造方法であって、上記開口部を縮径して口金部を形成した後、その口金部の開口端から所定距離分だけ再び拡径して拡径部を形成し、上記ねじ部は、拡径部が形成された後、ねじを形成する部分を縮径して、その縮径された部分にねじ切り加工することによって形成され、上記膨出部は、ねじ部を形成する際に縮径されずに残った拡径部分によって形成されるボトル缶の製造方法が記載されている。この場合に、上記開口部を縮径した口金部における上記膨出部の下方には、肩部から上端側に延びる首部が形成される。 Further, for example, in Patent Document 2, a screw portion is formed on the outer periphery of the upper portion of a mouthpiece formed by reducing the diameter of the opening of a metal can body (cylindrical body with a bottom) such as an aluminum alloy formed in a cylindrical shape with a bottom. and a bulging portion for winding the lower part of the cap main body below the threaded portion, wherein the diameter of the opening is reduced to form a mouthpiece, The diameter of the mouthpiece is increased again by a predetermined distance from the opening end to form an enlarged diameter portion. A method for manufacturing a bottle-can is described in which the diameter-diametered portion is formed by threading, and the bulging portion is formed by the enlarged-diameter portion that remains without being reduced in diameter when the threaded portion is formed. . In this case, a neck portion extending from the shoulder portion to the upper end side is formed below the bulging portion of the mouthpiece formed by reducing the diameter of the opening.

ここで、上述のような肩部の成形は、内径が徐々に小さくなる円筒状の複数の金型を、内径が大きいものから順に有底円筒体の円筒部の上端側部分に圧入して順次塑性変形させることにより、この円筒部の上端側部分のうちの下端側部分を上端側に向けて段階的に内周側に向かうように傾斜させるとともに、この傾斜した下端側部分よりも内周側を内径が小さくなる円筒状に徐々に縮径させることによって行われる。 Here, the molding of the shoulder portion as described above is performed by press-fitting a plurality of cylindrical molds with gradually decreasing inner diameters into the upper end side portion of the cylindrical portion of the bottomed cylindrical body in order from the larger inner diameter. By plastically deforming, the lower end portion of the upper end portion of the cylindrical portion is gradually inclined toward the inner peripheral side toward the upper end side, and the inclined lower end portion is closer to the inner peripheral side than the inclined lower end portion. is gradually reduced into a cylindrical shape with a smaller inner diameter.

さらに、特許文献2に記載された膨出部の成形は、こうして傾斜させられた肩部の内周側に縮径した円筒状の首部が成形された後に、この首部の内径よりも僅かに大きな外径の下端外周部を有する拡径工具を上端側から首部に挿入して拡径させ、次いでこの拡径した部分の上端側にねじ切り加工することにより、上述のようにねじ切り加工によって縮径されずに残された部分として成形される。 Furthermore, the molding of the bulging portion described in Patent Document 2 is such that after a cylindrical neck portion with a reduced diameter is molded on the inner peripheral side of the inclined shoulder portion, the inner diameter of the neck portion is slightly larger than that of the neck portion. A diameter expanding tool having a lower outer peripheral portion of the outer diameter is inserted into the neck portion from the upper end side to expand the diameter, and then the upper end side of the expanded diameter portion is threaded, so that the diameter is reduced by threading as described above. It is molded as a part left untouched.

特開2001-213416号公報JP-A-2001-213416 特許第4908544号公報Japanese Patent No. 4908544

ところで、近年では、このようなボトル缶を形成する金属材料の省資源化や材料製造の際の省エネルギー化のために缶本体のさらなる薄肉化が強く求められており、例えばアルミニウム合金製のボトル缶の場合には、板厚が0.230mm~0.300mm程度のアルミニウム合金よりなる金属板から絞り加工により成形されたカップ状素材に再絞りおよびしごき加工を施して上述のような有底円筒体を成形し、さらに肩部や首部、膨出部を成形するとともにねじ切り加工を行ってボトル缶の缶本体を製造するようなことも要求されている。 By the way, in recent years, there has been a strong demand for further thinning of the can body in order to save resources of metal materials for forming such bottle cans and to save energy in material manufacturing. In the case of , a cup-shaped material formed by drawing from a metal plate made of an aluminum alloy having a thickness of about 0.230 mm to 0.300 mm is subjected to redrawing and ironing to obtain a cylindrical body with a bottom as described above. is required to form the can body of the bottle can by further forming the shoulder, neck, and bulging portion, and performing thread cutting.

しかしながら、このように有底円筒体の薄肉化を図ったボトル缶では有底円筒体の強度は低下することになり、特許文献1に記載されているように凸部の缶軸に対する傾斜角が大きくて首部を成形する際の荷重が大きくなったり、あるいは特許文献2に記載された膨出部を成形する際の荷重が大きくなったりすると、首部の成形の際に有底円筒体に座屈が生じるおそれがある。特に、有底円筒体を成形する際には、肩部や首部、膨出部やキャップ取付部を形成する有底円筒体の円筒部における上端側部分よりも、この円筒部の下端側部分の肉厚を薄くすることがあり、そのような有底円筒体では薄肉とされた胴部の下端側部分での座屈が一層顕著なものとなる。また、膨出部を成形する際の荷重が大きいと膨出部に割れを生じるおそれがある。 However, in the case of a bottle can in which the wall thickness of the bottomed cylindrical body is reduced, the strength of the bottomed cylindrical body is lowered, and as described in Patent Document 1, the inclination angle of the convex portion with respect to the can axis is large. If it is large and the load increases when molding the neck, or if the load increases when molding the bulging portion described in Patent Document 2, it will buckle into a bottomed cylindrical body when molding the neck. may occur. In particular, when molding a bottomed cylindrical body, the lower end side of the cylindrical part forming the shoulder, neck, bulging part, and cap mounting part is more likely than the upper end of the cylindrical part of the bottomed cylindrical body. In some cases, the wall thickness is reduced, and in such a bottomed cylinder, buckling becomes more pronounced at the lower end side portion of the body that is made thinner. In addition, if the load applied during molding of the bulging portion is large, the bulging portion may crack.

本発明は、このような背景の下になされたもので、ボトル缶の缶本体に成形される金属板や有底円筒体の薄肉化を図っても、首部の成形の際に有底円筒体に座屈が生じるのを防ぐことが可能なボトル缶の製造方法を提供することを目的としている。 The present invention has been made under such a background. To provide a method for manufacturing a bottle-can capable of preventing buckling of the bottle-can.

上記課題を解決して、このような目的を達成するために、本発明は、缶本体の底部と一体に成形される外周部に、上記底部から上記缶本体の上端開口部に向けて順に缶軸を中心とした円筒状の胴部と、上端側に向かうに従い縮径する肩部と、この肩部からさらに上端側に向かって延びる首部と、キャップ取付部とが形成されたボトル缶の製造方法であって、金属板から絞り加工により成形されたカップ状素材に再絞りおよびしごき加工と底部成形加工を施して、上記底部と、上記胴部と同外径の円筒部が形成された有底円筒体を成形するDIプレス工程と、この有底円筒体の上記円筒部の上端側部分を縮径させることにより、上記肩部と、この肩部から上端側に向かうに従いさらに縮径する上記首部とを成形するボトルネック成形工程と、上記首部の上端部に上記キャップ取付部を成形するキャップ取付部成形工程とを備え、上記ボトルネック成形工程においては、上記肩部の上端側に形成された円筒状部のうち上記肩部との接続部分を除いた部分を直径d0から直径d2まで2回に分けて段階的に縮径することによって上記首部を成形する構成とされており、1回の縮径量が0.5mm~1.5mmの範囲内とされ、前記ボトルネック成形工程の2回の縮経時に用いられる金型は、缶軸に沿った断面において、缶軸に略平行に延びる円環部と、この前記円環部の上方に位置し、前記円環部よりも径の小さい小径円筒部と、前記円環部と前記小径円筒部の間に設けられ、上方に向かい内周側に傾斜した直線状の傾斜部と、を有しており、前記傾斜部が缶軸に対してなす角度αが18°~25°であることを特徴とする。 In order to solve the above-mentioned problems and achieve such objects, the present invention provides a can body which is formed integrally with the bottom portion of the can body, and which has an outer peripheral portion formed integrally with the bottom portion of the can body. Manufacture of a bottle-shaped can having a cylindrical body centered on an axis, a shoulder portion whose diameter is reduced toward the upper end side, a neck portion extending further toward the upper end side from the shoulder portion, and a cap mounting portion. In this method, a cup-shaped material formed by drawing from a metal plate is subjected to redrawing, ironing, and bottom forming processing to form the bottom and a cylindrical portion having the same outer diameter as the body. A DI pressing step for forming a bottom cylindrical body, and a diameter reduction of the upper end side portion of the cylindrical body with a bottom, thereby forming the shoulder portion and the shoulder portion, the diameter of which is further reduced toward the upper end side from the shoulder portion. and a cap mounting portion forming step of forming the cap mounting portion on the upper end portion of the neck portion. The neck portion is formed by stepwise reducing the diameter of the portion of the cylindrical portion excluding the connection portion with the shoulder portion in two steps from diameter d0 to diameter d2. The amount of diameter reduction is within the range of 0.5 mm to 1.5 mm, and the mold used for the two rounds of warp reduction in the bottleneck forming process is substantially parallel to the can axis in the cross section along the can axis. an extending circular ring portion; a small-diameter cylindrical portion located above the circular ring portion and having a diameter smaller than that of the circular ring portion; and a linear inclined portion inclined to the circumferential side, and the angle α formed by the inclined portion with respect to the can axis is 18° to 25°.

このようなボトル缶の製造方法においては、首部における縮径が複数回に分けて段階的に行われるので、個々の段階における縮径量を少なくすることができ、缶軸方向の荷重を小さくすることができる。このため、たとえカップ状素材に成形される金属板の板厚が0.230mm~0.300mmと薄く、またこのカップ状素材から成形された有底円筒体における円筒部の上端側部分の厚さも0.180mm~0.225mmと薄くて、さらに円筒部の下端側部分の厚さはこれよりも薄い場合であっても、首部の成形の際の荷重によって有底円筒体に座屈が生じたり、膨出部の成形の際の荷重によって割れが生じたりするのを防ぐことができる。従って、上記構成のボトル缶の製造方法によれば、このような座屈や割れによるボトル缶の製造歩留まりや製造効率等の低下を招くことなく、ボトル缶の缶本体の薄肉化を図ることができ、さらなる省資源化や省エネルギー化を促すことが可能となる。 In such a bottle-can manufacturing method, since the diameter of the neck portion is reduced stepwise in a plurality of steps, the amount of diameter reduction in each step can be reduced, and the load in the can axial direction can be reduced. be able to. For this reason, even if the thickness of the metal plate formed into the cup-shaped material is as thin as 0.230 mm to 0.300 mm, the thickness of the upper end side portion of the cylindrical portion of the bottomed cylindrical body formed from this cup-shaped material is Even if it is as thin as 0.180 mm to 0.225 mm and the thickness of the lower end of the cylindrical portion is thinner than this, the bottomed cylindrical body may buckle due to the load during molding of the neck. , it is possible to prevent cracks from occurring due to the load during molding of the bulging portion. Therefore, according to the bottle-can manufacturing method having the above-described configuration, it is possible to reduce the thickness of the can body of the bottle-can without causing a decrease in the manufacturing yield and manufacturing efficiency of the bottle-can due to such buckling and cracking. It is possible to promote further resource saving and energy saving.

なお、このようなボトル缶の缶本体に有底円筒体を経て成形される上記金属板は、JIS H 4000におけるA3004またはA3104のアルミニウム合金であって、205℃×20分ベーキング後の0.2%耐力が235N/mm~265N/mmの範囲であることが望ましい。このベーキング後の耐力が235N/mmを下回ると、上述のような傾斜角や外径拡縮径量としても首部や膨出部の成形の際に有底円筒体の座屈や割れが生じるおそれがあり、また逆にベーキング後の耐力が265N/mmを上回っても、成形に必要な荷重が大きくなって荷重制御が困難となるおそれがある。 The metal plate formed on the can body of such a bottle can through the bottomed cylindrical body is an aluminum alloy of A3004 or A3104 in JIS H 4000, and has a resistance of 0.2 after baking at 205 ° C. for 20 minutes. It is desirable that the % yield strength is in the range of 235 N/mm 2 to 265 N/mm 2 . If the proof stress after baking is less than 235 N/ mm2 , buckling or cracking of the bottomed cylindrical body may occur during molding of the neck and bulging portion even with the above-described inclination angle and outer diameter expansion/reduction amount. Conversely, even if the yield strength after baking exceeds 265 N/mm 2 , the load required for molding becomes large, which may make it difficult to control the load.

以上説明したように、本発明によれば、首部を成形する際の有底円筒体の座屈を防止することができ、このような座屈によるボトル缶の製造歩留まりや製造効率等の低下を防ぎつつ、ボトル缶の缶本体のさらなる薄肉化を図って、一層の省資源化や省エネルギー化を促進することが可能となる。 As described above, according to the present invention, it is possible to prevent the bottomed cylinder from buckling when forming the neck portion, thereby preventing the production yield and production efficiency of bottle cans from deteriorating due to such buckling. While preventing this, it is possible to further reduce the thickness of the can body of the bottle can, thereby promoting further resource saving and energy saving.

本発明の一実施形態により製造されるボトル缶の一部破断側面図である。1 is a partially broken side view of a bottle-can manufactured according to one embodiment of the present invention; FIG. 本発明の一実施形態を示すフローチャートである。4 is a flowchart illustrating an embodiment of the invention; 本発明の一実施形態におけるボトルネック成形工程において(a)首部が成形される前の有底円筒体を示す断面図、(b)首部を成形する金型(第1の金型)を示す断面図である。(a) Cross-sectional view showing a bottomed cylindrical body before the neck is molded, (b) Cross-section showing a mold (first mold) for molding the neck in the bottleneck molding process in one embodiment of the present invention. It is a diagram. 本発明の一実施形態におけるボトルネック成形工程において(a)第1の段階の縮径を行う第1の金型の断面図、(b)図(a)に示す第1の金型の首部成形部周辺を示す拡大断面図である。(a) Cross-sectional view of the first mold for reducing the diameter in the first stage, (b) Neck molding of the first mold shown in FIG. 2 is an enlarged cross-sectional view showing the periphery of a part; FIG. 本発明の一実施形態におけるボトルネック成形工程において(a)第2の段階の縮径を行う第2の金型の断面図、(b)図(a)に示す第2の金型の首部成形部周辺を示す拡大断面図である。(a) Cross-sectional view of the second mold for reducing the diameter of the second stage in the bottleneck molding process in one embodiment of the present invention, (b) neck molding of the second mold shown in FIG. 2 is an enlarged cross-sectional view showing the periphery of a part; FIG. 本発明の一実施形態のボトルネック成形工程により首部が成形された有底円筒体を示す断面図である。FIG. 4 is a cross-sectional view showing a bottomed cylindrical body having a neck formed by a bottleneck forming process according to an embodiment of the present invention; 本発明の一実施形態におけるキャップ取付部成形工程において(a)膨出部が成形される前の有底円筒体を示す断面図、(b)膨出部を成形する拡径工具(第1の拡径工具)を示す断面図である。(a) Cross-sectional view showing a bottomed cylindrical body before the bulging portion is formed, (b) Diameter expanding tool for forming the bulging portion (first Fig. 3 is a cross-sectional view showing a diameter expanding tool). 本発明の一実施形態におけるキャップ取付部成形工程において(a)第1の段階の拡径を行う第1の拡径工具の断面図、(b)図(a)に示す第1の拡径工具の拡径部周辺を示す拡大断面図である。(a) Cross-sectional view of a first diameter expansion tool for performing diameter expansion in the first stage, (b) the first diameter expansion tool shown in FIG. 1 is an enlarged cross-sectional view showing the periphery of an enlarged diameter portion of . 本発明の一実施形態におけるキャップ取付部成形工程において(a)第2の段階の拡径を行う第2の拡径工具の断面図、(b)図(a)に示す第2の拡径工具の拡径部周辺を示す拡大断面図である。(a) Cross-sectional view of a second diameter-expanding tool for performing diameter-expansion in the second step, (b) the second diameter-expanding tool shown in FIG. 1 is an enlarged cross-sectional view showing the periphery of an enlarged diameter portion of . 本発明の一実施形態のキャップ取付部成形工程により膨出部が成形された有底円筒体を示す断面図である。FIG. 4 is a cross-sectional view showing a bottomed cylindrical body with a bulging portion formed by a cap attachment portion forming step according to an embodiment of the present invention;

図1は、本発明の一実施形態により製造されるボトル缶の缶本体1を示すものであり、図2ないし図10は、このような缶本体1を製造するための本発明の一実施形態を示すものである。本実施形態によって製造されるボトル缶は、その缶本体1が図1に示すように、底部2と、この底部2と一体に形成されて底部2の外周縁から上端側(図1において上側)に延びる外周部3とを備えており、この上端側に向けて縮径する缶軸Cを中心とした概略多段の有底円筒状をなしている。 FIG. 1 shows a can body 1 of a bottle can manufactured according to an embodiment of the present invention, and FIGS. 2 to 10 show an embodiment of the present invention for manufacturing such a can body 1. is shown. As shown in FIG. 1, the can body 1 of the bottle-shaped can manufactured according to the present embodiment has a bottom portion 2, and is integrally formed with the bottom portion 2 so as to extend from the outer peripheral edge of the bottom portion 2 toward the upper end (upper side in FIG. 1). It has a substantially multi-stage bottomed cylindrical shape centered on the can axis C whose diameter is reduced toward the upper end side.

底部2には、缶軸C方向の内側(缶本体1の上端側)に凹む断面略円弧状のドーム部2aが中央に形成されるとともに、このドーム部2aの外周には缶軸C方向の外側(缶本体1の下端側)に突出する上記環状凸部2bが缶軸C回りの周方向に連続して形成されている。また、外周部3には底部2から缶本体1の上端側の開口部4に向けて順に、缶軸Cを中心とした円筒状の胴部5と、上端側に向かうに従い一定の傾斜で漸次縮径する円錐台面状の肩部6と、この肩部6からさらに上端側に向かって延びる筒状の首部7と、下端側に上記膨出部8を備えたやはり筒状で、本実施形態ではねじ切り加工が施されたキャップ取付部9とが形成されている。 A dome portion 2a having a substantially arcuate cross-section is formed in the center of the bottom portion 2 and recessed inward in the direction of the can axis C (upper end side of the can body 1). The annular convex portion 2b that protrudes outward (lower end side of the can body 1) is continuously formed in the circumferential direction around the can axis C. As shown in FIG. In addition, on the outer peripheral portion 3, a cylindrical body portion 5 centering on the can axis C is arranged in order from the bottom portion 2 toward the opening portion 4 on the upper end side of the can body 1, and gradually with a constant inclination toward the upper end side. This embodiment also has a cylindrical shape comprising a truncated conical shoulder portion 6 with a reduced diameter, a cylindrical neck portion 7 extending further from the shoulder portion 6 toward the upper end side, and the bulging portion 8 at the lower end side. , a threaded cap mounting portion 9 is formed.

このようなボトル缶を製造する本発明のボトル缶の製造方法の一実施形態においては、図2のフローチャートに示すように、まずカッピングプレス機によるカッピングプレス工程においてアルミニウム合金等の金属板を円板状に打ち抜いて絞り加工を施すことにより深さの浅いカップ状素材を製造し、このカップ状素材にDIプレス機によるDIプレス工程において再絞りおよびしごき加工を施して缶軸C方向に延伸することにより、底部2に上記ドーム部2aと環状凸部2bが形成された有底円筒体(DI缶)を成形する。 In one embodiment of the bottle can manufacturing method of the present invention for manufacturing such bottle cans, as shown in the flowchart of FIG. A cup-shaped material with a shallow depth is produced by punching into a shape and drawing, and the cup-shaped material is subjected to redrawing and ironing in a DI press process by a DI press machine to stretch in the can axis C direction. Thus, a bottomed cylindrical body (DI can) having the dome portion 2a and the annular convex portion 2b formed on the bottom portion 2 is formed.

ここで、カッピングプレス工程においてカップ状素材に成形される金属板は、本実施形態ではJIS H 4000におけるA3004またはA3104のアルミニウム合金であって、205℃×20分ベーキング後の0.2%耐力が235N/mm~265N/mmの範囲のものが用いられる。また、このカップ状素材から成形される有底円筒体には、外周部に上記缶軸Cを中心とした円筒部が形成され、この円筒部の外径は缶本体1の胴部5の外径と略等しい一定外径である。ただし、この円筒部は、その上端側部分の厚さが0.180mm~0.225mmの範囲である一方、下端側部分の厚さはこの上端側部分よりも極僅かに薄い。 Here, the metal plate that is formed into the cup-shaped material in the cupping press step is an aluminum alloy of A3004 or A3104 in JIS H 4000 in this embodiment, and has a 0.2% proof stress after baking at 205 ° C. for 20 minutes. Those in the range of 235 N/mm 2 to 265 N/mm 2 are used. The bottomed cylindrical body molded from this cup-shaped material has a cylindrical portion centered on the can axis C on the outer periphery. It has a constant outer diameter approximately equal to the diameter. However, this cylindrical portion has a thickness in the range of 0.180 mm to 0.225 mm at its upper end portion, while the thickness at its lower end portion is slightly thinner than this upper end portion.

このように成形された有底円筒体は、第1の洗浄工程において洗浄、乾燥され、次いで塗装工程において内外面に塗装が施されて焼き付けられる。そして、塗装が施された有底円筒体は、ボトルネッカーによるボトルネック成形工程において円筒部の上記上端側部分の下端側が金型によって縮径されて上記肩部6と首部7が成形され、次いでキャップ取付部成形工程において首部7の上端側が拡径工具によって拡径されて上記膨出部8が形成されるとともに、この膨出部8よりもさらに上端側に上記ねじ切り加工等が施されて上記キャップ取付部9が形成され、図1に示したようなボトル缶の缶本体1に成形される。 The bottomed cylindrical body formed in this way is washed and dried in the first washing step, and then painted on the inner and outer surfaces and baked in the painting step. Then, in the bottleneck molding process using a bottle necker, the diameter of the lower end side of the upper end side portion of the cylindrical portion of the painted bottomed cylindrical body is reduced by a mold, and the shoulder portion 6 and the neck portion 7 are formed. In the process of forming the cap attachment portion, the upper end side of the neck portion 7 is expanded by a diameter expanding tool to form the bulging portion 8, and the upper end side of the bulging portion 8 is subjected to the above-described thread cutting or the like. A cap attachment portion 9 is formed and molded into the can body 1 of the bottle can as shown in FIG.

こうして成形された缶本体1は、第2の洗浄工程によって洗浄、乾燥された後に、検査工程においてピンホールの有無や外面の異物付着、傷、汚れ、印刷不良等が検査されて飲料工場等に搬送され、飲料等の内容物が充填された後にキャップ取付部9に図示されないキャップが取り付けられて封止され、出荷される。なお、上記各工程の間や各工程中には、有底円筒体の上端縁を切断するトリミングや、必要に応じて底部の環状凸部2bの断面形状を再成形するボトムリフォームが行われる。 After being washed and dried in the second washing process, the can body 1 formed in this way is inspected for the presence of pinholes, the adhesion of foreign matter to the outer surface, scratches, stains, printing defects, etc. in the inspection process. After being transported and filled with contents such as beverages, a cap (not shown) is attached to the cap attachment portion 9 and sealed, and then shipped. Note that trimming for cutting the upper edge of the bottomed cylindrical body and, if necessary, bottom reforming for reshaping the cross-sectional shape of the annular projection 2b at the bottom are performed between and during each of the above steps.

ここで、ボトルネッカーによるボトルネック成形工程のうち、上記肩部6の成形は、内径が徐々に小さくなる円筒状の複数の上記金型を、内径が大きいものから順に有底円筒体の円筒部の上端側部分に圧入して塑性変形させることにより、この円筒部の上端側部分のうちの下端側部分を上端側に向けて段階的に内周側に向かうように傾斜させるとともに、この傾斜した下端側部分よりも内周側を内径が小さくなる円筒状に徐々に縮径させることによって行われる。 Here, among the bottle neck molding processes by the bottle necker, the molding of the shoulder portion 6 is performed by forming a plurality of cylindrical molds with gradually decreasing inner diameters into cylindrical portions with bottoms in order from the one with the largest inner diameter. By press-fitting the upper end side portion and plastically deforming it, the lower end side portion of the upper end side portion of the cylindrical portion is inclined toward the upper end side in steps toward the inner peripheral side, and this inclined This is done by gradually reducing the diameter of the inner peripheral side from the lower end side portion to a cylindrical shape with a smaller inner diameter.

図3(a)に示すのは、このように上記ボトルネック成形工程において肩部6の成形が終了した有底円筒体10Aであり、肩部6の内周部上端側には缶軸Cを中心として縮径させられた円筒状部11Aが形成されている。そして、図3(b)および図4と図5とに示すのは、この有底円筒体10Aの円筒状部11Aに首部7を成形する第1、第2の金型21A、21Bであり、本実施形態のボトルネック成形工程においては、これら第1、第2の金型21A、21Bをこの順に有底円筒体10Aの肩部6から上端側の上記円筒状部11Aに挿入することにより、この円筒状部11Aを複数回(2回)に分けて段階的に縮径して首部7を成形する。 FIG. 3(a) shows a bottomed cylindrical body 10A in which the shoulder portion 6 has been formed in the above-described bottleneck forming process. A cylindrical portion 11A having a reduced diameter is formed at the center. 3(b), 4 and 5 show first and second molds 21A and 21B for forming the neck portion 7 on the cylindrical portion 11A of the bottomed cylindrical body 10A, In the bottleneck molding process of the present embodiment, by inserting the first and second molds 21A and 21B in this order from the shoulder 6 of the bottomed cylindrical body 10A into the cylindrical portion 11A on the upper end side, The diameter of the cylindrical portion 11A is reduced stepwise in a plurality of times (twice) to form the neck portion 7. As shown in FIG.

これら第1、第2の金型21A、21Bは缶軸Cと同軸となるように配置される略円筒状をなしていて、その内周部には下端側から上端側に向けて順にそれぞれ、缶軸Cを中心とする大径円筒部22A、22Bと、内周側に向かうに従い上端側に向かうように傾斜する凹円錐台面状部23A、23Bと、首部成形部24A、24Bと、小径円筒部25A、25Bとが形成されている。 These first and second molds 21A and 21B are substantially cylindrical and arranged coaxially with the can axis C. Large-diameter cylindrical portions 22A and 22B centered on the can axis C, concave truncated conical surface portions 23A and 23B inclined toward the upper end side toward the inner peripheral side, neck forming portions 24A and 24B, and small-diameter cylinders. Parts 25A and 25B are formed.

大径円筒部22A、22Bは、有底円筒体10Aの円筒部(缶本体1の胴部5)の外周面が嵌合可能な内径を有しており、また凹円錐台面状部23A、23Bは有底円筒体10Aの肩部6よりも缶軸Cに対して大きな傾斜で内周側に向かうに従い上端側に向かうように傾斜している。これら大径円筒部22A、22Bと凹円錐台面状部23A、23Bの形状、寸法は第1、第2の金型21A、21Bで同じである。 The large-diameter cylindrical portions 22A and 22B have an inner diameter that allows the outer peripheral surface of the cylindrical portion (body portion 5 of the can body 1) of the bottomed cylindrical body 10A to fit therein, and the concave truncated conical surface portions 23A and 23B. is greater than the shoulder portion 6 of the bottomed cylindrical body 10A with respect to the can axis C, and is inclined toward the upper end side toward the inner peripheral side. The shape and dimensions of these large-diameter cylindrical portions 22A, 22B and concave truncated conical surface portions 23A, 23B are the same in the first and second molds 21A, 21B.

さらに、首部成形部24A、24Bは下端側から上端側に向けて順に、それぞれ缶軸Cに沿った断面において図4(b)および図5(b)に拡大して示すように、凹円錐台面状部23A、23Bの上端に接する凸円弧等をなす第1凸曲部24aと、この第1凸曲部24aの上端に接して缶軸Cに略平行に上端側に延びる直線状をなす円環部24bと、この円環部24bの上端に接して第1凸曲部24aよりも半径の大きな凹円弧等をなす凹曲部24cと、この凹曲部24cの上端に接して上端側に向かうに従い内周側に向かうように缶軸Cに対して傾斜した直線状をなす傾斜部24dと、この傾斜部24dの上端と小径円筒部25A、25Bの下端とに接する凸円弧等をなす第2凸曲部24eとを備えている。 Further, the neck forming portions 24A and 24B are arranged in order from the lower end side to the upper end side, as shown in the enlarged views of FIGS. A first convex curved portion 24a forming a convex circular arc or the like that contacts the upper ends of the shaped portions 23A and 23B, and a straight circle that contacts the upper end of the first convex curved portion 24a and extends substantially parallel to the can axis C toward the upper end side. a ring portion 24b, a concave curved portion 24c forming a concave arc having a radius larger than that of the first convex curved portion 24a in contact with the upper end of the annular portion 24b, and an upper end side in contact with the upper end of the concave curved portion 24c. A linear inclined portion 24d that is inclined with respect to the can axis C so as to move toward the inner peripheral side as it goes, and a convex circular arc or the like that contacts the upper end of the inclined portion 24d and the lower ends of the small-diameter cylindrical portions 25A and 25B. 2 convex curved portion 24e.

ここで、円環部24bの内径(直径)d0と缶軸C方向の長さは、第1、第2の金型21A、21Bで互いに等しくされており、円環部24bの内径d0は肩部6の成形が終了した有底円筒体10Aの上記円筒状部11Aが嵌合可能な大きさとされている。また、凹曲部24cの断面がなす円弧等の半径および缶軸C方向の長さも、第1、第2の金型21A、21Bで互いに等しい。従って、このような第1、第2の金型21A、21Bを、肩部6の成形終了後の有底円筒体10Aの上端側から図3に白抜き矢線で示すように缶軸Cと同軸に挿入すると、円筒状部11Aは上端側から円環部24bの内周面に摺接しつつ凹曲部24cおよび傾斜部24dに沿って縮径させられる。 Here, the inner diameter (diameter) d0 of the annular portion 24b and the length in the direction of the can axis C are made equal to each other in the first and second molds 21A and 21B, and the inner diameter d0 of the annular portion 24b is equal to the shoulder. The cylindrical portion 11A of the bottomed cylindrical body 10A, for which the molding of the portion 6 has been completed, is sized to fit therein. In addition, the radius of the arc formed by the cross section of the concavely curved portion 24c and the length in the direction of the can axis C are also equal between the first and second molds 21A and 21B. Therefore, the first and second molds 21A and 21B are arranged from the upper end side of the bottomed cylindrical body 10A after the molding of the shoulder portion 6 is completed to the can axis C as indicated by the white arrow in FIG. When inserted coaxially, the diameter of the cylindrical portion 11A is reduced along the concave curved portion 24c and the inclined portion 24d while slidingly contacting the inner peripheral surface of the annular portion 24b from the upper end side.

そして、これら第1、第2の金型21A、21Bにおいては、首部成形部24A、24Bの傾斜部24dの缶軸Cに対する傾斜角αは互いに等しいのに対して、第1の金型21Aにおける首部成形部24Aの傾斜部24dの缶軸C方向の長さが、第2の金型21Bにおける首部成形部24Bの傾斜部24dの缶軸C方向の長さよりも短くなるように形成されている。 In the first and second molds 21A and 21B, the inclination angles α of the inclined portions 24d of the neck molding portions 24A and 24B with respect to the can axis C are equal to each other, whereas in the first mold 21A The length in the can axis C direction of the inclined portion 24d of the neck molding portion 24A is formed to be shorter than the length in the can axis C direction of the inclined portion 24d of the neck molding portion 24B in the second mold 21B. .

これにより、第1の金型21Aにおける小径円筒部25Aの内径(直径)d1は、有底円筒体10Aの円筒状部11Aの外径よりも小さく、ただし第2の金型21Bにおける小径円筒部25Bの内径(直径)d2よりは大きくされる。なお、第2凸曲部24eの断面がなす円弧等の半径および缶軸C方向の長さは、第1、第2の金型21A、21Bで互いに等しくされている。 As a result, the inner diameter (diameter) d1 of the small-diameter cylindrical portion 25A in the first mold 21A is smaller than the outer diameter of the cylindrical portion 11A of the bottomed cylindrical body 10A, but the small-diameter cylindrical portion in the second mold 21B It is made larger than the inner diameter (diameter) d2 of 25B. The radius of the arc formed by the cross section of the second convex curved portion 24e and the length in the direction of the can axis C are made equal between the first and second molds 21A and 21B.

従って、第1の金型21Aにおける凹円錐台面状部23Aの上端位置が肩部6の上端位置と缶軸C方向に一致して第1の金型21Aがストロークエンド(下死点)に達したところで、円筒状部11Aの上端側部分は第1の金型21Aの小径円筒部25Aの内径d1と略等しい外径に絞り込まれて一段縮径されるとともに、こうして縮径した円筒状部11Aの下端側部分から肩部6にかけては、第1の金型21Aの首部成形部24Aの断面形状を略転写したような外周面の断面形状を有する上記首部7が形成される。 Therefore, the upper end position of the concave truncated cone surface portion 23A of the first mold 21A coincides with the upper end position of the shoulder portion 6 in the can axis C direction, and the first mold 21A reaches the stroke end (bottom dead center). Then, the upper end side portion of the cylindrical portion 11A is narrowed down to have an outer diameter substantially equal to the inner diameter d1 of the small-diameter cylindrical portion 25A of the first mold 21A, and the diameter of the cylindrical portion 11A thus reduced is reduced. From the lower end side portion to the shoulder portion 6, the neck portion 7 having the cross-sectional shape of the outer peripheral surface which is almost the same as the cross-sectional shape of the neck molding portion 24A of the first mold 21A is formed.

次いで、第1の金型21Aを有底円筒体10Aから引き抜いて第2の金型21Bを挿入すると、同様に第2の金型21Bにおける凹円錐台面状部23Bの上端位置が肩部6の上端位置と缶軸C方向に一致して第2の金型21Bがストロークエンド(下死点)に達したところで、円筒状部11Aの上端側部分は第2の金型21Bの小径円筒部25Bの内径d2と略等しい外径に絞り込まれてもう一段縮径された円筒状部11Bに成形される。 Next, when the first mold 21A is pulled out from the bottomed cylindrical body 10A and the second mold 21B is inserted, the upper end position of the concave truncated conical surface portion 23B of the second mold 21B is similarly aligned with the shoulder portion 6. When the second mold 21B reaches the stroke end (bottom dead center) in line with the upper end position and the direction of the can axis C, the upper end side portion of the cylindrical portion 11A becomes the small diameter cylindrical portion 25B of the second mold 21B. The cylindrical portion 11B is formed into a cylindrical portion 11B which is narrowed down to an outer diameter substantially equal to the inner diameter d2 of and is further reduced in diameter.

さらに、こうして縮径した円筒状部11Bの下端側部分から肩部6にかけては、円環部24bによって肩部6側に短い円筒状部11Aが残されるとともに、この円筒状部11Aの上端側には、第2の金型21Bの首部成形部24Bの断面形状を略転写したような外周面の断面形状を有する上記首部縮径部7aが形成される。これによって、図3(a)に示した有底円筒体10Aは、図6に示すような首部7を有する有底円筒体10Bに成形される。 Furthermore, from the lower end side portion of the cylindrical portion 11B whose diameter is reduced in this way to the shoulder portion 6, a short cylindrical portion 11A is left on the shoulder portion 6 side by the annular portion 24b, and the upper end side of the cylindrical portion 11A is , the reduced-diameter neck portion 7a having the cross-sectional shape of the outer peripheral surface that is almost the same as the cross-sectional shape of the neck molding portion 24B of the second mold 21B is formed. As a result, the bottomed cylindrical body 10A shown in FIG. 3(a) is formed into a bottomed cylindrical body 10B having the neck portion 7 as shown in FIG.

なお、このように段階的に縮径させられて成形される首部7の1段当たりの缶軸Cに対する直径方向の縮径量、すなわち図4に示す第1の金型21Aの円環部24bの内径(直径)d0と小径円筒部25Aの内径(直径)d1との差d0-d1と、この第1の金型21Aの小径円筒部25Aの内径(直径)d1と図5に示す第2の金型21Bの小径円筒部25Bの内径(直径)d2との差d1-d2は、それぞれ0.5mm~1.5mmの範囲とされるのが望ましい。また、これら第1、第2の金型21A、21Bの首部成形部24A、24Bにおける傾斜部24dが缶軸Cに対してなす傾斜角αは18°~25°の範囲とされるのが望ましい。 It should be noted that the amount of diameter reduction in the diameter direction with respect to the can axis C per step of the neck portion 7 molded by being stepwise reduced in this way, that is, the annular portion 24b of the first mold 21A shown in FIG. The difference d0-d1 between the inner diameter (diameter) d0 and the inner diameter (diameter) d1 of the small-diameter cylindrical portion 25A, and the inner diameter (diameter) d1 of the small-diameter cylindrical portion 25A of the first mold 21A and the second shown in FIG. The difference d1-d2 from the inner diameter (diameter) d2 of the small-diameter cylindrical portion 25B of the mold 21B is preferably in the range of 0.5 mm to 1.5 mm. Further, it is desirable that the inclination angle α formed by the inclined portions 24d of the neck molding portions 24A and 24B of the first and second molds 21A and 21B with respect to the can axis C is in the range of 18° to 25°. .

次に、こうして首部7が成形された図6および図7(a)に示す有底円筒体10Bの第2の金型21Bによって縮径された円筒状部11Bには、キャップ取付部成形工程において図7(b)および図8と図と9に示すような第1、第2の拡径工具31A、31Bが挿入されて首部7よりも上端側の部分が拡径され、膨出部8が成形される。 Next, the cylindrical portion 11B whose diameter is reduced by the second mold 21B of the bottomed cylindrical body 10B shown in FIGS. First and second diameter expanding tools 31A and 31B as shown in FIGS. 7B, 8 and 9 are inserted to expand the diameter of the portion on the upper end side of the neck portion 7 so that the bulging portion 8 is molded.

そして、本実施形態では、このキャップ取付部成形工程においても、図8に示すような第1の拡径工具31Aと図9に示すような第2の拡径工具31Bとをこの順に上記円筒状部11Bに挿入することによって、この円筒状部11Bを複数回(2回)に分けて段階的に拡径して膨出部8を成形する。 In the present embodiment, the first diameter-enlarging tool 31A as shown in FIG. 8 and the second diameter-enlarging tool 31B as shown in FIG. By inserting into the portion 11B, the diameter of the cylindrical portion 11B is expanded stepwise in a plurality of times (twice) to form the bulging portion 8. As shown in FIG.

これら第1、第2の拡径工具31A、31Bは、外径が2段の略円筒状をなしていて、やはり缶軸Cと同軸に配置され、下端側の小径部32A、32Bの外径(直径)D0は互いに等しく、ボトルネック成形工程において縮径した円筒状部11Bの内周に嵌合可能な大きさとされるとともに、上端側の大径部33A、33Bの外径D1、D2は小径部32A、32Bの外径D0よりも大きくされている。 These first and second diameter enlarging tools 31A and 31B have a substantially cylindrical shape with a two-step outer diameter, and are also arranged coaxially with the can axis C. (Diameters) D0 are equal to each other and are set to a size that can be fitted to the inner circumference of the cylindrical portion 11B whose diameter has been reduced in the bottleneck molding process. It is made larger than the outer diameter D0 of the small diameter portions 32A and 32B.

また、これら小径部32A、32Bと大径部33A、33Bとの間には、缶軸Cに沿った断面において図8(b)および図9(b)に拡大して示すように、上端側に向かうに従い外周側に向けて互いに等しい一定の傾斜角βで拡径する拡径部34A、34Bが形成されている。これらの拡径部34A、34Bは、小径部32A、32Bとは断面凹円弧等の凹曲部34aを介して接するとともに、大径部33A、33Bとは凹曲部34aよりも半径の大きな断面凸円弧等の凸曲部34bを介して接する断面直線状に形成されている。 Between the small-diameter portions 32A, 32B and the large-diameter portions 33A, 33B, as shown in enlarged view in FIGS. , there are formed diameter-enlarged portions 34A and 34B whose diameters are enlarged at a constant inclination angle β that is equal to each other toward the outer peripheral side. These enlarged diameter portions 34A and 34B are in contact with the small diameter portions 32A and 32B via a concave curved portion 34a such as a concave arc in cross section, and the large diameter portions 33A and 33B have a cross section with a larger radius than the concave curved portion 34a. It is formed to have a linear cross-section that contacts through a convex curved portion 34b such as a convex circular arc.

そして、本実施形態でも、これらの拡径部34A、34Bの缶軸C方向の長さが、第2の拡径工具31Bにおいて第1の拡径工具31Aよりも長くされており、これにより第2の拡径工具31Bの大径部33Bの外径(直径)D2は、第1の拡径工具31Aの大径部33Aの外径(直径)D1よりも大きくされている。なお、凹曲部34aと凸曲部34bの断面がなす円弧の半径と缶軸C方向の長さは、第1、第2の拡径工具31A、31B同士で互いに等しくされている。 Also in the present embodiment, the length of the enlarged diameter portions 34A and 34B in the can axis C direction is longer in the second diameter expanding tool 31B than in the first diameter expanding tool 31A. The outer diameter (diameter) D2 of the large diameter portion 33B of the second diameter expanding tool 31B is made larger than the outer diameter (diameter) D1 of the large diameter portion 33A of the first diameter expanding tool 31A. The radius of the arc formed by the cross sections of the concavely curved portion 34a and the convexly curved portion 34b and the length in the direction of the can axis C are made equal between the first and second diameter enlarging tools 31A and 31B.

このような第1、第2の拡径工具31A、31Bのうち、まず第1の拡径工具31Aから図7に白抜き矢線で示すように缶軸Cと同軸に縮径した円筒状部11Bの内周に小径部32Aを摺接しつつ挿入すると、拡径部34Aから大径部33Aが形成された部分によって円筒状部11Bが上端側から拡径させられる。 Among the first and second diameter-enlarging tools 31A and 31B, the first diameter-enlarging tool 31A has a cylindrical portion whose diameter is reduced coaxially with the can axis C as shown by the white arrow in FIG. When the small-diameter portion 32A is inserted into the inner circumference of the cylindrical portion 11B while slidingly contacting it, the diameter of the cylindrical portion 11B is expanded from the upper end side by the portion where the large-diameter portion 33A is formed from the enlarged-diameter portion 34A.

本実施形態では、こうして挿入された小径部32Aの上端が首部7の首部縮径部7aの上端から缶軸C方向に僅かに上端側に間隔をあけた位置に配設されたところで第1の拡径工具31Aはストロークエンド(下死点)に達する。このとき、首部縮径部7aの上端側には縮径した円筒状部11Bが首部7に残され、そのさらに上端側に連なるように上端側に向かうに従い拡径する膨出部拡径部8aが拡径部34Aによって成形されて、この膨出部拡径部8aよりも上端側は大径部33Aの外径D1と略等しい内径の円筒状に成形される。 In this embodiment, when the upper end of the small-diameter portion 32A thus inserted is arranged at a position slightly spaced upward in the direction of the can axis C from the upper end of the reduced-diameter neck portion 7a of the neck portion 7, the first The diameter expanding tool 31A reaches the stroke end (bottom dead center). At this time, a cylindrical portion 11B having a reduced diameter is left in the neck portion 7 at the upper end side of the neck reduced diameter portion 7a. is formed by the enlarged diameter portion 34A, and the upper end side of the expanded enlarged diameter portion 8a is formed into a cylindrical shape having an inner diameter substantially equal to the outer diameter D1 of the large diameter portion 33A.

次に、第1の拡径工具31Aを引き抜いて第2の拡径工具31Bを小径部32Bから円筒状部11Bの内周に挿入すると、拡径部34Bから大径部33Bによって円筒状部11Bの上端側がもう一段拡径させられる。そして、こうして挿入された小径部32Bの上端の位置が、第1の拡径工具31Aのストロークエンドにおける小径部32Aの上端位置と缶軸C方向に等しい位置まで挿入されたところで、第2の拡径工具31Bはストロークエンド(下死点)に達する。 Next, when the first diameter-enlarging tool 31A is pulled out and the second diameter-enlarging tool 31B is inserted from the small-diameter portion 32B into the inner periphery of the cylindrical portion 11B, the cylindrical portion 11B is expanded from the large-diameter portion 34B to the large-diameter portion 33B. The upper end side of is expanded one more step. Then, when the position of the upper end of the small diameter portion 32B thus inserted is equal to the position of the upper end of the small diameter portion 32A at the stroke end of the first diameter expanding tool 31A in the can axis C direction, the second expansion is performed. The radial tool 31B reaches the stroke end (bottom dead center).

従って、第1の拡径工具31Aによって成形された膨出部拡径部8aはさらに上端側に向かうに従い拡径するように延長されるとともに、この膨出部拡径部8aよりも上端側は大径部33Bの外径D2と略等しい内径の円筒状部11Cに成形される。これにより、図6および図7(a)に示した有底円筒体10Bは、図10に示すような有底円筒体10Cに成形される。 Therefore, the bulging portion enlarged diameter portion 8a formed by the first diameter expanding tool 31A is extended so as to increase in diameter further toward the upper end side, and the upper end side of the bulging portion enlarged diameter portion 8a is A cylindrical portion 11C having an inner diameter substantially equal to the outer diameter D2 of the large diameter portion 33B is formed. As a result, the bottomed cylindrical body 10B shown in FIGS. 6 and 7(a) is formed into a bottomed cylindrical body 10C as shown in FIG.

なお、このように段階的に拡径させられて成形される膨出部8の1段当たりの缶軸Cに対する直径方向の拡径量、すなわち図8に示す第1の拡径工具31Aの小径部32Aの外径(直径)D0と大径部33Aの外径(直径)D1との差D1-D0と、この第1の拡径工具31Aの大径部33Aの外径(直径)D1と図9に示す第2の拡径工具31Bの大径部33Bの外径(直径)D2との差D2-D1は、それぞれ0.5mm~1.5mmの範囲とされるのが望ましい。また、これら第1、第2の拡径工具31A、31Bの拡径部34A、34Bが缶軸Cに対してなす傾斜角βは15°~35°の範囲とされるのが望ましい。 It should be noted that the amount of diametrical expansion of the bulging portion 8 that is formed by being stepwise expanded in this way with respect to the can axis C per stage, that is, the small diameter of the first diameter expanding tool 31A shown in FIG. The difference D1-D0 between the outer diameter (diameter) D0 of the portion 32A and the outer diameter (diameter) D1 of the large diameter portion 33A, and the outer diameter (diameter) D1 of the large diameter portion 33A of the first diameter expanding tool 31A. The difference D2-D1 from the outer diameter (diameter) D2 of the large-diameter portion 33B of the second diameter-enlarging tool 31B shown in FIG. 9 is preferably in the range of 0.5 mm to 1.5 mm. Further, it is desirable that the inclination angle β formed by the enlarged diameter portions 34A and 34B of the first and second diameter enlargement tools 31A and 31B with respect to the can axis C is in the range of 15° to 35°.

こうして首部7の上端側に膨出部8が形成されるとともに、この膨出部8の上端側に拡径させられた円筒状部11Cが成形された有底円筒体10Cは、この拡径させられた円筒状部11Cの上端側が上述のようにねじ切り加工等が施されることによりキャップ取付部9が形成されて縮径されるとともに、下端側には縮径されずに膨出部8が残される。さらに、このキャップ取付部9の開口部4にはカール部が形成されるなどして、図1に示したようなボトル缶の缶本体1に成形される。 In this way, the expanded portion 8 is formed on the upper end side of the neck portion 7, and the bottomed cylindrical body 10C formed with the expanded cylindrical portion 11C on the upper end side of the expanded portion 8 is expanded in diameter. The cap attachment portion 9 is formed by subjecting the upper end side of the cylindrical portion 11C to threading or the like as described above, and the diameter thereof is reduced. left. Further, a curled portion is formed in the opening 4 of the cap mounting portion 9, and the can body 1 of the bottle can as shown in FIG. 1 is formed.

このようなボトル缶の製造方法においては、有底円筒体10A、10Bにおける円筒状部11A、11Bの首部7の縮径や膨出部8の拡径が複数回に分けて段階的に行われるので、個々の段階における縮径量や拡径量は少なくすることができる。このため、特に首部7が上端側に向かうに従い縮径する首部縮径部7aや膨出部8が上端側に向かうに従い拡径する膨出部拡径部8aを有している場合に、有底円筒体10A、10Bに缶軸C方向に作用する荷重を軽減することができる。 In such a bottle can manufacturing method, the diameter reduction of the neck portion 7 of the cylindrical portions 11A and 11B of the bottomed cylindrical bodies 10A and 10B and the diameter expansion of the bulging portion 8 are performed stepwise in a plurality of steps. Therefore, the amount of diameter reduction and diameter expansion in each stage can be reduced. For this reason, especially when the neck portion 7 has a neck reduced diameter portion 7a whose diameter is reduced toward the upper end side and a bulging portion enlarged diameter portion 8a whose diameter is increased toward the upper end side, it is effective. The load acting on the bottom cylindrical bodies 10A and 10B in the direction of the can axis C can be reduced.

従って、本実施形態のように、カップ状素材に成形される金属板の板厚が0.230mm~0.300mmと薄く、またこのカップ状素材からDIプレス工程を経て成形された有底円筒体における円筒状部の上端側部分の厚さも0.180mm~0.225mmと薄くて、さらにこの円筒部の下端側部分の厚さはこれよりも薄い場合であっても、首部7の成形の際の荷重によって有底円筒体10A、10Bに座屈が生じるのを防ぐことができる。また、膨出部8を成形する際の荷重によって円筒状部11Cに割れが生じるのも防ぐことができる。このため、上記構成のボトル缶の製造方法によれば、このような座屈や割れによるボトル缶の製造歩留まりや製造効率等の低下を招くことなく、ボトル缶の缶本体1のさらなる薄肉化を図ることができるので、より一層の省資源化や省エネルギー化を促すことが可能となる。 Therefore, as in the present embodiment, the thickness of the metal plate formed into the cup-shaped material is as thin as 0.230 mm to 0.300 mm. The thickness of the upper end side portion of the cylindrical portion is as thin as 0.180 mm to 0.225 mm, and the thickness of the lower end side portion of the cylindrical portion is thinner than this. buckling of the bottomed cylinders 10A and 10B due to the load of . In addition, it is possible to prevent the cylindrical portion 11C from cracking due to the load when the bulging portion 8 is formed. Therefore, according to the bottle-can manufacturing method having the above-described configuration, the can body 1 of the bottle-can can be further thinned without reducing the manufacturing yield and manufacturing efficiency of the bottle-can due to such buckling and cracking. Therefore, it is possible to promote further resource saving and energy saving.

なお、このようなボトル缶の缶本体に有底円筒体を経て成形される上記金属板は、JIS H 4000におけるA3004またはA3104のアルミニウム合金であって、205℃×20分ベーキング後の0.2%耐力が235N/mm~265N/mmの範囲であることが望ましい。この205℃×20分ベーキング後の0.2%耐力が235N/mmを下回ると、上述のように縮径や拡径を複数回に分けて段階的に行っても首部7や膨出部8の成形の際に有底円筒体10A、10Bの座屈や割れが生じるおそれがあり、また逆に265N/mmを上回っても、成形に必要な荷重が大きくなって荷重制御が困難となり、やはり座屈や割れを生じ易くなるおそれがある。 The metal plate formed on the can body of such a bottle can through the bottomed cylindrical body is an aluminum alloy of A3004 or A3104 in JIS H 4000, and has a resistance of 0.2 after baking at 205 ° C. for 20 minutes. It is desirable that the % yield strength is in the range of 235 N/mm 2 to 265 N/mm 2 . If the 0.2% yield strength after baking at 205°C for 20 minutes is less than 235 N/ mm2 , the neck 7 and bulging portion will not be Buckling or cracking of the bottomed cylindrical bodies 10A and 10B may occur during the molding of 8, and conversely, even if it exceeds 265 N/mm 2 , the load required for molding increases, making it difficult to control the load. , there is a possibility that buckling and cracking may easily occur.

また、本実施形態では、首部7の縮径および膨出部8の拡径をそれぞれ2回に分けて段階的に行っているが、3回以上の回数で段階的に行ってもよい。ただし、これら縮径や拡径を行うときの回数が多くなりすぎると製造効率が損なわれるので、段階的に行う場合の回数は3回以下とされるのが望ましい。 Further, in the present embodiment, the diameter reduction of the neck portion 7 and the diameter expansion of the bulging portion 8 are performed stepwise in two steps, respectively, but may be stepwise performed three or more times. However, if the number of times of diameter reduction and diameter expansion is excessively increased, the manufacturing efficiency is impaired.

さらに、各段階の縮径量や拡径量の差が大きすぎると、大きな縮径量または拡径量の成形の際の座屈を確実に防ぐことができなくなるおそれがあるので、これら各段階の縮径量や拡径量は上述した範囲内にあるのが望ましく、互いに等しい縮径量や拡径量であるのがより望ましい。なお、首部7の縮径量や膨出部8の拡径量によっては、縮径と拡径の一方だけを複数回に分けて段階的に行い、他方は1回の縮径や拡径だけで成形するようにしてもよい。 Furthermore, if the difference in diameter reduction amount or diameter expansion amount in each stage is too large, it may not be possible to reliably prevent buckling during molding with a large diameter reduction amount or diameter expansion amount. It is desirable that the amount of diameter reduction and the amount of diameter expansion be within the range described above, and more preferably that the amount of diameter reduction and the amount of diameter expansion be equal to each other. Depending on the amount of diameter reduction of the neck portion 7 and the amount of diameter expansion of the bulging portion 8, only one of the diameter reduction and the diameter expansion is performed stepwise in a plurality of times, and the other diameter reduction or diameter expansion is performed only once. You may make it shape|mold with.

次に、本発明の実施例を挙げて、本発明の効果について説明する。本実施例では、JIS H 4000におけるA3104のアルミニウム合金であって、205℃×20分ベーキング後の0.2%耐力が254.8N/mm、板厚0.300mmの金属板からカッピングプレス工程においてカップ状素材を成形し、さらにDIプレス工程において底部と円筒部とを有する有底円筒体を成形した。 Next, the effects of the present invention will be described with reference to examples of the present invention. In this example, a metal plate of aluminum alloy A3104 in JIS H 4000 having a 0.2% yield strength of 254.8 N/mm after baking at 205°C for 20 minutes and a thickness of 0.300 mm was subjected to a cupping press process. A cup-shaped material was formed in , and a cylinder with a bottom having a bottom and a cylindrical portion was formed in a DI press step.

次いで、この有底円筒体にボトルネック成形工程において肩部6を形成して図3(a)に示すような円筒状部11Aを有する有底円筒体10Aを成形した後、この円筒状部11Aに第1、第2の2つの金型21A、21Bによって2回の縮径を行い、図6に示す有底円筒体10Bのような首部縮径部7aを有する首部7を成形した。 Then, shoulder portions 6 are formed in this bottomed cylindrical body in a bottleneck forming step to form a bottomed cylindrical body 10A having a cylindrical portion 11A as shown in FIG. 3(a). Then, the diameter was reduced twice by the first and second molds 21A and 21B to form a neck portion 7 having a reduced neck portion 7a like the bottomed cylindrical body 10B shown in FIG.

なお、これら第1、第2の金型21A、21Bにおいて、首部成形部24A、24Bにおける傾斜部24dの缶軸Cに対する傾斜角αはともに20°であり、第1の金型21Aの円環部24bの内径(直径)d0と小径円筒部25Aの内径(直径)d1との差d0-d1は1.1mm、この第1の金型21Aの小径円筒部25Aの内径(直径)d1との第2の金型21Bの小径円筒部25Bの内径(直径)d2の差d1-d2も同じく1.1mmであって、円筒状部11Aの外径(直径)の総縮径量は2.2mmであった。これを実施例1とする。 In these first and second molds 21A and 21B, the inclination angle α of the inclined portion 24d of the neck molding portions 24A and 24B with respect to the can axis C is both 20°. The difference d0-d1 between the inner diameter (diameter) d0 of the portion 24b and the inner diameter (diameter) d1 of the small-diameter cylindrical portion 25A is 1.1 mm. The difference d1-d2 of the inner diameter (diameter) d2 of the small-diameter cylindrical portion 25B of the second mold 21B is also 1.1 mm, and the total diameter reduction amount of the outer diameter (diameter) of the cylindrical portion 11A is 2.2 mm. Met. This is referred to as Example 1.

また、この実施例1に対する比較例として、円環部24bの内径(直径)d0と小径円筒部25Bの内径(直径)d2との差d0-d2が上記総縮径量と等しい2.2mmとなる第2の金型21Bを単一で用いて、1回の縮径により有底円筒体10Aの円筒状部11Aの外径(直径)を2.2mm縮径して首部7を成形した。これを比較例1とする。そして、これら実施例1と比較例1とによる首部7の成形の際の成形荷重を測定するとともに、100個の有底円筒体10Aに首部7を成形したときに座屈が生じた有底円筒体10Aの数を確認した。この結果を、縮径量とともに表1に示す。 Further, as a comparative example with respect to Example 1, the difference d0-d2 between the inner diameter (diameter) d0 of the annular portion 24b and the inner diameter (diameter) d2 of the small-diameter cylindrical portion 25B is 2.2 mm, which is equal to the total diameter reduction amount. Using a single second mold 21B, the outer diameter (diameter) of the cylindrical portion 11A of the cylindrical body 10A with a bottom was reduced by 2.2 mm to mold the neck portion 7 once. This is referred to as Comparative Example 1. Then, the molding load during molding of the neck portion 7 according to Example 1 and Comparative Example 1 was measured, and the bottomed cylinders in which buckling occurred when the neck portions 7 were formed on 100 bottomed cylindrical bodies 10A were measured. The number of bodies 10A was confirmed. The results are shown in Table 1 together with the amount of diameter reduction.

なお、DIプレス工程において成形された有底円筒体は、円筒部の直径(缶本体1の胴部5の直径)が約66mmであり、この円筒部の上端側部分の厚さは実施例1および比較例1ともに0.200mmであった。また、この有底円筒体にボトルネック成形工程において肩部6が成形された図3(a)に示した有底円筒体10Aは、底部2の下端から円筒部の上端までの缶軸C方向の高さが137mm、底部2の下端から肩部6の上端までの缶軸C方向の高さが105mm、肩部6の上端側に成形された縮径した円筒状部11Aの外径(直径)は38mmであった。 The diameter of the cylindrical portion (the diameter of the body portion 5 of the can body 1) of the bottomed cylindrical body formed in the DI pressing process is about 66 mm, and the thickness of the upper end portion of the cylindrical portion is about 66 mm. and Comparative Example 1 were both 0.200 mm. The bottomed cylindrical body 10A shown in FIG. 3(a), in which the shoulder portion 6 is formed in the bottle neck forming process, is formed from the bottom end of the bottom portion 2 to the upper end of the cylindrical portion in the can axis C direction. is 137 mm, the height in the can axis C direction from the lower end of the bottom portion 2 to the upper end of the shoulder portion 6 is 105 mm, and the outer diameter (diameter ) was 38 mm.

Figure 0007112648000001
Figure 0007112648000001

この表1の結果より、首部7の成形を1回で行う比較例1では、成形荷重が2100Nと大きく、これに伴い100個の有底円筒体10A中で座屈する有底円筒体10Aが15個と多く、ボトルネッカーによって首部7を成形する際に頻繁に装置の停止を余儀なくされることが分かる。これに対して、首部7の成形を2回に分けて行う実施例1では、1回当たりの成形荷重は比較例1よりも大幅に小さくて有底円筒体10Aへの負荷が小さく、座屈する有底円筒体10Aも0個であったことから、ボトルネッカーによる首部7の成形を円滑かつ効率的に行うことができるとともに、製造歩留まりの向上を図ることが可能となる。 From the results of Table 1, in Comparative Example 1 in which the neck portion 7 is formed in one step, the forming load is as large as 2100 N, and accordingly, 15 bottomed cylindrical bodies 10A among 100 bottomed cylindrical bodies 10A buckle. It can be seen that the machine must be stopped frequently when forming the neck portion 7 due to bottle neckers. On the other hand, in Example 1, in which the neck portion 7 is formed in two steps, the forming load per time is significantly smaller than that in Comparative Example 1, and the load on the bottomed cylindrical body 10A is small, causing buckling. Since the number of bottomed cylinders 10A is also zero, the neck portion 7 can be smoothly and efficiently formed by a bottle necker, and the manufacturing yield can be improved.

次に、こうして首部7が成形された図6に示すような有底円筒体10Bの円筒状部11Bに、この首部7から上端側の部分を複数回に分けて段階的に拡径することによって膨出部8を成形した。このとき、まず実施例2として、上記実施形態と同様に第1、第2の2つの拡径工具31A、31Bによって2回の拡径を行い、さらに実施例3として、第1ないし第3の3つの拡径工具によって3回の拡径を行い、実施例2と等しい拡径量で拡径する膨出部8を成形した。 Next, the cylindrical portion 11B of the bottomed cylindrical body 10B having the neck portion 7 molded in this manner as shown in FIG. A bulging portion 8 was molded. At this time, first, as Example 2, the diameter is expanded twice by the first and second two diameter expansion tools 31A and 31B in the same manner as in the above-described embodiment. The diameter was expanded three times using three diameter-expanding tools, and a bulging portion 8 whose diameter was expanded by the same diameter expansion amount as in Example 2 was formed.

なお、これら第1、第2の拡径工具31A、31Bおよび第3の拡径工具における拡径部34A、34Bが缶軸Cに対してなす傾斜角βは20°であり、実施例2における第1の拡径工具31Aの小径部32Aの外径(直径)D0と大径部33Aの外径(直径)D1との差D1-D0と、第1の拡径工具31Aの大径部33Aの外径(直径)D1と第2の拡径工具31Bの大径部33Bの外径(直径)D2との差D2-D1は、それぞれ1.0mmであって、総拡径量は2.0mmであった。 The inclination angle β formed by the diameter-enlarging portions 34A and 34B of the first and second diameter-enlarging tools 31A, 31B and the third diameter-enlarging tool with respect to the can axis C is 20°. The difference D1-D0 between the outer diameter (diameter) D0 of the small diameter portion 32A of the first diameter expanding tool 31A and the outer diameter (diameter) D1 of the large diameter portion 33A, and the large diameter portion 33A of the first diameter expanding tool 31A The difference D2-D1 between the outer diameter (diameter) D1 of the second diameter expanding tool 31B and the outer diameter (diameter) D2 of the large diameter portion 33B of the second diameter expanding tool 31B is 1.0 mm, and the total diameter expansion amount is 2.0 mm. was 0 mm.

また、実施例3における第1の拡径工具31Aの小径部32Aの外径(直径)D0と大径部33Aの外径(直径)D1との差D1-D0と、第1の拡径工具31Aの大径部33Aの外径(直径)D1と第2の拡径工具31Bの大径部33Bの外径(直径)D2との差D2-D1はそれぞれ0.7mmであり、第3の拡径工具の大径部の外径(直径)と第2の拡径工具31Bの大径部33Bの外径(直径)D2との差は0.6mmで、総拡径量を2.0mmとした。 Further, the difference D1-D0 between the outer diameter (diameter) D0 of the small diameter portion 32A and the outer diameter (diameter) D1 of the large diameter portion 33A of the first diameter expanding tool 31A in Example 3, and the first diameter expanding tool The difference D2-D1 between the outer diameter (diameter) D1 of the large diameter portion 33A of 31A and the outer diameter (diameter) D2 of the large diameter portion 33B of the second diameter expanding tool 31B is 0.7 mm. The difference between the outer diameter (diameter) of the large diameter portion of the diameter expanding tool and the outer diameter (diameter) D2 of the large diameter portion 33B of the second diameter expanding tool 31B is 0.6 mm, and the total diameter expansion amount is 2.0 mm. and

さらに、これら実施例2、3に対する比較例2として、やはり実施例2、3と等しい総拡径量の膨出部8の成形を、実施例2の第2の拡径工具31Bと同じ単一の拡径工具による1回の拡径によって行い、その際の成形荷重を測定するとともに、100個の有底円筒体10Bに膨出部8を成形したときに割れが生じた有底円筒体10Bの数を確認した。この結果を、個々の拡径工具による拡径量とともに表2に示す。 Furthermore, as a comparative example 2 for these examples 2 and 3, the bulging portion 8 having the same total diameter expansion amount as that of the examples 2 and 3 is formed by the same single tool as the second diameter expanding tool 31B of the example 2. The diameter is expanded once by the diameter expansion tool, and the forming load at that time is measured, and when the bulging portion 8 is formed on 100 bottomed cylindrical bodies 10B, cracks occur in the bottomed cylindrical bodies 10B. confirmed the number of The results are shown in Table 2 together with the amount of diameter expansion by each diameter expansion tool.

Figure 0007112648000002
Figure 0007112648000002

従って、この表2の結果からも、膨出部8の成形を1回で行う比較例2では、成形荷重が1800Nと大きく、これに伴い100個の有底円筒体10B中で割れが生じた有底円筒体10Bも13個と多くて、ボトルネッカーによる成形する際に頻繁な停止を余儀なくされる。これに対して、膨出部8の成形を複数回に分けて段階的に行う実施例2、3では、1回当たりの成形荷重は比較例2よりも小さく、特に3回で行う実施例3では成形荷重が大幅に小さく、またいずれも割れが生じた有底円筒体10Bが0個であったことから、ボトルネッカーによる製造効率や製造歩留まりの向上を図ることが可能となる。 Therefore, also from the results of Table 2, in Comparative Example 2 in which the bulging portion 8 was formed in one step, the forming load was as large as 1800 N, and cracks occurred in the 100 bottomed cylindrical bodies 10B. There are also 13 bottomed cylinders 10B, which is a large number, and frequent stops are unavoidable during molding by the bottle necker. On the other hand, in Examples 2 and 3, in which the forming of the bulging portion 8 is divided into a plurality of steps in a stepwise manner, the forming load per step is smaller than in Comparative Example 2, particularly in Example 3, in which the forming is performed three times. Since the forming load was significantly small and the number of cracked bottomed cylindrical bodies 10B was zero in all cases, it is possible to improve the manufacturing efficiency and manufacturing yield by the bottlenecker.

1 缶本体
2 底部
3 外周部
4 開口部
5 胴部
6 肩部
7 首部
7a 首部縮径部
8 膨出部
8a 膨出部拡径部
9 キャップ取付部
10A~10C 有底円筒体
11A~11C 円筒状部
21A 第1の金型
21B 第2の金型
24A、24B 首部成形部
24d 傾斜部
31A 第1の拡径工具
31B 第2の拡径工具
34A、34B 拡径部
C 缶軸
α 首部縮径部7aの缶軸Cに対する傾斜角
β 膨出部拡径部8aの缶軸Cに対する傾斜角
d0 円環部24bの内径(縮径前の円筒状部11Aの直径)
d1 第1の金型21Aにおける小径円筒部25Aの内径(第1の金型21Aによって縮径した円筒状部11Aの直径)
d2 第2の金型21Bにおける小径円筒部25Bの内径(第2の金型21Bによって縮径した円筒状部11Aの直径)
D0 第1、第2の拡径工具31A、31Bの小径部32A、32Bの外径(拡径前の円筒状部11Bの内径)
D1 第1の拡径工具31Aの大径部33Aの外径(第1の拡径工具31Aによって拡径した円筒状部11Bの内径)
D2 第2の拡径工具31Bの大径部33Bの外径(第2の拡径工具31Bによって拡径した円筒状部11Bの内径)
1 can body 2 bottom 3 outer periphery 4 opening 5 body 6 shoulder 7 neck 7a neck reduced diameter portion 8 bulging portion 8a bulging portion enlarged diameter portion 9 cap mounting portion 10A to 10C bottomed cylindrical body 11A to 11C cylinder Shaped part 21A First mold 21B Second mold 24A, 24B Neck forming part 24d Inclined part 31A First diameter expanding tool 31B Second diameter expanding tool 34A, 34B Diameter expanding part C Can shaft α Neck diameter reduction Inclination angle of portion 7a with respect to can axis C β Inclination angle of bulging portion enlarged diameter portion 8a with respect to can axis C d0 Inner diameter of annular portion 24b (diameter of cylindrical portion 11A before diameter reduction)
d1 inner diameter of small-diameter cylindrical portion 25A in first mold 21A (diameter of cylindrical portion 11A reduced in diameter by first mold 21A)
d2 inner diameter of small-diameter cylindrical portion 25B in second mold 21B (diameter of cylindrical portion 11A reduced in diameter by second mold 21B)
D0 Outer diameter of small-diameter portions 32A and 32B of first and second diameter-enlarging tools 31A and 31B (inner diameter of cylindrical portion 11B before diameter-enlarging)
D1 Outer diameter of large-diameter portion 33A of first diameter-enlarging tool 31A (inner diameter of cylindrical portion 11B diameter-enlarged by first diameter-enlarging tool 31A)
D2 Outer diameter of large-diameter portion 33B of second diameter-enlarging tool 31B (inner diameter of cylindrical portion 11B diameter-enlarged by second diameter-enlarging tool 31B)

Claims (4)

缶本体の底部と一体に成形される外周部に、上記底部から上記缶本体の上端開口部に向けて順に缶軸を中心とした円筒状の胴部と、上端側に向かうに従い縮径する肩部と、この肩部からさらに上端側に向かって延びる首部と、キャップ取付部とが形成されたボトル缶の製造方法であって、
金属板から絞り加工により成形されたカップ状素材に再絞りおよびしごき加工と底部成形加工を施して、上記底部と、上記胴部と同外径の円筒部が形成された有底円筒体を成形するDIプレス工程と、
この有底円筒体の上記円筒部の上端側部分を縮径させることにより、上記肩部と、この肩部から上端側に向かうに従いさらに縮径する上記首部とを成形するボトルネック成形工程と、
上記首部の上端部に上記キャップ取付部を成形するキャップ取付部成形工程とを備え、
上記ボトルネック成形工程においては、上記肩部の上端側に形成された円筒状部のうち上記肩部との接続部分を除いた部分を直径d0から直径d2まで2回に分けて段階的に縮径することによって上記首部を成形する構成とされており、1回の縮径量が0.5mm~1.5mmの範囲内とされ、
前記ボトルネック成形工程の2回の縮経時に用いられる金型は、缶軸に沿った断面において、缶軸に略平行に延びる円環部と、この前記円環部の上方に位置し、前記円環部よりも径の小さい小径円筒部と、前記円環部と前記小径円筒部の間に設けられ、上方に向かい内周側に傾斜した直線状の傾斜部と、を有しており、前記傾斜部が缶軸に対してなす角度αが18°~25°であることを特徴とするボトル缶の製造方法。
The outer peripheral portion integrally formed with the bottom of the can body has a cylindrical body centered on the can axis in order from the bottom toward the upper end opening of the can body, and a shoulder whose diameter decreases toward the upper end. A method for manufacturing a bottle-can having a portion, a neck portion extending from the shoulder portion toward the upper end, and a cap mounting portion, the method comprising:
A cup-shaped material formed by drawing from a metal plate is subjected to re-drawing, ironing, and bottom forming processing to form a bottomed cylindrical body having the bottom and a cylindrical portion with the same outer diameter as the body. a DI press process to
a bottleneck forming step of forming the shoulder portion and the neck portion whose diameter is further reduced toward the upper end side from the shoulder portion by reducing the diameter of the upper end side portion of the cylindrical portion of the bottomed cylindrical body;
a cap mounting portion forming step for forming the cap mounting portion on the upper end portion of the neck;
In the bottleneck molding step, the portion of the cylindrical portion formed on the upper end side of the shoulder portion, excluding the connection portion with the shoulder portion, is stepwise contracted in two steps from diameter d0 to diameter d2. The neck portion is formed by diameter reduction, and the amount of diameter reduction at one time is within the range of 0.5 mm to 1.5 mm,
The mold used for the two rounds of warping in the bottleneck forming step includes, in a cross section along the can axis, an annular portion extending substantially parallel to the can axis, and positioned above the annular portion. a small-diameter cylindrical portion having a diameter smaller than that of the annular portion; and a linear inclined portion provided between the annular portion and the small-diameter cylindrical portion and inclined upward toward the inner circumference, A method for manufacturing bottle cans, wherein the angle α formed by the inclined portion with respect to the can axis is 18° to 25°.
上記カップ状素材から成形される上記有底円筒体は、上記円筒部の上端側部分の厚さが0.180mm~0.225mmであることを特徴とする請求項1に記載のボトル缶の製造方法。 2. The manufacture of bottle cans according to claim 1, wherein the bottomed cylindrical body molded from the cup-shaped material has a thickness of 0.180 mm to 0.225 mm at the upper end side portion of the cylindrical portion. Method. 上記カップ状素材に成形される上記金属板は板厚0.230mm~0.300mmであることを特徴とする請求項1または請求項2に記載のボトル缶の製造方法。 3. The method for manufacturing bottle cans according to claim 1, wherein the metal plate formed into the cup-shaped material has a plate thickness of 0.230 mm to 0.300 mm. 上記金属板は、JIS H 4000におけるA3004またはA3104のアルミニウム合金であって、205℃×20分ベーキング後の0.2%耐力が235N/mm~265N/mmの範囲であることを特徴とする請求項1から請求項3のいずれか一項に記載のボトル缶の製造方法。 The metal plate is an aluminum alloy of A3004 or A3104 according to JIS H 4000, and has a 0.2% yield strength of 235 N/mm 2 to 265 N/mm 2 after baking at 205° C. for 20 minutes. The manufacturing method of the bottle can according to any one of claims 1 to 3.
JP2020184600A 2020-11-04 2020-11-04 Bottle can manufacturing method Active JP7112648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020184600A JP7112648B2 (en) 2020-11-04 2020-11-04 Bottle can manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020184600A JP7112648B2 (en) 2020-11-04 2020-11-04 Bottle can manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016205968A Division JP6807702B2 (en) 2016-10-20 2016-10-20 How to make bottle cans

Publications (2)

Publication Number Publication Date
JP2021035696A JP2021035696A (en) 2021-03-04
JP7112648B2 true JP7112648B2 (en) 2022-08-04

Family

ID=74716480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020184600A Active JP7112648B2 (en) 2020-11-04 2020-11-04 Bottle can manufacturing method

Country Status (1)

Country Link
JP (1) JP7112648B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297414A (en) * 1992-09-30 1994-03-29 Reynolds Metals Company Method for necking containers
US5572893A (en) * 1994-12-01 1996-11-12 Goda; Mark E. Method of necking and impact extruded metal container
US5713235A (en) * 1996-08-29 1998-02-03 Aluminum Company Of America Method and apparatus for die necking a metal container

Also Published As

Publication number Publication date
JP2021035696A (en) 2021-03-04

Similar Documents

Publication Publication Date Title
US10961009B2 (en) Threaded metal container
JP7259892B2 (en) Can body manufacturing method
JP6877943B2 (en) How to make bottle cans
WO2017187899A1 (en) Can and method for forming curled section in can mouth
US4412440A (en) Process for making container
JP7112648B2 (en) Bottle can manufacturing method
JP6807702B2 (en) How to make bottle cans
JP7069275B2 (en) How to make a bottle can
JP7206046B2 (en) Bottle can and method for manufacturing bottle can
JP7328847B2 (en) Can bodies and product cans
JP2018131261A (en) Manufacturing method for bottle can
JP6347337B1 (en) Metal bottle manufacturing method
JP7484148B2 (en) Bottle can and its manufacturing method
JP2018154407A (en) Production method of bottle can
JP7220983B2 (en) bottle can, bottle can with cap
US12097991B2 (en) Bottle can, manufacturing method of bottle can, and design method of bottle can
JP7528430B2 (en) Bottle can and its manufacturing method
WO2019039184A1 (en) Bottle-shaped can and capped bottle-shaped can
JP7072380B2 (en) How to make a bottle can
JP2018103254A (en) Bottle can, capped bottle can, and manufacturing method for the same
JP2018099710A (en) DI can and bottle can
JP7262344B2 (en) bottle can
JP6735651B2 (en) Bottle can manufacturing method
JP7293715B2 (en) Bottle can manufacturing method
EP3919400A1 (en) Bottle can, production method for bottle cans, and design method for bottle cans

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220705

R150 Certificate of patent or registration of utility model

Ref document number: 7112648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150