Nothing Special   »   [go: up one dir, main page]

JP7193969B2 - Rectangular substrate grinding method - Google Patents

Rectangular substrate grinding method Download PDF

Info

Publication number
JP7193969B2
JP7193969B2 JP2018188112A JP2018188112A JP7193969B2 JP 7193969 B2 JP7193969 B2 JP 7193969B2 JP 2018188112 A JP2018188112 A JP 2018188112A JP 2018188112 A JP2018188112 A JP 2018188112A JP 7193969 B2 JP7193969 B2 JP 7193969B2
Authority
JP
Japan
Prior art keywords
grinding
rectangular substrate
holding surface
chuck table
rectangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018188112A
Other languages
Japanese (ja)
Other versions
JP2020055080A (en
Inventor
敬祐 山本
真司 山下
弘樹 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2018188112A priority Critical patent/JP7193969B2/en
Priority to CN201910879191.6A priority patent/CN110977754A/en
Priority to KR1020190116049A priority patent/KR102727754B1/en
Priority to TW108135743A priority patent/TWI824024B/en
Publication of JP2020055080A publication Critical patent/JP2020055080A/en
Application granted granted Critical
Publication of JP7193969B2 publication Critical patent/JP7193969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/10Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
    • B24B37/105Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping the workpieces or work carriers being actively moved by a drive, e.g. in a combined rotary and translatory movement
    • B24B37/107Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping the workpieces or work carriers being actively moved by a drive, e.g. in a combined rotary and translatory movement in a rotary movement only, about an axis being stationary during lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/30Work carriers for single side lapping of plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/10Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces
    • B24B47/12Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces by mechanical gearing or electric power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02016Backside treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Description

本発明は、矩形基板の研削方法に関する。 The present invention relates to a method of grinding a rectangular substrate.

半導体デバイスの製造プロセスにおいては、LSI等の回路が形成された複数の半導体チップがプリント基板等にマウントされて、半導体チップの電極が基板の電極にボンディング接続された後、樹脂によって表面又は裏面が封止されることでCSP(Chip Size Package)基板等のパッケージ基板が形成される。 In the manufacturing process of semiconductor devices, a plurality of semiconductor chips on which circuits such as LSIs are formed are mounted on a printed circuit board or the like, and after the electrodes of the semiconductor chips are bonded to the electrodes of the substrate, the front or back surface is covered with resin. A package substrate such as a CSP (Chip Size Package) substrate is formed by sealing.

近年の電子機器の小型化・薄型化に伴って、半導体デバイスも小型化・薄型化が切望されており、半導体デバイスの製造プロセスにおいて、半導体チップが樹脂封止されたパッケージ基板の樹脂封止面を研削して薄化し製造される。このようなパッケージ基板は矩形(正方形及び長方形)に形成されることもあり、矩形基板の研削では、チャックテーブルに吸引保持された矩形基板の上面に対し、回転する研削砥石を接触させる。そして、矩形基板が所望の厚さになるまで研削砥石による研削が継続される。 As electronic devices have become smaller and thinner in recent years, there has been a strong demand for smaller and thinner semiconductor devices. It is manufactured by grinding and thinning. Such a package substrate may be formed in a rectangular (square or rectangular) shape, and in grinding a rectangular substrate, a rotating grinding wheel is brought into contact with the upper surface of the rectangular substrate held by suction on a chuck table. Grinding with the grinding wheel is continued until the rectangular substrate reaches a desired thickness.

研削対象となる矩形基板においては、研削中に接触する研削砥石の研削面積(研削砥石が矩形基板に当たっている面積)が矩形基板内で広くなったり狭くなったり大きく相違することとなる。かかる相違によって、矩形基板に対する研削負荷も変化し、矩形基板に対する研削砥石の研削面積が広くなっている状態においては研削負荷が大きくなり研削力が低下し研削後の矩形基板の厚さが他所よりも厚くなり、矩形基板に対する研削砥石の研削面積が狭くなっている状態においては研削負荷が小さくなり研削力が上昇し研削後の矩形基板の厚さが他所よりも薄くなる。
このように矩形基板内で研削力に変化が生じるため、研削後の矩形基板の厚さばらつきが大きく発生するという問題がある。特に、長方形の基板は、短辺、長辺、対角線の長さの差がより大きくなるため、長方形基板内で研削力に変化がより大きく生じるため、研削後の長方形基板の厚さばらつきがより大きく発生するという問題がある。
In the rectangular substrate to be ground, the grinding area of the grinding wheel (the area in which the grinding wheel hits the rectangular substrate) that comes into contact with the rectangular substrate during grinding varies greatly, such as widening or narrowing within the rectangular substrate. Due to this difference, the grinding load on the rectangular substrate also changes, and in the state where the grinding area of the grinding wheel with respect to the rectangular substrate increases, the grinding load increases, the grinding force decreases, and the thickness of the rectangular substrate after grinding increases compared to other places. In a state where the grinding area of the grinding wheel with respect to the rectangular substrate is narrow, the grinding load is reduced and the grinding force is increased, so that the thickness of the rectangular substrate after grinding becomes thinner than other portions.
Since the grinding force varies in the rectangular substrate, there is a problem that the thickness of the rectangular substrate varies greatly after grinding. In particular, a rectangular substrate has a larger difference in the lengths of its short sides, long sides, and diagonals, which causes a greater variation in the grinding force within the rectangular substrate. There is a big problem.

この問題に対処すべく、研削砥石に対して研削面積の大きくなる矩形基板の対角線方向に研削砥石が近づくとともにチャックテーブルの回転速度を高速化し、研削砥石が矩形基板の対角線方向から離れるとともに保持テーブルの回転速度を低速化させ、単位時間当たりの研削面積を同一化させることで、厚さばらつきを抑制する技術がある(例えば、特許文献1参照)。 In order to cope with this problem, as the grinding wheel approaches the grinding wheel in the diagonal direction of the rectangular substrate where the grinding area becomes larger, the rotation speed of the chuck table is increased, and as the grinding wheel moves away from the diagonal direction of the rectangular substrate, the holding table. There is a technique for suppressing thickness variations by lowering the rotational speed of and equalizing the grinding area per unit time (see, for example, Patent Document 1).

特許6292958号公報Japanese Patent No. 6292958

しかし、特許文献1に記載の技術では、研削装置がチャックテーブルの回転や研削砥石の回転等について複雑な制御を行う必要があるため問題となる。
よって、矩形基板を研削する場合においては、研削装置がチャックテーブルの回転等についての複雑な制御を行わずとも、研削後の矩形基板の厚さばらつきを小さく抑えるという課題がある。
However, the technique described in Patent Document 1 poses a problem because the grinding apparatus needs to perform complicated control of rotation of the chuck table, rotation of the grinding wheel, and the like.
Therefore, in the case of grinding a rectangular substrate, there is a problem of suppressing variations in the thickness of the rectangular substrate after grinding, even if the grinding apparatus does not perform complicated control of the rotation of the chuck table and the like.

上記課題を解決するための本発明は、矩形基板の裏面を所望の仕上げ厚さまで研削する矩形基板の研削方法であって、研削ユニットのモータにより回転駆動するスピンドルに装着された研削砥石によって、チャックテーブルの該矩形基板と同形状の矩形の保持面を研削し、該研削砥石の研削面積の変化によって該チャックテーブルの保持面を湾曲面に形成する保持面研削ステップと、該保持面研削ステップにて研削された該チャックテーブルの保持面に該矩形基板の表面を保持する保持ステップと、該研削ユニットに装着された研削砥石によって該チャックテーブルの保持面に保持された該矩形基板の裏面を湾曲面の状態で研削する矩形基板研削ステップと、を備え、該矩形基板を研削する際に発生する研削面積差異に起因する該裏面の湾曲を、該保持面研削ステップにおいて該矩形基板と同形状の矩形の該保持面を備えたチャックテーブルの該保持面に予め同様に形成することにより、研削後の該矩形基板の厚さ精度を向上させることを特徴とする矩形基板の研削方法である。 The present invention for solving the above-mentioned problems is a method for grinding a rectangular substrate to grind the back surface of the rectangular substrate to a desired finish thickness, wherein a grinding wheel attached to a spindle rotated by a motor of a grinding unit grinds a chuck. a holding surface grinding step of grinding a rectangular holding surface of the table having the same shape as the rectangular substrate and forming the holding surface of the chuck table into a curved surface by changing the grinding area of the grinding wheel; and the holding surface grinding step. a holding step of holding the front surface of the rectangular substrate on the holding surface of the chuck table that has been ground by the grinding unit; and a step of grinding a rectangular substrate in the state of a surface, wherein the curvature of the back surface caused by a difference in grinding area that occurs when grinding the rectangular substrate is removed in the holding surface grinding step by grinding the back surface into the same shape as the rectangular substrate. A method of grinding a rectangular substrate characterized by improving the accuracy of the thickness of the rectangular substrate after grinding by forming a similar shape in advance on the holding surface of a chuck table having the rectangular holding surface.

前記チャックテーブルの保持面は前記矩形基板と同材質であると好ましい。 The holding surface of the chuck table is preferably made of the same material as the rectangular substrate.

本発明に係る矩形基板の研削方法は、研削ユニットのモータにより回転駆動するスピンドルに装着された研削砥石によって、チャックテーブルの矩形基板と同形状の矩形の保持面を研削し(セルフグラインドし)、矩形の辺または対角線の長さが異なることに起因する研削砥石の研削面積の変化によってチャックテーブルの保持面を湾曲面に形成する保持面研削ステップと、保持面研削ステップにて研削されたチャックテーブルの保持面に矩形基板の表面を保持する保持ステップと、研削ユニットに装着された研削砥石によってチャックテーブルの保持面に保持された矩形基板の裏面を湾曲面の状態で研削する矩形基板研削ステップと、を備えているため、矩形基板を研削する際に発生する研削面積差異に起因する矩形基板の裏面の湾曲を、保持面研削ステップにおいて矩形基板と同形状の矩形の保持面を備えたチャックテーブルの保持面に予め同様に形成することにより、研削後の矩形基板の厚さ精度を向上させることが可能となる。 A method for grinding a rectangular substrate according to the present invention includes grinding (self-grinding) a rectangular holding surface of a chuck table having the same shape as the rectangular substrate with a grinding wheel attached to a spindle rotated by a motor of a grinding unit, and A holding surface grinding step for forming a holding surface of the chuck table into a curved surface by a change in the grinding area of the grinding wheel caused by the difference in the length of the sides or diagonals of the rectangle, and the chuck table ground in the holding surface grinding step. a holding step of holding the front surface of the rectangular substrate on the holding surface of the rectangular substrate, and a rectangular substrate grinding step of grinding the back surface of the rectangular substrate held on the holding surface of the chuck table in a curved state by a grinding wheel attached to the grinding unit. , the curvature of the back surface of the rectangular substrate due to the difference in the grinding area that occurs when the rectangular substrate is ground is corrected by a chuck table having a rectangular holding surface having the same shape as the rectangular substrate in the holding surface grinding step. It is possible to improve the thickness accuracy of the rectangular substrate after grinding by forming the same in advance on the holding surface of .

チャックテーブルの保持面を矩形基板と同材質とすることで、矩形基板研削ステップにおいて、矩形基板を研削する際の研削加工条件を保持面研削ステップにおける研削加工条件と同様に設定できるため、より矩形基板研削ステップをスムーズかつ容易に実施することが可能となる。 By making the holding surface of the chuck table of the same material as the rectangular substrate, in the rectangular substrate grinding step, the grinding conditions for grinding the rectangular substrate can be set to be the same as those in the holding surface grinding step. It becomes possible to perform the substrate grinding step smoothly and easily.

図1(A)は、チャックテーブルの一例を示す平面図である。図1(B)は、チャックテーブルの一例を示す斜視図である。FIG. 1A is a plan view showing an example of a chuck table. FIG. 1B is a perspective view showing an example of a chuck table. 図2(A)は、保持面研削ステップを説明するための凸部の短手方向からチャックテーブル及び研削ユニットを見た側面図である。図2(B)は、保持面研削ステップを説明するための凸部の長手方向からチャックテーブル及び研削ユニットを見た側面図である。FIG. 2(A) is a side view of the chuck table and the grinding unit viewed from the lateral direction of the protrusion for explaining the holding surface grinding step. FIG. 2(B) is a side view of the chuck table and the grinding unit viewed from the longitudinal direction of the projection for explaining the holding surface grinding step. 図3(A)は、保持面研削ステップ実施後のチャックテーブルの凸部を短手方向から見た側面図である。図3(B)は、保持面研削ステップ実施後のチャックテーブルの凸部を長手方向から見た側面図である。FIG. 3A is a side view of the convex portion of the chuck table after the holding surface grinding step is seen from the lateral direction. FIG. 3B is a side view of the convex portion of the chuck table after the holding surface grinding step, as seen from the longitudinal direction. 図4(A)は、矩形基板研削ステップを説明するための凸部の短手方向から矩形基板を保持したチャックテーブル及び研削ユニットを見た側面図である。図4(B)は、矩形基板研削ステップを説明するための凸部の長手方向から矩形基板を保持したチャックテーブル及び研削ユニットを見た側面図である。FIG. 4A is a side view of the chuck table holding the rectangular substrate and the grinding unit viewed from the lateral direction of the convex portion for explaining the rectangular substrate grinding step. FIG. 4B is a side view of the chuck table holding the rectangular substrate and the grinding unit viewed from the longitudinal direction of the projection for explaining the rectangular substrate grinding step. 従来の矩形基板の研削方法における問題点を説明するための斜視図である。FIG. 10 is a perspective view for explaining a problem in a conventional method for grinding a rectangular substrate;

以下に、本発明に係る矩形基板の研削方法の各ステップについて説明する。
(1)保持面研削ステップ
図1(A)、(B)に示すチャックテーブル3は、例えば、その外形が円形板状であり樹脂又は合金等からなる基部30を備えており、基部30の上面に平面視矩形状の凸部31及び凸部32が突設されている。なお、矩形状とは、正方形状及び長方形状を含む。本実施形態においては、凸部31と凸部32とが基部30の上面に凸部31及び凸部32の短手方向(X軸方向)に所定間隔を空けて2つ配設されているが、例えば、矩形状の凸部が基部30の上面に4つ若しくは6つ水平面(X軸Y軸平面)方向に等間隔空けて、又は1つ配設されていてもよい。
例えば、凸部31(32)の短手方向長さは69mmであり、長手方向長さは232mmとなっている。
Each step of the method for grinding a rectangular substrate according to the present invention will be described below.
(1) Holding surface grinding step The chuck table 3 illustrated in FIGS. A convex portion 31 and a convex portion 32 having a rectangular shape in a plan view are protruded from. Note that the rectangular shape includes a square shape and a rectangular shape. In the present embodiment, two projections 31 and 32 are arranged on the upper surface of the base 30 with a predetermined interval in the lateral direction (X-axis direction) of the projections 31 and 32 . For example, four or six rectangular projections may be provided on the upper surface of the base 30 at equal intervals in the horizontal plane (X-axis Y-axis plane), or one may be disposed.
For example, the length of the convex portion 31 (32) in the short direction is 69 mm and the length in the longitudinal direction is 232 mm.

例えば、凸部31(32)は樹脂又は合金等の材料からなり、厚さ方向に複数の吸引溝や複数の吸引孔が貫通形成され、該吸引溝や吸引孔は基部30内に形成された流路を介して図示しない吸引源に連通している。そして、吸引源が吸引することで生み出された吸引力が、吸引溝や吸引孔を介しての凸部31(32)の上面である保持面31a(32a)に伝達されることで、チャックテーブル3は保持面31a(32a)上で矩形基板Wを吸引保持する。
図1(A)、(B)においては、チャックテーブル3の保持面31a及び保持面32aは研削される前の状態であり、略平坦面となっている。
For example, the convex portion 31 (32) is made of a material such as resin or alloy, and has a plurality of suction grooves and a plurality of suction holes penetrating therethrough in the thickness direction. It communicates with a suction source (not shown) through a channel. Then, the suction force generated by the suction by the suction source is transmitted to the holding surface 31a (32a), which is the upper surface of the projection 31 (32), through the suction grooves and suction holes. 3 sucks and holds the rectangular substrate W on the holding surface 31a (32a).
In FIGS. 1A and 1B, the holding surface 31a and the holding surface 32a of the chuck table 3 are in a state before being ground, and are substantially flat surfaces.

凸部31(32)の構成は上記例に限定されるものではない。凸部31(32)は、例えば、ポーラス部材等からなり矩形基板Wを吸着保持する矩形板状の吸着部と、吸着部がはめ込まれた状態で吸着部を囲繞して支持する枠体とを備えていてもよい。吸着部は基部30内に形成された流路を介して図示しない吸引源に連通し、吸引源が吸引することで生み出された吸引力が、吸着部の露出面(凸部31(32)の上面)である矩形状の保持面31a(32a)に伝達されることで、チャックテーブル3は2つの保持面31a及び保持面32a上でそれぞれ矩形基板Wを吸引保持する。 The configuration of the convex portion 31 (32) is not limited to the above example. The convex portion 31 (32) includes, for example, a rectangular plate-shaped suction portion made of a porous member or the like for sucking and holding the rectangular substrate W, and a frame surrounding and supporting the suction portion in a state in which the suction portion is fitted. may be provided. The suction portion communicates with a suction source (not shown) through a channel formed in the base portion 30, and the suction force generated by suction by the suction source is applied to the exposed surface of the suction portion (convex portions 31 (32)). The chuck table 3 sucks and holds the rectangular substrate W on the two holding surfaces 31a and 32a, respectively.

図1(A)、(B)に示す矩形基板Wは、本実施形態においては、凸部31(32)の保持面31a(32a)と同材質の樹脂又は合金からなる基板である。矩形基板Wは、例えば、IC、LSI等の集積回路が形成されたチップが樹脂によってパッケージングされたCSP(Chip Size Package)、QFN(Quad Flat NON-Leaded Package)等の矩形基板や、ガラスやサファイアなどの硬質脆性材の基板であってもよい。 In the present embodiment, the rectangular substrate W shown in FIGS. 1A and 1B is a substrate made of the same resin or alloy as the holding surface 31a (32a) of the projection 31 (32). The rectangular substrate W is, for example, a rectangular substrate such as a CSP (Chip Size Package) or a QFN (Quad Flat NON-Leaded Package) in which a chip on which an integrated circuit such as an IC or LSI is formed is packaged with resin, or glass or the like. The substrate may be made of a hard brittle material such as sapphire.

図2(A)、(B)に示すように、本発明に係る矩形基板の研削方法においては、まず、チャックテーブル3の平坦な保持面31a及び保持面32aを研削ユニット2の研削砥石24aで研削する。
研削ユニット2は、軸方向がZ軸方向であるスピンドル21と、スピンドル21を回転駆動するモータ22と、スピンドル21の下端側に連結されたマウント23と、マウント23の下面に着脱可能に装着された研削ホイール24とを備える。研削ユニット2は、図示しない研削送り手段によってZ軸方向に往復移動可能となっている。
As shown in FIGS. 2A and 2B, in the method of grinding a rectangular substrate according to the present invention, first, the flat holding surfaces 31a and 32a of the chuck table 3 are ground with the grinding wheel 24a of the grinding unit 2. Grind.
The grinding unit 2 includes a spindle 21 whose axial direction is the Z-axis direction, a motor 22 that rotationally drives the spindle 21, a mount 23 that is connected to the lower end of the spindle 21, and a lower surface of the mount 23 that is detachably attached. and a grinding wheel 24 . The grinding unit 2 can be reciprocated in the Z-axis direction by grinding feed means (not shown).

研削ホイール24は、円環状のホイール基台24bと、ホイール基台24bの下面に環状に複数配設された略直方体形状の研削砥石24aとを備えている。研削砥石24aは、例えば、適宜のバインダーでダイヤモンド砥粒等が固着されて成形されている。
研削ホイール24の直径は、例えば、チャックテーブル3の基部30の半径よりも大きく、基部30の直径よりも小さく設定されている。
The grinding wheel 24 includes an annular wheel base 24b and a plurality of substantially rectangular parallelepiped grinding wheels 24a annularly arranged on the lower surface of the wheel base 24b. The grinding wheel 24a is formed, for example, by bonding diamond abrasive grains or the like with an appropriate binder.
The diameter of the grinding wheel 24 is set, for example, larger than the radius of the base 30 of the chuck table 3 and smaller than the diameter of the base 30 .

例えば、スピンドル21の内部には、研削水供給源に連通し研削水の通り道となる図示しない流路が、スピンドル21の軸方向に貫通して形成されており、流路は研削ホイール24の底面において研削砥石24aに向かって研削水を噴出できるように開口している。
図2(A)、(B)において、チャックテーブル3は研削ユニット2に対して相対的にY軸方向に往復移動可能であると共に、チャックテーブル3の中心を通るZ軸方向の軸心周りに回転可能となっている。
For example, inside the spindle 21, a channel (not shown) that communicates with the grinding water supply source and serves as a path for the grinding water is formed through the spindle 21 in the axial direction. is opened so that grinding water can be ejected toward the grinding wheel 24a.
2A and 2B, the chuck table 3 can reciprocate in the Y-axis direction relative to the grinding unit 2, and rotates around the axis in the Z-axis direction passing through the center of the chuck table 3. It is rotatable.

保持面研削ステップでは、チャックテーブル3が、研削ユニット2の下までY軸方向へ移動して、研削ユニット2に備える研削ホイール24と凸部31の保持面31a及び凸部32の保持面32aとの位置合わせがなされる。位置合わせは、例えば、図2(A)、(B)に示すように、研削ホイール24の回転中心がチャックテーブル3の回転中心に対して所定の距離だけ水平方向にずれ、研削砥石24aの回転軌道がチャックテーブル3の回転中心を通るように行われる。 In the holding surface grinding step, the chuck table 3 is moved in the Y-axis direction to below the grinding unit 2, and the grinding wheel 24 provided in the grinding unit 2 and the holding surface 31a of the projection 31 and the holding surface 32a of the projection 32 are ground. are aligned. For example, as shown in FIGS. 2A and 2B, the alignment is performed by shifting the center of rotation of the grinding wheel 24 from the center of rotation of the chuck table 3 by a predetermined distance in the horizontal direction, and rotating the grinding wheel 24a. The trajectory is made to pass through the center of rotation of the chuck table 3 .

ここで、図1(A)、(B)においては、上記のように研削ユニット2に備える研削ホイール24と凸部31の保持面31a及び凸部32の保持面32aとの位置合わせがなされた場合に、保持面31a及び保持面32aの4辺または2つの対角線の長さが異なることに起因する回転する研削砥石24aの研削面積(研削砥石24aが保持面31a(32a)に当たっている面積)の変化によって、チャックテーブル3の研削される前の略平坦な保持面31a及び保持面32aが研削砥石24aによってどの程度研削されやすいかを、色の濃淡で示している。 Here, in FIGS. 1A and 1B, the grinding wheel 24 provided in the grinding unit 2 and the holding surface 31a of the projection 31 and the holding surface 32a of the projection 32 are aligned as described above. In this case, the grinding area of the rotating grinding wheel 24a (the area where the grinding wheel 24a is in contact with the holding surface 31a (32a)) due to the different lengths of four sides or two diagonals of the holding surface 31a and the holding surface 32a Depending on the change, the extent to which the substantially flat holding surfaces 31a and 32a of the chuck table 3 before being ground are easily ground by the grinding wheel 24a is indicated by the shade of color.

図1(A)、(B)において、凸部31(32)の保持面31a(32a)中で色が相対的に濃い箇所は、研削中に保持面31a(32a)に対する研削砥石24aの研削面積が広くなり研削負荷が増加することで研削砥石24aの研削力が低下するため、研削されにくい箇所を示している。
図1(A)、(B)において、凸部31(32)の保持面31a(32a)中で色が相対的に薄い箇所は、研削中に保持面31a(32a)に対する研削砥石24aの研削面積が狭くなり研削負荷が減少することで研削砥石24aの研削力が高まるため、研削されやすい箇所を示している。
In FIGS. 1(A) and 1(B), the relatively dark colored portions of the holding surface 31a (32a) of the convex portion 31 (32) indicate that the grinding wheel 24a is being ground against the holding surface 31a (32a) during grinding. This shows a portion that is difficult to grind because the grinding force of the grinding wheel 24a decreases as the area increases and the grinding load increases.
In FIGS. 1(A) and 1(B), the portions with relatively light color on the holding surface 31a (32a) of the convex portion 31 (32) indicate that the grinding wheel 24a is not ground against the holding surface 31a (32a) during grinding. Since the grinding force of the grinding wheel 24a increases as the area becomes narrower and the grinding load decreases, the locations that are likely to be ground are shown.

図2(A)、(B)に示すように、モータ22によりスピンドル21が回転駆動されるのに伴って、研削ホイール24がZ軸方向の軸心周りに回転する。また、研削ユニット2が-Z方向へと降下していき、研削砥石24aが凸部31(32)の保持面31a(32a)に当接することで研削加工が行われる。研削中は、チャックテーブル3もZ軸方向の軸心周りに回転するため、研削砥石24aが凸部31(32)の保持面31a(32a)の全面の研削加工を行う。
例えば、研削加工中は、研削水をスピンドル21中の流路を通して研削砥石24aと凸部31(32)の保持面31a(32a)との接触部位に対して供給して、接触部位を冷却・洗浄する。
As shown in FIGS. 2A and 2B, as the motor 22 drives the spindle 21 to rotate, the grinding wheel 24 rotates about the axis in the Z-axis direction. Further, the grinding unit 2 descends in the -Z direction, and the grinding process is performed by bringing the grinding wheel 24a into contact with the holding surface 31a (32a) of the projection 31 (32). During grinding, since the chuck table 3 also rotates around the axis in the Z-axis direction, the grinding wheel 24a grinds the entire holding surface 31a (32a) of the projection 31 (32).
For example, during grinding, grinding water is supplied to the contact portion between the grinding wheel 24a and the holding surface 31a (32a) of the convex portion 31 (32) through the channel in the spindle 21 to cool and cool the contact portion. wash.

所定時間上記研削加工を実施することで、図3(A)、(B)に示すように、チャックテーブル3の保持面31a及び保持面32aの4辺または2つの対角線の長さが異なることに起因する回転する研削砥石24aの研削面積の変化によって、保持面31a及び保持面32aが湾曲面に研削される。以後、湾曲面となった保持面31aを保持面311aとし、湾曲面となった保持面32aを保持面322aとする。
そして、研削ユニット2が上昇し、研削砥石24aが保持面311a及び保持面322aから離間して、保持面研削ステップが終了する。
By performing the grinding process for a predetermined period of time, four sides or two diagonals of the holding surface 31a and the holding surface 32a of the chuck table 3 have different lengths as shown in FIGS. Due to the resulting change in the grinding area of the rotating grinding wheel 24a, the holding surface 31a and the holding surface 32a are ground into curved surfaces. Hereinafter, the curved holding surface 31a will be referred to as a holding surface 311a, and the curved holding surface 32a will be referred to as a holding surface 322a.
Then, the grinding unit 2 is raised, the grinding wheel 24a is separated from the holding surface 311a and the holding surface 322a, and the holding surface grinding step is completed.

図3(A)、(B)に示す湾曲面である保持面311a及び保持面322aの湾曲の仕方は、図1(A)、(B)に示す保持面31a及び保持面32aの研削砥石24aによる研削のされやすさ(されにくさ)によって定まっている。 The holding surface 311a and the holding surface 322a, which are curved surfaces shown in FIGS. It is determined by the ease (difficulty) of grinding by.

(2)保持ステップ
次に、保持面研削ステップにて研削されたチャックテーブル3の保持面311a及び保持面322aに2枚の矩形基板Wの表面Waをそれぞれ保持する。即ち、図4(A)、(B)に示すように、短手方向及び長手方向を合わせて、かつ、矩形基板Wの中心と凸部31(32)の保持面311a(322a)の中心とが略合致するようにして、矩形基板Wが保持面311a(322a)に載置される。そして、図示しない吸引源により生み出される吸引力が、保持面311a(322a)に伝達されることにより、チャックテーブル3が保持面311a(322a)で矩形基板Wを吸引保持する。
吸引保持された矩形基板Wは、全体的に湾曲面となっている保持面311a(322a)にならってその裏面Wbが湾曲面となる。
(2) Holding Step Next, the surfaces Wa of the two rectangular substrates W are respectively held on the holding surfaces 311a and 322a of the chuck table 3 ground in the holding surface grinding step. That is, as shown in FIGS. 4A and 4B, the lateral direction and the longitudinal direction are aligned, and the center of the rectangular substrate W and the center of the holding surface 311a (322a) of the convex portion 31 (32) are aligned. The rectangular substrate W is placed on the holding surface 311a (322a) such that the . A suction force generated by a suction source (not shown) is transmitted to the holding surface 311a (322a), whereby the chuck table 3 holds the rectangular substrate W by suction on the holding surface 311a (322a).
The rectangular substrate W held by suction has a curved back surface Wb following the curved holding surface 311a (322a) as a whole.

(3)矩形基板研削ステップ
次に、研削ユニット2に装着された研削砥石24aによってチャックテーブル3の保持面311a(322a)に保持された2枚の矩形基板Wの裏面Wbを湾曲面の状態で研削する。
矩形基板研削ステップでは、チャックテーブル3が、研削ユニット2の下までY軸方向へ移動して、研削ユニット2に備える研削ホイール24と2枚の矩形基板Wとの位置合わせがなされる。位置合わせは、例えば、図4(A)、(B)に示すように、研削ホイール24の回転中心がチャックテーブル3の回転中心に対して所定の距離だけ水平方向にずれ、研削砥石24aの回転軌道がチャックテーブル3の回転中心を通るように行われる。
(3) Rectangular substrate grinding step Next, the back surfaces Wb of the two rectangular substrates W held on the holding surface 311a (322a) of the chuck table 3 by the grinding wheel 24a mounted on the grinding unit 2 are curved. Grind.
In the rectangular substrate grinding step, the chuck table 3 moves in the Y-axis direction to below the grinding unit 2, and the grinding wheel 24 provided in the grinding unit 2 and the two rectangular substrates W are aligned. For example, as shown in FIGS. 4A and 4B, the alignment is performed by shifting the center of rotation of the grinding wheel 24 from the center of rotation of the chuck table 3 by a predetermined distance in the horizontal direction, and rotating the grinding wheel 24a. The trajectory is made to pass through the center of rotation of the chuck table 3 .

そして、図4(A)、(B)に示すように、モータ22によりスピンドル21が回転駆動されるのに伴って、研削ホイール24がZ軸方向の軸心周りに回転する。また、研削ユニット2が-Z方向へと降下していき、研削砥石24aが各矩形基板Wの裏面Wbに当接することで研削加工が行われる。研削中は、チャックテーブル3もZ軸方向の軸心周りに回転するため、研削砥石24aが各矩形基板Wの湾曲した状態の裏面Wbの全面の研削加工を行う。
例えば、研削加工中は、研削水をスピンドル21中の流路を通して研削砥石24aと各矩形基板Wの湾曲した状態の裏面Wbとの接触部位に対して供給して、接触部位を冷却・洗浄する。
As shown in FIGS. 4A and 4B, the grinding wheel 24 rotates about the Z-axis direction as the spindle 21 is driven to rotate by the motor 22 . Further, the grinding unit 2 descends in the -Z direction, and the grinding wheel 24a comes into contact with the rear surface Wb of each rectangular substrate W, thereby performing the grinding process. During grinding, the chuck table 3 also rotates around the axis in the Z-axis direction, so that the grinding wheel 24a grinds the entire curved back surface Wb of each rectangular substrate W. FIG.
For example, during grinding, grinding water is supplied to the contact portion between the grinding wheel 24a and the curved back surface Wb of each rectangular substrate W through the channel in the spindle 21 to cool and wash the contact portion. .

本実施形態においては矩形基板Wが、凸部31(32)の保持面311a(322a)と同材質の樹脂又は合金からなる基板であるため、矩形基板研削ステップでは、先に実施した保持面研削ステップにおける研削加工条件(研削ユニット2の-Z方向への研削送り速度、研削ホイール24の回転速度、及びチャックテーブル3の回転速度等)をそのまま適用できる。
一方、矩形基板Wが、凸部31(32)の保持面311a(322a)と異なる材質からなる基板である場合には、矩形基板研削ステップでは、先に実施した保持面研削ステップにおける研削加工条件(研削ユニット2の-Z方向への研削送り速度、研削ホイール24の回転速度、及びチャックテーブル3の回転速度等)を適宜変更する。
In the present embodiment, the rectangular substrate W is a substrate made of the same resin or alloy as the holding surface 311a (322a) of the projection 31 (32). The grinding processing conditions in the step (grinding feed speed in the −Z direction of the grinding unit 2, rotation speed of the grinding wheel 24, rotation speed of the chuck table 3, etc.) can be applied as they are.
On the other hand, when the rectangular substrate W is a substrate made of a material different from that of the holding surface 311a (322a) of the projection 31 (32), in the rectangular substrate grinding step, the grinding processing conditions in the previously performed holding surface grinding step (Grinding feed speed in the -Z direction of the grinding unit 2, rotation speed of the grinding wheel 24, rotation speed of the chuck table 3, etc.) are appropriately changed.

ここで、例えば、従来の矩形基板の研削方法のように、図5に示す研削されていないチャックテーブル3の保持面31a(32a)で矩形基板Wを吸引保持して矩形基板Wの裏面Wbの研削を行う場合の問題点について説明する。
図5においては、研削ホイール24の回転中心が2枚の矩形基板Wを保持したチャックテーブル3の回転中心に対して所定の距離だけ水平方向にずれ、研削砥石24aの回転軌道がチャックテーブル3の回転中心を通るように位置付けがされている。この状態で、研削ユニット2が-Z方向へと降下していき、回転する研削砥石24aが各矩形基板Wの裏面Wbに当接することで研削加工が行われる。研削中は、チャックテーブル3もZ軸方向の軸心周りに回転するため、研削砥石24aが各矩形基板Wの湾曲した状態の裏面Wbの全面の研削加工を行う。
Here, for example, as in the conventional method of grinding a rectangular substrate, the rectangular substrate W is sucked and held by the holding surface 31a (32a) of the chuck table 3 shown in FIG. Problems in the case of grinding will be explained.
In FIG. 5, the center of rotation of the grinding wheel 24 is horizontally displaced from the center of rotation of the chuck table 3 holding two rectangular substrates W by a predetermined distance, and the rotation orbit of the grinding wheel 24a is shifted from the center of rotation of the chuck table 3. Positioned to pass through the center of rotation. In this state, the grinding unit 2 descends in the -Z direction, and the rotating grindstone 24a comes into contact with the rear surface Wb of each rectangular substrate W, thereby performing the grinding process. During grinding, the chuck table 3 also rotates around the axis in the Z-axis direction, so that the grinding wheel 24a grinds the entire curved back surface Wb of each rectangular substrate W. FIG.

図5においては、矩形基板Wの4辺または2つの対角線の長さが異なることに起因する回転する研削砥石24aの研削面積(研削砥石24aが矩形基板Wに当たっている面積)の変化によって、矩形基板が研削砥石24aによってどの程度研削されやすいかを色の濃淡で示している。 In FIG. 5, the rectangular substrate W is changed in the grinding area of the rotating grinding wheel 24a (the area where the grinding wheel 24a is in contact with the rectangular substrate W) due to the four sides or two diagonals of the rectangular substrate W having different lengths. The gradation of color indicates how easily the is ground by the grinding wheel 24a.

図5において、平坦な保持面31a(32a)で保持された矩形基板Wの裏面Wbで色が相対的に濃い箇所は、研削砥石24aの研削面積が広くなり研削負荷が増加することで研削砥石24aの研削力が低下するため、研削されにくい箇所を示している。
図5において、平坦な保持面31a(32a)中で色が相対的に薄い箇所は、保持面31a(32a)に対する研削砥石24aの研削面積が狭くなり研削負荷が減少することで研削砥石24aの研削力が高まるため、研削されやすい箇所を示している。
したがって、従来の矩形基板の研削方法では、研削後の矩形基板Wは、裏面Wbの色の濃い箇所は厚くなり、裏面Wbの色の薄い箇所は薄くなり研削厚さの均一性が落ちる、即ち、研削後の矩形基板Wに研削砥石24aの研削面積差異に起因した裏面Wbの湾曲が存在するという問題が生じ得る。
In FIG. 5, the portion with a relatively dark color on the rear surface Wb of the rectangular substrate W held by the flat holding surface 31a (32a) has a larger grinding area of the grinding wheel 24a and an increased grinding load. 24a shows a portion that is difficult to grind because the grinding force of 24a is reduced.
In FIG. 5, the portion of the flat holding surface 31a (32a) with a relatively light color indicates that the grinding surface area of the grinding wheel 24a with respect to the holding surface 31a (32a) is narrowed, and the grinding load is reduced. Since the grinding force is increased, the locations that are likely to be ground are shown.
Therefore, in the conventional method of grinding a rectangular substrate, the rectangular substrate W after grinding is thickened at dark-colored portions of the back surface Wb and thinned at light-colored portions of the back surface Wb, resulting in poor grinding thickness uniformity. Also, there may arise a problem that the back surface Wb of the rectangular substrate W after grinding is curved due to the difference in the grinding area of the grinding wheel 24a.

一方、本発明に係る矩形基板の研削方法においては、研削ユニット2のモータ22により回転駆動するスピンドル21に装着された研削砥石24aによって、チャックテーブル3の矩形基板Wと同形状の矩形の保持面31a(32a)を研削し、矩形の保持面31a(32a)の辺または対角線の長さが異なることに起因する研削砥石24aの研削面積の変化によってチャックテーブル3の保持面31a(32a)を湾曲面311a(322a)に形成する保持面研削ステップと、保持面研削ステップにて研削されたチャックテーブル3の保持面311a(322a)に矩形基板Wの表面Waを保持する保持ステップと、研削ユニット2に装着された研削砥石24aによってチャックテーブル3の保持面311a(322a)に保持された矩形基板Wの裏面Wbを湾曲面の状態で研削する矩形基板研削ステップと、を備え、矩形基板Wを研削する際に発生する研削面積差異に起因する裏面Wbの湾曲を、保持面研削ステップにおいて矩形基板Wと同形状の矩形の保持面31a(32a)を備えたチャックテーブル3の保持面31a(32a)に予め同様に形成することにより、研削後の矩形基板Wの厚さ精度を向上させることが可能となる。 On the other hand, in the method of grinding a rectangular substrate according to the present invention, a rectangular holding surface having the same shape as that of the rectangular substrate W on the chuck table 3 is driven by the grinding wheel 24a mounted on the spindle 21 that is rotationally driven by the motor 22 of the grinding unit 2. 31a (32a) is ground, and the holding surface 31a (32a) of the chuck table 3 is curved due to the change in the grinding area of the grinding wheel 24a caused by the difference in the length of the sides or diagonals of the rectangular holding surface 31a (32a). a holding surface grinding step for forming the surface 311a (322a); a holding step for holding the surface Wa of the rectangular substrate W on the holding surface 311a (322a) of the chuck table 3 ground in the holding surface grinding step; a rectangular substrate grinding step of grinding the back surface Wb of the rectangular substrate W held on the holding surface 311a (322a) of the chuck table 3 by the grinding wheel 24a mounted on the chuck table 3 in a curved surface state, wherein the rectangular substrate W is ground. In the holding surface grinding step, the holding surface 31a (32a) of the chuck table 3, which has a rectangular holding surface 31a (32a) having the same shape as that of the rectangular substrate W, is corrected for the curvature of the back surface Wb caused by the difference in the grinding area generated when grinding. , the thickness accuracy of the rectangular substrate W after grinding can be improved.

即ち、矩形基板研削ステップにおいて、従来はより研削されにくかった矩形基板Wの裏面Wb中のある領域が、研削砥石24aの研削面に対して他の領域よりも相対的に上方に上げられた状態で、かつ、従来はより研削されやすかった矩形基板Wの裏面Wb中のある領域が、研削砥石24aの研削面に対して他の領域よりも相対的に下方に下げられた状態で、研削を行っていくことができる。したがって、矩形基板Wの裏面Wb中のより研削されにくかった領域は、従来のようにチャックテーブル3の平坦な保持面31a(32a)で矩形基板Wを吸引保持して研削する場合よりも、本発明に係る研削方法における場合の方が研削砥石24aで局所的に研削されやすくなる。また、矩形基板Wの裏面Wb中のより研削されやすかった領域は、従来のようにチャックテーブル3の平坦な保持面31a(32a)で矩形基板Wを吸引保持して研削する場合よりも、本発明に係る研削方法における場合の方が研削砥石24aで局所的に研削されにくくなる。その結果、図4(A)、(B)に示す矩形基板Wの裏面Wb全面に均一な研削加工が施されていく。 That is, in the rectangular substrate grinding step, a certain region of the rear surface Wb of the rectangular substrate W, which has been difficult to grind conventionally, is raised relatively higher than other regions with respect to the grinding surface of the grinding wheel 24a. In addition, grinding is performed in a state in which a certain region of the rear surface Wb of the rectangular substrate W, which was conventionally more easily ground, is lowered relative to the grinding surface of the grinding wheel 24a than other regions. can go on. Therefore, the area of the rear surface Wb of the rectangular substrate W which is more difficult to grind can be reduced compared to the conventional case where the rectangular substrate W is suction-held by the flat holding surface 31a (32a) of the chuck table 3 and ground. In the case of the grinding method according to the invention, it becomes easier to locally grind with the grinding wheel 24a. In addition, the area of the back surface Wb of the rectangular substrate W that was more likely to be ground is reduced compared to the conventional case where the rectangular substrate W is sucked and held by the flat holding surface 31a (32a) of the chuck table 3 and ground. In the case of the grinding method according to the invention, the grinding stone 24a is less likely to grind locally. As a result, the entire back surface Wb of the rectangular substrate W shown in FIGS. 4A and 4B is uniformly ground.

矩形基板Wの裏面Wbが矩形基板Wが所望の仕上げ厚さになるまで研削された後、研削ユニット2が上昇し、研削砥石24aが2枚の矩形基板Wから離間して、矩形基板研削ステップが終了する。さらに、チャックテーブル3による矩形基板Wの吸引保持が解除されることで、湾曲した保持面311a(322a)にならうように保持されていた矩形基板Wが、保持面311a(322a)上で裏面Wbが略平坦な状態になる。 After the rear surface Wb of the rectangular substrate W has been ground until the rectangular substrate W has a desired finished thickness, the grinding unit 2 is raised, the grinding wheel 24a is separated from the two rectangular substrates W, and the rectangular substrate grinding step is performed. ends. Further, the suction holding of the rectangular substrate W by the chuck table 3 is released, so that the rectangular substrate W held so as to follow the curved holding surface 311a (322a) is moved to the rear surface on the holding surface 311a (322a). Wb becomes substantially flat.

なお、本発明に係る矩形基板の研削方法は上記実施形態に限定されるものではなく、また、添付図面に図示されている研削ユニット2及びチャックテーブル3の構成等についても、これに限定されず、本発明の効果を発揮できる範囲内で適宜変更可能である。 It should be noted that the method of grinding a rectangular substrate according to the present invention is not limited to the above-described embodiment, nor is the configuration of the grinding unit 2 and chuck table 3 shown in the accompanying drawings limited to this. , can be appropriately changed within the range in which the effects of the present invention can be exhibited.

W:矩形基板 Wa:矩形基板の表面 Wb:矩形基板の裏面
3:チャックテーブル 30:基部 31、32:凸部 31a、32a:保持面
311a、322a:湾曲した保持面
2:研削ユニット 21:スピンドル 22:モータ 23:マウント 24:研削ホイール 24a:研削砥石 24b:ホイール基台
W: Rectangular substrate Wa: Front surface of rectangular substrate Wb: Back surface of rectangular substrate 3: Chuck table 30: Base 31, 32: Protrusions 31a, 32a: Holding surfaces 311a, 322a: Curved holding surface 2: Grinding unit 21: Spindle 22: Motor 23: Mount 24: Grinding Wheel 24a: Grinding Wheel 24b: Wheel Base

Claims (2)

矩形基板の裏面を所望の仕上げ厚さまで研削する矩形基板の研削方法であって、
研削ユニットのモータにより回転駆動するスピンドルに装着された研削砥石によって、チャックテーブルの該矩形基板と同形状の矩形の保持面を研削し、該研削砥石の研削面積の変化によって該チャックテーブルの保持面を湾曲面に形成する保持面研削ステップと、
該保持面研削ステップにて研削された該チャックテーブルの保持面に該矩形基板の表面を保持する保持ステップと、
該研削ユニットに装着された研削砥石によって該チャックテーブルの保持面に保持された該矩形基板の裏面を湾曲面の状態で研削する矩形基板研削ステップと、を備え、
該矩形基板を研削する際に発生する研削面積差異に起因する該裏面の湾曲を、該保持面研削ステップにおいて該矩形基板と同形状の矩形の該保持面を備えたチャックテーブルの該保持面に予め同様に形成することにより、研削後の該矩形基板の厚さ精度を向上させることを特徴とする矩形基板の研削方法。
A rectangular substrate grinding method for grinding the back surface of a rectangular substrate to a desired finished thickness, comprising:
A grinding wheel attached to a spindle rotated by a grinding unit motor grinds a rectangular holding surface of the chuck table having the same shape as the rectangular substrate. into a curved surface; and
a holding step of holding the surface of the rectangular substrate on the holding surface of the chuck table ground in the holding surface grinding step;
a rectangular substrate grinding step of grinding the back surface of the rectangular substrate held on the holding surface of the chuck table by a grinding wheel attached to the grinding unit so as to form a curved surface;
In the holding surface grinding step, the curvature of the back surface caused by the difference in the grinding area generated when the rectangular substrate is ground is transferred to the holding surface of a chuck table having the rectangular holding surface having the same shape as the rectangular substrate. A method of grinding a rectangular substrate, wherein the thickness accuracy of the rectangular substrate after grinding is improved by forming the same in advance.
前記チャックテーブルの保持面は前記矩形基板と同材質であることを特徴とする請求項1記載の矩形基板の研削方法。 2. The method of grinding a rectangular substrate according to claim 1, wherein the holding surface of said chuck table is made of the same material as said rectangular substrate.
JP2018188112A 2018-10-03 2018-10-03 Rectangular substrate grinding method Active JP7193969B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018188112A JP7193969B2 (en) 2018-10-03 2018-10-03 Rectangular substrate grinding method
CN201910879191.6A CN110977754A (en) 2018-10-03 2019-09-18 Grinding method of rectangular substrate
KR1020190116049A KR102727754B1 (en) 2018-10-03 2019-09-20 Method for grinding rectangular substrate
TW108135743A TWI824024B (en) 2018-10-03 2019-10-02 Grinding method of rectangular substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018188112A JP7193969B2 (en) 2018-10-03 2018-10-03 Rectangular substrate grinding method

Publications (2)

Publication Number Publication Date
JP2020055080A JP2020055080A (en) 2020-04-09
JP7193969B2 true JP7193969B2 (en) 2022-12-21

Family

ID=70081778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018188112A Active JP7193969B2 (en) 2018-10-03 2018-10-03 Rectangular substrate grinding method

Country Status (3)

Country Link
JP (1) JP7193969B2 (en)
CN (1) CN110977754A (en)
TW (1) TWI824024B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7228438B2 (en) * 2019-03-27 2023-02-24 株式会社東京精密 Substrate processing equipment
JP7517875B2 (en) 2020-06-25 2024-07-17 株式会社ディスコ Chuck table and processing device
JP7509596B2 (en) 2020-07-27 2024-07-02 株式会社ディスコ Processing Equipment
CN112548845B (en) * 2021-02-19 2021-09-14 清华大学 Substrate processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290078A (en) 2006-04-25 2007-11-08 Tosoh Corp Grinding method of substrate
JP2008060470A (en) 2006-09-01 2008-03-13 Disco Abrasive Syst Ltd Working method for wafer
JP2016150421A (en) 2015-02-19 2016-08-22 株式会社ディスコ Grinding device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198069A (en) * 1998-10-30 2000-07-18 Shin Etsu Handotai Co Ltd Work holding disc for polishing, manufacture of the same, and work polishing method and device thereof
JP3623122B2 (en) * 1999-02-12 2005-02-23 信越半導体株式会社 Polishing work holding plate, work polishing apparatus, and work polishing method
JP2001198809A (en) * 2000-01-14 2001-07-24 Shin Etsu Handotai Co Ltd Polishing work holding board, polishing device and work polishing method
KR20040031071A (en) * 2001-09-28 2004-04-09 신에쯔 한도타이 가부시키가이샤 Grinding work holding disk, work grinding device and grinding method
JP5184910B2 (en) * 2008-02-13 2013-04-17 株式会社岡本工作機械製作所 Substrate surface grinding machine
JP5349910B2 (en) * 2008-11-05 2013-11-20 株式会社ディスコ Adsorption plate and production method of adsorption plate
JP6292958B2 (en) * 2014-04-18 2018-03-14 株式会社ディスコ Grinding equipment
JP6305212B2 (en) * 2014-05-28 2018-04-04 株式会社ディスコ Grinding apparatus and rectangular substrate grinding method
JP2015223665A (en) * 2014-05-28 2015-12-14 株式会社ディスコ Griding device and grinding method for rectangular substrate
JP6370148B2 (en) * 2014-07-30 2018-08-08 株式会社ディスコ Holding jig generator
JP6195677B2 (en) * 2014-09-30 2017-09-13 富士フイルム株式会社 Lens manufacturing method and lens holding device
JP6751301B2 (en) * 2016-03-14 2020-09-02 株式会社ディスコ Grinding machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290078A (en) 2006-04-25 2007-11-08 Tosoh Corp Grinding method of substrate
JP2008060470A (en) 2006-09-01 2008-03-13 Disco Abrasive Syst Ltd Working method for wafer
JP2016150421A (en) 2015-02-19 2016-08-22 株式会社ディスコ Grinding device

Also Published As

Publication number Publication date
KR20200038852A (en) 2020-04-14
JP2020055080A (en) 2020-04-09
TW202014269A (en) 2020-04-16
CN110977754A (en) 2020-04-10
TWI824024B (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP7193969B2 (en) Rectangular substrate grinding method
JP5877663B2 (en) Wafer grinding method
KR102185238B1 (en) Grinding apparatus and method for grinding rectangular substrate
US20060009134A1 (en) Grinding wheel, grinding apparatus and grinding method
KR20130007424A (en) Method for grinding piece to be processed
US6406357B1 (en) Grinding method, semiconductor device and method of manufacturing semiconductor device
JP5119614B2 (en) Wafer outer periphery grinding method
CN113400101A (en) Grinding method
KR20190028321A (en) Method for processing wafer
JP7504537B2 (en) Wafer grinding method
JP2014053351A (en) Wafer processing method
KR102727754B1 (en) Method for grinding rectangular substrate
JP2006294855A (en) Method and device for back grinding semiconductor wafer
KR101749482B1 (en) Semiconductor package sliming apparatus and method of the same
JP2014053352A (en) Wafer processing method
JP2017157750A (en) Processing method of wafer
KR101971059B1 (en) Semiconductor package sliming apparatus and method of the same
JP2014053357A (en) Wafer processing method
JP2010074003A (en) Grinder and wafer grinding method
JP6941420B2 (en) Wafer surface treatment equipment
JP2021065991A (en) Method for grinding work-piece
TWI855136B (en) Wafer grinding method
JP2019096760A (en) Wafer processing method
KR101759125B1 (en) Semiconductor package sliming apparatus and method of the same
JP2014053355A (en) Wafer processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221209

R150 Certificate of patent or registration of utility model

Ref document number: 7193969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150