JP7169083B2 - Acoustic wave devices and multiplexers - Google Patents
Acoustic wave devices and multiplexers Download PDFInfo
- Publication number
- JP7169083B2 JP7169083B2 JP2018072706A JP2018072706A JP7169083B2 JP 7169083 B2 JP7169083 B2 JP 7169083B2 JP 2018072706 A JP2018072706 A JP 2018072706A JP 2018072706 A JP2018072706 A JP 2018072706A JP 7169083 B2 JP7169083 B2 JP 7169083B2
- Authority
- JP
- Japan
- Prior art keywords
- acoustic wave
- thickness
- piezoelectric substrate
- substrate
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Description
本発明は、弾性波デバイスおよびマルチプレクサに関し、例えば支持基板上に接合された圧電基板を有する弾性波デバイスおよびマルチプレクサに関する。 The present invention relates to acoustic wave devices and multiplexers , for example acoustic wave devices and multiplexers having a piezoelectric substrate bonded onto a supporting substrate.
圧電基板の弾性表面波を用いた弾性波デバイスの周波数温度特性を向上させるため支持基板上に圧電基板を接合することが知られている。圧電基板の厚さを弾性表面波の波長以下とすることでスプリアスを抑制できることが知られている(例えば特許文献1)。支持基板と圧電基板との間に圧電基板よりバルク音速が遅い低音速膜を設けることが知られている(例えば特許文献2)。圧電基板の厚さを異ならせることが知られている(例えば特許文献3から5)
2. Description of the Related Art It is known to bond a piezoelectric substrate to a supporting substrate in order to improve the frequency temperature characteristics of an acoustic wave device using surface acoustic waves of the piezoelectric substrate. It is known that spurious can be suppressed by making the thickness of the piezoelectric substrate equal to or less than the wavelength of the surface acoustic wave (for example, Patent Document 1). It is known to provide a low acoustic velocity film having a bulk sound velocity lower than that of the piezoelectric substrate between the support substrate and the piezoelectric substrate (for example, Patent Document 2). It is known to vary the thickness of the piezoelectric substrate (for example,
共振周波数の異なる弾性表面波共振器を同一基板に設けるためには、電極指のピッチを異ならせる、電極指の膜厚を異ならせる、および/または電極指を覆う絶縁膜の膜厚を異ならせる、等の方法がある。しかしながら、共振周波数を大きく異ならせようとすると、いずれの方法も製造方法が複雑になる、および/または製造方法が制約される。 In order to provide surface acoustic wave resonators with different resonance frequencies on the same substrate, the pitch of the electrode fingers is varied, the thickness of the electrode fingers is varied, and/or the thickness of the insulating film covering the electrode fingers is varied. , etc. However, any attempt to make the resonance frequencies significantly different complicates the manufacturing method and/or restricts the manufacturing method.
本発明は、上記課題に鑑みなされたものであり、共振周波数の異なる弾性波共振器を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide elastic wave resonators having different resonance frequencies.
本発明は、支持基板と、前記支持基板上に接合し、第1の厚さを有する第1領域と前記第1の厚さより大きい第2の厚さを有する第2領域とを有する圧電基板と、前記圧電基板の前記第1領域上に設けられ、複数の第1電極指を各々有する一対の第1櫛型電極を備え、前記一対の第1櫛型電極の一方の第1櫛型電極における第1電極指の平均ピッチは前記第1の厚さより大きい第1弾性波共振器と、前記圧電基板の前記第2領域上に設けられ、複数の第2電極指を各々有する一対の第2櫛型電極を備え、前記一対の第2櫛型電極の一方の第2櫛型電極における第2電極指の平均ピッチに対する前記第2の厚さの比は、前記一方の第1櫛型電極における第1電極指の平均ピッチに対する前記第1の厚さの比より大きい第2弾性波共振器と、を備え、前記一対の第1櫛型電極および前記一対の第2櫛型電極は主モードとしてSH波を励振する弾性波デバイスである。 The present invention provides a support substrate, and a piezoelectric substrate bonded onto the support substrate and having a first region having a first thickness and a second region having a second thickness greater than the first thickness. a pair of first comb-shaped electrodes provided on the first region of the piezoelectric substrate and each having a plurality of first electrode fingers; a first acoustic wave resonator having an average pitch of first electrode fingers larger than the first thickness; and a pair of second combs provided on the second region of the piezoelectric substrate and having a plurality of second electrode fingers each. The ratio of the second thickness to the average pitch of the second electrode fingers in one of the pair of second comb-shaped electrodes is equal to the ratio of the second thickness in the one of the first comb-shaped electrodes. a second acoustic wave resonator having a larger ratio of the first thickness to the average pitch of one electrode finger, wherein the pair of first comb-shaped electrodes and the pair of second comb-shaped electrodes have a main mode of SH It is an acoustic wave device that excites waves.
上記構成において、前記一方の第2櫛型電極における第2電極指の平均ピッチは前記第2の厚さより大きい構成とすることができる。 In the above configuration, the average pitch of the second electrode fingers in the one second comb-shaped electrode may be larger than the second thickness.
上記構成において、前記一方の第2櫛型電極における第2電極指の平均ピッチは前記第2の厚さより小さい構成とすることができる。 In the above configuration, the average pitch of the second electrode fingers in the one second comb-shaped electrode may be smaller than the second thickness.
上記構成において、前記圧電基板は前記支持基板にアモルファス層を介し直接接合されている構成とすることができる。 In the above structure, the piezoelectric substrate may be directly bonded to the support substrate via an amorphous layer.
上記構成において、前記圧電基板と前記支持基板とに挟まれた中間層を備える構成とすることができる。 In the above configuration, an intermediate layer sandwiched between the piezoelectric substrate and the support substrate may be provided.
上記構成において、前記圧電基板の前記第1領域と前記支持基板との間の前記中間層の第3の厚さは前記圧電基板の前記第2領域と前記支持基板との間の前記中間層の第4の厚さより大きい構成とすることができる。 In the above configuration, the third thickness of the intermediate layer between the first region of the piezoelectric substrate and the support substrate is the thickness of the intermediate layer between the second region of the piezoelectric substrate and the support substrate. It can be configured to be greater than the fourth thickness.
上記構成において、前記圧電基板の前記第1領域と前記第2領域との前記中間層の反対側の面は略平坦である構成とすることができる。 In the above structure, the surfaces of the first region and the second region of the piezoelectric substrate opposite to the intermediate layer may be substantially flat.
上記構成において、前記第2弾性波共振器の共振周波数は前記第1弾性波共振器の共振周波数より低い構成とすることができる。 In the above configuration, the resonant frequency of the second acoustic wave resonator may be lower than the resonant frequency of the first acoustic wave resonator .
上記構成において、前記圧電基板は、20°以上かつ48°以下のカット角を有するYカットX伝搬タンタル酸リチウム基板である構成とすることができる。 In the above configuration, the piezoelectric substrate may be a Y-cut X-propagation lithium tantalate substrate having a cut angle of 20° or more and 48° or less.
本発明は、上記弾性波デバイスを含み、1または複数の前記第1弾性波共振器を含む第1フィルタと、前記第1フィルタの通過帯域と重ならず、かつ前記第1フィルタの通過帯域より低い通過帯域を有し、1または複数の前記第2弾性波共振器を含む第2フィルタと、を備えるマルチプレクサである。 The present invention includes a first filter including the above acoustic wave device and including one or more of the first acoustic wave resonators , and a second filter having a low passband and including one or more of the second acoustic wave resonators.
本発明によれば、共振周波数の異なる弾性波共振器を提供することができる。 According to the present invention, elastic wave resonators having different resonance frequencies can be provided.
[弾性波共振器の説明]
図1(a)は、弾性波共振器の平面図、図1(b)は、図1(a)のA-A断面図である。電極指14の配列方向をX方向、電極指14の延伸する方向をY方向、圧電基板10aの上面の法線方向をZ方向とする。X方向、Y方向およびZ方向は、圧電基板10aの結晶方位のX軸方向、Y軸方向およびZ軸方向とは必ずしも対応しない。
[Explanation of elastic wave resonator]
FIG. 1(a) is a plan view of an elastic wave resonator, and FIG. 1(b) is a cross-sectional view taken along line AA of FIG. 1(a). The arrangement direction of the
図1(a)および図1(b)に示すように、弾性波共振器20では、基板10は、支持基板10bと支持基板10bに接合された圧電基板10aとを有する。圧電基板10a上にIDT18および反射器19が形成されている。IDT18および反射器19は、基板10上に形成された金属膜12により形成される。IDT18は、対向する一対の櫛型電極16を備える。一対の櫛型電極16は、それぞれ複数の電極指14と、複数の電極指14が接続されたバスバー15と、を備える。一対の櫛型電極16の電極指14が重なる領域が交差領域56である。交差領域56の少なくとも一部において、一対の櫛型電極16のうち一方の櫛型電極の電極指と他方の櫛型電極の電極指とがほぼ互い違いとなるように、対向して設けられている。
As shown in FIGS. 1A and 1B, in
交差領域56において電極指14が励振する弾性波は、主にX方向に伝搬する。一方の櫛型電極16の電極指14のピッチLがほぼ弾性波の波長λとなる。圧電基板10aは、例えばタンタル酸リチウム基板またはニオブ酸リチウム基板であり、例えば回転YカットX伝搬タンタル酸リチウム基板または回転YカットX伝搬ニオブ酸リチウム基板ある。支持基板10bは、例えばサファイア基板、スピネル基板、アルミナ基板、ガラス基板、水晶基板またはシリコン基板である。支持基板10bの線熱膨張係数は圧電基板10aの線熱膨張係数より小さい。これにより、弾性波共振器の周波数温度係数(TCF:Temperature Coefficient of Frequency)を抑制できる。金属膜12は、例えばアルミニウム膜または銅膜である。基板10上に、電極指14を覆うように保護膜または温度補償膜として機能する絶縁膜が設けられていてもよい。
The elastic waves excited by the
[比較例1]
図2(a)および図2(b)は、比較例1に係る弾性波共振器の断面図である。図2(a)に示すように、圧電基板10a上に弾性波共振器20aおよび配線22aが設けられている。図2(b)に示すように、圧電基板10a上に弾性波共振器20bおよび配線22bが設けられている。弾性波共振器20aおよび20bは、例えばデュプレクサのそれぞれ受信フィルタおよび送信フィルタに用いられる。送信フィルタと受信フィルタとでは通過帯域が重ならない。このため、弾性波共振器20aと20bとの共振周波数は大きく異なる。弾性波共振器20bは20aより共振周波数が低い。
[Comparative Example 1]
2A and 2B are cross-sectional views of an elastic wave resonator according to Comparative Example 1. FIG. As shown in FIG. 2A, an
弾性波共振器20bの共振周波数を弾性波共振器20aの共振周波数より低くするため、弾性波共振器20bの電極指14のピッチL2は、弾性波共振器20aの電極指14のピッチL1より大きい。また、弾性波共振器20bの電極指14の膜厚H2は、弾性波共振器20aの電極指14の膜厚H1より大きい。弾性波共振器20aを形成したチップと弾性波共振器20bを形成したチップをパッケージに実装することで、例えばデュプレクサが形成できる。しかしながら複数のチップをパッケージに実装するとデュプレクサ等の弾性波デバイスが大型化する。
In order to make the resonance frequency of the
[比較例2]
図3は、比較例2に係る弾性波デバイスの断面図である。図3に示すように、弾性波共振器20aおよび20bは単一の基板10上に設けられている。電極指14を覆うように絶縁膜24が設けられている。絶縁膜24は、例えば酸化シリコン膜または窒化シリコン膜であり、保護膜または温度補償膜として機能する。弾性波共振器20aと20bとの共振周波数を異ならせるため、絶縁膜24の電極指14上の膜厚H1´およびH2´を異ならせてもよい。
[Comparative Example 2]
FIG. 3 is a cross-sectional view of an acoustic wave device according to Comparative Example 2. FIG. As shown in FIG. 3,
比較例2のように、弾性波共振器20aと20bを単一基板10上に形成すると弾性波デバイスを小型化できる。弾性波共振器20aと20bとの共振周波数を大きく異ならせるためには、電極指のピッチを異ならせる、電極指14の膜厚を異ならせる、および/または電極指14を覆う絶縁膜24の膜厚を異ならせる、等の方法がある。しかしながら、ピッチL1およびL2を大きく異ならせようとすると、加工精度が低下してしまう。また、膜厚H1とH2、および/または膜厚H1´とH2´を大きく異ならせようとすると、製造工程が複雑になる。そこで、上記以外の方法で共振周波数を大きく異ならせる方法を検討した。
If the
[シミュレーション]
圧電基板10aの厚さTに対する弾性波共振器20の共振周波数を3次元有限要素法を用いシミュレーションした。シミュレーション条件は以下である。
支持基板10b:厚さが500μmのサファイア基板
圧電基板10a:厚さTの42°回転YカットX伝搬タンタル酸リチウム基板
金属膜12:膜厚が400nmのアルミニウム膜
電極指14のピッチL:20μm
電極指14の対数:100対
開口長(交差領域56の長さ):25λ
[simulation]
The resonance frequency of the
Number of pairs of electrode fingers 14: 100 pairs Opening length (length of intersection region 56): 25λ
図4(a)および図4(b)は、圧電基板の厚さT/ピッチLに対する共振周波数frを示す図である。図4(b)は、図4(a)の範囲Aの拡大図である。ドットはシミュレーション結果を示し、ドットをつなぐ曲線は近似曲線である。圧電基板10aの厚さTはピッチLで規格化している。図4(a)および図4(b)に示すように、圧電基板10aの厚さTがピッチL以上では共振周波数frはほぼ一定である。このとき電極指14が励振する弾性表面波の波長はほぼピッチLである。圧電基板10aの厚さTがピッチL以下となると、共振周波数frが高くなる。
4(a) and 4(b) are diagrams showing the resonance frequency fr with respect to the thickness T/pitch L of the piezoelectric substrate. FIG. 4(b) is an enlarged view of area A in FIG. 4(a). Dots indicate simulation results, and a curve connecting the dots is an approximated curve. The thickness T of the
厚さTがピッチL以上のとき、電極指14は弾性表面波(例えばSH(Shear Horizontal)波)を励振するときにバルク波を励振する。このバルク波が圧電基板10aと支持基板10bとの界面で反射されると、スプリアスとなる。また、バルク波が励振されるため弾性波共振器の損失が大きくなる。これに対し、厚さTがピッチL以下ではバルク波に起因したスプリアスおよび損失が抑制される。図4(a)および図4(b)のように、厚さTがピッチL以下のときに共振周波数frが厚さTに大きく依存する理由は明確ではないが、バルク波の抑制が起因していると考えられる。
When the thickness T is equal to or greater than the pitch L, the
シミュレーション結果に基づき実施例について説明する。図5(a)および図5(b)は、実施例1に係る弾性波デバイスの断面図である。図5(a)および図5(b)に示すように、圧電基板10aは厚さがT1の領域30と厚さがT2の領域32を有している。領域30上には弾性波共振器20aおよび配線22aが設けられ、領域32上には弾性波共振器20bおよび配線22bが設けられている。弾性波共振器20aおよび20bの電極指14のピッチL1およびL2は同程度である。弾性波共振器20aおよび20bの電極指14を覆うように絶縁膜24が設けられている。弾性波共振器20aと20bでは、電極指14の膜厚は製造誤差程度に略同じであり、絶縁膜24の膜厚は製造誤差程度に略同じである。厚さT1およびT2のうち少なくとも厚さT1はピッチL1より小さい。これにより、電極指14および絶縁膜24の膜厚がほぼ同じでも弾性波共振器20aと20bとの共振周波数を大きく異ならせることができる。なお、絶縁膜24は電極指14より薄くてもよいし、厚くてもよい。また、絶縁膜24は設けられていなくてもよい。
Examples will be described based on simulation results. 5A and 5B are cross-sectional views of the acoustic wave device according to Example 1. FIG. As shown in FIGS. 5A and 5B, the
図6は、実施例1を用いたデュプレクサの回路図である。図6に示すように、共通端子Antと送信端子Txの間に送信フィルタ50が接続され、共通端子Antと受信端子Rxとの間に受信フィルタ52が接続されている。送信フィルタ50では、共通端子Antと送信端子Txとの間に1または複数の直列共振器S1からS4が直列に接続され、1または並列共振器P1からP3が並列に接続されている。
FIG. 6 is a circuit diagram of a duplexer using the first embodiment. As shown in FIG. 6, a
受信フィルタ52では、共通端子Antと受信端子Rxとの間に直列共振器S5、DMS1およびDMS2が直列に接続されている。DMS1およびDMS2は2重モード弾性表面波(Double Mode Surface Acoustic)フィルタ等の多重モード型フィルタである。DMS1およびDMS2は各々3つのIDT18aから18cを有している。IDT18aから18cは弾性波の伝搬方向に配列されている。DMS1のIDT18bの一端は直列共振器S5に電気的に接続され、他端は接地されている。DMS1のIDT18aおよび18cの一端はそれぞれDMS2のIDT18aおよび18cの一端に電気的に接続されている。DMS1およびDMS2のIDT18aおよび18cの他端は接地されている。DMS2のIDT18bの一端は受信端子Rxに電気的接続され、他端は接地されている。
In the receive
送信フィルタ50は送信端子Txに入力する高周波信号のうち送信帯域の信号を共通端子Antに通過させ、他の周波数帯域の信号を抑圧する。受信フィルタ52は共通端子Antに入力する高周波信号のうち受信帯域の信号を受信端子Rxに通過させ、他の周波数帯域の信号を抑圧する。送信フィルタ50がラダー型フィルタを含み、受信フィルタ52が多重モード型フィルタを含む例を説明したが、送信フィルタ50が多重モード型フィルタを含み、受信フィルタ52を含んでもよい。送信フィルタ50および受信フィルタ52はいずれもラダー型フィルタを含んでもよい。また、送信フィルタ50および受信フィルタ52内の共振器の個数は適宜設定できる。
The
図7は、実施例1における基板10の平面図である。図7に示すように、圧電基板10aの領域30上に弾性波共振器20aおよび配線22aが設けられている。弾性波共振器20aは直列共振器S5、DMS1およびDMS2を含む。配線22aは弾性波共振器20aと接続されている。配線22cは配線22aと立体交差している。配線22aは共通パッドPant、受信パッドPrxおよびグランドパッドPgndを含む。パッド上にはバンプ26が設けられている。
FIG. 7 is a plan view of the
圧電基板10aの領域32上に弾性波共振器20bおよび配線22bが設けられている。弾性波共振器20bは直列共振器S1からS4、並列共振器P1からP3を含む。配線22bは弾性波共振器20bと接続されている。配線22bは共通パッドPant、送信パッドPtxおよびグランドパッドPgndを含む。パッド上にはバンプ26が設けられている。共通パッドPant、送信パッドPtx、受信パッドPrxおよびグランドパッドPgndは、バンプ26を介し共通端子Ant、送信端子Tx、受信端子Rxおよびグランド端子に電気的に接続されている。
An
送信フィルタ50と受信フィルタ52との通過帯域は重ならず、送信フィルタ50の通過帯域は受信フィルタ52の通過帯域より低い。領域30の圧電基板10aの厚さT1を領域32の圧電基板10aの厚さT2より小さくしている。このため、弾性波共振器20aと20bとで、電極指14の膜厚をほぼ同じにし、絶縁膜24の膜厚をほぼ同じしても、弾性波共振器20aの共振周波数を弾性波共振器20bの共振周波数より大きくできる。送信フィルタ50(および受信フィルタ52)内の弾性波共振器20b(および20a)の間の共振周波数の差は小さいため電極指14のピッチL2(またはL1)を異ならせることで対応できる。よって、簡単な製造工程で単一基板10上に共振周波数の大きく異なる弾性波共振器20aおよび20bを形成することができる。よって、単一基板10上に通過帯域の重ならない送信フィルタ50と受信フィルタ52を形成することができる。
The passbands of the transmit
図5(a)のように、送信フィルタ50の通過帯域が受信フィルタ52の通過帯域より低い場合、領域32および30にそれぞれ送信フィルタ50および受信フィルタ52を形成する。図5(b)のように、送信フィルタ50の通過帯域が受信フィルタ52の通過帯域より高い場合、領域30および32にそれぞれ送信フィルタ50および受信フィルタ52を形成する。図5(a)および図5(b)において、支持基板10bの厚さは例えば50μmから500μmであり、厚さT1およびT2の少なくとも一方はピッチL1およびL2以下である。
As shown in FIG. 5A, when the passband of the
[実施例1の製造方法]
図8(a)から図9(d)は、実施例1に係る弾性波デバイスの製造方法を示す断面図である。図8(a)に示すように、支持基板10bの上面に圧電基板10aの下面を、常温において直接接合する。接合方法は例えば特許文献1と同じである。すなわち、支持基板10bの上面および圧電基板10aの下面を不活性元素のイオンビーム、中性ビームまたはプラズマにより活性化する。その後支持基板10bと圧電基板10aとを常温において接合する。このとき、支持基板10bと圧電基板10aとの間には、例えば1nmから8nmの厚さのアモルファス層10dが形成される。このように、支持基板10bと圧電基板10aとを常温において接合すると、アモルファス層10dが形成される。アモルファス層10dは圧電基板10aに比べ非常に薄いため、支持基板10bと圧電基板10aとは直接接合されている。アモルファス層10dは非常に薄いため図8(a)および図13(b)以外の図では図示を省略する。
[Manufacturing method of Example 1]
8A to 9D are cross-sectional views showing the method of manufacturing the acoustic wave device according to the first embodiment. As shown in FIG. 8A, the lower surface of the
図8(b)に示すように、圧電基板10aの上面を、例えばCMP(Chemical Mechanical Polishing)法を用い研磨することで平坦化する。図8(c)に示すように、領域30の圧電基板10aを薄膜化する。例えば圧電基板10aの上面にレーザ光54を照射しアブレーション加工する。これにより、領域30の圧電基板10aが薄膜化する。図8(d)に示すように、圧電基板10aの領域30および32上に、例えば真空蒸着法またはスパッタリング法を用い金属膜12を成膜する。図8(e)に示すように、金属膜12を、例えばフォトリソグラフィ法およびエッチング法を用い所望の形状にパターンニングする。これにより、圧電基板10aの領域30上に弾性波共振器20aおよび配線22aが形成され、領域32上に弾性波共振器20bおよび配線22bが形成される。
As shown in FIG. 8B, the upper surface of the
図9(a)に示すように、弾性波共振器20a、20bを覆うように絶縁膜24を例えば真空蒸着法、スパッタリング法またはCVD(Chemical Vapor Deposition)法を用い成膜する。図9(b)に示すように、絶縁膜24を、例えばフォトリソグラフィ法およびエッチング法を用い所望の形状にパターンニングする。これにより、弾性波共振器20aおよび20bの電極指14上の絶縁膜24は残存し、配線22aおよび22b上の絶縁膜24が除去される。図9(c)に示すように、配線22a、22bおよび絶縁膜24上に、例えば真空蒸着法、スパッタリング法またはめっき法を用い金属膜27を成膜する。金属膜27は例えば金膜である。図9(d)に示すように、金属膜27を、例えばフォトリソグラフィ法およびエッチング法を用い所望の形状にパターンニングする。これにより、配線22aおよび22b上に低抵抗な金属膜28が形成され、弾性波共振器20aおよび20b上の金属膜27が除去される。
As shown in FIG. 9A, an insulating
図8(a)から図9(d)のように、図8(c)の領域30の圧電基板10aの薄膜化以外の製造工程は、弾性波共振器20aと20bとで共通にできる。よって、共振周波数の異なる弾性波共振器20aおよび20bを容易に製造することができる。
As shown in FIGS. 8(a) to 9(d), the
図10(a)および図10(b)は、実施例2に係る弾性波デバイスの断面図である。図10(a)および図10(b)に示すように、中間層10cが支持基板10bと圧電基板10aとの間に挟まれている。中間層10cの弾性率の温度係数は圧電基板10aの弾性率の温度係数と逆符号である。これにより、弾性波共振器20aおよび20bの周波数温度係数(TCF)をより抑制できる。中間層10cとしては例えば酸化シリコン膜、シリコン膜、窒化アルミニウム膜または窒化シリコン膜を用いることができる。中間層10cの厚さは例えばピッチL1およびL2以下である。その他の構成は実施例1と同じであり説明を省略する。
10A and 10B are cross-sectional views of an acoustic wave device according to Example 2. FIG. As shown in FIGS. 10(a) and 10(b), the
[実施例2の変形例1]
図11(a)および図11(b)は、実施例2の変形例1に係る弾性波デバイスの断面図である。図11(a)および図11(b)に示すように、領域30における中間層10cの厚さT3は領域32における中間層10cの厚さT4より大きい。厚さT1+T3は厚さT2+T4にほぼ等しい。これにより、圧電基板10aの領域30と32との境界の上面はほぼ平坦である。
[
11A and 11B are cross-sectional views of an acoustic wave device according to
[実施例2の変形例1の製造方法]
図12(a)から図14(b)は、実施例2の変形例1に係る弾性波デバイスの製造方法を示す断面図である。図12(a)に示すように圧電基板10aを準備する。図12(b)に示すように、領域30の圧電基板10aを薄膜化する。例えば領域30の圧電基板10aの表面にレーザ光54を照射しアブレーション加工する。これにより、圧電基板10aに領域30および32が形成される。図12(c)に示すように、段差を有する圧電基板10a表面上に中間層10cを例えば真空蒸着法、スパッタリング法またはCVD法を用い成膜する。図12(d)に示すように、中間層10cの表面を例えばCMP法を用い平坦化する。
[Manufacturing method of
12A to 14B are cross-sectional views showing a method of manufacturing an acoustic wave device according to
図13(a)に示すように、以下上下を逆に示す。図13(b)に示すように、支持基板10bの上面と平坦化した中間層10cの表面とを常温において直接接合する。このとき、図8(a)と同様に、支持基板10bと中間層10cとの間にアモルファス層10dが形成される。中間層10cが酸化シリコン膜の場合、酸化シリコン膜と支持基板10bとの常温接合が難しいことがある。支持基板10bと中間層10cとを常温接合する場合、中間層10cはシリコン膜、窒化アルミニウム膜または窒化シリコン膜等の酸化シリコン膜以外の絶縁膜であることが好ましい。図13(c)に示すように、圧電基板10aの上面を例えばCMP法を用い平坦化する。これにより、支持基板10bと圧電基板10aとの間に中間層10cを有する複合基板である基板10が形成される。
As shown in FIG. 13(a), the following is shown upside down. As shown in FIG. 13B, the upper surface of the
図14(a)に示すように、図8(d)および図8(e)と同様に、圧電基板10aの領域30上に弾性波共振器20aおよび配線22aを形成し、領域32上に弾性波共振器20bおよび配線22bを形成する。図14(b)に示すように、図9(a)から図9(d)と同様に絶縁膜24および金属膜28を形成する。
As shown in FIG. 14(a), similar to FIGS. 8(d) and 8(e),
実施例2の変形例1では、圧電基板10aの領域30と32との上面が平坦である。このため、圧電基板10a上への弾性波共振器20aおよび20b、配線22aおよび22b等の形成が容易となる。また、圧電基板10aをバンプを用い実装するときにバンプの高さが均一となりバンプの接続性が安定する。
In
実施例1,2およびその変形例によれば、圧電基板10aは、厚さT1(第1の厚さ)を有する領域30(第1領域)と厚さT2(第1の厚さより大きい第2の厚さ)を有する領域32(第2領域)とを有する。領域30上に設けられた弾性波共振器20a(第1弾性波共振器)は、複数の電極指14(第1電極指)を各々有する一対の櫛型電極16(第1櫛型電極)を備え、櫛型電極16の一方の電極指14の平均ピッチL1は厚さT1より大きい。領域32上に設けられた弾性波共振器20b(第2弾性波共振器)、複数の電極指14(第2電極指)を各々有する一対の櫛型電極16(第2櫛型電極)を備える。
According to Examples 1 and 2 and their modifications, the
これにより、図4(a)および図4(b)のように、弾性波共振器20aの共振周波数を弾性波共振器20bの共振周波数より高くできる。よって、共振周波数の異なる弾性波共振器20aおよび20bを容易に形成することができる。また、弾性波共振器20aにおけるスプリアスおよび損失を抑制できる。
Thereby, as shown in FIGS. 4A and 4B, the resonance frequency of the
弾性波共振器20bの櫛型電極16の一方の電極指14の平均ピッチL2を厚さT2より大きくすることで、弾性波共振器20bにおけるスプリアスおよび損失を抑制できる。平均ピッチL2を厚さT2より小さくすることで、弾性波共振器20aと20bとの共振周波数の差を大きくできる。
By making the average pitch L2 of one
実施例1およびその変形例のように、圧電基板10aは支持基板10bにアモルファス層10dを介し接合されていてもよい。実施例2およびその変形例のように、圧電基板10aと支持基板10bとに挟まれた中間層10cを備えていてもよい。中間層10cの弾性率の温度係数を圧電基板10aの弾性率の温度係数と逆符号とする。これにより、弾性波共振器20aおよび20bの周波数温度係数を抑制できる。
The
実施例2の変形例1のように、圧電基板10aの領域30と支持基板10bとの間の中間層10cの厚さT3(第3の厚さ)は圧電基板10aの領域32と支持基板10bとの間の中間層10cの厚さT4(第4の厚さ)より大きくする。これにより、領域30と32との圧電基板10aの上面(中間層10cの反対側の面)の段差を厚さT1とT2との差より小さくする。これにより、圧電基板10a上の弾性波共振器20aおよび20b等の形成が容易となる。領域30と32との圧電基板10aの上面は製造誤差程度に略平坦であることが好ましい。
As in
弾性波共振器20aおよび20bの櫛型電極16が励振する弾性波はSH波であることが好ましい。電極指14がSH波を励振する場合、バルク波が励振されやすい。よって、圧電基板10aの厚さT1をピッチL1より小さくすると、弾性波共振器20aの共振周波数がより高くなる。
The elastic waves excited by the
櫛型電極16がSH波を励振するため、圧電基板10aは、20°以上かつ48°以下のカット角を有するYカットX伝搬タンタル酸リチウム基板であることが好ましい。カット角は、30°以上が好ましく、38°以上がより好ましい。カット角は、46°以下が好ましく、44°以下がより好ましい。
Since the comb-shaped
図6および図7のように、マルチプレクサでは、受信フィルタ52(第1フィルタ)は、1または複数の弾性波共振器20aを含み、送信フィルタ50(第2フィルタ)は、1または複数の弾性波共振器20bを含む。送信フィルタ50の通過帯域と受信フィルタ52の通過帯域とが重ならない場合、弾性波共振器20aと20bとの共振周波数を大きく異ならせる。このため、圧電基板10aの厚さT1およびT2を異ならせることで共振周波数を異ならせる。これにより、同一圧電基板10aに通過帯域の重ならない送信フィルタ50および受信フィルタ52を容易に形成することができる。
6 and 7, in the multiplexer, the receive filter 52 (first filter) includes one or more
マルチプレクサとして、デュプレクサの例を説明したが、トリプレクサまたはクワッドプレクサでもよい。圧電基板10aに厚さが異なる領域を3か所以上設けることで、圧電基板10a上に3個以上の通過帯域の異なるフィルタを形成することもできる。
As the multiplexer, an example of a duplexer has been described, but a triplexer or a quadplexer may be used. By providing three or more regions with different thicknesses on the
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and variations can be made within the scope of the gist of the present invention described in the scope of claims. Change is possible.
10 基板
10a 圧電基板
10b 支持基板
10c 中間層
12 金属膜
14 電極指
16 櫛型電極
20、20a、20b 弾性波共振器
30、32 領域
50 送信フィルタ
52 受信フィルタ
Claims (10)
前記支持基板上に接合し、第1の厚さを有する第1領域と前記第1の厚さより大きい第2の厚さを有する第2領域とを有する圧電基板と、
前記圧電基板の前記第1領域上に設けられ、複数の第1電極指を各々有する一対の第1櫛型電極を備え、前記一対の第1櫛型電極の一方の第1櫛型電極における第1電極指の平均ピッチは前記第1の厚さより大きい第1弾性波共振器と、
前記圧電基板の前記第2領域上に設けられ、複数の第2電極指を各々有する一対の第2櫛型電極を備え、前記一対の第2櫛型電極の一方の第2櫛型電極における第2電極指の平均ピッチに対する前記第2の厚さの比は、前記一方の第1櫛型電極における第1電極指の平均ピッチに対する前記第1の厚さの比より大きい第2弾性波共振器と、
を備え、
前記一対の第1櫛型電極および前記一対の第2櫛型電極は主モードとしてSH波を励振する弾性波デバイス。 a support substrate;
a piezoelectric substrate bonded onto the support substrate and having a first region having a first thickness and a second region having a second thickness greater than the first thickness;
a pair of first comb-shaped electrodes provided on the first region of the piezoelectric substrate, each having a plurality of first electrode fingers; a first acoustic wave resonator having an average pitch of one electrode finger larger than the first thickness;
a pair of second comb-shaped electrodes provided on the second region of the piezoelectric substrate, each having a plurality of second electrode fingers; A second acoustic wave resonator, wherein a ratio of the second thickness to an average pitch of two electrode fingers is greater than a ratio of the first thickness to an average pitch of the first electrode fingers in one of the first comb-shaped electrodes. When,
with
An elastic wave device in which the pair of first comb-shaped electrodes and the pair of second comb-shaped electrodes excite SH waves as a main mode .
1または複数の前記第1弾性波共振器を含む第1フィルタと、
前記第1フィルタの通過帯域と重ならず、かつ前記第1フィルタの通過帯域より低い通過帯域を有し、1または複数の前記第2弾性波共振器を含む第2フィルタと、
を備えるマルチプレクサ。
comprising an acoustic wave device according to any one of claims 1 to 9,
a first filter including one or more of the first acoustic wave resonators;
a second filter having a passband that does not overlap with the passband of the first filter and is lower than the passband of the first filter, and includes one or more of the second acoustic wave resonators;
A multiplexer with
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018072706A JP7169083B2 (en) | 2018-04-04 | 2018-04-04 | Acoustic wave devices and multiplexers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018072706A JP7169083B2 (en) | 2018-04-04 | 2018-04-04 | Acoustic wave devices and multiplexers |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019186655A JP2019186655A (en) | 2019-10-24 |
JP7169083B2 true JP7169083B2 (en) | 2022-11-10 |
Family
ID=68341559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018072706A Active JP7169083B2 (en) | 2018-04-04 | 2018-04-04 | Acoustic wave devices and multiplexers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7169083B2 (en) |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10637438B2 (en) | 2018-06-15 | 2020-04-28 | Resonant Inc. | Transversely-excited film bulk acoustic resonators for high power applications |
US11323089B2 (en) | 2018-06-15 | 2022-05-03 | Resonant Inc. | Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer |
US20220116015A1 (en) | 2018-06-15 | 2022-04-14 | Resonant Inc. | Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch |
US10601392B2 (en) | 2018-06-15 | 2020-03-24 | Resonant Inc. | Solidly-mounted transversely-excited film bulk acoustic resonator |
US11936358B2 (en) | 2020-11-11 | 2024-03-19 | Murata Manufacturing Co., Ltd. | Transversely-excited film bulk acoustic resonator with low thermal impedance |
US11146232B2 (en) | 2018-06-15 | 2021-10-12 | Resonant Inc. | Transversely-excited film bulk acoustic resonator with reduced spurious modes |
US11323090B2 (en) | 2018-06-15 | 2022-05-03 | Resonant Inc. | Transversely-excited film bulk acoustic resonator using Y-X-cut lithium niobate for high power applications |
US10911023B2 (en) | 2018-06-15 | 2021-02-02 | Resonant Inc. | Transversely-excited film bulk acoustic resonator with etch-stop layer |
US11206009B2 (en) | 2019-08-28 | 2021-12-21 | Resonant Inc. | Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch |
US12155371B2 (en) | 2021-03-29 | 2024-11-26 | Murata Manufacturing Co., Ltd. | Layout of xbars with multiple sub-resonators in series |
US11901878B2 (en) | 2018-06-15 | 2024-02-13 | Murata Manufacturing Co., Ltd. | Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer |
US11870423B2 (en) | 2018-06-15 | 2024-01-09 | Murata Manufacturing Co., Ltd. | Wide bandwidth temperature-compensated transversely-excited film bulk acoustic resonator |
US12119805B2 (en) | 2018-06-15 | 2024-10-15 | Murata Manufacturing Co., Ltd. | Substrate processing and membrane release of transversely-excited film bulk acoustic resonator using a sacrificial tub |
US10998882B2 (en) | 2018-06-15 | 2021-05-04 | Resonant Inc. | XBAR resonators with non-rectangular diaphragms |
US11996822B2 (en) | 2018-06-15 | 2024-05-28 | Murata Manufacturing Co., Ltd. | Wide bandwidth time division duplex transceiver |
US11146238B2 (en) | 2018-06-15 | 2021-10-12 | Resonant Inc. | Film bulk acoustic resonator fabrication method |
US11264966B2 (en) | 2018-06-15 | 2022-03-01 | Resonant Inc. | Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack |
US11323091B2 (en) | 2018-06-15 | 2022-05-03 | Resonant Inc. | Transversely-excited film bulk acoustic resonator with diaphragm support pedestals |
US11916539B2 (en) | 2020-02-28 | 2024-02-27 | Murata Manufacturing Co., Ltd. | Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators |
US10917072B2 (en) | 2019-06-24 | 2021-02-09 | Resonant Inc. | Split ladder acoustic wave filters |
US11876498B2 (en) * | 2018-06-15 | 2024-01-16 | Murata Manufacturing Co., Ltd. | Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method |
US12218650B2 (en) | 2018-06-15 | 2025-02-04 | Murata Manufacturing Co., Ltd. | Transversely-excited film bulk acoustic resonator |
US10826462B2 (en) | 2018-06-15 | 2020-11-03 | Resonant Inc. | Transversely-excited film bulk acoustic resonators with molybdenum conductors |
US12095446B2 (en) | 2018-06-15 | 2024-09-17 | Murata Manufacturing Co., Ltd. | Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch |
US12191837B2 (en) | 2018-06-15 | 2025-01-07 | Murata Manufacturing Co., Ltd. | Solidly-mounted transversely-excited film bulk acoustic device |
US12149227B2 (en) | 2018-06-15 | 2024-11-19 | Murata Manufacturing Co., Ltd. | Transversely-excited film bulk acoustic resonator package |
US11967945B2 (en) | 2018-06-15 | 2024-04-23 | Murata Manufacturing Co., Ltd. | Transversly-excited film bulk acoustic resonators and filters |
US12095441B2 (en) | 2018-06-15 | 2024-09-17 | Murata Manufacturing Co., Ltd. | Transversely excited film bulk acoustic resonator with recessed interdigital transducer fingers |
US12081187B2 (en) | 2018-06-15 | 2024-09-03 | Murata Manufacturing Co., Ltd. | Transversely-excited film bulk acoustic resonator |
US12021496B2 (en) | 2020-08-31 | 2024-06-25 | Murata Manufacturing Co., Ltd. | Resonators with different membrane thicknesses on the same die |
US12009798B2 (en) | 2018-06-15 | 2024-06-11 | Murata Manufacturing Co., Ltd. | Transversely-excited film bulk acoustic resonators with electrodes having irregular hexagon cross-sectional shapes |
US12170516B2 (en) | 2018-06-15 | 2024-12-17 | Murata Manufacturing Co., Ltd. | Filters using transversly-excited film bulk acoustic resonators with frequency-setting dielectric layers |
US12191838B2 (en) | 2018-06-15 | 2025-01-07 | Murata Manufacturing Co., Ltd. | Solidly-mounted transversely-excited film bulk acoustic device and method |
US12040781B2 (en) | 2018-06-15 | 2024-07-16 | Murata Manufacturing Co., Ltd. | Transversely-excited film bulk acoustic resonator package |
US11909381B2 (en) | 2018-06-15 | 2024-02-20 | Murata Manufacturing Co., Ltd. | Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer |
US10985728B2 (en) | 2018-06-15 | 2021-04-20 | Resonant Inc. | Transversely-excited film bulk acoustic resonator and filter with a uniform-thickness dielectric overlayer |
US20220393666A1 (en) * | 2018-06-15 | 2022-12-08 | Resonant Inc. | Filter device |
US12113512B2 (en) | 2021-03-29 | 2024-10-08 | Murata Manufacturing Co., Ltd. | Layout of XBARs with multiple sub-resonators in parallel |
US12119808B2 (en) | 2018-06-15 | 2024-10-15 | Murata Manufacturing Co., Ltd. | Transversely-excited film bulk acoustic resonator package |
US10992284B2 (en) | 2018-06-15 | 2021-04-27 | Resonant Inc. | Filter using transversely-excited film bulk acoustic resonators with multiple frequency setting layers |
US11949402B2 (en) | 2020-08-31 | 2024-04-02 | Murata Manufacturing Co., Ltd. | Resonators with different membrane thicknesses on the same die |
US11888463B2 (en) | 2018-06-15 | 2024-01-30 | Murata Manufacturing Co., Ltd. | Multi-port filter using transversely-excited film bulk acoustic resonators |
CN118353412A (en) | 2019-04-05 | 2024-07-16 | 株式会社村田制作所 | Transverse excited film bulk acoustic resonator package and method |
JP7433873B2 (en) * | 2019-12-06 | 2024-02-20 | 太陽誘電株式会社 | Acoustic wave resonators, filters, and multiplexers |
JP7561343B2 (en) * | 2019-12-09 | 2024-10-04 | 三安ジャパンテクノロジー株式会社 | Surface acoustic wave filters, duplexers and modules |
CN111262548B (en) * | 2019-12-31 | 2021-06-22 | 诺思(天津)微系统有限责任公司 | Bulk acoustic wave resonator group, filter, electronic device, and electromechanical coupling coefficient adjustment method |
US11811391B2 (en) | 2020-05-04 | 2023-11-07 | Murata Manufacturing Co., Ltd. | Transversely-excited film bulk acoustic resonator with etched conductor patterns |
WO2022014494A1 (en) * | 2020-07-15 | 2022-01-20 | 株式会社村田製作所 | Elastic wave device |
JP6964359B1 (en) * | 2020-08-03 | 2021-11-10 | 三安ジャパンテクノロジー株式会社 | Surface acoustic wave device |
US11405017B2 (en) | 2020-10-05 | 2022-08-02 | Resonant Inc. | Acoustic matrix filters and radios using acoustic matrix filters |
WO2022085624A1 (en) * | 2020-10-19 | 2022-04-28 | 株式会社村田製作所 | Elastic wave device |
US20230412142A1 (en) * | 2020-11-16 | 2023-12-21 | Qorvo Us, Inc. | Piezoelectric layer arrangements in acoustic wave devices and related methods |
US12166468B2 (en) | 2021-01-15 | 2024-12-10 | Murata Manufacturing Co., Ltd. | Decoupled transversely-excited film bulk acoustic resonators for high power filters |
US11874189B2 (en) | 2021-07-02 | 2024-01-16 | Applied Materials, Inc. | MEMS resonator sensor substrate for plasma, temperature, stress, or deposition sensing |
WO2024190719A1 (en) * | 2023-03-16 | 2024-09-19 | 京セラ株式会社 | Acoustic wave device and communication device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010004741A1 (en) | 2008-07-11 | 2010-01-14 | パナソニック株式会社 | Plate wave element and electronic equipment using same |
WO2013047433A1 (en) | 2011-09-30 | 2013-04-04 | 株式会社村田製作所 | Elastic wave device |
JP2016072808A (en) | 2014-09-30 | 2016-05-09 | 株式会社村田製作所 | Duplexer and method of manufacturing the same |
JP2016519897A (en) | 2013-04-08 | 2016-07-07 | ソイテック | Improved heat-compensated surface acoustic wave device and manufacturing method |
JP2017034363A (en) | 2015-07-29 | 2017-02-09 | 太陽誘電株式会社 | Elastic wave device and module |
JP2017224890A (en) | 2016-06-13 | 2017-12-21 | 株式会社村田製作所 | Acoustic wave device |
JP2018007239A (en) | 2016-06-24 | 2018-01-11 | 株式会社村田製作所 | Acoustic wave device |
JP2018506930A (en) | 2014-12-17 | 2018-03-08 | コルボ ユーエス インコーポレイテッド | Plate wave device having wave confinement structure and fabrication method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3088189B2 (en) * | 1992-02-25 | 2000-09-18 | 三菱電機株式会社 | Surface acoustic wave device |
-
2018
- 2018-04-04 JP JP2018072706A patent/JP7169083B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010004741A1 (en) | 2008-07-11 | 2010-01-14 | パナソニック株式会社 | Plate wave element and electronic equipment using same |
WO2013047433A1 (en) | 2011-09-30 | 2013-04-04 | 株式会社村田製作所 | Elastic wave device |
JP2016519897A (en) | 2013-04-08 | 2016-07-07 | ソイテック | Improved heat-compensated surface acoustic wave device and manufacturing method |
JP2016072808A (en) | 2014-09-30 | 2016-05-09 | 株式会社村田製作所 | Duplexer and method of manufacturing the same |
JP2018506930A (en) | 2014-12-17 | 2018-03-08 | コルボ ユーエス インコーポレイテッド | Plate wave device having wave confinement structure and fabrication method |
JP2017034363A (en) | 2015-07-29 | 2017-02-09 | 太陽誘電株式会社 | Elastic wave device and module |
JP2017224890A (en) | 2016-06-13 | 2017-12-21 | 株式会社村田製作所 | Acoustic wave device |
JP2018007239A (en) | 2016-06-24 | 2018-01-11 | 株式会社村田製作所 | Acoustic wave device |
Also Published As
Publication number | Publication date |
---|---|
JP2019186655A (en) | 2019-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7169083B2 (en) | Acoustic wave devices and multiplexers | |
CN110022134B (en) | Acoustic wave device, filter, and multiplexer | |
JP6566033B2 (en) | Multiplexer, high-frequency front-end circuit, and communication device | |
JP6856825B2 (en) | Elastic wave device, demultiplexer and communication device | |
KR102140089B1 (en) | Acoustic wave resonator, filter, and multiplexer | |
US10250231B2 (en) | Acoustic wave device | |
JP5093403B2 (en) | Elastic wave device and electronic device using the same | |
WO2016190216A1 (en) | Elastic wave device and communication device | |
JP7278305B2 (en) | Acoustic wave device, branching filter and communication device | |
JPWO2018235433A1 (en) | Elastic wave device | |
JP6788024B2 (en) | Elastic wave device | |
JP7403239B2 (en) | Acoustic wave devices, filters, and multiplexers | |
JP2019021997A (en) | Acoustic wave element, splitter, and communication device | |
JP2019201345A (en) | Acoustic wave resonator, filter and multiplexer | |
JP6935220B2 (en) | Elastic wave elements, filters and multiplexers | |
JP7068974B2 (en) | Ladder type filter and multiplexer | |
JP7421541B2 (en) | Filters and multifilters | |
JP7441010B2 (en) | Acoustic wave devices, filters and multiplexers | |
JP6949607B2 (en) | Elastic wave device | |
JP7403960B2 (en) | Acoustic wave devices and their manufacturing methods, filters and multiplexers | |
JP2022176790A (en) | Acoustic wave devices, wafers, filters and multiplexers | |
JP6886264B2 (en) | Elastic wave devices and composite substrates and their manufacturing methods | |
WO2023074373A1 (en) | Elastic wave resonator, elastic wave filter device, and multiplexer | |
JP2022172569A (en) | Elastic wave device, filter and multiplexer | |
JP2024156215A (en) | Acoustic wave device and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210107 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211005 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220525 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221004 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221028 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7169083 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |