Nothing Special   »   [go: up one dir, main page]

JP7177828B2 - Masterbatch, Polycarbonate Resin Composition, Injection Foaming Molded Article and Method for Producing Same - Google Patents

Masterbatch, Polycarbonate Resin Composition, Injection Foaming Molded Article and Method for Producing Same Download PDF

Info

Publication number
JP7177828B2
JP7177828B2 JP2020515537A JP2020515537A JP7177828B2 JP 7177828 B2 JP7177828 B2 JP 7177828B2 JP 2020515537 A JP2020515537 A JP 2020515537A JP 2020515537 A JP2020515537 A JP 2020515537A JP 7177828 B2 JP7177828 B2 JP 7177828B2
Authority
JP
Japan
Prior art keywords
weight
resin
less
acrylic
polycarbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020515537A
Other languages
Japanese (ja)
Other versions
JPWO2019208653A1 (en
Inventor
壮一 内田
一範 三枝
充毅 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2019208653A1 publication Critical patent/JPWO2019208653A1/en
Application granted granted Critical
Publication of JP7177828B2 publication Critical patent/JP7177828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • B29C45/14795Porous or permeable material, e.g. foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/247Moulding polymers or prepolymers containing ingredients in a frangible packaging, e.g. microcapsules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/08Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles using several expanding or moulding steps
    • B29C44/083Increasing the size of the cavity after a first part has foamed, e.g. substituting one mould part with another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/58Moulds
    • B29C44/586Moulds with a cavity increasing in size during foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/18Feeding the material into the injection moulding apparatus, i.e. feeding the non-plastified material into the injection unit
    • B29C45/1816Feeding auxiliary material, e.g. colouring material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0076Microcapsules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/043Skinned foam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/024Preparation or use of a blowing agent concentrate, i.e. masterbatch in a foamable composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/22Expandable microspheres, e.g. Expancel®
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2433/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、ポリカーボネート系樹脂組成物の射出発泡成形体の外観を良好にすることが可能な熱膨張性マイクロカプセルのマスターバッチ、ポリカーボネート系樹脂組成物、射出発泡成形体及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a masterbatch of thermally expandable microcapsules, a polycarbonate-based resin composition, an injection-foamed molded article, and a method for producing the same, which can improve the appearance of an injection-foamed article of a polycarbonate-based resin composition.

樹脂の射出発泡成形には、重曹等の熱分解型の化学発泡剤が多く使用されている。また、加熱により膨張して発泡する熱膨張性マイクロカプセルも樹脂の射出発泡成形に用いられている。そして、通常、基材樹脂への分散性や作業性の観点から熱可塑性樹脂や熱可塑性エラストマーに化学発泡剤や熱膨張性マイクロカプセルを20~60重量%含有させたマスターバッチで使用することが多い。例えば、特許文献1には、エチレン・α-オレフィン共重合体及び熱分解型発泡剤を主成分とする発泡剤マスターバッチが記載されている。また、特許文献2には、熱膨張性マイクロカプセル、オレフィン重合体を含むキャリア樹脂及び滑剤を含有するマスターバッチが記載されている。 Thermally decomposable chemical foaming agents such as sodium bicarbonate are often used for injection foam molding of resins. Thermally expandable microcapsules that expand and foam when heated are also used for resin injection foam molding. In general, from the viewpoint of dispersibility in the base resin and workability, it is possible to use a masterbatch containing 20 to 60% by weight of a chemical foaming agent or thermally expandable microcapsules in a thermoplastic resin or thermoplastic elastomer. many. For example, Patent Document 1 describes a blowing agent masterbatch containing an ethylene/α-olefin copolymer and a thermally decomposable blowing agent as main components. Patent Document 2 describes a masterbatch containing thermally expandable microcapsules, a carrier resin containing an olefin polymer, and a lubricant.

樹脂の射出発泡成形には、二酸化炭素や窒素等の超臨界流体を射出成形機のシリンダ内の溶融樹脂に直接含浸させ、発泡させる物理発泡という方法もある。例えば、特許文献3には、海相を構成する樹脂(A)と島層を構成する樹脂(B)とを混練した海島構造の樹脂組成物を射出形成機内で溶融・混練し、溶融状態の樹脂組成物中に超臨界流体を注入し射出形成することで発泡成形体を作製することが記載されている。 For injection foam molding of resin, there is also a method called physical foaming, in which a supercritical fluid such as carbon dioxide or nitrogen is directly impregnated into a molten resin in a cylinder of an injection molding machine to foam the resin. For example, in Patent Document 3, a resin composition having a sea-island structure in which a resin (A) constituting a sea phase and a resin (B) constituting an island layer are kneaded is melted and kneaded in an injection molding machine to form a molten state. It describes that a foam molded article is produced by injecting a supercritical fluid into a resin composition and performing injection molding.

特開2013-142146号公報JP 2013-142146 A 特開2017-082244号公報JP 2017-082244 A 特開2015-151461号公報JP 2015-151461 A

しかしながら、特許文献1に記載の発泡剤のマスターバッチを用いてポリカーボネート系樹脂を発泡させると、重曹等の熱分解型発泡剤がガス発生時に水分や金属成分を発生するため、ポリカーボネート系樹脂の加水分解が促進されて、射出発泡成形体の表面に加水分解で生じた低分子由来の白化が発生し、外観不良となる問題があった。特許文献2に記載の熱膨張性マイクロカプセルのマスターバッチを用いてポリカーボネート系樹脂を発泡させると、キャリア樹脂がオレフィン重合体を含むため、射出発泡成形体の表面にオレフィン系の非相溶成分由来による白化が発生し、外観不良となる問題があった。特許文献3に記載のような物理発泡でポリカーボネート系樹脂を発泡させると、含浸ガス由来の白化が発生してしまい、外観不良となる問題があった。 However, when a polycarbonate-based resin is foamed using the foaming agent masterbatch described in Patent Document 1, the heat-decomposing foaming agent such as sodium bicarbonate generates moisture and metal components when gas is generated. Decomposition is accelerated, and whitening occurs on the surface of the injection foamed product due to hydrolysis, resulting in poor appearance. When a polycarbonate-based resin is foamed using the thermally expandable microcapsule masterbatch described in Patent Document 2, the carrier resin contains an olefin polymer. There is a problem that whitening occurs due to the coating, resulting in a poor appearance. When a polycarbonate-based resin is foamed by physical foaming as described in Patent Document 3, whitening occurs due to the impregnation gas, resulting in poor appearance.

本発明は、上述した従来の問題を解決するため、白化の発生が抑制され、外観の良好な、ポリカーボネート系樹脂組成物の射出発泡成形体を得ることができる熱膨張性マイクロカプセルのマスターバッチ、ポリカーボネート系樹脂組成物、射出発泡成形体及びその製造方法を提供する。 In order to solve the above-described conventional problems, the present invention provides a masterbatch of thermally expandable microcapsules capable of suppressing the occurrence of whitening and obtaining an injection foam molded article of a polycarbonate-based resin composition with good appearance. Provided are a polycarbonate-based resin composition, an injection foam molded article, and a method for producing the same.

本発明は、熱膨張性マイクロカプセル(A)、キャリア樹脂組成物(B)を含有するマスターバッチ(C)であって、キャリア樹脂組成物(B)は、キャリア樹脂(B1)及び可塑剤(B2)を含み、キャリア樹脂(B1)は重量平均分子量が8,000以上350,000以下であり、かつ20℃で固体のアクリル系樹脂であり、可塑剤(B2)は20℃で液体、かつ重量平均分子量が1,000以上20,000以下であり、キャリア樹脂組成物(B)は、ポリカーボネート系樹脂と実質的に相溶し、かつ80℃におけるせん断粘度が1.0Pa・s以上1.5×106Pa・s以下であることを特徴とするマスターバッチに関する。The present invention is a masterbatch (C) containing a thermally expandable microcapsule (A) and a carrier resin composition (B), wherein the carrier resin composition (B) comprises a carrier resin (B1) and a plasticizer ( B2), wherein the carrier resin (B1) has a weight average molecular weight of 8,000 or more and 350,000 or less and is an acrylic resin that is solid at 20°C, the plasticizer (B2) is liquid at 20°C, and The carrier resin composition (B) has a weight average molecular weight of 1,000 or more and 20,000 or less, is substantially compatible with the polycarbonate resin, and has a shear viscosity of 1.0 Pa·s or more at 80° C.1. It relates to a masterbatch characterized by having a viscosity of 5×10 6 Pa·s or less.

前記マスターバッチ(C)は、ポリカーボネート系樹脂用として好適に用いることができる。前記ポリカーボネート系樹脂は、さらにポリエステル系樹脂、ポリエステル-ポリエーテル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-エチレン-プロピレン-ジエン-スチレン共重合体、アクリレート-スチレン-アクリロニトリル共重合体、アクリロニトリル-スチレン共重合体、ポリアリレート樹脂、ポリスチレン系樹脂、及びポリアミド系樹脂からなる群より選択される1種以上の他の熱可塑性樹脂を含有してもよい。 The masterbatch (C) can be suitably used for polycarbonate resins. The polycarbonate-based resin further includes a polyester-based resin, a polyester-polyether copolymer, an acrylonitrile-butadiene-styrene copolymer, an acrylonitrile-ethylene-propylene-diene-styrene copolymer, an acrylate-styrene-acrylonitrile copolymer, It may contain one or more other thermoplastic resins selected from the group consisting of acrylonitrile-styrene copolymers, polyarylate resins, polystyrene resins, and polyamide resins.

前記可塑剤(B2)がアクリル系可塑剤であることが好ましい。前記キャリア樹脂(B1)のガラス転移温度(Tg)が、-30℃以上150℃以下であることが好ましい。 The plasticizer (B2) is preferably an acrylic plasticizer. The glass transition temperature (Tg) of the carrier resin (B1) is preferably -30°C or higher and 150°C or lower.

前記熱膨張性マイクロカプセル(A)が、コアシェル構造を有し、沸点が10℃以上330℃以下である化合物の1種以上で構成されたコアと、前記コアを内包するシェルで構成されており、前記シェルは、ニトリル系単量体、(メタ)アクリレート系単量体、芳香族ビニル系単量体、ジエン系単量体、カルボキシル基を有するビニル系単量体、並びにメチロール基、水酸基、アミノ基、エポキシ基、及びイソシアネート基からなる群より選択される1種以上の反応性官能基を有する単量体からなる群より選択される1種以上の単量体に由来する構成単位を有する樹脂で構成されてもよい。 The thermally expandable microcapsules (A) have a core-shell structure and are composed of a core composed of one or more compounds having a boiling point of 10° C. or higher and 330° C. or lower, and a shell enclosing the core. , the shell comprises a nitrile-based monomer, a (meth)acrylate-based monomer, an aromatic vinyl-based monomer, a diene-based monomer, a vinyl-based monomer having a carboxyl group, a methylol group, a hydroxyl group, It has structural units derived from one or more monomers selected from the group consisting of monomers having one or more reactive functional groups selected from the group consisting of amino groups, epoxy groups, and isocyanate groups. It may be made of resin.

前記熱膨張性マイクロカプセル(A)は、最大膨張温度が180℃以上300℃以下であることが好ましい。 The thermally expandable microcapsules (A) preferably have a maximum expansion temperature of 180°C or higher and 300°C or lower.

前記シェルを構成する樹脂において、カルボキシル基を含有する単量体及びアミノ基を含有する単量体からなる群より選択される1種以上の単量体に由来する構成単位の濃度が12mmol/g以下であることが好ましい。 In the resin constituting the shell, the concentration of structural units derived from one or more monomers selected from the group consisting of a monomer containing a carboxyl group and a monomer containing an amino group is 12 mmol/g. The following are preferable.

前記熱膨張性マイクロカプセル(A)の平均粒子径が0.5μm以上50μm以下であることが好ましい。 It is preferable that the thermally expandable microcapsules (A) have an average particle size of 0.5 μm or more and 50 μm or less.

前記キャリア樹脂(B1)は、平均粒子径が50μm以上500μm以下のアクリル系樹脂粒子(a)と、アクリル系樹脂粒子(a)を被覆している平均粒子径が0.05μm以上0.5μm以下のアクリル系樹脂粒子(b)を含むアクリル系樹脂であることが好ましい。 The carrier resin (B1) comprises acrylic resin particles (a) having an average particle size of 50 μm to 500 μm and an average particle size covering the acrylic resin particles (a) of 0.05 μm to 0.5 μm. is preferably an acrylic resin containing the acrylic resin particles (b).

前記アクリル系樹脂粒子(a)は、(メタ)アクリル酸エステル30~100重量%、及びこれと共重合可能なビニルモノマー0~70重量%で構成されていることが好ましい。 The acrylic resin particles (a) are preferably composed of 30 to 100% by weight of (meth)acrylic acid ester and 0 to 70% by weight of a vinyl monomer copolymerizable therewith.

前記アクリル系樹脂粒子(b)は、(メタ)アクリル酸エステル30~100重量%、及びこれと共重合可能なビニルモノマー0~70重量%で構成されていることが好ましい。 The acrylic resin particles (b) are preferably composed of 30 to 100% by weight of (meth)acrylic acid ester and 0 to 70% by weight of a vinyl monomer copolymerizable therewith.

前記アクリル系樹脂粒子(b)は、(メタ)アクリル酸エステル50~100重量%、芳香族ビニルモノマー0~40重量%、これらと共重合可能なビニルモノマー0~10重量%、及び多官能性モノマー0~5重量%を含むラテックス粒子(b1)50~90重量部と、(メタ)アクリル酸エステル10~100重量%、芳香族ビニルモノマー0~90重量%、シアン化ビニルモノマー0~25重量%、及びこれらと共重合可能なビニルモノマー0~20重量%を含む単量体混合物(b2)10~50重量部が重合した重合体粒子であって、ラテックス粒子(b1)と単量体混合物(b2)の合計が100重量部であることが好ましい。 The acrylic resin particles (b) contain 50 to 100% by weight of a (meth)acrylic acid ester, 0 to 40% by weight of an aromatic vinyl monomer, 0 to 10% by weight of a vinyl monomer copolymerizable therewith, and polyfunctional 50 to 90 parts by weight of latex particles (b1) containing 0 to 5% by weight of monomer, 10 to 100% by weight of (meth)acrylic acid ester, 0 to 90% by weight of aromatic vinyl monomer, and 0 to 25% by weight of vinyl cyanide monomer % and 10 to 50 parts by weight of a monomer mixture (b2) containing 0 to 20% by weight of a vinyl monomer copolymerizable therewith, the latex particles (b1) and the monomer mixture. The total of (b2) is preferably 100 parts by weight.

前記マスターバッチ(C)は、前記熱膨張性マイクロカプセル(A)を30重量%以上80重量%以下、前記キャリア樹脂(B1)を15重量%以上65重量%以下、及び前記可塑剤(B2)を5重量%以上30重量%以下含み、前記キャリア樹脂(B1)の含有量が前記可塑剤(B2)の含有量より多いことが好ましい。 The masterbatch (C) contains 30% by weight or more and 80% by weight or less of the thermally expandable microcapsules (A), 15% by weight or more and 65% by weight or less of the carrier resin (B1), and the plasticizer (B2). 5% by weight or more and 30% by weight or less, and the content of the carrier resin (B1) is preferably larger than the content of the plasticizer (B2).

本発明は、また、前記のマスターバッチを1~15重量%、ポリカーボネート系樹脂を30~99重量%、並びにポリエステル系樹脂、ポリエステル-ポリエーテル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-エチレン-プロピレン-ジエン-スチレン共重合体、アクリレート-スチレン-アクリロニトリル共重合体、アクリロニトリル-スチレン共重合体、ポリアリレート樹脂、ポリスチレン系樹脂、及びポリアミド系樹脂からなる群より選択される1種以上の他の熱可塑性樹脂を0~55重量%を含有するポリカーボネート系樹脂組成物に関する。 The present invention also comprises 1 to 15% by weight of the masterbatch, 30 to 99% by weight of polycarbonate resin, polyester resin, polyester-polyether copolymer, acrylonitrile-butadiene-styrene copolymer, acrylonitrile - One or more selected from the group consisting of ethylene-propylene-diene-styrene copolymers, acrylate-styrene-acrylonitrile copolymers, acrylonitrile-styrene copolymers, polyarylate resins, polystyrene resins, and polyamide resins It relates to a polycarbonate resin composition containing 0 to 55% by weight of another thermoplastic resin.

前記ポリカーボネート系樹脂組成物は、さらに無機化合物を含んでもよい。 The polycarbonate-based resin composition may further contain an inorganic compound.

本発明は、また、前記のポリカーボネート系樹脂組成物を射出発泡成形したことを特徴とする射出発泡成形体に関する。 The present invention also relates to an injection foam molded article obtained by injection foam molding the polycarbonate resin composition.

本発明は、また、前記のポリカーボネート系樹脂組成物を射出成形機に供給し、初期充填厚みまで充填した後に、金型のコアをバックさせることを特徴とする射出発泡成形体の製造方法に関する。 The present invention also relates to a method for producing an injection foam-molded article, which comprises supplying the above-described polycarbonate-based resin composition to an injection molding machine, filling the composition to the initial filling thickness, and then backing the core of the mold.

本発明によれば、白化の発生が抑制され、外観の良好な、ポリカーボネート系樹脂組成物の射出発泡成形体を得ることができる熱膨張性マイクロカプセルのマスターバッチ及びポリカーボネート系樹脂組成物を提供することができる。また、本発明によれば、白化の発生が抑制され、外観の良いポリカーボネート系樹脂組成物の射出発泡成形体を得ることができる。 According to the present invention, there is provided a masterbatch of thermally expandable microcapsules and a polycarbonate-based resin composition, which are capable of obtaining an injection foam molded article of a polycarbonate-based resin composition that suppresses occurrence of whitening and has a good appearance. be able to. Further, according to the present invention, it is possible to obtain an injection foam molded article of a polycarbonate-based resin composition that suppresses the occurrence of whitening and has a good appearance.

図1は、射出発泡成形体を作製する際に用いられる金型のキャビティに関する説明図である。FIG. 1 is an explanatory diagram of a mold cavity used when producing an injection foam molded article.

以下に、本発明の実施の形態を説明する。なお、本発明は以下に説明した実施形態に限定されるものではない。 Embodiments of the present invention are described below. It should be noted that the present invention is not limited to the embodiments described below.

<熱膨張性マイクロカプセル(A)>
まず、本発明で使用する熱膨張性マイクロカプセル(A)に関して、詳細に説明する。熱膨張性マイクロカプセル(A)は、液状の低沸点化合物を熱可塑性ポリマーのシェルで包んだカプセル状の発泡剤であり、射出成形機のシリンダ内の加熱で気化した低沸点化合物の圧力によって、膨張したカプセルが発泡剤として機能する。熱膨張性マイクロカプセル(A)としては、例えば、特開2011-16884号公報に記載されているものを好適に用いてもよい。具体的には、熱膨張性マイクロカプセル(A)は、コアシェル構造を有し、コアは沸点が10℃以上330℃以下である化合物の1種以上で構成され、シェルはコアを内包しており、熱可塑性樹脂で構成されている。
<Thermal expandable microcapsules (A)>
First, the thermally expandable microcapsules (A) used in the present invention will be described in detail. The thermally expandable microcapsule (A) is a capsule foaming agent in which a liquid low boiling point compound is wrapped in a thermoplastic polymer shell. The expanded capsule acts as a foaming agent. As the thermally expandable microcapsules (A), for example, those described in JP-A-2011-16884 may be preferably used. Specifically, the thermally expandable microcapsule (A) has a core-shell structure, the core is composed of one or more compounds having a boiling point of 10 ° C. or higher and 330 ° C. or lower, and the shell encloses the core. , is made of thermoplastic resin.

コアは、沸点が10℃以上330℃以上である化合物の中から選択した1種以上で構成すればよい。コアを構成する化合物としては、特に限定されないが、例えば、炭化水素類、アルコール類、ケトン類等が挙げられる。炭化水素類としては、特に限定されないが、例えば、ペンタン、ヘキサン、へプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ノナデカン、エイコサン、及び、これらの炭化水素の構造異性体等が挙げられる。コアを構成する化合物は、好ましくは、沸点が10℃以上330℃以下の炭化水素の1種以上であり、より好ましくは沸点が30℃以上280℃以下の炭化水素の1種以上であり、さらに好ましくは沸点が30℃以上200℃以下の炭化水素の1種以上である。沸点が10℃以上の化合物を用いることで、熱膨張性マイクロカプセル(A)のマスターバッチ化がしやすい。また、沸点が330℃以下の化合物を用いることで、重合時に分散性が良好になり、熱膨張性マイクロカプセルを製造しやすい。 The core may be composed of one or more compounds selected from compounds having a boiling point of 10° C. or higher and 330° C. or higher. Compounds constituting the core are not particularly limited, but examples thereof include hydrocarbons, alcohols, ketones and the like. Examples of hydrocarbons include, but are not limited to, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane, eicosane, and these Examples include structural isomers of hydrocarbons. The compound constituting the core is preferably one or more hydrocarbons having a boiling point of 10° C. or higher and 330° C. or lower, more preferably one or more hydrocarbons having a boiling point of 30° C. or higher and 280° C. or lower, and further Preferably, it is one or more hydrocarbons having a boiling point of 30°C or higher and 200°C or lower. By using a compound having a boiling point of 10°C or higher, it is easy to form a masterbatch of the thermally expandable microcapsules (A). Moreover, by using a compound having a boiling point of 330° C. or less, the dispersibility becomes good during polymerization, and the thermally expandable microcapsules can be easily produced.

熱膨張性マイクロカプセル(A)のシェルを構成する熱可塑性樹脂の単量体成分としては、例えば、ニトリル系単量体、(メタ)アクリレート系単量体、芳香族ビニル系単量体、ジエン系単量体、カルボキシル基を有するビニル系単量体、並びにメチロール基、水酸基、アミノ基、エポキシ基、及びイソシアネート基からなる群より選択される1種以上の反応性官能基を有する単量体からなる群より選択される1種以上の単量体を用いることができる。 Examples of the monomer component of the thermoplastic resin constituting the shell of the thermally expandable microcapsule (A) include nitrile-based monomers, (meth)acrylate-based monomers, aromatic vinyl-based monomers, dienes monomer, a vinyl monomer having a carboxyl group, and a monomer having one or more reactive functional groups selected from the group consisting of a methylol group, a hydroxyl group, an amino group, an epoxy group, and an isocyanate group. One or more monomers selected from the group consisting of can be used.

ニトリル系単量体としては、例えば、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、α-エトキシアクリロニトリル、フマロニトリル等が挙げられる。 Examples of nitrile monomers include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethoxyacrylonitrile, fumaronitrile and the like.

(メタ)アクリレート系単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、フェニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。本発明において、「(メタ)アクリレート」は、メタクリレートであってもよく、アクリレートであってもよい。 (Meth)acrylate monomers include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, stearyl (meth)acrylate, lauryl (meth)acrylate, phenyl (meth)acrylate, isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, benzyl (meth)acrylate and the like. In the present invention, "(meth)acrylate" may be methacrylate or acrylate.

芳香族ビニル系単量体としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、t-ブチルスチレン、p-ニトロスチレン、クロロメチルスチレン等が挙げられる。 Examples of aromatic vinyl monomers include styrene, α-methylstyrene, vinyltoluene, t-butylstyrene, p-nitrostyrene, chloromethylstyrene and the like.

ジエン系単量体としては、例えば、ブタジエン、イソプレン、クロロプレン等が挙げられる。 Examples of diene-based monomers include butadiene, isoprene, and chloroprene.

カルボキシル基を有するビニル単量体としては、例えば、アクリル酸、メタクリル酸、エタクリル酸、クロトン酸、ケイ皮酸等の不飽和モノカルボン酸、マレイン酸、イタコン酸、フマル酸、シトラコン酸、クロロマレイン酸等の不飽和ジカルボン酸、及びその無水物、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノブチル、フマル酸モノメチル、フマル酸モノエチル、イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノブチル等の不飽和ジカルボン酸モノエステル等が挙げられる。 Examples of vinyl monomers having a carboxyl group include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid and cinnamic acid, maleic acid, itaconic acid, fumaric acid, citraconic acid and chloromalein. Unsaturated dicarboxylic acids such as acids and their anhydrides, unsaturated dicarboxylic acids such as monomethyl maleate, monoethyl maleate, monobutyl maleate, monomethyl fumarate, monoethyl fumarate, monomethyl itaconate, monoethyl itaconate, and monobutyl itaconate Monoester etc. are mentioned.

メチロール基、水酸基、アミノ基、エポキシ基、及びイソシアネート基からなる群より選択される1種以上の反応性官能基を有する単量体(以下において、単に「反応性官能基を有する単量体」とも記す。)としては、例えば、N-メチロール(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、N、N-ジメチルアミノプロピル(メタ)アクリレート、ビニルグリシジルエーテル、プロペニルグリシジルエーテル、グリシジル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、p-ヒドロキシスチレン、ブロックイソシアネート等が挙げられる。ブロックイソシアネートとしては、例えば、イソシアネート化合物(ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート等)のフェノール、アルコール、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸エチル、オキシム、ジメチルピラゾール、メチルエチルケトンオキシム、カプロラクタム等によるブロックイソシアネート等が挙げられる。本発明において、「(メタ)アクリルアミド」は、メタクリルアミドであってもよく、アクリルアミドであってもよい。 A monomer having one or more reactive functional groups selected from the group consisting of a methylol group, a hydroxyl group, an amino group, an epoxy group, and an isocyanate group (hereinafter simply referred to as "a monomer having a reactive functional group" Also referred to as.), for example, N-methylol (meth)acrylamide, N,N-dimethylaminoethyl (meth)acrylate, N,N-dimethylaminopropyl (meth)acrylate, vinyl glycidyl ether, propenyl glycidyl ether, glycidyl (meth)acrylate, glycerin mono(meth)acrylate, 4-hydroxybutyl(meth)acrylate, 2-hydroxy-3-phenoxypropyl(meth)acrylate, p-hydroxystyrene, blocked isocyanate and the like. Examples of blocked isocyanates include isocyanate compounds (diphenylmethane diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, etc.) such as phenol, alcohol, dimethyl malonate, diethyl malonate, ethyl acetoacetate, oxime, dimethylpyrazole, Examples include blocked isocyanates with methyl ethyl ketone oxime, caprolactam, and the like. In the present invention, "(meth)acrylamide" may be methacrylamide or acrylamide.

熱膨張性マイクロカプセル(A)のシェルによってポリカーボネート系樹脂等の樹脂成分の主鎖が分解することを抑制する観点から、前記シェルを構成する熱可塑性樹脂は、上述したニトリル系単量体、(メタ)アクリレート系単量体、芳香族ビニル系単量体、及びカルボキシル基を有するビニル系単量体からなる群から選ばれる1種以上を含むことが好ましい。また、前記シェルを構成する熱可塑性樹脂は、連鎖移動剤及び反応性官能基を有する単量体を適宜含んでもよい。 From the viewpoint of suppressing decomposition of the main chain of a resin component such as a polycarbonate-based resin by the shell of the thermally expandable microcapsule (A), the thermoplastic resin constituting the shell is the above-described nitrile-based monomer, ( It preferably contains one or more selected from the group consisting of meth)acrylate-based monomers, aromatic vinyl-based monomers, and vinyl-based monomers having a carboxyl group. Further, the thermoplastic resin forming the shell may appropriately contain a chain transfer agent and a monomer having a reactive functional group.

連鎖移動剤としては、通常のラジカル重合で使用されるものであれば良く、特に限定されない。具体的には、メルカプタン系化合物を用いることができる。メルカプタン系化合物としては、例えば、n-ドデシルメルカプタン、n-オクチルメルカプタン、t-ドデシルメルカプタン、n-オクタデシルメルカプタン等のアルキルメルカプタン、2-メルカプトベンゾチアゾール、ブロムトリクロルメタン、α-メチルスチレンダイマー、チオグリコール酸2-エチルヘキシル等が好適に使用できる。 The chain transfer agent is not particularly limited as long as it is used in ordinary radical polymerization. Specifically, a mercaptan-based compound can be used. Mercaptan compounds include, for example, n-dodecylmercaptan, n-octylmercaptan, t-dodecylmercaptan, n-octadecylmercaptan and other alkylmercaptans, 2-mercaptobenzothiazole, bromtrichloromethane, α-methylstyrene dimer, thioglycol. Acid 2-ethylhexyl and the like can be preferably used.

ポリカーボネート系樹脂等の樹脂成分の分解を発生させず、射出発泡成形体の表面性を向上させる観点から、前記シェルを構成する熱可塑性樹脂において、カルボキシル基を含有する単量体及びアミノ基を含有する単量体からなる群より選択される1種以上の単量体に由来する構成単位の濃度が12mmol/g以下であることが好ましく、10mmоl/g以下がより好ましく、8mmоl/g以下がさらに好ましく、5mmоl/g以下がさらにより好ましく、3mmоl/g以下がさらにより好ましく、1mmol/g以下が特に好ましく、カルボキシル基を含有する単量体及び/又はアミノ基を含有する単量体を実質的に含まないことが最も好ましい。前記シェルを構成する熱可塑性樹脂のカルボキシル基の濃度の下限としては、0.001mmol/g以上であってもよい。 From the viewpoint of preventing the decomposition of resin components such as polycarbonate-based resins and improving the surface properties of the injection foam molded product, the thermoplastic resin constituting the shell contains a monomer containing a carboxyl group and an amino group. The concentration of structural units derived from one or more monomers selected from the group consisting of monomers is preferably 12 mmol/g or less, more preferably 10 mmol/g or less, and further 8 mmol/g or less. Preferably, 5 mmol/g or less is even more preferable, 3 mmol/g or less is even more preferable, and 1 mmol/g or less is particularly preferable. Most preferably not included in The lower limit of the concentration of carboxyl groups in the thermoplastic resin forming the shell may be 0.001 mmol/g or more.

ポリカーボネート系樹脂等の樹脂の主鎖の分解を抑制する観点から、熱膨張性マイクロカプセル(A)において、アルカリ性物質の濃度は、2000ppm以下が好ましく、より好ましくは1000ppm以下であり、さらに好ましくは800ppm以下である。2000ppmを超えると、ポリカーボネート系樹脂の分子量低下が起こり、成形体の強度が低下してしまうおそれがある。上記アルカリ性物質としては、例えば、アルカリ金属及び/又はアルカリ土類金属の水酸化物(塩)由来のイオン成分が挙げられ、具体的にはLi、Na、Mg、K、Ca、Ba等の金属の水酸化物(塩)由来のイオン成分が挙げられる。 From the viewpoint of suppressing decomposition of the main chain of a resin such as a polycarbonate-based resin, in the thermally expandable microcapsules (A), the concentration of the alkaline substance is preferably 2000 ppm or less, more preferably 1000 ppm or less, and still more preferably 800 ppm. It is below. If it exceeds 2000 ppm, the molecular weight of the polycarbonate-based resin may decrease, and the strength of the molded article may decrease. Examples of the alkaline substance include ion components derived from hydroxides (salts) of alkali metals and/or alkaline earth metals. Specifically, metals such as Li, Na, Mg, K, Ca, and Ba ionic components derived from hydroxides (salts) of

熱膨張性マイクロカプセル(A)のpHは、中性付近であることが望ましい。熱膨張性マイクロカプセル(A)は、一般的には、水系分散媒体中で、重合性単量体とコアを形成する低沸点化合物を含有する混合物にて懸濁重合を進行させることで、単量体で構成された熱可塑性樹脂のシェル内にコア成分として低沸点化合物を封入することで作製することができる。熱膨張性マイクロカプセル(A)のpHは、このような重合時に調整することが望ましく、一般的には、リン酸水素カリウム緩衝液を添加する方法が挙げられる。pHの好ましい範囲としては6.0以上8.0以下であり、より好ましい範囲は6.0以上7.5以下であり、さらに好ましい範囲は6.0以上7.0以下である。pHの測定方法は、ガラス電極法が挙げられる。ガラス電極法では、ガラス電極と比較電極の2本の電極を用い、電極間に生じた電位差を検出しpH値に変換する。 The pH of the thermally expandable microcapsules (A) is desirably near neutral. Thermally expandable microcapsules (A) are generally produced by proceeding suspension polymerization in a mixture containing a polymerizable monomer and a low boiling point compound forming a core in an aqueous dispersion medium. It can be produced by enclosing a low boiling point compound as a core component in a thermoplastic resin shell composed of a polymer. The pH of the heat-expandable microcapsules (A) is desirably adjusted during such polymerization, and generally includes a method of adding a potassium hydrogen phosphate buffer. A preferable range of pH is 6.0 or more and 8.0 or less, a more preferable range is 6.0 or more and 7.5 or less, and a further preferable range is 6.0 or more and 7.0 or less. A method for measuring pH includes a glass electrode method. In the glass electrode method, two electrodes, a glass electrode and a reference electrode, are used, and the potential difference generated between the electrodes is detected and converted into a pH value.

ポリカーボネート系樹脂の分子量低下を起こさない観点から、熱膨張性マイクロカプセル(A)において、シェルを構成する熱可塑性樹脂は、下記の条件を満たすことが好ましい。ポリカーボネート系樹脂95重量部と、シェルを構成する熱可塑性樹脂5重量部を、φ30mm単軸押出機にて、300℃で混練して得られたペレットのTG/DTA測定による5%重量減少の温度が好ましくは200℃以上であり、より好ましくは220℃以上であり、さらに好ましくは240℃以上であり、最も好ましいくは260℃以上である。また、前記ペレットの重量平均分子量Mwと数平均分子量Mnが、ポリカーボネート系樹脂のMwとMnに対する、MwとMnの保持率の好ましい範囲はそれぞれ60%以上であり、より好ましい範囲は80%以上であり、さらに好ましい範囲は90%以上で、最も好ましい範囲は95%以上である。 From the viewpoint of not causing a decrease in the molecular weight of the polycarbonate-based resin, the thermoplastic resin constituting the shell in the thermally expandable microcapsules (A) preferably satisfies the following conditions. TG/DTA measurement of pellets obtained by kneading 95 parts by weight of polycarbonate resin and 5 parts by weight of thermoplastic resin constituting the shell with a single screw extruder of φ30 mm at 300 ° C. The temperature at which the weight decreases by 5%. is preferably 200° C. or higher, more preferably 220° C. or higher, still more preferably 240° C. or higher, and most preferably 260° C. or higher. In addition, the weight average molecular weight Mw and number average molecular weight Mn of the pellets are preferably 60% or more, and more preferably 80% or more, with respect to the Mw and Mn of the polycarbonate resin. A more preferred range is 90% or higher, and the most preferred range is 95% or higher.

熱膨張性マイクロカプセル(A)は、(未膨張時の)平均粒子径が0.5μm以上50μm以下であることが好ましく、より好ましくは0.7μm以上50μm以下であり、さらに好ましくは1.0μm以上45μm以下であり、さらにより好ましくは1.0μm以上40μm以下であり、特に好ましくは1.0μm以上35μm以下である。熱膨張性マイクロカプセル(A)の加熱時の最大粒子径は、未膨張時の平均粒子径から凡そ3倍以上5倍以下の範囲である。未膨張時の平均粒子径が0.5μm以上50μm以下であれば、膨張時の粒子径は凡そ1.5μm以上250μm以下のサイズとなり、発泡時のシャルピー衝撃強度や面衝撃強度の強度低下を大きく抑制することができる。熱膨張性マイクロカプセル(A)の未膨張時の平均粒子径は、粒度分布測定装置、具体的には島津製作所製の粒度分布測定装置SALD-3000Jで測定することができる。 The thermally expandable microcapsules (A) preferably have an average particle size (unexpanded) of 0.5 µm or more and 50 µm or less, more preferably 0.7 µm or more and 50 µm or less, and still more preferably 1.0 µm. 45 μm or less, more preferably 1.0 μm or more and 40 μm or less, and particularly preferably 1.0 μm or more and 35 μm or less. The maximum particle size of the thermally expandable microcapsules (A) when heated is in the range of about 3 to 5 times the average particle size of the unexpanded microcapsules. If the average particle size when unexpanded is 0.5 μm or more and 50 μm or less, the particle size when expanded is about 1.5 μm or more and 250 μm or less, and the decrease in Charpy impact strength and surface impact strength during foaming is greatly reduced. can be suppressed. The average particle size of the unexpanded thermally expandable microcapsules (A) can be measured with a particle size distribution analyzer, specifically a particle size distribution analyzer SALD-3000J manufactured by Shimadzu Corporation.

熱膨張性マイクロカプセル(A)は、最大膨張温度(最大発泡温度とも称される。)は、180℃以上300℃以下が好ましく、より好ましくは190℃以上290℃以下であり、さらに好ましくは200℃以上280℃以下であり特に好ましくは210℃以上270℃以下である。本発明において、熱膨張性マイクロカプセル(A)の最大膨張温度は、特許第5484673号に記載されている測定方法で測定することができる。具体的には、バーキンエルマー社製のTMA-7型を用いて「TMA測定」を行う。サンプル約0.25mgを容器に入れて、昇温速度5℃/minで昇温し、その高さの変位を連続的に測定し、容器内のサンプルの高さの変位が最大となった時の温度を最大膨張温度とする。熱膨張性マイクロカプセル(A)の最大膨張温度が上述した範囲であると、ポリカーボネート系樹脂の成形温度とマッチングすることから、低密度かつ強度が高い射出発泡成形体が得られやすい。 The thermally expandable microcapsules (A) have a maximum expansion temperature (also referred to as maximum foaming temperature) of preferably 180° C. or higher and 300° C. or lower, more preferably 190° C. or higher and 290° C. or lower, still more preferably 200° C. °C or higher and 280 °C or lower, and particularly preferably 210 °C or higher and 270 °C or lower. In the present invention, the maximum expansion temperature of the thermally expandable microcapsules (A) can be measured by the measuring method described in Japanese Patent No. 5484673. Specifically, "TMA measurement" is performed using TMA-7 manufactured by Birkin Elmer. About 0.25 mg of the sample is placed in a container, the temperature is raised at a temperature increase rate of 5 ° C./min, and the height displacement is continuously measured. is the maximum expansion temperature. When the maximum expansion temperature of the thermally expandable microcapsules (A) is within the above range, it matches the molding temperature of the polycarbonate-based resin, so that an injection foam molded article with low density and high strength can be easily obtained.

<キャリア樹脂組成物(B)>
キャリア樹脂組成物(B)は、ポリカーボネート系樹脂と実質的に相溶し、かつ80℃におけるせん断粘度が1.0Pa・s以上1.5×106Pa・s以下である。これにより、キャリア樹脂組成物(B)でマスターバッチ化した熱膨張性マイクロカプセル(A)のマスターバッチを用いたポリカーボネート系樹脂組成物の発泡樹脂成形体において、白化が抑制され、外観が良好になる。本発明において、「ポリカーボネート系樹脂と実質的に相溶する」とは、具体的には、キャリア樹脂組成物(B)とポリカーボネート系樹脂の混合物の示差走査熱量測定(DSC)において、ガラス転移温度のピークが一つとなることをいう。
<Carrier Resin Composition (B)>
The carrier resin composition (B) is substantially compatible with the polycarbonate resin, and has a shear viscosity at 80° C. of 1.0 Pa·s or more and 1.5×10 6 Pa·s or less. As a result, in the foamed resin molding of the polycarbonate resin composition using the masterbatch of the thermally expandable microcapsules (A) masterbatched with the carrier resin composition (B), whitening is suppressed and the appearance is improved. Become. In the present invention, "substantially compatible with the polycarbonate resin" specifically means that a mixture of the carrier resin composition (B) and the polycarbonate resin is measured by differential scanning calorimetry (DSC) at a glass transition temperature of It means that the peak of becomes one.

キャリア樹脂組成物(B)の80℃におけるせん断粘度が1.0Pa・s以上1.5×106Pa・s以下であることにより、熱膨張性マイクロカプセル(A)がキャリア樹脂組成物(B)中に均一に分散したマスターバッチを得ることができる。具体的には、130℃において、熱膨張性マイクロカプセル(A)とキャリア樹脂組成物(B)を混練してマスターバッチを作製するする際、キャリア樹脂組成物(B)の粘性が低いことによって、熱膨張性マイクロカプセル(A)にシェアがかからず、熱膨張性マイクロカプセル(A)を膨張させずにペレット化することが可能となる。マスターバッチ化の加工性を高める観点から、キャリア樹脂組成物(B)の80℃におけるせん断粘度は、1.0Pa・s以上1.0x106Pa・s以下であることが好ましく、1.0Pa・s以上6x105Pa・s以下であることが好ましく、より好ましくは1.0Pa・s以上3x105Pa・s以下であり、さらに好ましくは5Pa・s以上1.5x105Pa・s以下であり、さらにより好ましくは1.0×102Pa・s以上1.5x105Pa・s以下であり、特に好ましくは1.0×103Pa・s以上1.5x105Pa・s以下である。キャリア樹脂組成物(B)の80℃におけるせん断粘度は、島津製作所製フローテスター(型式CFT-500C)を使用して測定することができる。具体的には、測定開始温度を50℃とし、直径1.0mm、長さ10mmのキャピラリー中をキャリア樹脂組成物(B)に一定荷重30kgfを与えて流動させ、10℃/minで昇温させ、測定温度が80℃となった時点での剪断粘度を測定する。The shear viscosity of the carrier resin composition (B) at 80° C. is 1.0 Pa·s or more and 1.5×10 6 Pa·s or less, so that the thermally expandable microcapsules (A) are in the carrier resin composition (B ) to obtain a uniformly dispersed masterbatch. Specifically, when the thermally expandable microcapsules (A) and the carrier resin composition (B) are kneaded at 130°C to prepare a masterbatch, the viscosity of the carrier resin composition (B) is low. , the heat-expandable microcapsules (A) are not subjected to shear and can be pelletized without expanding the heat-expandable microcapsules (A). From the viewpoint of improving workability in masterbatching, the carrier resin composition (B) preferably has a shear viscosity at 80° C. of 1.0 Pa·s or more and 1.0×10 6 Pa·s or less. s or more and 6×10 5 Pa·s or less, more preferably 1.0 Pa·s or more and 3×10 5 Pa·s or less, still more preferably 5 Pa·s or more and 1.5×10 5 Pa·s or less, It is more preferably 1.0×10 2 Pa.s or more and 1.5×10 5 Pa.s or less, and particularly preferably 1.0×10 3 Pa.s or more and 1.5×10 5 Pa.s or less. The shear viscosity at 80° C. of the carrier resin composition (B) can be measured using a Shimadzu flow tester (model CFT-500C). Specifically, the measurement start temperature is set to 50° C., the carrier resin composition (B) is allowed to flow in a capillary having a diameter of 1.0 mm and a length of 10 mm under a constant load of 30 kgf, and the temperature is raised at a rate of 10° C./min. , the shear viscosity is measured when the measurement temperature reaches 80°C.

〈キャリア樹脂(B1)〉
キャリア樹脂(B1)は、重量平均分子量が8,000以上350,000以下のアクリル系樹脂であればよい。好ましくは、キャリア樹脂(B1)の重量平均分子量が10,000以上330,000以下であり、より好ましくは10,000以上300,000以下であり、さらに好ましくは10,000以上280,000以下であり、さらにより好ましくは14,000以上330,000以下であり、さらにより好ましくは14,000以上300,000以下であり、さらにより好ましくは14,000以上280,000以下であり、さらにより好ましくは14,000以上200,000以下であり、特に好ましくは14,000以上100,000以下である。或いは、キャリア樹脂(B1)の重量平均分子量は、好ましくは16,000以上330,000以下であり、より好ましくは16,000以上300,000以下であり、さらにより好ましくは16,000以上280,000以下であり、さらにより好ましくは16,000以上200,000以下であり、特に好ましくは16,000以上100,000以下である。或いは、キャリア樹脂(B1)の重量平均分子量は、好ましくは19,000以上330,000以下であり、より好ましくは19,000以上300,000以下であり、さらにより好ましくは19,000以上280,000以下であり、さらにより好ましくは19,000以上200,000以下であり、特に好ましくは19,000以上100,000以下である。本発明において、樹脂の重量平均分子量及び数平均分子量は、GPC(ゲル浸透クロマトグラフィ)によって測定する。
<Carrier resin (B1)>
The carrier resin (B1) may be an acrylic resin having a weight average molecular weight of 8,000 or more and 350,000 or less. Preferably, the weight average molecular weight of the carrier resin (B1) is 10,000 or more and 330,000 or less, more preferably 10,000 or more and 300,000 or less, and still more preferably 10,000 or more and 280,000 or less. more preferably 14,000 or more and 330,000 or less, still more preferably 14,000 or more and 300,000 or less, still more preferably 14,000 or more and 280,000 or less, still more preferably is 14,000 or more and 200,000 or less, and particularly preferably 14,000 or more and 100,000 or less. Alternatively, the weight average molecular weight of the carrier resin (B1) is preferably 16,000 or more and 330,000 or less, more preferably 16,000 or more and 300,000 or less, and even more preferably 16,000 or more and 280,000 or less. 000 or less, more preferably 16,000 or more and 200,000 or less, and particularly preferably 16,000 or more and 100,000 or less. Alternatively, the weight average molecular weight of the carrier resin (B1) is preferably 19,000 or more and 330,000 or less, more preferably 19,000 or more and 300,000 or less, even more preferably 19,000 or more and 280,000 or less. 000 or less, more preferably 19,000 or more and 200,000 or less, and particularly preferably 19,000 or more and 100,000 or less. In the present invention, the weight average molecular weight and number average molecular weight of the resin are measured by GPC (gel permeation chromatography).

キャリア樹脂(B1)は、20℃で固体である。取扱い性に優れ、マスターバッチ(C)の加工性が良好になる。キャリア樹脂(B1)は、取扱い性の観点から、室温(20℃超え25℃以下)において、固体であることが好ましい。 Carrier resin (B1) is solid at 20°C. The handleability is excellent, and the workability of the masterbatch (C) is improved. The carrier resin (B1) is preferably solid at room temperature (more than 20° C. and 25° C. or less) from the viewpoint of handleability.

キャリア樹脂(B1)は、マスターバッチ(C)の加工性の観点から、ガラス転移温度が-30℃以上150℃以下であることが好ましく、-10℃以上140℃以下であることがより好ましく、10℃以上130℃以下であることがさらに好ましい。 The carrier resin (B1) preferably has a glass transition temperature of −30° C. or higher and 150° C. or lower, more preferably −10° C. or higher and 140° C. or lower, from the viewpoint of workability of the masterbatch (C). More preferably, the temperature is 10°C or higher and 130°C or lower.

キャリア樹脂(B1)は、特に限定されないが、例えば、ポリカーボネート系樹脂との相溶性の観点から、平均粒子径が50μm以上500μm以下のアクリル系樹脂粒子(a)と、アクリル系樹脂粒子(a)を被覆している平均粒子径が0.05μm以上0.5μm以下のアクリル系樹脂粒子(b)を含むアクリル系樹脂であることがより好ましい。 The carrier resin (B1) is not particularly limited, but from the viewpoint of compatibility with the polycarbonate resin, for example, acrylic resin particles (a) having an average particle size of 50 μm or more and 500 μm or less and acrylic resin particles (a) It is more preferable that the acrylic resin contains acrylic resin particles (b) having an average particle size of 0.05 μm or more and 0.5 μm or less that coat the .

アクリル系樹脂粒子(a)は、平均粒子径が50μm以上500μm以下であればよいが、75μm以上300μm以下であることが好ましく、100μm以上250μm以下であることがより好ましい。上述した平均粒子径を有するアクリル系樹脂粒子(a)は、懸濁重合法で得ることができる。アクリル系樹脂粒子(a)の平均粒子径が50μm以上であれば、ろ過性が良好になり、500μm以下であれば、キャリア樹脂(B1)に粒子状配合剤を粉体混合する場合、均一に混合することができる。アクリル系樹脂粒子(a)の平均粒子径は、マイクロトラックベル株式会社製のマイクロトラックMT3300を使用して測定する。 The acrylic resin particles (a) may have an average particle size of 50 μm to 500 μm, preferably 75 μm to 300 μm, more preferably 100 μm to 250 μm. The acrylic resin particles (a) having the above average particle size can be obtained by a suspension polymerization method. When the average particle size of the acrylic resin particles (a) is 50 μm or more, the filterability is improved. Can be mixed. The average particle size of the acrylic resin particles (a) is measured using Microtrac MT3300 manufactured by Microtrac Bell Co., Ltd.

キャリア樹脂(B1)において、アクリル系樹脂粒子(b)がアクリル系樹脂粒子(a)を被覆するとは、アクリル系樹脂粒子(a)の表面の全部をアクリル系樹脂粒子(b)で被覆してもよく、アクリル系樹脂粒子(a)の表面を部分的にアクリル系樹脂粒子(b)で被覆してもよい。アクリル系樹脂粒子(a)は、その表面積の50%以上がアクリル系樹脂粒子(b)で被覆されることが好ましく、60%以上が被覆されることがより好ましい。被覆される表面積が50%以上であると、キャリア樹脂(B1)の粉体特性が良好になる。 In the carrier resin (B1), the acrylic resin particles (b) covering the acrylic resin particles (a) means that the entire surface of the acrylic resin particles (a) is covered with the acrylic resin particles (b). Alternatively, the surface of the acrylic resin particles (a) may be partially covered with the acrylic resin particles (b). It is preferable that 50% or more of the surface area of the acrylic resin particles (a) is covered with the acrylic resin particles (b), and 60% or more is more preferably covered. When the surface area covered is 50% or more, the carrier resin (B1) has good powder characteristics.

アクリル系樹脂粒子(a)をアクリル系樹脂粒子(b)で被覆することにより、アクリル系樹脂粒子(a)の平均粒子径は、被覆前と比べ3%以上50%以下大きくなることが好ましい。アクリル系樹脂粒子(a)の変化が3%より小さいと、系中にアクリル系樹脂粒子(a)が残存し、その結果としてろ過性が改善されにくい傾向がある。すなわち、キャリア樹脂(B1)の平均粒子径は、アクリル系樹脂粒子(a)の平均粒子径より3%以上50%以下大きいことが好ましい。キャリア樹脂(B1)の平均粒子径は、マイクロトラックベル株式会社製のマイクロトラックMT3300を使用して測定する。 By coating the acrylic resin particles (a) with the acrylic resin particles (b), the average particle size of the acrylic resin particles (a) is preferably increased by 3% or more and 50% or less compared to before coating. When the change in the acrylic resin particles (a) is less than 3%, the acrylic resin particles (a) remain in the system, and as a result, filterability tends to be difficult to improve. That is, the average particle size of the carrier resin (B1) is preferably 3% or more and 50% or less larger than the average particle size of the acrylic resin particles (a). The average particle size of the carrier resin (B1) is measured using Microtrac MT3300 manufactured by Microtrac Bell Co., Ltd.

アクリル系樹脂粒子(a)は、懸濁重合で得られる重合体にともなう粉塵を制御しやすい観点から、(メタ)アクリル酸エステルを30~100重量%、及びこれと共重合可能なビニルモノマー0~70重量%で構成されていることが好ましい。より好ましくは、(メタ)アクリル酸エステルを70~100重量%、及びこれと共重合可能なビニルモノマー0~30重量%で構成されている。アクリル系樹脂粒子(a)において、(メタ)アクリル酸エステル由来の構成単位の含有量が30重量%以上であると、アクリル系樹脂粒子(b)との相溶性が良く、成形加工が良好になる。本発明において、「(メタ)アクリル酸」とは、メタクリル酸であってもよく、アクリル酸であってもよい。 The acrylic resin particles (a) contain 30 to 100% by weight of a (meth)acrylic acid ester and 0 of a vinyl monomer copolymerizable therewith, from the viewpoint of easily controlling dust accompanying a polymer obtained by suspension polymerization. It is preferably composed of ~70% by weight. More preferably, it comprises 70 to 100% by weight of (meth)acrylic acid ester and 0 to 30% by weight of a vinyl monomer copolymerizable therewith. In the acrylic resin particles (a), when the content of the structural unit derived from the (meth)acrylic acid ester is 30% by weight or more, the compatibility with the acrylic resin particles (b) is good, and the molding process is favorable. Become. In the present invention, "(meth)acrylic acid" may be methacrylic acid or acrylic acid.

(メタ)アクリル酸エステルは、特に限定されないが、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル等の炭素数が10以下のアルキル基を有するアクリル酸アルキル類、及びメタクル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル等の炭素数が10以下のアルキル基を有するメタクリル酸アルキル類等が挙げられる。これらは、1種を単独で用いてもよく、2種以上の組み合わせで用いることができる。これらのなかでも、アクリル系樹脂粒子(b)と組合せて良好な品質の成形体が得られる観点から、メタクリル酸メチル、メタクリル酸ブチル、アクリル酸エチル及びアクリル酸ブチルからなる群から選ばれる1種以上であることが好ましい。 The (meth)acrylic acid ester is not particularly limited, but for example, alkyl acrylates having an alkyl group having 10 or less carbon atoms such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and Examples thereof include alkyl methacrylates having an alkyl group having 10 or less carbon atoms such as methyl methacrylate, ethyl methacrylate, butyl methacrylate and 2-ethylhexyl methacrylate. These may be used individually by 1 type, and can be used in combination of 2 or more types. Among these, one selected from the group consisting of methyl methacrylate, butyl methacrylate, ethyl acrylate and butyl acrylate from the viewpoint of obtaining a good-quality molded product in combination with the acrylic resin particles (b). It is preferable that it is above.

また、(メタ)アクリル酸エステルと共重合可能なビニルモノマーとしては、特に限定されないが、例えば、スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレン等の芳香族ビニルモノマー;アクリル酸、メタクリル酸等のビニルカルボン酸モノマー;アクリロニトリル、メタクリロニトリル等のシアン化ビニルモノマー;塩化ビニル、臭化ビニル、クロロプレン等のハロゲン化ビニルモノマー;酢酸ビニル、エチレン、プロピレン、ブチレン、ブタジエン、イソブチレン等のアルケン類;ハロゲン化アルケン類;メタクリル酸アリル、ジアリルフタレート、トリアリルシアヌレート、ジメタクリル酸モノエチレングリコール、ジメタクリル酸テトラエチレングリコール、ジメタクリル酸テトラエチレングリコール、ジビニルベンゼン、メタクリル酸グリシジル等の多官能性モノマー等が挙げられる。これらは、1種を単独で用いてもよく、2種以上の組合せで用いることができる。これらのなかでも、アクリル系樹脂粒子(b)と組み合わせて良好な品質の成形体が得られる観点から、スチレン、α-メチルスチレン、アクリル酸、メタクリル酸、アクリロニトリル、酢酸ビニル、メタクリル酸アリル及びメタクリル酸グリシジルからなる群から選択される1種以上が好ましい。 In addition, vinyl monomers copolymerizable with (meth)acrylic acid esters are not particularly limited, but examples include aromatic vinyl monomers such as styrene, α-methylstyrene, monochlorostyrene and dichlorostyrene; vinyl carboxylic acid monomers; vinyl cyanide monomers such as acrylonitrile and methacrylonitrile; halogenated vinyl monomers such as vinyl chloride, vinyl bromide and chloroprene; alkenes such as vinyl acetate, ethylene, propylene, butylene, butadiene and isobutylene; Halogenated alkenes; polyfunctional monomers such as allyl methacrylate, diallyl phthalate, triallyl cyanurate, monoethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, divinylbenzene, glycidyl methacrylate, etc. etc. These may be used individually by 1 type, and can be used in combination of 2 or more types. Among these, styrene, α-methylstyrene, acrylic acid, methacrylic acid, acrylonitrile, vinyl acetate, allyl methacrylate and methacrylic are preferred from the viewpoint of obtaining a good-quality molded product in combination with the acrylic resin particles (b). One or more selected from the group consisting of glycidyl acid is preferred.

アクリル系樹脂粒子(a)は、上述した単量体の1種以上を懸濁重合して得られた、場合によっては共重合又はグラフト重合させた重合体の単独又は混合重合体粒子とすることができる。 The acrylic resin particles (a) are homopolymer particles or mixed polymer particles obtained by suspension polymerization of one or more of the above-mentioned monomers, and in some cases copolymerization or graft polymerization. can be done.

懸濁重合における分散安定剤としては、例えば、通常の無機系分散剤や有機系分散剤を使用することができる。無機系分散剤としては、例えば、炭酸マグネシウム、第三リン酸カルシウム等が挙げられる。有機系分散剤としては、例えば、でんぷん、ゼラチン、アクリルアミド、部分ケン化ポリビニルアルコール(PVA)、部分ケン化ポリメタクリル酸メチル、ポリアクリル酸、ポリアクリル酸の塩、セルロース、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ポリアルキレンオキシド、ポリビニルピロリドン、ポリビニルイミダゾール、スルホン化ポリスチレン等の天然高分子分散剤及び合成高分子分散剤、並びに、アルキルベンゼンスルホン酸塩、脂肪酸塩等の低分子分散剤(乳化剤とも称される。)等が挙げられる。 As the dispersion stabilizer in suspension polymerization, for example, a common inorganic dispersant or organic dispersant can be used. Examples of inorganic dispersants include magnesium carbonate and tribasic calcium phosphate. Examples of organic dispersants include starch, gelatin, acrylamide, partially saponified polyvinyl alcohol (PVA), partially saponified polymethyl methacrylate, polyacrylic acid, salts of polyacrylic acid, cellulose, methyl cellulose, hydroxymethyl cellulose, hydroxy Natural and synthetic polymer dispersants such as ethyl cellulose, polyalkylene oxide, polyvinylpyrrolidone, polyvinylimidazole, and sulfonated polystyrene, and low-molecular-weight dispersants (also called emulsifiers) such as alkylbenzenesulfonates and fatty acid salts. ) and the like.

懸濁重合における重合開始剤としては、ベンゾイルパーオキシド、ラウロイルパーオキシド等過酸化物や、アゾビスイソブチロニトリル等のアゾ化合物が挙げられる。 Polymerization initiators for suspension polymerization include peroxides such as benzoyl peroxide and lauroyl peroxide, and azo compounds such as azobisisobutyronitrile.

また、分子量調節のために、連鎖移動剤を用いても良い。連鎖移動剤としては、炭素数2~18のアルキルメルカプタン;チオグリコール酸エステル、β-メルカプトプロピオン酸等のメルカプト酸;ベンジルメルカプタン、チオフェノール、チオクレゾール、チオナフトール等の芳香族メルカプタン等が挙げられる。炭素数2~18のアルキルメルカプタンとしては、例えば、n-ドデシルメルカプタン、n-オクチルメルカプタン、t-ドデシルメルカプタン、n-オクタデシルメルカプタン等が挙げられる。これらの中でも炭素数4~12のアルキルメルカプタンが好ましい。チオグリコール酸エステルとしては、例えば、チオグリコール酸2-エチルヘキシル等が挙げられる。 A chain transfer agent may also be used for molecular weight control. Chain transfer agents include alkylmercaptans having 2 to 18 carbon atoms; mercapto acids such as thioglycolic acid esters and β-mercaptopropionic acid; aromatic mercaptans such as benzylmercaptan, thiophenol, thiocresol and thionaphthol. . Examples of alkylmercaptans having 2 to 18 carbon atoms include n-dodecylmercaptan, n-octylmercaptan, t-dodecylmercaptan, n-octadecylmercaptan and the like. Among these, alkyl mercaptans having 4 to 12 carbon atoms are preferred. Thioglycolic acid esters include, for example, 2-ethylhexyl thioglycolate.

分散安定剤、重合開始剤及び連鎖移動剤の添加量は、使用する単量体、及び目的とする懸濁重合体粒子(アクリル系樹脂粒子(a))の物性に応じて適宜設定することができる。 The amounts of the dispersion stabilizer, polymerization initiator and chain transfer agent to be added can be appropriately set according to the physical properties of the monomers to be used and the desired suspension polymer particles (acrylic resin particles (a)). can.

懸濁重合体粒子の製造方法は、特に限定されず、一般的に使用できる全ての手法を用いることができる。例えば、単量体又は単量体混合物を水に懸濁させ、そのまま重合反応を実施する方法、単量体又は単量体混合物の一部を水に懸濁させ重合反応を開始し、重合反応の進行に伴い、残りの単量体又は単量体混合物の水懸濁液を一段又は数段に分けて、あるいは連続的に重合反応槽へ追加して重合反応を実施する方法、単量体又は単量体混合物の一部を水に懸濁させ重合反応を開始し、重合反応の進行に伴い、残りの単量体又は単量体混合物を一段、あるいは数段に分けて、あるいは連続的に重合反応槽へ追加して重合反応を実施する方法等が挙げられる。 The method for producing the suspended polymer particles is not particularly limited, and all commonly available methods can be used. For example, a method of suspending a monomer or a monomer mixture in water and conducting a polymerization reaction as it is, a method of suspending a part of a monomer or a monomer mixture in water to initiate a polymerization reaction, and a polymerization reaction Along with the progress of, the remaining monomer or monomer mixture aqueous suspension is divided into one stage or several stages, or continuously added to the polymerization reaction tank to carry out the polymerization reaction. Alternatively, a part of the monomer mixture is suspended in water to initiate the polymerization reaction, and as the polymerization reaction progresses, the remaining monomer or monomer mixture is added in one stage, in several stages, or continuously. and a method of carrying out the polymerization reaction by adding it to the polymerization reaction tank.

重合開始剤及び連鎖移動剤の添加方法には特に制限がないが、重合開始剤及び連鎖移動剤の両方を単量体に溶解した後、単量体を水中に懸濁させ、そのまま重合反応を実施する手法が好ましい。重合に要する時間は、重合開始剤の種類と量、及び重合温度等によって異なるが通常1~24時間である。また、懸濁重合時に可塑剤、滑剤、安定剤及び紫外線吸収剤等プラスチックの成形加工時に通常添加される添加剤を単量体に添加することも可能である。 The method of adding the polymerization initiator and the chain transfer agent is not particularly limited. The practiced approach is preferred. The time required for polymerization varies depending on the type and amount of the polymerization initiator, the polymerization temperature, etc., but is usually 1 to 24 hours. Further, it is also possible to add additives such as plasticizers, lubricants, stabilizers and ultraviolet absorbers which are usually added during plastic molding during suspension polymerization to the monomers.

アクリル系樹脂粒子(b)は、平均粒子径が0.05μm以上0.5μm以下であればよいが、0.06μm以上0.3μm以下であることが好ましい。上述した平均粒子径を有するアクリル系樹脂粒子(b)は、乳化重合法で得ることができる。アクリル系樹脂粒子(b)の平均粒子径が上述した範囲内であると、キャリア樹脂(B1)を成形加工する際の加工性、並びに得られる成形体の耐衝撃強度及び透明性が良好になりやすい。アクリル系樹脂粒子(b)の平均粒子径は、マイクロトラックベル株式会社製のマイクロトラックMT3300を使用して測定する。 The acrylic resin particles (b) may have an average particle size of 0.05 μm or more and 0.5 μm or less, preferably 0.06 μm or more and 0.3 μm or less. The acrylic resin particles (b) having the above average particle size can be obtained by an emulsion polymerization method. When the average particle size of the acrylic resin particles (b) is within the range described above, the workability when molding the carrier resin (B1), and the impact strength and transparency of the resulting molded product are improved. Cheap. The average particle size of the acrylic resin particles (b) is measured using Microtrac MT3300 manufactured by Microtrac Bell Co., Ltd.

アクリル系樹脂粒子(b)は、(メタ)アクリル酸エステル30~100重量%、及びこれと共重合可能なビニルモノマー0~70重量%で構成されていることが好ましく、(メタ)アクリル酸エステル50~100重量%、芳香族ビニルモノマー0~40重量%、これらと共重合可能なビニルモノマー0~10重量%、及び多官能性モノマー0~5重量%で構成されたラテックス粒子(b1)50~90重量部と、(メタ)アクリル酸エステル10~100重量%、芳香族ビニルモノマー0~90重量%、シアン化ビニルモノマー0~25重量%、及びこれらと共重合可能なビニルモノマー0~20重量%を含む単量体混合物(b2)10~50重量部が重合した重合体粒子であって、ラテックス粒子(b1)と単量体混合物(b2)の合計が100重量部であることがより好ましい。 The acrylic resin particles (b) preferably comprise 30 to 100% by weight of a (meth)acrylic acid ester and 0 to 70% by weight of a vinyl monomer copolymerizable therewith. Latex particles (b1) 50 composed of 50 to 100% by weight, 0 to 40% by weight of an aromatic vinyl monomer, 0 to 10% by weight of a vinyl monomer copolymerizable therewith, and 0 to 5% by weight of a polyfunctional monomer ~90 parts by weight, 10 to 100% by weight (meth)acrylic acid ester, 0 to 90% by weight of an aromatic vinyl monomer, 0 to 25% by weight of a vinyl cyanide monomer, and 0 to 20% by weight of a vinyl monomer copolymerizable therewith. Polymer particles obtained by polymerizing 10 to 50 parts by weight of the monomer mixture (b2) containing % by weight, and the total of the latex particles (b1) and the monomer mixture (b2) is 100 parts by weight. preferable.

アクリル系樹脂粒子(b)を構成する(メタ)アクリル酸エステルとしては、特に限定されず、例えば、アクリル系樹脂粒子(a)についての説明時に列挙した(メタ)アクリル酸エステルを適宜用いることができる。また、アクリル系樹脂粒子(b)を構成する芳香族ビニルモノマー、シアン化ビニルモノマー、多官能性モノマー、その他の共重合可能なビニルモノマーとしては、特に限定されず、例えば、アクリル系樹脂粒子(a)についての説明時に列挙したものを適宜に用いることができる。 The (meth)acrylic acid ester that constitutes the acrylic resin particles (b) is not particularly limited, and for example, the (meth)acrylic acid esters listed when describing the acrylic resin particles (a) can be used as appropriate. can. In addition, the aromatic vinyl monomer, vinyl cyanide monomer, polyfunctional monomer, and other copolymerizable vinyl monomers constituting the acrylic resin particles (b) are not particularly limited. Those listed in the description of a) can be used as appropriate.

アクリル系樹脂粒子(b)は、より好ましくは、メタクリル酸メチル50~95重量%、炭素数2~8のアルキル基を有するメタクリル酸エステル5~50重量%及びこれらと共重合可能なビニルモノマー0~20重量%含む単量体混合物(a)を乳化重合したラテックス粒子(b1)70~95重量部と、アクリル酸エステル及びメタクリル酸メチルを除くメタクリル酸エステルからなる群から選ばれた1種以上の単量体20~80重量%、メタクリル酸メチル20~80重量%、及びこれらと共重合可能なビニルモノマー0~20重量%を含む単量体混合物(b2)5~30重量部をグラフト重合した乳化重合体粒子であり、ラテックス粒子(b1)及び単量体混合物(b2)の合計が100重量部である。具体的には、メタクリル酸メチル50~95重量%、炭素数2~8のアルキル基を有するメタクリル酸エステル5~50重量%及びこれらと共重合可能なビニルモノマー0~20重量%含む単量体混合物(I)70~95重量部を乳化重合し、得られた重合体ラテックスの存在下で、アクリル酸エステル及びメタクリル酸メチルを除くメタクリル酸エステルからなる群から選ばれた1種以上の単量体20~80重量%、メタクリル酸メチル20~80重量%、及びこれらと共重合可能なビニルモノマー0~20重量%を含む単量体混合物(II)5~30重量部をグラフト重合することにより得られる乳化重合体粒子であり、単量体混合物(I)及び単量体混合物(II)の合計が100重量部であることが好ましい。 The acrylic resin particles (b) more preferably contain 50 to 95% by weight of methyl methacrylate, 5 to 50% by weight of a methacrylic acid ester having an alkyl group having 2 to 8 carbon atoms, and 0 vinyl monomer copolymerizable therewith. 70 to 95 parts by weight of latex particles (b1) obtained by emulsion polymerization of a monomer mixture (a) containing up to 20% by weight, and one or more selected from the group consisting of acrylic acid esters and methacrylic acid esters other than methyl methacrylate. Graft polymerization of 5 to 30 parts by weight of a monomer mixture (b2) containing 20 to 80% by weight of the monomer, 20 to 80% by weight of methyl methacrylate, and 0 to 20% by weight of a vinyl monomer copolymerizable therewith. The total amount of the latex particles (b1) and the monomer mixture (b2) is 100 parts by weight. Specifically, a monomer containing 50 to 95% by weight of methyl methacrylate, 5 to 50% by weight of a methacrylic acid ester having an alkyl group of 2 to 8 carbon atoms, and 0 to 20% by weight of a vinyl monomer copolymerizable therewith. 70 to 95 parts by weight of the mixture (I) is emulsion polymerized, and in the presence of the obtained polymer latex, one or more monomers selected from the group consisting of acrylic acid esters and methacrylic acid esters excluding methyl methacrylate. by graft polymerizing 5 to 30 parts by weight of a monomer mixture (II) containing 20 to 80% by weight of a polymer, 20 to 80% by weight of methyl methacrylate, and 0 to 20% by weight of a vinyl monomer copolymerizable therewith. The resulting emulsion polymer particles preferably contain 100 parts by weight of the monomer mixture (I) and the monomer mixture (II) in total.

アクリル系樹脂粒子(b)は、より好ましくは、メタクリル酸メチル40~99.99重量%、これらと共重合可能なビニルモノマー0~59.99重量%及び多官能性モノマー0.01~10重量%を含む単量体混合物(III)重合した1段目重合体10~60重量部と、アクリル酸アルキル60~99.9重量%、これらと共重合可能なビニルモノマー0~39.9重量%及び多官能性モノマー0.1~5重量%を含む単量体混合物(IV)40~90重量部を重合して得られ、単量体混合物(III)及び単量体混合物(IV)の合計が100重量部である2段目重合体粒子(ラテックス粒子(b1))100重量部と、(メタ)アクリル酸エステル60~100重量%及びこれらと共重合可能なビニルモノマー0~40重量%を含む単量体混合物11~67重量部を重合した乳化重合体粒子である。具体的には、メタクリル酸メチル40~99.99重量%、これらと共重合可能なビニルモノマー0~59.99重量%及び多官能性モノマー0.01~10重量%を含む単量体混合物(III)10~60重量部を乳化重合し、得られた1段目重合体のラテックスの存在下に、アクリル酸アルキル60~99.9重量%、これらと共重合可能なビニルモノマー0~39.9重量%及び多官能性モノマー0.1~5重量%を含む単量体混合物(IV)40~90重量部を乳化重合して2段目重合体ラテックスを得、単量体混合物(III)及び単量体混合物(IV)の合計が100重量部であり、得られた2段目重合体ラテックスの固形分(ラテックス粒子(b1))100重量部の存在下に、さらに(メタ)アクリル酸エステル60~100重量%及びこれらと共重合可能なビニルモノマー0~40重量%を含む単量体混合物(b2)11~67重量部を重合してなる3層構造を有する乳化重合体粒子である。 Acrylic resin particles (b) more preferably contain 40 to 99.99% by weight of methyl methacrylate, 0 to 59.99% by weight of a vinyl monomer copolymerizable therewith, and 0.01 to 10% by weight of a polyfunctional monomer. 10 to 60 parts by weight of the polymerized first-stage polymer (III), 60 to 99.9% by weight of alkyl acrylate, and 0 to 39.9% by weight of a vinyl monomer copolymerizable therewith. And obtained by polymerizing 40 to 90 parts by weight of a monomer mixture (IV) containing 0.1 to 5% by weight of a polyfunctional monomer, the total of the monomer mixture (III) and the monomer mixture (IV) 100 parts by weight of second-stage polymer particles (latex particles (b1)) in which is 100 parts by weight, 60 to 100% by weight of (meth)acrylic acid ester, and 0 to 40% by weight of a vinyl monomer copolymerizable therewith. Emulsion polymer particles obtained by polymerizing 11 to 67 parts by weight of a monomer mixture containing Specifically, a monomer mixture containing 40 to 99.99% by weight of methyl methacrylate, 0 to 59.99% by weight of a vinyl monomer copolymerizable therewith and 0.01 to 10% by weight of a polyfunctional monomer ( III) 60 to 99.9% by weight of alkyl acrylate and 0 to 39.9% by weight of a vinyl monomer copolymerizable therewith in the presence of the first-stage polymer latex obtained by emulsion polymerization of 10 to 60 parts by weight. 40 to 90 parts by weight of a monomer mixture (IV) containing 9% by weight and 0.1 to 5% by weight of a polyfunctional monomer is emulsion polymerized to obtain a second-stage polymer latex, and a monomer mixture (III) and a total of 100 parts by weight of the monomer mixture (IV), and in the presence of 100 parts by weight of the solid content (latex particles (b1)) of the obtained second-stage polymer latex, (meth)acrylic acid Emulsion polymer particles having a three-layer structure obtained by polymerizing 11 to 67 parts by weight of a monomer mixture (b2) containing 60 to 100% by weight of an ester and 0 to 40% by weight of a vinyl monomer copolymerizable therewith. .

ラテックス粒子(b1)は、ガラス転移温度が0℃以下であることが好ましく、-30℃以下であることがより好ましい。ラテックス粒子(b1)のガラス転移温度が0℃以下であると、射出発泡成形体の耐衝撃強度が向上しやすい。 The latex particles (b1) preferably have a glass transition temperature of 0° C. or lower, more preferably −30° C. or lower. When the glass transition temperature of the latex particles (b1) is 0° C. or lower, the impact resistance strength of the injection foam molded article is likely to be improved.

キャリア樹脂(B1)は、アクリル系樹脂粒子(a)100重量部に対して、アクリル系樹脂粒子(b)を22重量部以上100重量部以下含むことが好ましく、25重量部以上100重量部以下含むことがより好ましく、30重量部以上100重量部以下含むことがさらに好ましい。アクリル系樹脂粒子(a)100重量部に対してアクリル系樹脂粒子(b)が22重量部未満では、ろ過性が改善されない恐れがある。また、アクリル系樹脂粒子(a)100重量部に対してアクリル系樹脂粒子(b)が100重量部を超える場合は、キャリア樹脂(B1)の脱水後含水率が高くなるおそれがある。 The carrier resin (B1) preferably contains 22 parts by weight or more and 100 parts by weight or less of the acrylic resin particles (b) with respect to 100 parts by weight of the acrylic resin particles (a), and more preferably 25 parts by weight or more and 100 parts by weight or less. It is more preferable to contain 30 parts by weight or more and 100 parts by weight or less. If the acrylic resin particles (b) are less than 22 parts by weight per 100 parts by weight of the acrylic resin particles (a), the filterability may not be improved. Further, when the amount of the acrylic resin particles (b) exceeds 100 parts by weight relative to 100 parts by weight of the acrylic resin particles (a), the moisture content of the carrier resin (B1) after dehydration may increase.

キャリア樹脂(B1)は、特に限定されないが、例えば、下記のように作製することができる。まず、懸濁重合によりアクリル系樹脂粒子(a)を含む懸濁液を調製し、乳化重合によりアクリル系重合体粒子(b)を含む乳化重合ラテックスを調製する。次に、前記懸濁液と前記乳化重合ラテックスを混合する。次に、得られた混合懸濁液中の固形分濃度(アクリル系重合体粒子(a)及びアクリル系重合体粒子(b)の合計濃度)を25重量%以上35重量%以下に調整する。次に、固形分の濃度を調製した混合懸濁液に、アクリル系重合体粒子(b)のビカット軟化温度以下の温度で電解質水溶液を添加しアクリル系重合体粒子(b)のビカット軟化温度より高い温度に加熱した後、固液分離によりキャリア樹脂(B1)を回収する。上述した製造方法により、アクリル系重合体粒子(a)の表面を均一にアクリル系重合体粒子(b)で被覆することができるとともに、ろ過性悪化の原因となるアクリル系重合体粒子(b)の残存を大幅に削減することが可能となる。 Although the carrier resin (B1) is not particularly limited, it can be produced, for example, as follows. First, a suspension containing acrylic resin particles (a) is prepared by suspension polymerization, and an emulsion polymerized latex containing acrylic polymer particles (b) is prepared by emulsion polymerization. Next, the suspension and the emulsion polymerization latex are mixed. Next, the solid content concentration (total concentration of acrylic polymer particles (a) and acrylic polymer particles (b)) in the resulting mixed suspension is adjusted to 25% by weight or more and 35% by weight or less. Next, to the mixed suspension having the adjusted solid content concentration, an aqueous electrolyte solution is added at a temperature equal to or lower than the Vicat softening temperature of the acrylic polymer particles (b). After heating to a high temperature, the carrier resin (B1) is recovered by solid-liquid separation. By the above-described production method, the surface of the acrylic polymer particles (a) can be uniformly coated with the acrylic polymer particles (b), and the acrylic polymer particles (b) that cause deterioration in filterability It is possible to significantly reduce the remaining

懸濁重合により得られたアクリル系樹脂粒子(a)を含む懸濁液と、乳化重合により得られたアクリル系重合体粒子(b)を含む乳化重合ラテックスを混合する方法は、撹拌下に、懸濁液へ乳化重合ラテックスを添加、又は、撹拌下に乳化重合ラテックスへ懸濁液を添加することが好ましい。 The method of mixing the suspension containing the acrylic resin particles (a) obtained by suspension polymerization and the emulsion polymerized latex containing the acrylic polymer particles (b) obtained by emulsion polymerization comprises, under stirring, It is preferable to add the emulsion-polymerized latex to the suspension or to add the suspension to the emulsion-polymerized latex while stirring.

アクリル系樹脂粒子(a)を含む懸濁液とアクリル系重合体粒子(b)を含む乳化重合ラテックスの固形分比は、アクリル系樹脂粒子(a)100重量部に対して、アクリル系重合体粒子(b)が22重量部以上100重量部以下であることが好ましく、25重量部以上100重量部以下であることがより好ましく、30重量部以上100重量部以下であることがさらに好ましい。アクリル系樹脂粒子(a)100重量部に対して、アクリル系重合体粒子(b)が22重量部以上であると、系中の残存アクリル系樹脂粒子(b)が低減し、その結果としてろ過性の改善しやすい。また、アクリル系樹脂粒子(a)100重量部に対して、アクリル系重合体粒子(b)が100重量部以下であると、得られるキャリア樹脂(B1)の脱水後含水率が低くなる。 The solid content ratio of the suspension containing the acrylic resin particles (a) and the emulsion polymerization latex containing the acrylic polymer particles (b) is that the acrylic resin particles (a) are 100 parts by weight per 100 parts by weight of the acrylic polymer. The content of particles (b) is preferably 22 to 100 parts by weight, more preferably 25 to 100 parts by weight, and even more preferably 30 to 100 parts by weight. If the amount of the acrylic polymer particles (b) is 22 parts by weight or more relative to 100 parts by weight of the acrylic resin particles (a), the amount of the acrylic resin particles (b) remaining in the system is reduced, resulting in filtration. Easy to improve. Further, if the amount of the acrylic polymer particles (b) is 100 parts by weight or less relative to 100 parts by weight of the acrylic resin particles (a), the resulting carrier resin (B1) will have a low moisture content after dehydration.

前記懸濁液と乳化重合ラテックスを混合する際において、懸濁液と乳化重合ラテックスの固形分濃度には特に制限はなく、通常の重合操作で得られる乳化重合ラテックス又は懸濁重合懸濁液をそのまま用いるのが製造上最も簡便であり好ましい。通常は、アクリル系樹脂粒子(a)を含む懸濁液の固形分濃度(アクリル系樹脂粒子(a)の濃度)は25重量%以上55重量%以下であることが好ましく、30重量%以上45重量%以下であることがより好ましく、33重量%以上45重量%以下であることがさらに好ましく、35重量%以上40重量%以下であることが特に好ましい。アクリル系樹脂粒子(b)を含む乳化重合ラテックスの固形分濃度(アクリル系樹脂粒子(b)の濃度)は25重量%以上55重量%以下であることが好ましく、25重量%以上45重量%以下であることがより好ましく、30重量%以上45重量%以下であることがさらに好ましく、30重量%以上40重量%以下であることが特に好ましい。混合時の温度は5℃以上が好ましく、5℃よりも低い場合はその後の熱処理操作のユーティリティー使用量が多大となるため好ましくない傾向がある。 When mixing the suspension and the emulsion-polymerized latex, the solid content concentration of the suspension and the emulsion-polymerized latex is not particularly limited. It is preferable to use it as it is because it is the simplest in terms of production. Generally, the solid content concentration of the suspension containing acrylic resin particles (a) (concentration of acrylic resin particles (a)) is preferably 25% by weight or more and 55% by weight or less, and preferably 30% by weight or more and 45% by weight. It is more preferably 33 wt % or more and 45 wt % or less, and particularly preferably 35 wt % or more and 40 wt % or less. The solid content concentration of the emulsion polymerized latex containing acrylic resin particles (b) (concentration of acrylic resin particles (b)) is preferably 25% by weight or more and 55% by weight or less, and 25% by weight or more and 45% by weight or less. is more preferably 30% by weight or more and 45% by weight or less, and particularly preferably 30% by weight or more and 40% by weight or less. The temperature at the time of mixing is preferably 5° C. or higher, and if it is lower than 5° C., there is a tendency that it is not preferable because the amount of utility usage for the subsequent heat treatment operation becomes large.

電解質水溶液を添加する際の前記混合懸濁液中におけるの固形分濃度(重合体粒子の濃度)は25重量%以上35重量%以下であることが好ましく、27重量%以上33重量%以下であることがより好ましい。電解質水溶液を添加する際の混合懸濁液中における重合体粒子(固形分)の濃度が25重量%以上であると、電解質水溶液を添加し加熱処理を実施した後の混合懸濁液中における粒子径が50μm以下の微小凝集体の生成が抑制され、ろ過性が良好になるとともにキャリア樹脂(B1)の脱水後含水率が低くなる。また、電解質水溶液を添加する際の混合懸濁液中における重合体粒子の濃度が35重量%以下であると、アクリル系樹脂粒子(b)を介した二次凝集粒子の生成が抑制され、キャリア樹脂(B1)の脱水後含水率が低くなる。 The solid content concentration (concentration of polymer particles) in the mixed suspension when the aqueous electrolyte solution is added is preferably 25% by weight or more and 35% by weight or less, and is 27% by weight or more and 33% by weight or less. is more preferable. If the concentration of the polymer particles (solid content) in the mixed suspension when the aqueous electrolyte solution is added is 25% by weight or more, the particles in the mixed suspension after the addition of the aqueous electrolyte solution and heat treatment are The formation of fine aggregates having a diameter of 50 μm or less is suppressed, the filterability is improved, and the post-dehydration water content of the carrier resin (B1) is lowered. Further, when the concentration of the polymer particles in the mixed suspension when the aqueous electrolyte solution is added is 35% by weight or less, the formation of secondary aggregated particles via the acrylic resin particles (b) is suppressed, and the carrier The moisture content of the resin (B1) after dehydration is lowered.

前記電解質水溶液は、撹拌下で、前記混合懸濁液へ添加することが好ましい。この操作により、乳化重合体粒子であるアクリル系樹脂粒子(b)が懸濁重合体粒子であるアクリル系樹脂粒子(a)表面に凝析(析出)し、アクリル系樹脂粒子(a)の表面を被覆する。前記電解質水溶液の添加は、懸濁重合の懸濁液と乳化重合ラテックスを混合した後に実施する必要がある。この理由は、懸濁重合の懸濁液と乳化重合ラテックスの混合時に、電解質水溶液が存在すると、生成するキャリア樹脂(B1)の形状が歪になり脱水後含水率が高くなるだけでなく、未凝固のアクリル系樹脂粒子(b)が残存し極度にろ過性が悪化する傾向にある。例えば、懸濁重合の懸濁液に電解質水溶液を添加した後に、乳化重合ラテックスを添加すると、アクリル系樹脂粒子(a)の表面におけるアクリル系樹脂粒子(b)の被覆の均一性の低下、及びろ過性悪化の原因となるアクリル系重合体粒子(b)の残存量が大幅に増加するという問題が発生する。 The electrolyte aqueous solution is preferably added to the mixed suspension under stirring. By this operation, the acrylic resin particles (b), which are emulsion polymer particles, coagulate (precipitate) on the surface of the acrylic resin particles (a), which are suspension polymer particles, and the surface of the acrylic resin particles (a) to cover. The addition of the aqueous electrolyte solution should be carried out after mixing the suspension polymerized suspension and the emulsion polymerized latex. The reason for this is that if an aqueous electrolyte solution is present when the suspension for suspension polymerization and the emulsion polymerization latex are mixed, the shape of the carrier resin (B1) produced is distorted and the water content after dehydration increases, and the water content increases. The solidified acrylic resin particles (b) tend to remain and the filterability tends to be extremely deteriorated. For example, if the emulsion polymerization latex is added after adding the aqueous electrolyte solution to the suspension polymerization suspension, the uniformity of the coating of the acrylic resin particles (b) on the surface of the acrylic resin particles (a) decreases, and A problem arises in that the residual amount of the acrylic polymer particles (b), which causes deterioration of filterability, increases significantly.

前記電解質水溶液としては、アクリル系樹脂粒子(b)を凝析・凝固し得る性質を有する有機酸、有機酸塩、無機酸、及び無機塩の水溶液を適宜用いることができる。前記電解質水溶液としては、例えば、塩化ナトリウム、塩化カリウム、塩化リチウム、臭化ナトリウム、臭化カリウム、臭化リチウム、ヨウ化カリウム、ヨウ化ナトリウム、硫酸カリウム、硫酸ナトリウム、硫酸アンモニウム、塩化アンモニウム、硝酸ナトリウム、硝酸カリウム、塩化カルシウム、硫酸第一鉄、硫酸マグネシウム、硫酸亜鉛、硫酸銅、塩化バリウム、塩化第一鉄、塩化第二鉄、塩化マグネシウム、硫酸第二鉄、硫酸アルミニウム、カリウムミョウバン、鉄ミョウバン等の無機塩類の水溶液、塩酸、硫酸、硝酸、リン酸等の無機酸類の水溶液、酢酸、ギ酸等の有機酸類及びそれらの水溶液、酢酸ナトリウム、酢酸カルシウム、ギ酸ナトリウム、ギ酸カルシウム等の有機酸塩類の水溶液等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いることができる。なかでも、アクリル系樹脂粒子(a)の表面のアクリル系樹脂粒子(b)による被覆の均一性、ろ過性悪化の原因となるクリル系重合体粒子(b)の残存の大幅削減及び排水処理の容易性の点で、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、塩化アンモニウム、塩化カルシウム、塩化マグネシウム、硫酸マグネシウム、塩化バリウム、塩化第一鉄、硫酸アルミニウム、カリウムミョウバン、鉄ミョウバン等の無機塩の水溶液や塩酸、硫酸、硝酸等の無機酸類の水溶液を好適に用いることができる。 As the electrolyte aqueous solution, an aqueous solution of an organic acid, an organic acid salt, an inorganic acid, or an inorganic salt having properties capable of coagulating and solidifying the acrylic resin particles (b) can be appropriately used. Examples of the aqueous electrolyte solution include sodium chloride, potassium chloride, lithium chloride, sodium bromide, potassium bromide, lithium bromide, potassium iodide, sodium iodide, potassium sulfate, sodium sulfate, ammonium sulfate, ammonium chloride, and sodium nitrate. , potassium nitrate, calcium chloride, ferrous sulfate, magnesium sulfate, zinc sulfate, copper sulfate, barium chloride, ferrous chloride, ferric chloride, magnesium chloride, ferric sulfate, aluminum sulfate, potassium alum, iron alum, etc. Aqueous solutions of inorganic salts, aqueous solutions of inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, organic acids such as acetic acid and formic acid and their aqueous solutions, organic acid salts such as sodium acetate, calcium acetate, sodium formate and calcium formate An aqueous solution and the like are included. These may be used individually by 1 type, and can be used in mixture of 2 or more types. Among them, the uniformity of the coating of the surface of the acrylic resin particles (a) with the acrylic resin particles (b), the significant reduction of the remaining acrylic polymer particles (b) that cause deterioration of filterability, and the improvement of wastewater treatment. In terms of ease, aqueous solutions of inorganic salts such as sodium chloride, potassium chloride, sodium sulfate, ammonium chloride, calcium chloride, magnesium chloride, magnesium sulfate, barium chloride, ferrous chloride, aluminum sulfate, potassium alum, iron alum, etc. Aqueous solutions of inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid can be preferably used.

前記電解質水溶液の濃度は、0.001重量%以上が好ましく、0.1重量%以上がより好ましく、1重量%以上がさらに好ましい。電解質水溶液の濃度が0.001重量%未満であると、アクリル系樹脂粒子(b)を凝析させるために多量の電解質水溶液を添加する必要があり、その後の熱処理操作時のユーティリティー使用量が多大となるおそれがある。 The concentration of the aqueous electrolyte solution is preferably 0.001% by weight or more, more preferably 0.1% by weight or more, and even more preferably 1% by weight or more. If the concentration of the electrolyte aqueous solution is less than 0.001% by weight, it is necessary to add a large amount of the electrolyte aqueous solution in order to coagulate the acrylic resin particles (b), resulting in a large amount of utility usage during the subsequent heat treatment operation. There is a possibility that it will be.

前記電解質水溶液の添加は、アクリル系樹脂粒子(b)のビカット軟化温度以下の温度で実施する必要がある。電解質水溶液添加時に混合懸濁液の温度がアクリル系樹脂粒子(b)のビカット軟化温度を超えると、生成するキャリア樹脂(B1)の形状が歪になり脱水後含水率が高くなるおそれがあり、未凝固のアクリル系樹脂粒子(b)が残存し極度のろ過性の悪化を招いたり、キャリア樹脂(B1)間の凝集が頻発する傾向がある。 The addition of the aqueous electrolyte solution must be carried out at a temperature not higher than the Vicat softening temperature of the acrylic resin particles (b). If the temperature of the mixed suspension exceeds the Vicat softening temperature of the acrylic resin particles (b) when the aqueous electrolyte solution is added, the shape of the resulting carrier resin (B1) may be distorted and the moisture content after dehydration may increase. There is a tendency that uncoagulated acrylic resin particles (b) remain to cause extreme deterioration of filterability, and aggregation between carrier resins (B1) frequently occurs.

混合懸濁液中の乳化重合ラテックスの比率が高い場合、あるいは電解質水溶液の添加速度が極端に速い場合、又は電解質水溶液濃度が極端に高い場合には、電解質水溶液添加時に著しい粘度上昇が見られる場合がある。このような場合は、系中に適宜水を加える等、通常の撹拌状態が維持できる程度に系の粘度を低下させる操作を実施すればよい。電解質水溶液の量は、混合懸濁液のアクリル系樹脂粒子(b)の比率により当然異なるが、熱処理後に未凝固のアクリル系樹脂粒子(b)が存在しなくなる量以上を添加すれば良い。 If the ratio of emulsion polymerized latex in the mixed suspension is high, or if the rate of addition of the aqueous electrolyte solution is extremely high, or if the concentration of the aqueous electrolyte solution is extremely high, the viscosity increases significantly when the aqueous electrolyte solution is added. There is In such a case, the viscosity of the system may be reduced to such an extent that normal stirring conditions can be maintained, such as adding water as appropriate to the system. The amount of the aqueous electrolyte solution naturally varies depending on the ratio of the acrylic resin particles (b) in the mixed suspension, but it is sufficient to add an amount at which unsolidified acrylic resin particles (b) are no longer present after the heat treatment.

混合懸濁液に電解質水溶液を添加した後、電解質水溶液が酸性水溶液で、造粒後の混合懸濁液が酸性を示す場合は水酸化ナトリウム等のアルカリで中和した後、又は電解質水溶液が中性の水溶液の場合はそのまま、アクリル系重合体粒子(b)のビカット軟化温度より高い温度、例えば、50~120℃で熱処理するのが好ましい。熱処理により、アクリル系重合体粒子(a)の表面を被覆した、アクリル系重合体粒子(b)の凝集体が緻密化し、得られたキャリア樹脂(B1)の含水率が低下する。その後、常法に従って脱水及び乾燥を行えば、キャリア樹脂(B1)が得られる。 After adding the aqueous electrolyte solution to the mixed suspension, if the aqueous electrolyte solution is an acidic aqueous solution and the mixed suspension after granulation is acidic, neutralize with an alkali such as sodium hydroxide, or the aqueous electrolyte solution is neutralized. In the case of an aqueous solution with a high viscosity, it is preferable to heat-treat it as it is at a temperature higher than the Vicat softening temperature of the acrylic polymer particles (b), for example, 50 to 120°C. The heat treatment densifies the aggregates of the acrylic polymer particles (b) covering the surfaces of the acrylic polymer particles (a), thereby reducing the moisture content of the obtained carrier resin (B1). Thereafter, dehydration and drying are carried out according to a conventional method to obtain the carrier resin (B1).

〈可塑剤(B2)〉
可塑剤(B2)は重量平均分子量が1,000以上20,000以下であればよい。これにより、80℃におけるせん断粘度が1.0Pa・s以上1.5×106Pa・s以下のキャリア樹脂組成物(B)を得ることができる。可塑剤(B2)の重量平均分子量は、1,000以上18,000以下であることが好ましく、1,000以上15,000以下であることがより好ましく、1,000以上13,000以下であることがさらに好ましい。可塑剤(B2)は、ポリカーボネート系樹脂との相溶性の観点から、例えば、アクリル系可塑剤、ポリエステル系可塑剤等を好適に用いることができ、アクリル系可塑剤であることがより好ましい。
<Plasticizer (B2)>
The plasticizer (B2) may have a weight average molecular weight of 1,000 or more and 20,000 or less. Thereby, a carrier resin composition (B) having a shear viscosity at 80° C. of 1.0 Pa·s or more and 1.5×10 6 Pa·s or less can be obtained. The weight average molecular weight of the plasticizer (B2) is preferably 1,000 or more and 18,000 or less, more preferably 1,000 or more and 15,000 or less, and 1,000 or more and 13,000 or less. is more preferred. From the viewpoint of compatibility with the polycarbonate-based resin, the plasticizer (B2) is preferably an acrylic plasticizer, a polyester plasticizer, or the like, and more preferably an acrylic plasticizer.

可塑剤(B2)は、25℃における粘度が300mPa・s以上100,000mPa・s以下であることが好ましく、350mPa・s以上90,000mPa・s以下であることがより好ましく、400mPa・s以上80,000mPa・s以下であることがさらに好ましい。可塑剤(B2)の25℃における粘度が上述した範囲であると、80℃におけるせん断粘度が1.0Pa・s以上1.5×106Pa・s以下のキャリア樹脂組成物(B)が得やすくなる。可塑剤(B2)は、20℃において、液体である。マスターバッチ(C)の加工性が良好になる。可塑剤(B2)は、室温(20℃超え25℃以下)において、液状であることが好ましい。可塑剤(B2)の25℃における粘度は、JIS Z 8803-1991に準じてE型粘度計を用いて測定することができる。The plasticizer (B2) has a viscosity at 25°C of preferably 300 mPa s or more and 100,000 mPa s or less, more preferably 350 mPa s or more and 90,000 mPa s or less, and 400 mPa s or more and 80 mPa s or more. ,000 mPa·s or less. When the viscosity of the plasticizer (B2) at 25°C is within the above range, the carrier resin composition (B) having a shear viscosity at 80°C of 1.0 Pa·s or more and 1.5×10 6 Pa·s or less can be obtained. easier. The plasticizer (B2) is liquid at 20°C. The workability of the masterbatch (C) is improved. The plasticizer (B2) is preferably liquid at room temperature (more than 20° C. and 25° C. or less). The viscosity of the plasticizer (B2) at 25° C. can be measured using an E-type viscometer according to JIS Z 8803-1991.

可塑剤(B2)としては、一般にアクリル系可塑剤として知られているものを用いることが可能であり、無官能タイプのアクリル系可塑剤を用いることが好ましい。アクリル系可塑剤としては、例えば、(メタ)アクリル酸エステル重合体、(メタ)アクリル酸エステル-芳香族ビニルモノマー共重合体等が挙げられ、(メタ)アクリル酸エステル重合体が好ましい。前記(メタ)アクリル酸エステル重合体は、アクリル酸アルキルエステルの単独重合体、メタクリル酸アルキルエステルの単独重合体、アクリル酸アルキルエステル同士の共重合体、メタクリル酸アルキルエステル同士の共重合体、アクリル酸アルキルエステル及びメタクリル酸アルキルエステルの共重合体を含む。アクリル系可塑剤を構成する(メタ)アクリル酸エステルとしては、特に限定されず、例えば、アクリル系樹脂粒子(a)についての説明時に列挙した(メタ)アクリル酸エステルを適宜用いることができる。また、アクリル系可塑剤を構成する芳香族ビニルモノマーとしては、特に限定されず、例えば、アクリル系樹脂粒子(a)についての説明時に列挙したものを適宜に用いることができる。 As the plasticizer (B2), those generally known as acrylic plasticizers can be used, and non-functional acrylic plasticizers are preferably used. Examples of acrylic plasticizers include (meth)acrylic acid ester polymers, (meth)acrylic acid ester-aromatic vinyl monomer copolymers, and the like, and (meth)acrylic acid ester polymers are preferred. The (meth)acrylic acid ester polymer includes a homopolymer of alkyl acrylate, a homopolymer of alkyl methacrylate, a copolymer of alkyl acrylates, a copolymer of alkyl methacrylates, an acrylic Including copolymers of acid alkyl esters and methacrylic acid alkyl esters. The (meth)acrylic acid ester that constitutes the acrylic plasticizer is not particularly limited, and for example, the (meth)acrylic acid esters listed in the explanation of the acrylic resin particles (a) can be used as appropriate. In addition, the aromatic vinyl monomer constituting the acrylic plasticizer is not particularly limited, and for example, those listed in the explanation of the acrylic resin particles (a) can be appropriately used.

可塑剤(B2)としては、特に限定されないが、具体的には、東亞合成社製の製品名「UP-1000」、「UP-1010」、「UP-1020」、「UP-1021」、「UP-1061」、及び「UP-1500」等のアルフォン UP-1000シリーズ等の市販の無官能基タイプのアクリル系可塑剤を用いることができる。 The plasticizer (B2) is not particularly limited, but specifically, product names manufactured by Toagosei Co., Ltd. "UP-1000", "UP-1010", "UP-1020", "UP-1021", " Commercially available non-functional type acrylic plasticizers such as Alfon UP-1000 series such as "UP-1061" and "UP-1500" can be used.

<マスターバッチ(C)>
マスターバッチ(C)は、熱膨張性マイクロカプセル(A)及びキャリア樹脂組成物(B)を含み、キャリア樹脂組成物(B)はキャリア樹脂(B1)及び可塑剤(B2)を含む。マスターバッチ(C)において、熱膨張性マイクロカプセル(A)と混合するキャリア樹脂組成物(B)の80℃におけるせん断粘度が1.0Pa・s以上1.5×106Pa・s以下であることにより、キャリア樹脂組成物(B)を用いて、発泡力を損なわずに熱膨張性マイクロカプセル(A)が均一に分散したマスターバッチを得ることができる。加えて、キャリア樹脂組成物(B)がポリカーボネート系樹脂と実質的に相溶することで、マスターバッチ(C)を用いた場合、白化が抑制され、外観の良い射出発泡成形体を得ることができる。すなわち、上記で得られた熱膨張性マイクロカプセル(A)のマスターバッチ(C)を用いた射出発泡成形において、発泡力を損なわず、かつ外観が良い成形体が得られる。
<Masterbatch (C)>
The masterbatch (C) contains thermally expandable microcapsules (A) and a carrier resin composition (B), and the carrier resin composition (B) contains a carrier resin (B1) and a plasticizer (B2). In the masterbatch (C), the carrier resin composition (B) mixed with the thermally expandable microcapsules (A) has a shear viscosity at 80° C. of 1.0 Pa·s or more and 1.5×10 6 Pa·s or less. As a result, a masterbatch in which the thermally expandable microcapsules (A) are uniformly dispersed can be obtained using the carrier resin composition (B) without impairing foaming power. In addition, since the carrier resin composition (B) is substantially compatible with the polycarbonate resin, when the masterbatch (C) is used, whitening is suppressed, and an injection foam molded article with a good appearance can be obtained. can. That is, in injection foam molding using the masterbatch (C) of the thermally expandable microcapsules (A) obtained above, a molded article with good appearance can be obtained without impairing the foaming power.

マスターバッチ(C)において、取扱い性、貯蔵安定性及び基材樹脂への分散性等の観点から、熱膨張性マイクロカプセル(A)の濃度は30重量%以上80重量%以下が好ましく、より好ましくは30重量%以上70重量%以下であり、さらに好ましくは30重量%以上60重量%以下である。 In the masterbatch (C), the concentration of the thermally expandable microcapsules (A) is preferably 30% by weight or more and 80% by weight or less, and more preferably, from the viewpoint of handleability, storage stability, dispersibility in the base resin, etc. is 30% by weight or more and 70% by weight or less, more preferably 30% by weight or more and 60% by weight or less.

マスターバッチ(C)は、ポリカーボネート系樹脂との相溶性及び加工性の観点から、キャリア樹脂組成物(B)を20重量%以上70重量%以下含むことが好ましく、より好ましくは30重量%以上70重量%以下含み、さらに好ましくは40重量%以上70重量%以下含む。 The masterbatch (C) preferably contains 20% by weight or more and 70% by weight or less of the carrier resin composition (B), more preferably 30% by weight or more and 70% by weight, from the viewpoint of compatibility with the polycarbonate resin and workability. % by weight or less, more preferably 40% by weight or more and 70% by weight or less.

マスターバッチ(C)は、ポリカーボネート系樹脂との相溶性及び80℃におけるせん断粘度の観点から、具体的には、熱膨張性マイクロカプセル(A)を30重量%以上80重量%以下、キャリア樹脂(B1)を15重量%以上65重量%以下、及び可塑剤(B2)を5重量%以上30重量%以下含み、キャリア樹脂(B1)の含有量が可塑剤(B2)の含有量より多いことが好ましい。マスターバッチ(C)は、熱膨張性マイクロカプセル(A)を30重量%以上80重量%以下、キャリア樹脂(B1)を15重量%以上40重量%以下、可塑剤(B2)を5重量%以上30重量%以下含むことがより好ましい。さらに好ましくは、マスターバッチ(C)は、熱膨張性マイクロカプセル(A)を30重量%以上80重量%以下、キャリア樹脂(B1)を12重量%以上50重量%以下、可塑剤(B2)を8重量%以上25重量%以下含む。特に好ましくは、マスターバッチ(C)は、熱膨張性マイクロカプセル(C)を30重量%以上80重量%以下、キャリア樹脂(B1)を12重量%以上45重量%以下、可塑剤(B2)を8重量%以上20重量%以下含む。 From the viewpoint of compatibility with the polycarbonate resin and shear viscosity at 80 ° C., the masterbatch (C) specifically contains 30% by weight or more and 80% by weight or less of the thermally expandable microcapsules (A), and a carrier resin ( 15% by weight or more and 65% by weight or less of B1) and 5% by weight or more and 30% by weight or less of the plasticizer (B2), and the content of the carrier resin (B1) is higher than the content of the plasticizer (B2). preferable. The masterbatch (C) contains 30% by weight or more and 80% by weight or less of the thermally expandable microcapsules (A), 15% by weight or more and 40% by weight or less of the carrier resin (B1), and 5% by weight or more of the plasticizer (B2). It is more preferable to contain 30% by weight or less. More preferably, the masterbatch (C) contains 30% by weight or more and 80% by weight or less of the thermally expandable microcapsules (A), 12% by weight or more and 50% by weight or less of the carrier resin (B1), and a plasticizer (B2). 8% by weight or more and 25% by weight or less. Particularly preferably, the masterbatch (C) contains 30% by weight or more and 80% by weight or less of the thermally expandable microcapsules (C), 12% by weight or more and 45% by weight or less of the carrier resin (B1), and the plasticizer (B2). 8% by weight or more and 20% by weight or less.

マスターバッチ(C)は、ポリカーボネート系樹脂用として好適に用いることができる。前記ポリカーボネート系樹脂は、後述するポリカーボネート系樹脂(G)そのものであってもよく、ポリカーボネート系樹脂(G)と、ポリエステル系樹脂、ポリエステル-ポリエーテル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-エチレン-プロピレン-ジエン-スチレン共重合体、アクリレート-スチレン-アクリロニトリル共重合体、アクリロニトリル-スチレン共重合体、ポリアリレート樹脂、ポリスチレン系樹脂、及びポリアミド系樹脂からなる群より選択される1種以上の他の熱可塑性樹脂の混合樹脂であってもよい。ポリカーボネート系樹脂が混合樹脂である場合、混合樹脂に含まれるすべての樹脂の中、ポリカーボネート系樹脂(G)の含有量が最も大きい。ポリカーボネート系樹脂が混合樹脂である場合、マスターバッチ(C)が混合樹脂と相溶性を有することが好ましい。 The masterbatch (C) can be suitably used for polycarbonate resins. The polycarbonate-based resin may be a polycarbonate-based resin (G) itself described later, and a polycarbonate-based resin (G), a polyester-based resin, a polyester-polyether copolymer, an acrylonitrile-butadiene-styrene copolymer, One selected from the group consisting of acrylonitrile-ethylene-propylene-diene-styrene copolymer, acrylate-styrene-acrylonitrile copolymer, acrylonitrile-styrene copolymer, polyarylate resin, polystyrene resin, and polyamide resin Mixed resins of other thermoplastic resins described above may also be used. When the polycarbonate-based resin is a mixed resin, the content of the polycarbonate-based resin (G) is the largest among all the resins contained in the mixed resin. When the polycarbonate-based resin is a mixed resin, the masterbatch (C) preferably has compatibility with the mixed resin.

<ポリカーボネート系樹脂組成物>
ポリカーボネート系樹脂組成物は、ポリカーボネート系樹脂(G)及びマスターバッチ(C)を含み、ポリカーボネート系樹脂を主成分とする樹脂組成物である。ここで、「主成分」とは、ポリカーボネート系樹脂組成物に含まれるすべての組成のうち、ポリカーボネート系樹脂の含有量が最も多い大きいことを意味する。ポリカーボネート系樹脂組成物において、マスターバッチ(C)を除く成分を基材成分とも記す。
<Polycarbonate resin composition>
A polycarbonate-based resin composition is a resin composition containing a polycarbonate-based resin (G) and a masterbatch (C) and having a polycarbonate-based resin as a main component. Here, the "main component" means that the content of the polycarbonate-based resin is the largest among all components contained in the polycarbonate-based resin composition. In the polycarbonate-based resin composition, components other than the masterbatch (C) are also referred to as base components.

ポリカーボネート系樹脂組成物において、マスターバッチ(C)の含有量は、最終製品の発泡倍率と発泡剤の種類や成形時の樹脂温度等によって適宜設定すればよい。ポリカーボネート系樹脂組成物中のマスターバッチ(C)の含有量は、1重量%以上20重量%以下が好ましく、2重量%以上15重量%以下がより好ましく、3重量%以上10重量%以下が特に好ましい。マスターバッチ(C)をこの範囲で使用することにより、経済的に発泡倍率が1.1倍以上で、かつ、均一微細気泡の発泡成形体が得られやすい。 In the polycarbonate-based resin composition, the content of the masterbatch (C) may be appropriately set according to the expansion ratio of the final product, the type of foaming agent, the resin temperature during molding, and the like. The content of the masterbatch (C) in the polycarbonate resin composition is preferably 1% by weight or more and 20% by weight or less, more preferably 2% by weight or more and 15% by weight or less, and particularly 3% by weight or more and 10% by weight or less. preferable. By using the masterbatch (C) in this range, it is easy to economically obtain a foamed article having an expansion ratio of 1.1 times or more and uniform fine cells.

〈ポリカーボネート系樹脂(G)〉
ポリカーボネート系樹脂(G)とは、フェノール性水酸基を2個有する化合物(以下、2価フェノールという。)より誘導されるポリカーボネート系樹脂であり、通常2価フェノールとホスゲン、又は2価フェノールと炭酸ジエステルとの反応により得られる樹脂のことである。
<Polycarbonate resin (G)>
Polycarbonate-based resin (G) is a polycarbonate-based resin derived from a compound having two phenolic hydroxyl groups (hereinafter referred to as dihydric phenol), and is usually dihydric phenol and phosgene, or dihydric phenol and carbonic acid diester. It is a resin obtained by the reaction with

前記2価フェノールとしては、ビフェノール、メチレンビスフェノール(ビスフェノールF)、ビス(4-ヒドロキシフェニル)スルホン(ビスフェノールS)、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)等が挙げられる。これらの中でもビスフェノールAが好適であるが、これに限定されるものではない。 Examples of the dihydric phenol include biphenol, methylenebisphenol (bisphenol F), bis(4-hydroxyphenyl)sulfone (bisphenol S), 2,2-bis(4-hydroxyphenyl)propane (bisphenol A) and the like. Among these, bisphenol A is preferable, but it is not limited to this.

ポリカーボネート系樹脂(G)は、耐衝撃性、耐薬品性及び成形加工性等の観点から、数平均分子量が10,000以上60,000以下のものが好ましく、10,000以上30,000以下のものがより好ましい。ポリカーボネート系樹脂組成物中のポリカーボネート系樹脂(G)の含有量は、30重量%以上99重量%以下が好ましく、30重量%以上80重量%以下がより好ましく、さらに好ましくは30重量%以上70重量%以下である。 The polycarbonate resin (G) preferably has a number average molecular weight of 10,000 or more and 60,000 or less, preferably 10,000 or more and 30,000 or less, from the viewpoint of impact resistance, chemical resistance, moldability, etc. is more preferred. The content of the polycarbonate resin (G) in the polycarbonate resin composition is preferably 30% by weight or more and 99% by weight or less, more preferably 30% by weight or more and 80% by weight or less, and still more preferably 30% by weight or more and 70% by weight. % or less.

ポリカーボネート系樹脂組成物は、さらに、ポリエステル系樹脂、ポリエステル-ポリエーテル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-エチレン-プロピレン-ジエン-スチレン共重合体、アクリレート-スチレン-アクリロニトリル共重合体、アクリロニトリル-スチレン共重合体、ポリアリレート樹脂、ポリスチレン系樹脂、及びポリアミド系樹脂からなる群より選択される1種以上の他の熱可塑性樹脂を含んでもよい。 The polycarbonate-based resin composition further includes a polyester-based resin, a polyester-polyether copolymer, an acrylonitrile-butadiene-styrene copolymer, an acrylonitrile-ethylene-propylene-diene-styrene copolymer, an acrylate-styrene-acrylonitrile copolymer. It may also contain one or more other thermoplastic resins selected from the group consisting of coalesced, acrylonitrile-styrene copolymers, polyarylate resins, polystyrene-based resins, and polyamide-based resins.

〈ポリエステル系樹脂(H1)〉
ポリエステル系樹脂(H1)は、非晶性脂肪族ポリエステル、非晶性半芳香族ポリエステル、非晶性全芳香族ポリエステル等の非晶性熱可塑性ポリエステル系樹脂、結晶性脂肪族ポリエステル、結晶性半芳香族ポリエステル、結晶性全芳香族ポリエステル等の結晶性熱可塑性ポリエステル系樹脂、液晶性脂肪族ポリエステル、液晶性半芳香族ポリエステル、液晶性全芳香族ポリエステル等の液晶性熱可塑性ポリエステル系樹脂等を用いることができる。
<Polyester resin (H1)>
The polyester-based resin (H1) includes amorphous thermoplastic polyester-based resins such as amorphous aliphatic polyester, amorphous semi-aromatic polyester, amorphous wholly aromatic polyester, crystalline aliphatic polyester, crystalline semi-aromatic polyester, etc. Aromatic polyester, crystalline thermoplastic polyester resin such as crystalline wholly aromatic polyester, liquid crystalline thermoplastic polyester resin such as liquid crystalline aliphatic polyester, liquid crystalline semi-aromatic polyester, liquid crystalline wholly aromatic polyester, etc. can be used.

結晶性熱可塑性ポリエステルの具体例としては、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンナフタレート、ポリ1,4-シクロヘキシレンジメチレンテレフタレート、ポリエチレン-1,2-ビス(フェノキシ)エタン-4,4'-ジカルボキシレート、ポリエチレンイソフタレート/テレフタレート、ポリブチレンテレフタレート/イソフタレート、ポリブチレンテレフタレート/デカンジカルボキシレート、ポリシクロヘキサンジメチレンテレフタレート/イソフタレート等の結晶性共重合ポリエステル等が挙げられる。中でもポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンナフタレート、ポリ1,4-シクロヘキシレンジメチレンテレフタレート等を用いることが好ましい。ポリカーボネート系樹脂組成物中の熱可塑性ポリエステル系樹脂(H1)の含有量は、射出発泡成形体の外観を良好にする観点から、0~60重量%であることが好ましく、0~50重量%であることがより好ましく、0~40重量%であることがさらに好ましい。 Specific examples of crystalline thermoplastic polyesters include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polybutylene naphthalate, poly-1,4-cyclohexylenedimethylene terephthalate, and polyethylene-1,2. - crystallinity of bis(phenoxy)ethane-4,4'-dicarboxylate, polyethylene isophthalate/terephthalate, polybutylene terephthalate/isophthalate, polybutylene terephthalate/decanedicarboxylate, polycyclohexanedimethylene terephthalate/isophthalate, etc. Copolyester and the like can be mentioned. Among them, it is preferable to use polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polybutylene naphthalate, poly-1,4-cyclohexylenedimethylene terephthalate and the like. The content of the thermoplastic polyester resin (H1) in the polycarbonate resin composition is preferably 0 to 60% by weight, more preferably 0 to 50% by weight, from the viewpoint of improving the appearance of the injection foam molded article. more preferably 0 to 40% by weight.

〈ポリエステル-ポリエーテル共重合体(H2)〉
ポリエステル-ポリエーテル共重合体(H2)は、芳香族ポリエステル単位とポリエーテル単位を含むことが好ましい。前記ポリエーテル単位は、例えば、下記一般式(1)、一般式(2)、一般式(3)、一般式(4)、一般式(5)及び一般式(6)で表されるものが挙げられる。これらの中でも、下記一般式(6)で表されるものが好ましい。
<Polyester-polyether copolymer (H2)>
The polyester-polyether copolymer (H2) preferably contains aromatic polyester units and polyether units. The polyether unit is, for example, those represented by the following general formula (1), general formula (2), general formula (3), general formula (4), general formula (5) and general formula (6) mentioned. Among these, those represented by the following general formula (6) are preferable.

Figure 0007177828000001
Figure 0007177828000001

前記一般式(1)中、-A-は、-O-、-S-、-SO-、-SO2-、-CO-、炭素数1~20のアルキレン基、又は炭素数6~20のアルキリデン基である。R1、R2、R3、R4、R5、R6、R7、及びR8は、それぞれ、水素原子、ハロゲン原子、又は炭素数1~5の1価の炭化水素基である。R9、及びR10は、それぞれ炭素数1~5の2価の炭化水素基である。m、及びnはオキシアルキレン単位の繰り返し単位数を示し、m及びnはそれぞれ0~70の整数であって、10≦m+n≦70である。m及びnはそれぞれ0~50の整数であることが好ましい。mは2~70の整数であることがより好ましい。In the general formula (1), -A- is -O-, -S-, -SO-, -SO 2 -, -CO-, an alkylene group having 1 to 20 carbon atoms, or an alkylene group having 6 to 20 carbon atoms. It is an alkylidene group. R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each a hydrogen atom, a halogen atom or a monovalent hydrocarbon group having 1 to 5 carbon atoms. R 9 and R 10 are each a divalent hydrocarbon group having 1 to 5 carbon atoms. m and n represent the number of repeating oxyalkylene units, m and n are each an integer of 0 to 70 and 10≦m+n≦70. Each of m and n is preferably an integer of 0-50. More preferably, m is an integer of 2-70.

Figure 0007177828000002
Figure 0007177828000002

前記一般式(2)中、R1、R2、R3、及びR4は、それぞれ、水素原子、ハロゲン原子、又は炭素数1~5の1価の炭化水素基である。R9、及びR10は、それぞれ、炭素数1~5の2価の炭化水素基である。m、及びnはオキシアルキレン単位の繰り返し単位数を示し、m及びnはそれぞれ0~70の整数であって、10≦m+n≦70である。m及びnはそれぞれ0~50の整数であることが好ましい。mは2~70の整数であることがより好ましい。In formula (2), R 1 , R 2 , R 3 and R 4 each represent a hydrogen atom, a halogen atom or a monovalent hydrocarbon group having 1 to 5 carbon atoms. R 9 and R 10 are each a divalent hydrocarbon group having 1 to 5 carbon atoms. m and n represent the number of repeating oxyalkylene units, m and n are each an integer of 0 to 70 and 10≦m+n≦70. Each of m and n is preferably an integer of 0-50. More preferably, m is an integer of 2-70.

Figure 0007177828000003
Figure 0007177828000003

前記一般式(3)中、R1、R2、R3、R4、R5、及びR6は、それぞれ、水素原子、ハロゲン原子、又は炭素数1~5の1価の炭化水素基である。R9、及びR10は、それぞれ、炭素数1~5の2価の炭化水素基である。m、及びnはオキシアルキレン単位の繰り返し単位数を示し、m及びnはそれぞれ0~70の整数であって、10≦m+n≦70である。m及びnはそれぞれ0~50の整数であることが好ましい。mは2~70の整数であることがより好ましい。In the general formula (3), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each a hydrogen atom, a halogen atom or a monovalent hydrocarbon group having 1 to 5 carbon atoms. be. R 9 and R 10 are each a divalent hydrocarbon group having 1 to 5 carbon atoms. m and n represent the number of repeating oxyalkylene units, m and n are each an integer of 0 to 70 and 10≦m+n≦70. Each of m and n is preferably an integer of 0-50. More preferably, m is an integer of 2-70.

Figure 0007177828000004
Figure 0007177828000004

前記一般式(4)中、R1、R2、R3、R4、R5、R6、R7、及びR8は、それぞれ、水素原子、ハロゲン原子、又は炭素数1~5の1価の炭化水素基である。R9、及びR10は、それぞれ、炭素数1~5の2価の炭化水素基である。m、及びnはオキシアルキレン単位の繰り返し単位数を示し、m及びnはそれぞれ0~70の整数であって、10≦m+n≦70である。m及びnはそれぞれ0~50の整数であることが好ましい。mは2~70の整数であることがより好ましい。In general formula (4), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are each a hydrogen atom, a halogen atom, or one having 1 to 5 carbon atoms. is a valent hydrocarbon group. R 9 and R 10 are each a divalent hydrocarbon group having 1 to 5 carbon atoms. m and n represent the number of repeating oxyalkylene units, m and n are each an integer of 0 to 70 and 10≦m+n≦70. Each of m and n is preferably an integer of 0-50. More preferably, m is an integer of 2-70.

Figure 0007177828000005
Figure 0007177828000005

前記一般式(5)中、R9は、炭素数1~5の2価の炭化水素基である。mはオキシアルキレン単位の繰り返し単位数を示し、mは2~70の整数である。In general formula (5), R 9 is a divalent hydrocarbon group having 1 to 5 carbon atoms. m represents the number of repeating oxyalkylene units, and m is an integer of 2-70.

Figure 0007177828000006
Figure 0007177828000006

前記一般式(6)中、m、及びnはオキシアルキレン単位の繰り返し単位数を示し、m及びnはそれぞれ0~50の整数であって、10≦m+n≦50である。 In the general formula (6), m and n represent the number of repeating oxyalkylene units, m and n are integers of 0 to 50 and 10≦m+n≦50.

前記芳香族ポリエステル単位は、芳香族ジカルボン酸又は芳香族ジカルボン酸エステルと、ジオールで構成された交互重縮合体である。前記芳香族ポリエステル単位は、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート等のポリアルキレンテレフタレート単位;ポリエチレンナフタレート、ポリプロピレンナフタレート、ポリブチレンナフタレート等のポリアルキレンナフタレート単位等が挙げられる。これらの中でも、ポリアルキレンテレフタレート単位が好ましく、ポリエチレンテレフタレート単位がより好ましい。前記芳香族ジカルボン酸は、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ジフェノキシエタンジカルボン酸等が例示される。中でも、テレフタル酸が好ましい。前記芳香族ジカルボン酸エステルとしては、前記芳香族ジカルボン酸のジアルキルエステルが挙げられる。また、芳香族ジカルボン酸以外に、オキシ安息香酸等の他の芳香族オキシカルボン酸、及びアジピン酸、セバチン酸、シクロヘキサン1・4-ジカルボン酸等の脂肪族、又は脂環族ジカルボン酸を併用してもよい。前記ジオールは、例えば、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサンジオール、デカンジオール、シクロヘキサンジメタノール等の炭素数2~10のグリコールである。前記芳香族ポリエステルの溶液粘度としては、得られる成形品の耐衝撃性、耐薬品性や成形加工性の観点から、フェノール/テトラクロロエタン=1/1(重量比)混合溶媒中、25℃で濃度0.5g/dlにおける対数粘度(IV値)が0.3以上1.0以下であることが好ましい。 The aromatic polyester unit is an alternating polycondensate composed of an aromatic dicarboxylic acid or an aromatic dicarboxylic acid ester and a diol. Examples of the aromatic polyester unit include polyalkylene terephthalate units such as polyethylene terephthalate, polypropylene terephthalate and polybutylene terephthalate; polyalkylene naphthalate units such as polyethylene naphthalate, polypropylene naphthalate and polybutylene naphthalate. Among these, polyalkylene terephthalate units are preferred, and polyethylene terephthalate units are more preferred. Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, and diphenoxyethanedicarboxylic acid. Among them, terephthalic acid is preferred. Examples of the aromatic dicarboxylic acid esters include dialkyl esters of the aromatic dicarboxylic acids. In addition to aromatic dicarboxylic acids, other aromatic oxycarboxylic acids such as oxybenzoic acid, and aliphatic or alicyclic dicarboxylic acids such as adipic acid, sebacic acid, and cyclohexane 1,4-dicarboxylic acid may be used in combination. may The diol is, for example, a glycol having 2 to 10 carbon atoms such as ethylene glycol, trimethylene glycol, tetramethylene glycol, hexanediol, decanediol, cyclohexanedimethanol. From the viewpoint of the impact resistance, chemical resistance, and molding processability of the resulting molded product, the solution viscosity of the aromatic polyester in a phenol/tetrachloroethane = 1/1 (weight ratio) mixed solvent at 25 ° C. The logarithmic viscosity (IV value) at 0.5 g/dl is preferably 0.3 or more and 1.0 or less.

ポリエステル-ポリエーテル共重合体(H2)の製造方法は、特に限定されないが、(1)芳香族ジカルボン酸、ジオール、及び、ポリエーテルを反応させる直接エステル化法、(2)芳香族ジカルボン酸ジアルキルエステル、ジオール、及び、ポリエーテルを反応させるエステル交換法、(3)芳香族ジカルボン酸ジアルキルエステルとジオールのエステル交換中、又は、エステル交換後に変性ポリエーテルを加えて、重縮合する方法、(4)高分子の芳香族ポリエステルを用い、ポリエーテルと混合後、溶融減圧下でエステル交換する方法等が挙げられる。 The method for producing the polyester-polyether copolymer (H2) is not particularly limited, but (1) a direct esterification method in which an aromatic dicarboxylic acid, a diol, and a polyether are reacted, (2) a dialkyl aromatic dicarboxylate (3) a method of polycondensing by adding a modified polyether during or after the transesterification of the aromatic dicarboxylic acid dialkyl ester and the diol, and (4) ) A high-molecular-weight aromatic polyester is used, and after mixing with a polyether, transesterification is performed under reduced pressure to melt.

ポリカーボネート系樹脂組成物中のポリエステル-ポリエーテル共重合体(H2)の含有量は、射出発泡成形体の外観を良好にする観点から、0~60重量%であることが好ましく、0~50重量%であることがより好ましく、0~40重量%であることがさらに好ましい。 The content of the polyester-polyether copolymer (H2) in the polycarbonate-based resin composition is preferably 0 to 60% by weight, more preferably 0 to 50% by weight, from the viewpoint of improving the appearance of the injection foam molded article. %, more preferably 0 to 40% by weight.

〈アクリロニトリル-ブタジエン-スチレン共重合体(H3)〉
アクリロニトリル-ブタジエン-スチレン共重合体は、外観の改善効果及び耐熱性維持の観点から、ポリカーボネート系樹脂組成物100重量%中、0~50重量%含まれていることが好ましく、より好ましい範囲は0~40重量%であり、さらに好ましい範囲は0~30重量%である。
<Acrylonitrile-butadiene-styrene copolymer (H3)>
Acrylonitrile - butadiene - styrene copolymer, from the viewpoint of improving the appearance and maintaining heat resistance, preferably 0 to 50% by weight in 100% by weight of the polycarbonate resin composition, more preferably 0 to 40% by weight, and a more preferred range is 0 to 30% by weight.

アクリロニトリル-ブタジエン-スチレン共重合体中のブタジエンの含有量は、10~30重量%であればよい。 The content of butadiene in the acrylonitrile-butadiene-styrene copolymer may be 10 to 30% by weight.

アクリロニトリル-ブタジエン-スチレン共重合体としては、アクリロニトリル-ブタジエン-スチレン共重合体中のスチレンの一部をα-メチルスチレンに代替し通常のアクリロニトリル-ブタジエン-スチレン共重合体よりも耐熱性を改良したものを用いてもよく、さらに耐熱性を改良したもので、フェニルマレイミドで変性したアクリロニトリル-ブタジエン-スチレン共重合体等も適宜使用することが可能である。 As an acrylonitrile-butadiene-styrene copolymer, part of the styrene in the acrylonitrile-butadiene-styrene copolymer is replaced with α-methylstyrene to improve the heat resistance of the usual acrylonitrile-butadiene-styrene copolymer. Further, acrylonitrile-butadiene-styrene copolymer modified with phenylmaleimide, which is further improved in heat resistance, can be used as appropriate.

ポリカーボネート系樹脂組成物は、射出発泡成形体の表面の白化を効果的に抑制し、外観を良好にする観点から、マスターバッチ(C)を1~15重量%、ポリカーボネート系樹脂(G)を30~99重量%、並びにポリエステル系樹脂、ポリエステル-ポリエーテル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-エチレン-プロピレン-ジエン-スチレン共重合体、アクリレート-スチレン-アクリロニトリル共重合体、アクリロニトリル-スチレン共重合体、ポリアリレート樹脂、ポリスチレン系樹脂、及びポリアミド系樹脂からなる群より選択される1種以上の熱可塑性樹脂を0~55重量%を含有することが好ましい。 The polycarbonate-based resin composition contains 1 to 15% by weight of the masterbatch (C) and 30% of the polycarbonate-based resin (G) from the viewpoint of effectively suppressing whitening of the surface of the injection foam molded article and improving the appearance. up to 99% by weight, as well as polyester resins, polyester-polyether copolymers, acrylonitrile-butadiene-styrene copolymers, acrylonitrile-ethylene-propylene-diene-styrene copolymers, acrylate-styrene-acrylonitrile copolymers, acrylonitrile - It is preferable to contain 0 to 55% by weight of one or more thermoplastic resins selected from the group consisting of styrene copolymers, polyarylate resins, polystyrene resins, and polyamide resins.

〈無機化合物(J)〉
射出発泡成形体の曲げ剛性、寸法安定性を向上させるために、前記ポリカーボネート系樹脂組成物は、さらに無機化合物(J)を含んでもよい。無機化合物としては、マイカ、タルク、モンモリロナイト、セリサイト、カオリン、ガラスフレーク、板状アルミナ、合成ハイドロタルサイト、ワラストナイト、中空ガラスバルーン、炭素繊維、アラミド繊維、及びウィスカーからなる群から選ばれる1種以上が好ましく、曲げ剛性向上効果及びポリカーボネート系樹脂への分散性の観点から、マイカ、タルク、モンモリロナイト、セリサイト、カオリン、ガラスフレーク、中空ガラスビーズ、及び炭素繊維からなる群から選ばれる1種以上がより好ましく、耐衝撃性、流動性及び製品外観のバランスの観点から、マイカ、タルク、ガラスフレーク、及びワラストナイトからなる群から選ばれる1種以上がさらに好ましい。
<Inorganic compound (J)>
In order to improve the flexural rigidity and dimensional stability of the injection foam molded article, the polycarbonate resin composition may further contain an inorganic compound (J). The inorganic compound is selected from the group consisting of mica, talc, montmorillonite, sericite, kaolin, glass flakes, tabular alumina, synthetic hydrotalcite, wollastonite, hollow glass balloons, carbon fibers, aramid fibers, and whiskers. One or more types are preferable, and from the viewpoint of the effect of improving bending rigidity and dispersibility in polycarbonate resin, one selected from the group consisting of mica, talc, montmorillonite, sericite, kaolin, glass flakes, hollow glass beads, and carbon fibers More preferably, at least one selected from the group consisting of mica, talc, glass flakes, and wollastonite, from the viewpoint of the balance of impact resistance, fluidity, and product appearance.

無機化合物(J)の含有量は、耐衝撃性、耐熱性、剛性及び成形性等の観点から、ポリカーボネート系樹脂組成物中、5重量%以上45重量%以下が好ましく、5重量%以上35重量%以下がより好ましく、5重量%以上25重量%以下がさらに好ましい。 The content of the inorganic compound (J) is preferably 5% by weight or more and 45% by weight or less, more preferably 5% by weight or more and 35% by weight, in terms of impact resistance, heat resistance, rigidity, moldability, etc. % or less, more preferably 5 wt % or more and 25 wt % or less.

〈耐衝撃改質剤(K)〉
射出発泡成形体の耐衝撃性を更に向上させるために、前記ポリカーボネート系樹脂組成物は耐衝撃性改質剤をさらに含んでも良い。耐衝撃改良剤としては、多段グラフト重合体、ポリオレフィン系重合体、オレフィン-不飽和カルボン酸エステル共重合体、及び熱可塑性ポリエステル系エラストマーからなる群から選ばれる1種以上が好ましい。
<Impact modifier (K)>
In order to further improve the impact resistance of the injection foam molded article, the polycarbonate resin composition may further contain an impact modifier. As the impact modifier, one or more selected from the group consisting of multi-stage graft polymers, polyolefin polymers, olefin-unsaturated carboxylic acid ester copolymers, and thermoplastic polyester elastomers are preferred.

前記多段グラフト重合体とは、ゴム状重合体にビニル系モノマーをグラフト重合させたものである。ゴム状重合体としては、ガラス転移温度が0℃以下のものが好ましく、より好ましくは-40℃以下のものである。このようなゴム状重合体の具体例としては、例えばポリブタジエン、ブタジエン-スチレン共重合体、ブタジエン-アクリル酸エステル共重合体、ブタジエン-アクリロニトリル共重合体等のジエン系ゴム、ポリアクリル酸ブチル、ポリアクリル酸2-エチルヘキシル、ジメチルシロキサン-アクリル酸ブチルゴム、シリコン系/アクリル酸ブチル複合ゴム等のアクリル系ゴム、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体等のオレフィン系ゴム、ポリジメチルシロキサン系ゴム、ジメチルシロキサン-ジフェニルシロキサン共重合体系ゴム等が挙げられる。ブタジエン-アクリル酸エステル共重合体としては、例えば、ブタジエン-アクリル酸ブチル共重合体、ブタジエン-アクリル酸2エチルヘキシル共重合体が例示出来る。耐衝撃性の面より、ポリブタジエン、ブタジエン-スチレン共重合体、ブタジエン-アクリル酸ブチル共重合体が好ましく使用される。ブタジエン-アクリル酸ブチル共重合体のうちでも、アクリル酸ブチル50~70重量%とブタジエン30~50重量%との共重合体が耐候性、耐衝撃性から好ましい。ゴム状重合体の平均粒子径にも特に限定はないが、0.05μm以上2.00μm以下の範囲のものが好ましく、0.1μm以上0.4μm以下がより好ましい。また、ゲル含有量についても特に限定はないが、10重量%以上99重量%以下、さらには80重量%以上96重量%以下の範囲のものが好ましく使用される。 The multi-stage graft polymer is obtained by graft-polymerizing a vinyl-based monomer to a rubber-like polymer. The rubber-like polymer preferably has a glass transition temperature of 0° C. or lower, more preferably -40° C. or lower. Specific examples of such rubber-like polymers include diene rubbers such as polybutadiene, butadiene-styrene copolymers, butadiene-acrylate copolymers, butadiene-acrylonitrile copolymers, polybutyl acrylate, poly Acrylic rubber such as 2-ethylhexyl acrylate, dimethylsiloxane-butyl acrylate rubber, silicone/butyl acrylate composite rubber, olefin rubber such as ethylene-propylene copolymer, ethylene-propylene-diene copolymer, polydimethyl Examples include siloxane rubber, dimethylsiloxane-diphenylsiloxane copolymer rubber, and the like. Examples of butadiene-acrylic acid ester copolymers include butadiene-butyl acrylate copolymers and butadiene-2-ethylhexyl acrylate copolymers. Polybutadiene, butadiene-styrene copolymer, and butadiene-butyl acrylate copolymer are preferably used in terms of impact resistance. Among butadiene-butyl acrylate copolymers, copolymers of 50 to 70% by weight of butyl acrylate and 30 to 50% by weight of butadiene are preferred from the standpoint of weather resistance and impact resistance. The average particle size of the rubber-like polymer is also not particularly limited, but is preferably in the range of 0.05 µm or more and 2.00 µm or less, more preferably 0.1 µm or more and 0.4 µm or less. The gel content is also not particularly limited, but is preferably in the range of 10% to 99% by weight, more preferably 80% to 96% by weight.

前記多段グラフト重合体の製造に使用されるビニル系モノマーとしては、例えば芳香族ビニルモノマー、シアン化ビニルモノマー、(メタ)アクリル酸エステル等が挙げられる。これらは1種を単独で用いてもよく、2種以上併用してもよい。芳香族ビニルモノマー、シアン化ビニルモノマー及び(メタ)アクリル酸エステルとしては、それぞれ、アクリル系樹脂粒子(a)についての説明時に列挙したものを適宜に用いることができる。 Examples of vinyl monomers used for producing the multistage graft polymer include aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylic acid esters. These may be used individually by 1 type, and may be used together 2 or more types. As the aromatic vinyl monomer, the vinyl cyanide monomer, and the (meth)acrylic acid ester, those listed in the explanation of the acrylic resin particles (a) can be appropriately used.

前記多段グラフト重合体は、具体的には、ポリブタジエン、ブタジエン-スチレン共重合体、ブタジエン-アクリル酸エステル共重合体、及びポリオルガノシロキサンからなる群より選ばれる1種以上のゴム状重合体10~90重量%、並びに、前記ゴム状重合体の存在下に、芳香族ビニルモノマー、シアン化ビニルモノマー、及び(メタ)アクリル酸エステル化合物からなる群より選ばれる1種以上のビニル系モノマーを重合して得られる重合体により構成されるグラフト成分10~90重量%で構成されたものであることが好ましい。有機リン系乳化剤を用いて製造された多段グラフト重合体を用いることが特に好ましい。 Specifically, the multi-stage graft polymer is one or more rubber-like polymers selected from the group consisting of polybutadiene, butadiene-styrene copolymer, butadiene-acrylate copolymer, and polyorganosiloxane. Polymerizing 90% by weight of one or more vinyl-based monomers selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylic acid ester compounds in the presence of the rubber-like polymer. It is preferably composed of 10 to 90% by weight of the graft component composed of the polymer obtained by the above. It is particularly preferred to use a multi-stage graft polymer produced using an organophosphorus emulsifier.

前記多段グラフト重合体としてコア/シェルグラフト重合体を調製する場合、ゴム状重合体及びビニル系モノマーの合計量を100重量%とした場合、ゴム状重合体10重量%以上90重量%以下、ビニル系モノマーが10重量%以上90重量%以下であることが好ましく、ゴム状重合体30重量%以上85重量%以下、ビニル系モノマーが15重量%以上70重量%以下であることがより好ましい。ゴム状重合体の割合が10重量%未満では耐衝撃性が低下しやすくなり、一方、90重量%を超えると耐熱性が低下する傾向が生ずる。 When a core/shell graft polymer is prepared as the multi-stage graft polymer, and the total amount of the rubber-like polymer and the vinyl-based monomer is 100% by weight, the rubber-like polymer is 10% by weight or more and 90% by weight or less, and the vinyl The content of the system monomer is preferably 10% to 90% by weight, more preferably 30% to 85% by weight of the rubber-like polymer, and 15% to 70% by weight of the vinyl type monomer. If the ratio of the rubber-like polymer is less than 10% by weight, the impact resistance tends to decrease, while if it exceeds 90% by weight, the heat resistance tends to decrease.

耐衝撃改質剤の量としては、耐衝撃性、耐熱性、剛性及び成形性等の観点から、ポリカーボネート系樹脂組成物中、0~20重量%であることが好ましく、0~15重量%であることがより好ましく、0~10重量%であることがさらに好ましい。 The amount of the impact modifier is preferably 0 to 20% by weight, preferably 0 to 15% by weight, in the polycarbonate resin composition from the viewpoint of impact resistance, heat resistance, rigidity and moldability. more preferably 0 to 10% by weight.

前記ポリカーボネート系樹脂組成物は、必要に応じて、難燃剤、耐UV剤、安定剤、離型剤、顔料、軟化剤、可塑剤、界面活性剤等の添加剤を含んでいてもよい。 The polycarbonate-based resin composition may contain additives such as a flame retardant, an anti-UV agent, a stabilizer, a release agent, a pigment, a softener, a plasticizer, and a surfactant, if necessary.

<射出発泡成形体>
前記ポリカーボネート系樹脂組成物を射出発泡することで、白化が抑制され、外観が良好な射出発泡成形体が得られる。具体的には、前記射出発泡成形体は、前記ポリカーボネート系樹脂組成物を金型内で発泡させる方法で作製することができる。金型内で発泡させる方法としては種々有るが、なかでも固定型(キャビティとも称される。)と任意の位置に前進及び後退が可能な可動型(コアとも称される。)とから構成される金型を使用し、樹脂組成物を初期充填厚みまで射出完了後、可動型を後退させて発泡させる、いわゆるコアバック法(Moving Cavity法)が好ましい。コアバック法によれば、表面に非発泡層が形成されることで外観の数μm~数十μmオーダーの凹凸を平滑にし、かつ内部の発泡層が均一微細気泡になりやすく、軽量性に優れた射出発泡成形体が得られやすいことから、好ましい。
<Injection foam molding>
By injection-foaming the polycarbonate-based resin composition, whitening is suppressed, and an injection-foamed article having a good appearance can be obtained. Specifically, the injection foam molded article can be produced by a method of foaming the polycarbonate-based resin composition in a mold. There are various methods of foaming in a mold. A so-called core-back method (moving cavity method) is preferred, in which a mold is used, and after injection of the resin composition to the initial filling thickness is completed, the movable mold is retracted to foam. According to the core-back method, by forming a non-foamed layer on the surface, unevenness on the order of several μm to several tens of μm in appearance is smoothed, and the internal foamed layer easily becomes uniform fine cells, resulting in excellent lightness. It is preferable because it is easy to obtain an injection foamed molded product.

コアバック法において、可動型の後退は、一段階で行ってもよいし、二段階以上の多段階で行ってもよく、後退させる速度も適宜調整してもよい。例えば、固定型、及び、任意の位置に前進及び後退が可能な可動型から構成され、初期キャビティクリアランスt0(初期充填厚み)が1.5mm以上2.7mm以下の金型に射出充填する工程、及び、初期充填厚みまで射出充填完了後、コアバック後のキャビティクリアランスtfが2.0mm以上6.0mm以下となるように可動型を後退させて発泡させる工程を含むことが好ましい。In the core-back method, the retraction of the movable die may be performed in one stage or in multiple stages of two or more stages, and the retraction speed may be adjusted as appropriate. For example, a process of injecting and filling a mold composed of a fixed mold and a movable mold that can move forward and backward to any position and having an initial cavity clearance t 0 (initial filling thickness) of 1.5 mm or more and 2.7 mm or less. and, after completion of injection filling to the initial filling thickness, the step of foaming by retracting the movable mold so that the cavity clearance t f after core-back is 2.0 mm or more and 6.0 mm or less is preferably included.

コアバック法において、その他の成形条件としては、樹脂温度240℃以上280℃以下、金型温度60℃以上90℃以下、成形サイクル1秒以上60秒以下、射出速度10mm/秒以上400mm/秒以下、射出圧10MPa以上200MPa以下、背圧5MPa以上40MPa以下、スクリュ回転数10rpm以上200rpm以下等の条件であればよい。 In the core-back method, other molding conditions include a resin temperature of 240° C. to 280° C., a mold temperature of 60° C. to 90° C., a molding cycle of 1 second to 60 seconds, and an injection speed of 10 mm/second to 400 mm/second. , an injection pressure of 10 MPa or more and 200 MPa or less, a back pressure of 5 MPa or more and 40 MPa or less, and a screw rotation speed of 10 rpm or more and 200 rpm or less.

前記射出発泡成形体は、携帯電話、及びパソコンハウジング等の電化製品;自動車のフェンダー、ドアパネル、バックドアパネル、ガーニッシュ、ピラー、及びスポイラー等の車両用部材等の用途に好適に利用できる。 The injection foam molded article can be suitably used for applications such as electrical appliances such as mobile phones and personal computer housings; vehicle members such as automobile fenders, door panels, back door panels, garnishes, pillars, and spoilers.

前記射出発泡成形体の比重は、成形体の軽量化と衝撃強度の観点から、0.3g/cm3以上1.2g/cm3以下であることが好ましい。射出発泡成形体の比重が0.3g/cm3未満であると、1.5mmを超える粗大気泡が増え衝撃強度が低下する傾向があり、1.2g/cm3を超えると軽量化が達成されにくい。比重は、JIS K 7112:1999に準拠し、水中置換法により算出することができる。射出発泡成形体の発泡倍率は、軽量化と衝撃強度の観点から、1.1倍以上3.0倍以下が好ましく、1.1倍以上2.5倍以下がより好ましく、1.1倍以上2.0倍以下がさらに好ましい。発泡倍率が1.1倍未満では、軽量性が得られ難い傾向があり、3.0倍を超える場合には、面衝撃強度の低下が著しくなる傾向がある。なお、本明細書において、発泡倍率とは、射出発泡成形体の厚み(コアバック後キャビティクリアランスtf)を初期キャビティクリアランスt0で除した値である。The specific gravity of the injection foam molded product is preferably 0.3 g/cm 3 or more and 1.2 g/cm 3 or less from the viewpoint of weight reduction and impact strength of the molded product. If the specific gravity of the injection foam molded product is less than 0.3 g/cm 3 , the number of large cells exceeding 1.5 mm tends to increase and the impact strength tends to decrease. Hateful. The specific gravity can be calculated by the water substitution method in accordance with JIS K 7112:1999. From the viewpoint of weight reduction and impact strength, the expansion ratio of the injection foam molded product is preferably 1.1 times or more and 3.0 times or less, more preferably 1.1 times or more and 2.5 times or less, and 1.1 times or more. 2.0 times or less is more preferable. When the expansion ratio is less than 1.1 times, it tends to be difficult to obtain lightness, and when it exceeds 3.0 times, the decrease in surface impact strength tends to be significant. In the present specification, the expansion ratio is a value obtained by dividing the thickness of the injection foam molded article (cavity clearance t f after core-back) by the initial cavity clearance t 0 .

以下に本発明を具体的な実施例と比較例に基づいて説明するが、本発明は、下記実施例に限定されるものではない。下記において、特に指摘がない場合は、「部」は重量部を意味し、「%」は重量%を意味する。 EXAMPLES The present invention will be described below based on specific examples and comparative examples, but the present invention is not limited to the following examples. In the following, unless otherwise indicated, "parts" means parts by weight and "%" means % by weight.

各種測定方法及び評価方法を下記に示した。 Various measurement methods and evaluation methods are shown below.

(1)ガラス転移温度
アクリル系樹脂粒子(a)(懸濁重合体粒子)及びキャリア樹脂(B)について、示差走査熱量計(セイコー電子工業(株)製 DSC220C)を用いて5℃/分の昇温条件にてガラス転移温度を測定した。
(2)ビカット軟化温度
アクリル系樹脂粒子(b)(乳化重合体粒子)のビカット軟化温度の測定は、JIS K7206 A法に基づいて実施した。試験片は、乳化重合により得られた乳化重合体を、凝固、熱処理、乾燥により回収し、押出し成形機でペレット化後、プレス成形機でシート化し作製した。
(3)平均粒子径
アクリル系樹脂粒子(a)、アクリル系樹脂粒子(b)及びキャリア樹脂(B1)の平均粒子径は、マイクロトラックベル株式会社製マイクロトラックMT-3300で測定した。熱膨張性マイクロカプセル(A)の平均粒子径(未膨張時)は、島津製作所製の粒度分布測定装置SALD-3000Jで測定した。
(4)重量平均分子量
樹脂の重量平均分子量は、GPC(ゲル浸透クロマトグラフィ)によって測定した。具体的には、システム:東ソー製HLC-8220、カラム:東ソー製TSKgel SuperHZM-H(x2本)、溶媒:THFを用いて測定し、ポリスチレン換算で求めたものを用いた。
(5)ポリカーボネート系樹脂(PC)との相溶性
キャリア樹脂組成物(B)とポリカーボネート系樹脂の混合物の示差走査熱量測定(DSC)を行い、下記の基準でPCとの相溶性の有無を判断した。
相溶性有:DSCにおいて、ガラス転移温度のピークが一つである
相溶性無:DSCにおいて、ガラス転移温度のピークが二つである
(6)せん断粘度
キャリア樹脂組成物又はキャリア樹脂の80℃におけるせん断粘度は、島津製作所製フローテスター「型式CFT-500C」を使用して測定した。具体的には、測定開始温度を50℃とし、直径1.0mm、長さ10mmのキャピラリー中をキャリア樹脂組成物又はキャリア樹脂に一定荷重30kgfを与えて流動させ、10℃/minで昇温させ、測定温度が80℃となった時点での剪断粘度を測定した。
(7)粘度
可塑剤(B2)の25℃における粘度は、JIS Z 8803-1991に準じてE型粘度計を用いて測定した。
(8)最大膨張温度
バーキンエルマー社製のTMA-7型を用いて「TMA測定」を行った。サンプル約0.25mgを容器に入れて、昇温速度5℃/minで昇温し、その高さの変位を連続的に測定し、容器内のサンプルの高さの変位が最大となった時の温度を最大膨張温度とした。
(9)マスターバッチの加工性
マスターバッチのペレットの断面を走査型電子顕微鏡(SEM、日本電子株式会社製、型式「JSM-6060LA」)で観察し、熱膨張性マイクロカプセルの状態に基づいて、マスターバッチの加工性を評価した。
良好:熱膨張性マイクロカプセルの膨張なし
不良:熱膨張性マイクロカプセルの膨張あり
(10)射出発泡成形体の発泡倍率
平板形状の射出発泡成形体の厚み(コアバック後キャビティクリアランスtf)を、当該部位の金型の型締め状態でのキャビティクリアランスt0で除することにより、算出した。
(11)射出発泡成形体の外観
平板形状の射出発泡成形体の表面を目視で観察し、外観を評価した。
良好:白化がない
やや良好:白化が若干ある
不良:白化が著しいもの
(1) Glass transition temperature Acrylic resin particles (a) (suspension polymer particles) and carrier resin (B) were measured at 5°C/min using a differential scanning calorimeter (DSC220C manufactured by Seiko Electronics Industry Co., Ltd.). The glass transition temperature was measured under elevated temperature conditions.
(2) Vicat Softening Temperature The Vicat softening temperature of the acrylic resin particles (b) (emulsion polymer particles) was measured according to JIS K7206 A method. The test piece was produced by recovering an emulsion polymer obtained by emulsion polymerization by coagulation, heat treatment and drying, pelletizing with an extruder, and sheeting with a press molding machine.
(3) Average Particle Size The average particle sizes of the acrylic resin particles (a), the acrylic resin particles (b) and the carrier resin (B1) were measured with Microtrac MT-3300 manufactured by Microtrac Bell Co., Ltd. The average particle size (unexpanded) of the thermally expandable microcapsules (A) was measured with a particle size distribution analyzer SALD-3000J manufactured by Shimadzu Corporation.
(4) Weight Average Molecular Weight The weight average molecular weight of the resin was measured by GPC (gel permeation chromatography). Specifically, measurement was performed using a system: HLC-8220 manufactured by Tosoh Corporation, a column: TSKgel SuperHZM-H manufactured by Tosoh Corporation (x 2), and a solvent: THF, and a value calculated in terms of polystyrene was used.
(5) Compatibility with polycarbonate-based resin (PC) Differential scanning calorimetry (DSC) is performed on a mixture of the carrier resin composition (B) and polycarbonate-based resin, and the presence or absence of compatibility with PC is determined according to the following criteria. did.
Compatible: One glass transition temperature peak in DSC No compatibility: Two glass transition temperature peaks in DSC (6) Shear viscosity Carrier resin composition or carrier resin at 80 ° C. The shear viscosity was measured using a flow tester "model CFT-500C" manufactured by Shimadzu Corporation. Specifically, the measurement start temperature is set to 50° C., the carrier resin composition or carrier resin is allowed to flow in a capillary having a diameter of 1.0 mm and a length of 10 mm under a constant load of 30 kgf, and the temperature is raised at a rate of 10° C./min. , and the shear viscosity was measured when the measurement temperature reached 80°C.
(7) Viscosity The viscosity of the plasticizer (B2) at 25° C. was measured using an E-type viscometer according to JIS Z 8803-1991.
(8) Maximum expansion temperature "TMA measurement" was performed using TMA-7 type manufactured by Birkin Elmer. About 0.25 mg of the sample is put in a container, the temperature is raised at a temperature increase rate of 5 ° C./min, and the height displacement is continuously measured. was taken as the maximum expansion temperature.
(9) Processability of masterbatch The cross section of the masterbatch pellet is observed with a scanning electron microscope (SEM, manufactured by JEOL Ltd., model "JSM-6060LA"), and based on the state of the thermally expandable microcapsules, The workability of the masterbatch was evaluated.
Good: no expansion of thermally expandable microcapsules Poor: expansion of thermally expandable microcapsules (10) Expansion ratio of injection foam molded product It was calculated by dividing by the cavity clearance t 0 in the clamped state of the mold at the relevant portion.
(11) Appearance of injection foam molded article The surface of the flat plate-shaped injection foam molded article was visually observed to evaluate the appearance.
Good: No whitening Slightly good: Slight whitening Poor: Significant whitening

<キャリア樹脂粒子(B)の製造例1>
〈アクリル系樹脂粒子(a)の作製〉
撹拌機付反応器に脱イオン水220部、3%-PVA水溶液15部(GH-20:日本合成化学工業(株)製)を仕込み、反応機内を窒素置換した。そこへ、ラウロイルパーオキサイド0.5部、ベンゾイルパーオキサイド0.5部、チオグリコール酸2-エチルヘキシル0.2部を溶解させたアクリル酸ブチル25部とメタクリル酸メチル75部のモノマー混合物を加え、単量体の分散粒子径が約250μmとなるように撹拌機の回転数を調整した。その後、60℃で2時間、70℃で2時間、80℃で2時間、90℃で1時間と段階的に昇温し重合を完結させ、アクリル系樹脂粒子(a)(重合体固形分)の濃度が30%、ガラス転移温度が72℃、及び平均粒子径150μmのアクリル系樹脂粒子(a)の懸濁液を作製した。
<Production Example 1 of Carrier Resin Particles (B)>
<Production of acrylic resin particles (a)>
A reactor equipped with a stirrer was charged with 220 parts of deionized water and 15 parts of a 3%-PVA aqueous solution (GH-20: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), and the inside of the reactor was replaced with nitrogen. A monomer mixture of 25 parts of butyl acrylate and 75 parts of methyl methacrylate in which 0.5 parts of lauroyl peroxide, 0.5 parts of benzoyl peroxide, and 0.2 parts of 2-ethylhexyl thioglycolate are dissolved is added thereto, The rotational speed of the stirrer was adjusted so that the dispersed particle diameter of the monomer was about 250 μm. Thereafter, the temperature was raised stepwise to 60° C. for 2 hours, 70° C. for 2 hours, 80° C. for 2 hours, and 90° C. for 1 hour to complete the polymerization, and acrylic resin particles (a) (polymer solid content) were obtained. A suspension of acrylic resin particles (a) having a concentration of 30%, a glass transition temperature of 72° C., and an average particle size of 150 μm was prepared.

〈アクリル系樹脂粒子(b)の作製〉
撹拌機付与反応器に脱イオン水220部、ほう酸0.3部、炭酸ナトリウム0.03部、N-ラウロイルサルコシン酸ナトリウム0.09部、ホルムアルデヒドスルホキシル酸ナトリウム0.09部、エチレンジアミン四酢酸ナトリウム0.006部、及び硫酸第一鉄7水塩0.002部を仕込み、窒素置換後、80℃に昇温した、これにメタクリル酸メチル25部、メタクリル酸アリル0.1部、t-ブチルハイドロパーオキサイド0.1部よりなるモノマー混合物のうち25%を一括して仕込み、45分間重合を行った。続いてこの混合液の残り75%を1時間に渡って連続追加した。追加終了後、同温度で2時間保持し重合を完結させた。また、この間に0.2重量部のN-ラウロイルサルコシン酸ナトリウムを追加した。得られた最内層架橋メタクリル系重合体のラテックス中の重合体粒子の平均粒子径は1600Å(546nmの波長の光散乱を利用して求めた)であり、重合転化率(重合体生成量/モノマー仕込量x100)は98%であった。続いて、得られた最内層架橋メタクリル系重合体のラテックスを窒素気流中で80℃に保ち、過硫酸カリウム0.1重量部を添加した後、アクリル酸n-ブチル41重量部、スチレン9重量部、メタクリル酸アリル1重量部のモノマー混合液を5時間に渡って連続追加した。この間にオレイン酸カリウム0.1重量部を3回に分けて添加した。モノマー混合液の追加終了後、重合を完結させる為にさらに過硫酸カリウムを0.05重量部添加し2時間保持した。得られた乳化重合のラテックスにおいて、ラテックス粒子(b1)の平均粒子径は2300Åであり、重合転化率は99%であった。続いて、ラテックス粒子(b1)のラテックスを80℃に保ち、過硫酸カリウム0.02重量部を添加した後、メタクリル酸メチル24重量部、アクリル酸n-ブチル1重量部、t-ドデシルメルカプタン0.1重量部の混合液を1時間に渡って連続追加した。モノマー混合液の追加終了後1時間保持し、多層構造を持ち、平均粒子径が0.25μm、ビカット軟化温度90℃の乳化重合グラフト共重合体(アクリル系樹脂粒子(b))のラテックスを得た。
<Production of acrylic resin particles (b)>
220 parts of deionized water, 0.3 parts of boric acid, 0.03 parts of sodium carbonate, 0.09 parts of sodium N-lauroyl sarcosinate, 0.09 parts of sodium formaldehyde sulfoxylate, 0.09 parts of sodium formaldehyde sulfoxylate, sodium ethylenediaminetetraacetate were added to a reactor provided with a stirrer. 0.006 parts of ferrous sulfate heptahydrate and 0.002 parts of ferrous sulfate heptahydrate were charged, and after purging with nitrogen, the temperature was raised to 80°C. 25% of a monomer mixture comprising 0.1 part of hydroperoxide was charged at once and polymerized for 45 minutes. The remaining 75% of this mixture was then added continuously over 1 hour. After completion of the addition, the temperature was maintained for 2 hours to complete the polymerization. During this time, 0.2 parts by weight of sodium N-lauroyl sarcosinate was added. The average particle diameter of the polymer particles in the obtained innermost layer crosslinked methacrylic polymer latex was 1600 Å (determined using light scattering at a wavelength of 546 nm), and the polymerization conversion rate (amount of polymer produced/monomer Charge x100) was 98%. Subsequently, the obtained innermost layer crosslinked methacrylic polymer latex was kept at 80° C. in a nitrogen stream, and after adding 0.1 parts by weight of potassium persulfate, 41 parts by weight of n-butyl acrylate and 9 parts by weight of styrene were added. and 1 part by weight of allyl methacrylate were continuously added over 5 hours. During this time, 0.1 part by weight of potassium oleate was added in three portions. After the completion of addition of the monomer mixed solution, 0.05 parts by weight of potassium persulfate was further added and kept for 2 hours in order to complete the polymerization. In the resulting emulsion-polymerized latex, the latex particles (b1) had an average particle size of 2300 Å and a polymerization conversion rate of 99%. Subsequently, the latex of the latex particles (b1) was kept at 80° C., and after adding 0.02 parts by weight of potassium persulfate, 24 parts by weight of methyl methacrylate, 1 part by weight of n-butyl acrylate, and 0 parts by weight of t-dodecyl mercaptan. .1 part by weight of the mixture was added continuously over 1 hour. After completion of addition of the monomer mixture, the mixture was held for 1 hour to obtain a latex of an emulsion-polymerized graft copolymer (acrylic resin particles (b)) having a multilayer structure, an average particle size of 0.25 µm, and a Vicat softening temperature of 90°C. rice field.

〈キャリア樹脂(B1)の作製>
得られたアクリル系樹脂粒子(b)のラテックス96部(固形分すなわちアクリル系樹脂粒子(b)30部)と、アクリル系樹脂粒子(a)の懸濁液332部(固形分すなわちアクリル系樹脂粒子(a)100部)を撹拌下に混合し、得られた混合懸濁液(固形分すなわちアクリル系樹脂粒子(a)及びアクリル系樹脂粒子(b)の合計濃度30%)を60℃に調整した後、1.0%塩化カルシウム水溶液50部を撹拌下に10分間で滴下した。その後、撹拌下に95℃まで昇温して熱処理し、平均粒子径180μmのキャリア樹脂(B1-1)を得た。キャリア樹脂(B1-1)の重量平均分子量は28万であり、ガラス転移温度(Tg)は77℃であった。
<Production of carrier resin (B1)>
96 parts of the obtained latex of acrylic resin particles (b) (solid content, i.e., 30 parts of acrylic resin particles (b)) and 332 parts of suspension of acrylic resin particles (a) (solid content, i.e., acrylic resin Particles (a) 100 parts) were mixed with stirring, and the resulting mixed suspension (solid content, that is, total concentration of acrylic resin particles (a) and acrylic resin particles (b): 30%) was heated to 60 ° C. After adjustment, 50 parts of a 1.0% aqueous calcium chloride solution was added dropwise over 10 minutes while stirring. Thereafter, the temperature was raised to 95° C. with stirring and heat treatment was performed to obtain a carrier resin (B1-1) having an average particle size of 180 μm. The carrier resin (B1-1) had a weight average molecular weight of 280,000 and a glass transition temperature (Tg) of 77°C.

<キャリア樹脂(B1)の製造例2>
アクリル系樹脂粒子(a)の作製においてチオグリコール酸2-エチルヘキシルを0.5部に変更した以外は、製造例1と同様にして、キャリア樹脂(B1-2)を作製した。得られたキャリア樹脂(B1-2)の平均粒子径は200μmであり、重量平均分子量は6万であり、ガラス転移温度(Tg)は77℃であった。
<Production Example 2 of Carrier Resin (B1)>
A carrier resin (B1-2) was produced in the same manner as in Production Example 1, except that 0.5 parts of 2-ethylhexyl thioglycolate was used in the production of the acrylic resin particles (a). The obtained carrier resin (B1-2) had an average particle diameter of 200 μm, a weight average molecular weight of 60,000, and a glass transition temperature (Tg) of 77°C.

<キャリア樹脂(B1)の製造例3>
アクリル系樹脂粒子(a)の作製においてチオグリコール酸2-エチルヘキシルを1.5部に変更した以外は、製造例1と同様にして、キャリア樹脂(B1-3)を作製した。得られたキャリア樹脂(B1-3)の平均粒子径は190μmであり、重量平均分子量は2万であり、ガラス転移温度(Tg)は77℃であった。
<Production Example 3 of Carrier Resin (B1)>
A carrier resin (B1-3) was produced in the same manner as in Production Example 1, except that 2-ethylhexyl thioglycolate was changed to 1.5 parts in the production of the acrylic resin particles (a). The obtained carrier resin (B1-3) had an average particle diameter of 190 μm, a weight average molecular weight of 20,000, and a glass transition temperature (Tg) of 77°C.

<キャリア樹脂(B1)の製造例4>
チオグリコール酸2-エチルヘキシルを0.3部に変更した以外は、製造例1と同様にして、キャリア樹脂(B1-4)を作製した。得られたキャリア樹脂(B1-4)の平均粒子径は200μmであり、重量平均分子量は11万であり、ガラス転移温度(Tg)は76℃であった。
<Production Example 4 of Carrier Resin (B1)>
A carrier resin (B1-4) was prepared in the same manner as in Production Example 1, except that 2-ethylhexyl thioglycolate was changed to 0.3 parts. The obtained carrier resin (B1-4) had an average particle diameter of 200 μm, a weight average molecular weight of 110,000, and a glass transition temperature (Tg) of 76°C.

<ポリエステル-ポリエーテル共重合体の製造例1>
攪拌機、ガス排出出口を備えた反応器に、ゲルマニウム系触媒で製造されたポリエチレンテレフタレート(IV=0.65)と、ビスフェノールAエチレンオキサイド30モル付加物(東邦化学社製、「ビスオール30EN」、一般式(6)で表されるポリエーテル単位に該当し、n+mは30である。)と、ポリエチレンテレフタレートとビスフェノールAエチレンオキサイド30モル付加物の合計量を基準として、二酸化ゲルマニウムを400ppm、安定剤(チバ・スペシャリティーケミカルズ製のイルガノックス1010)2000ppmとを仕込み、270℃で2時間保持した後、真空ポンプで減圧し、1torrで重縮合を実施し、所定の重合度に達したところで減圧を終了して反応を停止し製造されたものを取り出し、更に、水槽で冷却したストランドを、100℃に設定した熱風乾燥機中で後結晶化と乾燥を同時に行った後、粉砕器に投入してペレット化する事で、ペレット状態のポリエステル-ポリエーテル共重合体(H2)を得た。得られたポリエステル-ポリエーテル共重合体(H2)のポリエーテルの含有量は30重量%であり、IV値は0.45であった。なお、ポリエチレンテレフタレート及びポリエステル-ポリエーテル共重合体のIV値は、テトラクロロエタン/フェノール=50/50(重量比)の混合溶媒中、25℃、0.5g/dlでの対数粘度から算出したものである。
<Production Example 1 of polyester-polyether copolymer>
A reactor equipped with a stirrer and a gas discharge outlet was charged with polyethylene terephthalate (IV=0.65) produced with a germanium-based catalyst and bisphenol A ethylene oxide 30 mol adduct (manufactured by Toho Chemical Co., Ltd., "Bisol 30EN", general Corresponding to the polyether unit represented by the formula (6), n + m is 30.), 400 ppm of germanium dioxide, a stabilizer ( 2000 ppm of Irganox 1010) manufactured by Ciba Specialty Chemicals Co., Ltd. was charged, held at 270° C. for 2 hours, depressurized with a vacuum pump, polycondensation was performed at 1 torr, and depressurization was terminated when a predetermined polymerization degree was reached. After stopping the reaction and taking out the manufactured product, the strand cooled in a water tank is subjected to post-crystallization and drying at the same time in a hot air dryer set at 100 ° C., then put into a grinder and pelleted. A polyester-polyether copolymer (H2) in the form of pellets was obtained. The resulting polyester-polyether copolymer (H2) had a polyether content of 30% by weight and an IV value of 0.45. The IV value of polyethylene terephthalate and polyester-polyether copolymer is calculated from the logarithmic viscosity at 0.5 g/dl at 25°C in a mixed solvent of tetrachloroethane/phenol = 50/50 (weight ratio). is.

(実施例1)
<熱膨張性マイクロカプセルのマスターバッチの作製>
上記で得られたキャリア樹脂(B1-1)、可塑剤(B2)としてアクリル系可塑剤(B2-1)(東亜合成株式会社製、「アルフォン UP1020」、重量平均分子量2000、25℃における粘度500mPa・s、オールアクリル、無官能基)、及び熱膨張性マイクロカプセル(A)(株式会社クレハ製、「マイクロスフェアー S2640D」、平均粒子径21μm、最大膨張温度249℃)を下記表1に示す重量割合で混合した後、重量式フィーダーにセットし、同方向噛み合い二軸押出機(テクノベル製、25mm押出機)に供給し、130℃で溶融混練し、ストランドを水冷後、ペレタイザーで切断することによって、ペレット状の熱膨張性マイクロカプセルのマスターバッチ(C-1)を得た。
(Example 1)
<Preparation of masterbatch of thermally expandable microcapsules>
Carrier resin (B1-1) obtained above, acrylic plasticizer (B2-1) as plasticizer (B2) (manufactured by Toagosei Co., Ltd., "ALPHON UP1020", weight average molecular weight 2000, viscosity at 25 ° C. 500 mPa · s, all acrylic, non-functional group) and thermally expandable microcapsules (A) ("Microsphere S2640D" manufactured by Kureha Co., Ltd., average particle size 21 µm, maximum expansion temperature 249 ° C.) are shown in Table 1 below. After mixing at a weight ratio, set in a gravimetric feeder, supply to a co-meshing twin-screw extruder (manufactured by Technobel, 25 mm extruder), melt-knead at 130 ° C., water-cool the strand, and cut with a pelletizer. to obtain a masterbatch (C-1) of thermally expandable microcapsules in the form of pellets.

<ポリカーボネート系樹脂組成物の作製>
ポリカーボネート系樹脂(三菱化学株式会社製「S-2000」、数平均分子量23,000)を50部、熱可塑性ポリエステル系樹脂(株式会社ベルポリエステルプロダクツ製「ベルペット EFG70」、ポリエチレンテレフタレート)を15部、上記で得られたポリエステル-ポリエーテル共重合体(H2)を15部、無機化合物(マイカ、株式会社ヤマグチマイカ製「YM-21S」、数平均粒子径27μm)15部を同方向噛み合い二軸押出機(日本製鋼所製、TEX44)に供給し、280℃にて溶融混練し、ストランドを水冷後、ペレタイザーで切断することによってペレット状の基材成分となるポリカーボネート系樹脂組成物を得た。得られた基材成分のポリカーボネート系樹脂組成物95部と、上記で得られた熱膨張性マイクロカプセル(A)のマスターバッチ(C-1)5部をハンドブレンドしてポリカーボネート系樹脂組成物(I-1)を得た。
<Preparation of Polycarbonate Resin Composition>
Polycarbonate resin (manufactured by Mitsubishi Chemical Corporation "S-2000", number average molecular weight 23,000) 50 parts, thermoplastic polyester resin (manufactured by Bell Polyester Products Co., Ltd. "Belpet EFG70", polyethylene terephthalate) 15 parts , 15 parts of the polyester-polyether copolymer (H2) obtained above and 15 parts of an inorganic compound (mica, "YM-21S" manufactured by Yamaguchi Mica Co., Ltd., number average particle size 27 μm) were mixed in the same direction and meshed biaxially. The mixture was supplied to an extruder (TEX44, manufactured by Japan Steel Works, Ltd.), melt-kneaded at 280° C., cooled with water, and cut with a pelletizer to obtain a polycarbonate-based resin composition as a pellet-shaped base component. Polycarbonate resin composition ( I-1) was obtained.

<射出発泡成形体の作製>
上記で得られたポリカーボネート系樹脂組成物を射出発泡成形して射出発泡成形体を作製した。具体的には、ポリカーボネート系樹脂組成物(I-1)を型締力180tで、コアバック機能及びシャットオフノズルを有する電動の射出成形機(東洋機械金属(株)製)に供給し、シリンダ温度270℃、背圧10MPaで溶融混練した後、60℃に設定された固定型と前進及び後退が可能な可動型とから構成され、図1に示す縦160mm×横160mmの平板形状のキャビティ(初期キャビティクリアランスt0=2.4mmを有し、底面部の中心位置にφ8mmのダイレクトゲート)を有する金型中に、射出速度100mm/秒で射出充填した。初期充填厚み(初期キャビティクリアランスt0)まで射出充填完了後に、底面部が所望の厚み(発泡倍率)となるように(クリアランスがコアバック後キャビティクリアランスtfが3.6mmとなるよう)可動型を後退させて、キャビティ内のポリカーボネート系樹脂組成物を発泡させた。発泡完了後40秒間冷却してから射出発泡成形体を取り出した。
<Preparation of injection foam molding>
The polycarbonate-based resin composition obtained above was subjected to injection foam molding to prepare an injection foam molded product. Specifically, the polycarbonate resin composition (I-1) is supplied to an electric injection molding machine (manufactured by Toyo Machinery & Metal Co., Ltd.) having a core-back function and a shut-off nozzle with a mold clamping force of 180 t, and the cylinder is After melt-kneading at a temperature of 270 ° C. and a back pressure of 10 MPa, a cavity ( Injection filling was performed at an injection speed of 100 mm/sec into a mold having an initial cavity clearance of t 0 =2.4 mm and a φ8 mm direct gate at the center of the bottom. To the initial filling thickness (initial cavity clearance t 0 ) After completion of injection filling, the bottom part has a desired thickness (expansion ratio) (so that the cavity clearance t f after core back is 3.6 mm) Movable mold was retracted to foam the polycarbonate-based resin composition in the cavity. After cooling for 40 seconds after completion of foaming, the injection foam molded article was taken out.

(実施例2)
キャリア樹脂(B1-1)に変えてキャリア樹脂(B1-2)を用いた以外は、実施例1と同様にして、熱膨張性マイクロカプセルのマスターバッチ(C-2)、ポリカーボネート系樹脂組成物(I-2)及び射出発泡成形体を作製した。
(Example 2)
A thermally expandable microcapsule masterbatch (C-2) and a polycarbonate resin composition were prepared in the same manner as in Example 1, except that the carrier resin (B1-2) was used instead of the carrier resin (B1-1). (I-2) and an injection foam molded product were produced.

(実施例3)
キャリア樹脂(B1-1)に変えてキャリア樹脂(B1-2)を用い、キャリア樹脂(B1-2)とアクリル系可塑剤(B2)の重量割合を表1に示したとおりに変更した以外は、実施例1と同様にして、熱膨張性マイクロカプセルのマスターバッチ(C-3)、ポリカーボネート系樹脂組成物(I-3)及び射出発泡成形体を作製した。
(Example 3)
Carrier resin (B1-2) was used instead of carrier resin (B1-1), and the weight ratio of carrier resin (B1-2) and acrylic plasticizer (B2) was changed as shown in Table 1. , in the same manner as in Example 1, a masterbatch (C-3) of thermally expandable microcapsules, a polycarbonate-based resin composition (I-3) and an injection foam molded product were produced.

(実施例4)
キャリア樹脂(B1-1)に変えてキャリア樹脂(B1-3)を用いた以外は、実施例1と同様にして、熱膨張性マイクロカプセルのマスターバッチ(C-4)、ポリカーボネート系樹脂組成物(I-4)及び射出発泡成形体を作製した。
(Example 4)
A thermally expandable microcapsule masterbatch (C-4) and a polycarbonate resin composition were prepared in the same manner as in Example 1, except that the carrier resin (B1-3) was used instead of the carrier resin (B1-1). (I-4) and an injection foam molded product were produced.

(実施例5)
キャリア樹脂(B1-1)に変えてキャリア樹脂(B1-3)を用い、キャリア樹脂(B1-3)とアクリル系可塑剤(B2)の重量割合を表1に示したとおりに変更した以外は、実施例1と同様にして、熱膨張性マイクロカプセルのマスターバッチ(C-5)、ポリカーボネート系樹脂組成物(I-5)及び射出発泡成形体を作製した。
(Example 5)
Carrier resin (B1-3) was used instead of carrier resin (B1-1), and the weight ratio of carrier resin (B1-3) and acrylic plasticizer (B2) was changed as shown in Table 1. In the same manner as in Example 1, a thermally expandable microcapsule masterbatch (C-5), a polycarbonate resin composition (I-5) and an injection foam molded product were produced.

(実施例6)
可塑剤としてアクリル系可塑剤(B2-2)(東亜合成株式会社製、「アルフォン UP1500」、重量平均分子量12,000、25℃における粘度80,000mPa・s、スチレンアクリル、無官能基)を用いた以外は、実施例5と同様にして、熱膨張性マイクロカプセルのマスターバッチ(C-6)、ポリカーボネート系樹脂組成物(I-6)及び射出発泡成形体を作製した。
(Example 6)
Acrylic plasticizer (B2-2) (manufactured by Toagosei Co., Ltd., "Alphon UP1500", weight average molecular weight 12,000, viscosity at 25 ° C. 80,000 mPa s, styrene acrylic, no functional group) is used as a plasticizer. A thermally expandable microcapsule masterbatch (C-6), a polycarbonate-based resin composition (I-6) and an injection foam molded product were produced in the same manner as in Example 5 except that

(実施例7)
キャリア樹脂(B1-3)に変えてキャリア樹脂(B1-4)を用いた以外は、実施例6と同様にして、熱膨張性マイクロカプセルのマスターバッチ(C-7)、ポリカーボネート系樹脂組成物(I-7)及び射出発泡成形体を作製した。
(Example 7)
A thermally expandable microcapsule masterbatch (C-7) and a polycarbonate resin composition were prepared in the same manner as in Example 6, except that the carrier resin (B1-4) was used instead of the carrier resin (B1-3). (I-7) and an injection foam molded product were produced.

(比較例1)
キャリア樹脂(B1-1)の重量割合を表1に示したとおりに変更し、アクリル系可塑剤(B2)を用いていない以外は、実施例1と同様にして、熱膨張性マイクロカプセルのマスターバッチ、ポリカーボネート系樹脂組成物及び射出発泡成形体を作製した。
(Comparative example 1)
A master of thermally expandable microcapsules was prepared in the same manner as in Example 1, except that the weight ratio of the carrier resin (B1-1) was changed as shown in Table 1 and the acrylic plasticizer (B2) was not used. A batch, a polycarbonate-based resin composition, and an injection foam molded article were produced.

(比較例2)
キャリア樹脂(B1-1)に変えてアクリル系加工助剤(株式会社カネカ製「カネエースPA60」、重量平均分子量5,000,000)を用いた以外は、比較例1と同様にして、熱膨張性マイクロカプセルのマスターバッチ、ポリカーボネート系樹脂組成物及び射出発泡成形体を作製した。
(Comparative example 2)
Thermal expansion was performed in the same manner as in Comparative Example 1, except that an acrylic processing aid ("Kane Ace PA60" manufactured by Kaneka Co., Ltd., weight average molecular weight 5,000,000) was used instead of the carrier resin (B1-1). A masterbatch of polycrystalline microcapsules, a polycarbonate-based resin composition, and an injection foam molded product were prepared.

実施例及び比較例のマスターバッチの加工性を上述した通りに評価し、その結果を下記表1に示した。また、実施例及び比較例の射出発泡成形体の外観を上述したとおりに評価し、その結果を下記表1に示し。表1には、発泡倍率も示した。 The processability of the masterbatches of Examples and Comparative Examples was evaluated as described above, and the results are shown in Table 1 below. In addition, the appearance of the injection foam molded articles of Examples and Comparative Examples was evaluated as described above, and the results are shown in Table 1 below. Table 1 also shows the expansion ratio.

Figure 0007177828000007
Figure 0007177828000007

上記表1から分かるように、重量平均分子量が8,000以上350,000以下のアクリル系樹脂であるキャリア樹脂(B1)及び重量平均分子量が1000以上20000以下のアクリル系可塑剤(B2)を含み、ポリカーボネート系樹脂と実質的に相溶し、かつ80℃におけるせん断粘度が1.0Pa・s以上1.5×106Pa・s以下であるキャリア樹脂組成物(B)を用いた実施例では、熱膨張性マイクロカプセルのマスターバッチの加工性が良好であるとともに、該マスターバッチを用いたポリカーボネート系樹脂組成物を射出発泡成形した射出発泡成形体の表面に白化が発生しておらず、外観が良好であった。As can be seen from Table 1 above, the carrier resin (B1), which is an acrylic resin having a weight average molecular weight of 8,000 to 350,000, and the acrylic plasticizer (B2) having a weight average molecular weight of 1,000 to 20,000 are included. In the examples using the carrier resin composition (B), which is substantially compatible with the polycarbonate resin and has a shear viscosity at 80° C. of 1.0 Pa·s or more and 1.5×10 6 Pa·s or less, , The processability of the masterbatch of the thermally expandable microcapsules is good, and the surface of the injection foamed product obtained by injection foaming the polycarbonate resin composition using the masterbatch does not whiten, and the appearance is good. was good.

一方、重量平均分子量が1,000以上20,000以下のアクリル系可塑剤(B2)を用いておらず、ポリカーボネート系樹脂と実質的に相溶するが、80℃におけるせん断粘度が1.5×106Pa・sを超えるアクリル系樹脂を用いた比較例1では、熱膨張性マイクロカプセルのマスターバッチの加工性が悪いとともに、該マスターバッチを用いたポリカーボネート系樹脂組成物を射出発泡成形した射出発泡成形体の表面に白化が著しく発生しており、外観が悪かった。また、一方、重量平均分子量が1,000以上20,000以下のアクリル系可塑剤(B2)を用いておらず、ポリカーボネート系樹脂と実質的に相溶せず、かつ80℃におけるせん断粘度が1.5×106Pa・sを超えるアクリル系樹脂を用いた比較例2でも、熱膨張性マイクロカプセルのマスターバッチの加工性が悪いとともに、該マスターバッチを用いたポリカーボネート系樹脂組成物を射出発泡成形した射出発泡成形体の表面に白化が著しく発生しており、外観が悪かった。On the other hand, the acrylic plasticizer (B2) having a weight average molecular weight of 1,000 or more and 20,000 or less is not used, and is substantially compatible with the polycarbonate resin, but the shear viscosity at 80 ° C. is 1.5 × In Comparative Example 1 using an acrylic resin exceeding 10 6 Pa·s, the processability of the masterbatch of thermally expandable microcapsules was poor, and the polycarbonate resin composition using the masterbatch was injection-foam-molded. Whitening occurred remarkably on the surface of the foam molded article, and the appearance was poor. On the other hand, the acrylic plasticizer (B2) having a weight average molecular weight of 1,000 or more and 20,000 or less is not used, is not substantially compatible with the polycarbonate resin, and has a shear viscosity of 1 at 80 ° C. Even in Comparative Example 2 using an acrylic resin exceeding 5×10 6 Pa·s, the processability of the masterbatch of thermally expandable microcapsules was poor, and the polycarbonate resin composition using the masterbatch was not foamed by injection. The surface of the molded injection foamed product was noticeably whitened, and the appearance was poor.

Claims (18)

熱膨張性マイクロカプセル(A)、キャリア樹脂組成物(B)を含有するマスターバッチ(C)であって、
キャリア樹脂組成物(B)は、キャリア樹脂(B1)及び可塑剤(B2)を含み、キャリア樹脂(B1)は重量平均分子量が8,000以上350,000以下であり、かつ20℃で固体のアクリル系樹脂であり、可塑剤(B2)は20℃で液体、かつ重量平均分子量が1,000以上20,000以下であり、
キャリア樹脂組成物(B)は、ポリカーボネート系樹脂と実質的に相溶し、かつ80℃におけるせん断粘度が1.0Pa・s以上1.5×106Pa・s以下であることを特徴とする、マスターバッチ。
A masterbatch (C) containing a thermally expandable microcapsule (A) and a carrier resin composition (B),
The carrier resin composition (B) contains a carrier resin (B1) and a plasticizer (B2), and the carrier resin (B1) has a weight average molecular weight of 8,000 or more and 350,000 or less and is solid at 20°C. It is an acrylic resin, the plasticizer (B2) is liquid at 20° C., and has a weight average molecular weight of 1,000 or more and 20,000 or less,
The carrier resin composition (B) is characterized by being substantially compatible with the polycarbonate-based resin and having a shear viscosity at 80° C. of 1.0 Pa·s or more and 1.5×10 6 Pa·s or less. ,Master Badge.
前記マスターバッチ(C)は、ポリカーボネート系樹脂用である、請求項1に記載のマスターバッチ。 The masterbatch according to claim 1, wherein the masterbatch (C) is for a polycarbonate resin. 前記ポリカーボネート系樹脂は、さらにポリエステル系樹脂、ポリエステル-ポリエーテル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-エチレン-プロピレン-ジエン-スチレン共重合体、アクリレート-スチレン-アクリロニトリル共重合体、アクリロニトリル-スチレン共重合体、ポリアリレート樹脂、ポリスチレン系樹脂、及びポリアミド系樹脂からなる群より選択される1種以上の他の熱可塑性樹脂を含有する、請求項1又は2に記載のマスターバッチ。 The polycarbonate-based resin further includes a polyester-based resin, a polyester-polyether copolymer, an acrylonitrile-butadiene-styrene copolymer, an acrylonitrile-ethylene-propylene-diene-styrene copolymer, an acrylate-styrene-acrylonitrile copolymer, 3. The masterbatch according to claim 1, which contains one or more other thermoplastic resins selected from the group consisting of acrylonitrile-styrene copolymers, polyarylate resins, polystyrene resins, and polyamide resins. 前記可塑剤(B2)がアクリル系可塑剤である、請求項1~3のいずれか1項に記載のマスターバッチ。 The masterbatch according to any one of claims 1 to 3, wherein the plasticizer (B2) is an acrylic plasticizer. 前記キャリア樹脂(B1)のガラス転移温度(Tg)が-30℃以上150℃以下である、請求項1~4のいずれか1項に記載のマスターバッチ。 The masterbatch according to any one of claims 1 to 4, wherein the carrier resin (B1) has a glass transition temperature (Tg) of -30°C or higher and 150°C or lower. 前記熱膨張性マイクロカプセル(A)が、コアシェル構造を有し、沸点が10℃以上330℃以下である化合物の1種以上で構成されたコアと、前記コアを内包するシェルで構成されており、
前記シェルは、ニトリル系単量体、(メタ)アクリレート系単量体、芳香族ビニル系単量体、ジエン系単量体、カルボキシル基を有するビニル系単量体、並びにメチロール基、水酸基、アミノ基、エポキシ基、及びイソシアネート基からなる群より選択される1種以上の反応性官能基を有する単量体からなる群より選択される1種以上の単量体に由来する構成単位を有する樹脂で構成されている、請求項1~5のいずれか1項に記載のマスターバッチ。
The thermally expandable microcapsules (A) have a core-shell structure and are composed of a core composed of one or more compounds having a boiling point of 10° C. or higher and 330° C. or lower, and a shell enclosing the core. ,
The shell includes a nitrile-based monomer, a (meth)acrylate-based monomer, an aromatic vinyl-based monomer, a diene-based monomer, a vinyl-based monomer having a carboxyl group, a methylol group, a hydroxyl group, an amino A resin having structural units derived from one or more monomers selected from the group consisting of monomers having one or more reactive functional groups selected from the group consisting of groups consisting of groups, epoxy groups, and isocyanate groups. The masterbatch according to any one of claims 1 to 5, which is composed of.
前記熱膨張性マイクロカプセル(A)は、最大膨張温度が180℃以上300℃以下である、請求項1~6のいずれか1項に記載のマスターバッチ。 The masterbatch according to any one of claims 1 to 6, wherein the thermally expandable microcapsules (A) have a maximum expansion temperature of 180°C or higher and 300°C or lower. 前記シェルを構成する樹脂において、カルボキシル基を含有する単量体及びアミノ基を含有する単量体からなる群より選択される1種以上の単量体に由来する構成単位の濃度が12mmol/g以下である、請求項6又は7に記載のマスターバッチ。 In the resin constituting the shell, the concentration of structural units derived from one or more monomers selected from the group consisting of a monomer containing a carboxyl group and a monomer containing an amino group is 12 mmol/g. 8. The masterbatch according to claim 6 or 7, which is 前記熱膨張性マイクロカプセル(A)の平均粒子径が0.5μm以上50μm以下である、請求項1~8のいずれか1項に記載のマスターバッチ。 The masterbatch according to any one of claims 1 to 8, wherein the thermally expandable microcapsules (A) have an average particle size of 0.5 µm or more and 50 µm or less. 前記キャリア樹脂(B1)は、平均粒子径が50μm以上500μm以下のアクリル系樹脂粒子(a)と、アクリル系樹脂粒子(a)を被覆している平均粒子径が0.05μm以上0.5μm以下のアクリル系樹脂粒子(b)を含むアクリル系樹脂である、請求項1~9のいずれか1項に記載のマスターバッチ。 The carrier resin (B1) comprises acrylic resin particles (a) having an average particle size of 50 μm to 500 μm and an average particle size covering the acrylic resin particles (a) of 0.05 μm to 0.5 μm. The masterbatch according to any one of claims 1 to 9, which is an acrylic resin containing the acrylic resin particles (b) of 前記アクリル系樹脂粒子(a)は、(メタ)アクリル酸エステル30~100重量%、及びこれと共重合可能なビニルモノマー0~70重量%で構成されている、請求項10に記載のマスターバッチ。 The masterbatch according to claim 10, wherein the acrylic resin particles (a) are composed of 30 to 100% by weight of (meth)acrylic acid ester and 0 to 70% by weight of a vinyl monomer copolymerizable therewith. . 前記アクリル系樹脂粒子(b)は、(メタ)アクリル酸エステル30~100重量%、及びこれと共重合可能なビニルモノマー0~70重量%で構成されている、請求項10又は11に記載のマスターバッチ。 12. The acrylic resin particles (b) according to claim 10 or 11, comprising 30 to 100% by weight of a (meth)acrylic acid ester and 0 to 70% by weight of a vinyl monomer copolymerizable therewith. Master Badge. 前記アクリル系樹脂粒子(b)は、(メタ)アクリル酸エステル50~100重量%、芳香族ビニルモノマー0~40重量%、これらと共重合可能なビニルモノマー0~10重量%、及び多官能性モノマー0~5重量%を含むラテックス粒子(b1)50~90重量部と、(メタ)アクリル酸エステル10~100重量%、芳香族ビニルモノマー0~90重量%、シアン化ビニルモノマー0~25重量%、及びこれらと共重合可能なビニルモノマー0~20重量%を含む単量体混合物(b2)10~50重量部が重合した重合体粒子であって、ラテックス粒子(b1)と単量体混合物(b2)の合計が100重量部である、請求項10~12のいずれか1項に記載のマスターバッチ。 The acrylic resin particles (b) contain 50 to 100% by weight of a (meth)acrylic acid ester, 0 to 40% by weight of an aromatic vinyl monomer, 0 to 10% by weight of a vinyl monomer copolymerizable therewith, and polyfunctional 50 to 90 parts by weight of latex particles (b1) containing 0 to 5% by weight of monomer, 10 to 100% by weight of (meth)acrylic acid ester, 0 to 90% by weight of aromatic vinyl monomer, and 0 to 25% by weight of vinyl cyanide monomer % and 10 to 50 parts by weight of a monomer mixture (b2) containing 0 to 20% by weight of a vinyl monomer copolymerizable therewith, the latex particles (b1) and the monomer mixture. The masterbatch according to any one of claims 10 to 12, wherein the sum of (b2) is 100 parts by weight. 前記マスターバッチ(C)は、前記熱膨張性マイクロカプセル(A)を30重量%以上80重量%以下、前記キャリア樹脂(B1)を15重量%以上65重量%以下、及び前記可塑剤(B2)を5重量%以上30重量%以下含み、前記キャリア樹脂(B1)の含有量が前記可塑剤(B2)の含有量より多い、請求項1~13のいずれか1項に記載のマスターバッチ。 The masterbatch (C) contains 30% by weight or more and 80% by weight or less of the thermally expandable microcapsules (A), 15% by weight or more and 65% by weight or less of the carrier resin (B1), and the plasticizer (B2). 5% by weight or more and 30% by weight or less, and the content of the carrier resin (B1) is greater than the content of the plasticizer (B2). The masterbatch according to any one of claims 1 to 13. 請求項1~14のいずれか1項に記載のマスターバッチを1~15重量%、ポリカーボネート系樹脂を30~99重量%、並びにポリエステル系樹脂、ポリエステル-ポリエーテル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-エチレン-プロピレン-ジエン-スチレン共重合体、アクリレート-スチレン-アクリロニトリル共重合体、アクリロニトリル-スチレン共重合体、ポリアリレート樹脂、ポリスチレン系樹脂、及びポリアミド系樹脂からなる群より選択される1種以上の他の熱可塑性樹脂を0~55重量%を含有する、ポリカーボネート系樹脂組成物。 1 to 15% by weight of the masterbatch according to any one of claims 1 to 14, 30 to 99% by weight of polycarbonate resin, and polyester resin, polyester-polyether copolymer, acrylonitrile-butadiene-styrene selected from the group consisting of copolymers, acrylonitrile-ethylene-propylene-diene-styrene copolymers, acrylate-styrene-acrylonitrile copolymers, acrylonitrile-styrene copolymers, polyarylate resins, polystyrene resins, and polyamide resins A polycarbonate-based resin composition containing 0 to 55% by weight of one or more other thermoplastic resins. さらに無機化合物を含む、請求項15に記載のポリカーボネート系樹脂組成物。 The polycarbonate-based resin composition according to claim 15, further comprising an inorganic compound. 請求項15又は16に記載のポリカーボネート系樹脂組成物を射出発泡成形したことを特徴とする、射出発泡成形体。 17. An injection foam-molded article obtained by subjecting the polycarbonate resin composition according to claim 15 or 16 to injection foam molding. 請求項15又は16に記載のポリカーボネート系樹脂組成物を射出成形機に供給し、初期充填厚みまで充填した後に、金型のコアをバックさせることを特徴とする、射出発泡成形体の製造方法。 17. A method for producing an injection foam-molded article, comprising supplying the polycarbonate-based resin composition according to claim 15 or 16 to an injection molding machine, filling the composition to an initial filling thickness, and then backing the core of the mold.
JP2020515537A 2018-04-27 2019-04-24 Masterbatch, Polycarbonate Resin Composition, Injection Foaming Molded Article and Method for Producing Same Active JP7177828B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018087159 2018-04-27
JP2018087159 2018-04-27
PCT/JP2019/017484 WO2019208653A1 (en) 2018-04-27 2019-04-24 Master batch, polycarbonate resin composition, injection foam molded body and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2019208653A1 JPWO2019208653A1 (en) 2021-04-30
JP7177828B2 true JP7177828B2 (en) 2022-11-24

Family

ID=68294650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020515537A Active JP7177828B2 (en) 2018-04-27 2019-04-24 Masterbatch, Polycarbonate Resin Composition, Injection Foaming Molded Article and Method for Producing Same

Country Status (5)

Country Link
US (1) US11898016B2 (en)
EP (1) EP3786224A4 (en)
JP (1) JP7177828B2 (en)
CN (1) CN112055725B (en)
WO (1) WO2019208653A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7549572B2 (en) * 2019-03-28 2024-09-11 株式会社カネカ Masterbatch for polycarbonate resin, polycarbonate resin composition, injection foam molded product, and method for producing same
WO2021200970A1 (en) * 2020-03-30 2021-10-07 株式会社カネカ Master batch, method for manufacturing same, polycarbonate resin composition, injection foam molded article, and method for manufacturing same
JP7302056B1 (en) 2022-03-09 2023-07-03 大日精化工業株式会社 Masterbatch, resin composition, and molding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231080A (en) 2006-02-28 2007-09-13 Kaneka Corp Polycarbonate resin composition and molded body made therefrom
WO2017171031A1 (en) 2016-04-01 2017-10-05 株式会社カネカ Injection-molded foam of resin composition with satisfactory surface property and capable of weight reduction and rib design

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004041934A1 (en) * 2002-11-07 2006-03-09 株式会社カネカ Thermoplastic polyester resin composition and molded article comprising the same
JP2005307118A (en) * 2004-04-26 2005-11-04 Kaneka Corp Thickening agent for thermoplastic polyester resin and thermoplastic polyester resin composition compounded therewith
WO2007072769A1 (en) 2005-12-19 2007-06-28 Kureha Corporation Heat-expandable microspheres, process for production of the same and uses thereof
JP5485697B2 (en) * 2008-09-30 2014-05-07 積水化学工業株式会社 Master batch for foam molding and foam molded article
JP5466417B2 (en) * 2009-03-19 2014-04-09 積水化学工業株式会社 Thermally expandable microcapsules and foamed molded articles
JP5534576B2 (en) 2009-07-08 2014-07-02 株式会社クレハ Thermally expansible microsphere and method for producing the same, additive and molded article
US9040599B2 (en) * 2009-10-06 2015-05-26 Kaneka Corporation Polypropylene resin expanded particles and polypropylene resin in-mold foaming molded body
JP5950560B2 (en) * 2010-12-15 2016-07-13 松本油脂製薬株式会社 Foamable resin composition and use thereof
JP2013142146A (en) 2012-01-12 2013-07-22 Tosoh Corp Foaming agent master batch, and foamed body using the same
CN104254569A (en) * 2012-04-27 2014-12-31 株式会社钟化 Polycarbonate resin composition with superior fluidity and molding thereof
JP5908382B2 (en) * 2012-09-28 2016-04-26 積水化学工業株式会社 Masterbatch and foamed molding
JP6233084B2 (en) 2014-02-14 2017-11-22 コニカミノルタ株式会社 Method for producing fine foam molded article and fine foam molded article
JP6570371B2 (en) * 2014-10-10 2019-09-04 旭化成株式会社 Thermoplastic resin composition, method for producing the same, and molded article
JP6646229B2 (en) * 2014-11-12 2020-02-14 株式会社スリーボンド Two-part curable composition
JP6356843B2 (en) 2017-02-07 2018-07-11 積水化学工業株式会社 Masterbatch and foamed molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231080A (en) 2006-02-28 2007-09-13 Kaneka Corp Polycarbonate resin composition and molded body made therefrom
WO2017171031A1 (en) 2016-04-01 2017-10-05 株式会社カネカ Injection-molded foam of resin composition with satisfactory surface property and capable of weight reduction and rib design

Also Published As

Publication number Publication date
CN112055725B (en) 2022-12-27
WO2019208653A1 (en) 2019-10-31
EP3786224A1 (en) 2021-03-03
JPWO2019208653A1 (en) 2021-04-30
CN112055725A (en) 2020-12-08
EP3786224A4 (en) 2022-02-09
US11898016B2 (en) 2024-02-13
US20210047481A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
JP6936788B2 (en) Injection foam molded product with good surface properties due to resin composition that can reduce weight and rib design
JP7177828B2 (en) Masterbatch, Polycarbonate Resin Composition, Injection Foaming Molded Article and Method for Producing Same
KR101233373B1 (en) Polylactic acid resin composition
KR101533136B1 (en) Thermoplastic ABS resin composition with excellent impact strength
WO2007069493A1 (en) Polymer particles, process for production thereof, resin compositions containing the particles, and moldings
JP7022576B2 (en) Masterbatch of heat-expandable microcapsules
KR101537843B1 (en) Acrylate based impact modifier and environment-friendly polylactic acid resin composition comprising thereof
JP4949003B2 (en) Thermoplastic resin composition for foam molding, foam molded article, method for producing the same, and laminated article
JP4102512B2 (en) Automotive lamp housing
JP4618692B2 (en) Rubber-containing graft polymer and thermoplastic resin composition
KR101506370B1 (en) Thermoplastic polyester elastomer resin composition for sheet forming
WO2020235575A1 (en) Thermoplastic resin molded body and manufacturing method therefor
JP7549572B2 (en) Masterbatch for polycarbonate resin, polycarbonate resin composition, injection foam molded product, and method for producing same
WO2021200970A1 (en) Master batch, method for manufacturing same, polycarbonate resin composition, injection foam molded article, and method for manufacturing same
JP5179026B2 (en) MODIFIED MATERIAL, METHOD FOR PRODUCING MOLDED ARTICLE USING SAME, AND METHOD FOR RECYCLING WASTE STYRENE
JP2010116527A (en) Thermoplastic resin composition for foam molding, foam molded product, and laminated product
JP4786243B2 (en) Graft copolymer and production method thereof, thermoplastic resin composition, and molded article
JP2006143924A (en) Bulked rubbery polymer, rubber-containing graft copolymer, their producing methods, thermoplastic resin composition, and molded product from the same
JP2020163996A (en) Resin molding for vehicle member
US20070149687A1 (en) Viscosity modifier for a thermoplastic polyester resin and thermoplastic polyester resin composition containing the same
JP2012211341A (en) Aromatic polycarbonate resin composition and molding of the same
JP4592725B2 (en) Automotive lamp
JP2009120665A (en) Powdery thermoplastic elastomer composition and molded article
KR102494271B1 (en) Thermoplastic resin composition
JPH1081805A (en) Impact resistant methacrylic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221111

R150 Certificate of patent or registration of utility model

Ref document number: 7177828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150