JP7147477B2 - Continuous casting method for billet slab - Google Patents
Continuous casting method for billet slab Download PDFInfo
- Publication number
- JP7147477B2 JP7147477B2 JP2018205449A JP2018205449A JP7147477B2 JP 7147477 B2 JP7147477 B2 JP 7147477B2 JP 2018205449 A JP2018205449 A JP 2018205449A JP 2018205449 A JP2018205449 A JP 2018205449A JP 7147477 B2 JP7147477 B2 JP 7147477B2
- Authority
- JP
- Japan
- Prior art keywords
- slab
- solidification
- tip
- water content
- specific water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Continuous Casting (AREA)
Description
本発明は、特に横断面の面積(以下、単に「断面積」という。)が500cm2以下のビレット鋳片を、センターポロシティの発生を安定的かつ確実に抑制しつつ連続鋳造する場合に、先端部に発生する曲がりの抑制が可能な連続鋳造方法に関するものである。 The present invention is especially useful when continuously casting billet slabs having a cross-sectional area (hereinafter simply referred to as "cross-sectional area") of 500 cm 2 or less while stably and reliably suppressing the occurrence of center porosity. The present invention relates to a continuous casting method capable of suppressing bending occurring in parts.
連続鋳造されたビレット鋳片(以下、単に「鋳片」ともいう。)を素材として、圧延または鍛造工程を経て継目無鋼管を製造する場合、鋳片の外表面だけでなく内質部における品質の健全性が強く要求されることから、鋳片内質部の品質管理が重要となる。 When a seamless steel pipe is produced by rolling or forging a continuously cast billet slab (hereinafter also simply referred to as “slab”), the quality of not only the outer surface of the slab but also the inner part is important. Since the soundness of slabs is strongly required, quality control of the cast slab core is important.
このため、鋳片の連続鋳造においては、センターポロシティの発生抑制を目的として、種々の方法が提案されている。本出願人も、連続鋳造の凝固末期に強冷却を行うことで、安定的かつ確実に、鋳片のセンターポロシティの発生を抑制し、鋳片の内質改善効果を発揮する連続鋳造方法を、特許文献1で提案している。
For this reason, in the continuous casting of slabs, various methods have been proposed for the purpose of suppressing the occurrence of center porosity. The present applicant also proposed a continuous casting method that stably and reliably suppresses the occurrence of center porosity in the slab by performing strong cooling at the final stage of solidification in continuous casting, and exhibits the effect of improving the internal quality of the slab. This is proposed in
特許文献1で提案した連続鋳造方法を実施することで、炭素鋼、低合金鋼、高合金鋼、またはステンレス鋼等の種々の鋼種の鋳片の連続鋳造において、所期の効果を得ることができる。
By carrying out the continuous casting method proposed in
しかしながら、特許文献1で提案した連続鋳造方法は、凝固末期に強冷却を行うため、特に断面積が500cm2以下の小断面鋳片の場合は、鋳造開始部である鋳片の先端部で曲りが発生しやすかった。図4に示すように、鋳片1の先端部1aで曲りが発生すると、連続鋳造設備から搬出する際、当該先端部1aが搬出テーブル2に衝突して鋳片1の搬出に支障が生じる場合がある。
However, in the continuous casting method proposed in
本発明が解決しようとする課題は、特許文献1で提案した方法で断面積が500cm2以下の小断面鋳片を連続鋳造した場合、鋳片の先端部で曲りが発生しやすく、鋳片の搬出に支障が生じる場合があるという点である。
The problem to be solved by the present invention is that when a small cross-section slab having a cross-sectional area of 500 cm 2 or less is continuously cast by the method proposed in
発明者らは、特許文献1で提案した方法で断面積が500cm2以下の小断面鋳片を連続鋳造した場合に発生しやすい鋳片先端部の曲りを抑制するために、凝固末期に行う強冷却と鋳片の先端部に発生する曲りの影響について調査した。
In order to suppress the bending of the tip of the slab, which tends to occur when continuously casting a slab with a cross-sectional area of 500 cm 2 or less by the method proposed in
その結果、特許文献1で提案した方法は、凝固末期で鋳片を強冷却するため、冷却水を噴射するスプレーチップの詰まりやスケールの付着具合等によって、鋳片の円周方向に冷却むらができやすいことが、発明者らの調査により判明した。
As a result, in the method proposed in
特に、鋳造開始部である鋳片の先端部を凝固末期に強冷却する場合は、鋳造開始からあまり時間が経過しておらず、連続鋳造機や冷却水が冷えているため、冷却むらが顕著になって曲りが発生しやすい。 In particular, when the tip of the slab, which is the part where casting is started, is strongly cooled at the final stage of solidification, not much time has passed since the start of casting, and the continuous casting machine and cooling water are cold, so cooling unevenness is noticeable. bending is likely to occur.
発明者らは、以上の調査結果に基づき、鋳片の先端部における凝固末期冷却を弱冷化して冷却むらを抑制する着想を得た。具体的には、鋳片の先端部は凝固末期冷却の比水量(冷却水量)を徐々に増加することを検討した。 Based on the above investigation results, the inventors have come up with the idea of suppressing uneven cooling by weakening the cooling in the final stage of solidification at the tip of the cast slab. Specifically, it was investigated to gradually increase the specific water quantity (cooling water quantity) for cooling in the final stage of solidification for the tip of the cast slab.
その結果、凝固末期冷却帯の入口を通過する時の鋳片の表面温度との関係で、鋳片の先端部における冷却水の比水量を所定の比水量以下とすることで、鋳片先端部の曲りを抑制できることが判明した。 As a result, in relation to the surface temperature of the slab when passing through the inlet of the cooling zone in the final stage of solidification, the specific water amount of the cooling water at the tip of the slab is set to a predetermined specific water amount or less, so that the tip of the slab can be It was found that the bending of the
本発明は、発明者らの検討による知見に基づいてなされたものである。
すなわち、本発明は、
鋳型内における溶鋼のメニスカスから鋳造方向に所定距離隔てた位置に設置した凝固末期冷却帯で、ビレット鋳片の先端が凝固末期冷却帯の入口を通過する際の表面温度が所定の温度範囲となるように調整されたビレット鋳片を水冷し、当該凝固末期冷却帯で凝固を完了させるビレット鋳片の連続鋳造方法である。
The present invention has been made based on the knowledge obtained by the studies of the inventors.
That is, the present invention
In a cooling zone in the final stage of solidification installed at a predetermined distance in the casting direction from the meniscus of molten steel in the mold, the surface temperature when the tip of the billet slab passes through the entrance of the cooling zone in the final stage of solidification falls within a predetermined temperature range. This is a continuous casting method for billet slabs, in which the billet slabs adjusted as described above are water-cooled, and solidification is completed in the cooling zone in the final stage of solidification.
そして、前記方法でビレット鋳片を連続鋳造する際に、
前記凝固末期冷却帯での冷却水の比水量を、ビレット鋳片の先端部は、予め定められた比水量よりも少ない比水量からビレット鋳片の進行に伴って徐々に増加させ、ビレット鋳片の先端部が前記凝固末期冷却帯の入口から所定長さ通過した後に前記予め定められた比水量とすることを最も主要な特徴としている。
Then, when continuously casting the billet slab by the above method,
The specific water content of the cooling water in the cooling zone at the final stage of solidification is gradually increased from a specific water content smaller than a predetermined specific water content at the tip of the billet slab as the billet slab progresses. The most important feature is that the specific water content is set to the predetermined specific water content after the tip of the cooling zone passes through the inlet of the cooling zone in the final stage of solidification for a predetermined length.
本発明は、鋳片の先端部が凝固末期冷却帯を通過する時の冷却水の比水量を、予め定められた比水量よりも少ない比水量から、鋳片の進行に伴って徐々に増加させるので、凝固末期冷却帯における鋳片の先端部の冷却むらを抑制することができる。 The present invention gradually increases the specific water content of cooling water when the tip of the slab passes through the cooling zone in the final stage of solidification from a specific water content smaller than a predetermined specific water content as the slab progresses. Therefore, it is possible to suppress uneven cooling of the front end portion of the cast slab in the cooling zone at the final stage of solidification.
本発明において、凝固末期冷却帯を設置する位置は、連続鋳造の生産性を確保し、かつ安定操業を図ることが可能な位置、例えば鋳型内における溶鋼のメニスカスから鋳造方向に15~45mの範囲内である。 In the present invention, the position where the cooling zone in the final stage of solidification is installed is a position where productivity in continuous casting can be secured and stable operation can be achieved, for example, a range of 15 to 45 m in the casting direction from the meniscus of molten steel in the mold. is within.
また、本発明において、凝固末期冷却帯の入口を通過する際の鋳片の表面温度は、900~1200℃である。900℃未満の場合は、γ相からα相への相変態が生じ、鋳片の表面が膨張してセンターポロシティ発生の抑制効果が損なわれやすいからである。一方、1200℃を超えると、冷却が不均一となり、センターポロシティの抑制効果が不安定となるからである。 Further, in the present invention, the surface temperature of the cast slab when passing through the inlet of the cooling zone at the end of solidification is 900 to 1200°C. If the temperature is less than 900° C., a phase transformation from the γ phase to the α phase occurs, the surface of the slab expands, and the effect of suppressing the generation of center porosity is likely to be impaired. On the other hand, if the temperature exceeds 1200° C., the cooling becomes non-uniform and the effect of suppressing the center porosity becomes unstable.
また、本発明において、凝固末期冷却帯の予め定められた比水量とは、鋳造する鋳片の外径、材質によって決定される。 Further, in the present invention, the predetermined specific water content of the cooling zone in the final stage of solidification is determined by the outer diameter and material of the slab to be cast.
発明者らが低炭素鋼、3種類の合金鋼(Cr含有量が1質量%のものと2質量%のもの、及び低炭素Ni鋼)を連続鋳造した場合の検討結果によれば、鋳造する鋳片の外径が191mm以下の場合は、材質に関係なく比水量を0.07~0.13(L/kg-steel)とすれば、センターポロシティの発生を抑制することができた。 According to the results of continuous casting by the inventors of low-carbon steel, three types of alloy steel (Cr content of 1% by mass and 2% by mass, and low-carbon Ni steel), casting When the outer diameter of the slab was 191 mm or less, the occurrence of center porosity could be suppressed by setting the specific water content to 0.07 to 0.13 (L/kg-steel) regardless of the material.
一方、鋳造する鋳片の外径が191mmより大きくなるのに従って比水量を多くする必要がある。また、鋳造する鋳片の外径が大きくなるのに従って材質の影響を受けやすくなる。例えば、鋳造する鋳片の外径が200mmを超える場合は一般的な低炭素鋼であれば0.21(L/kg-steel)、Cr,Niの含有成分に応じてさらに少ない比水量(0.10(L/kg-steel)又は0.01(L/kg-steel))とすることでセンターポロシティの発生が抑制できることを確認した。 On the other hand, it is necessary to increase the specific water content as the outer diameter of the slab to be cast becomes larger than 191 mm. Also, as the outer diameter of the cast slab to be cast increases, it becomes more susceptible to the influence of the material. For example, when the outer diameter of the cast slab to be cast exceeds 200 mm, it is 0.21 (L / kg-steel) for general low carbon steel, and the specific water content (0 It was confirmed that the occurrence of center porosity can be suppressed by setting the ratio to 0.10 (L/kg-steel) or 0.01 (L/kg-steel).
但し、冷却水の比水量は0.21(L/kg-steel)より多くても、0.01(L/kg-steel)よりも少なくても、センターポロシティの発生を効果的に抑制できず鋳片内部の性状が悪化するので、鋳造する鋳片の外径、材質に応じて0.01~0.21(L/kg-steel)の範囲で決定することが望ましい。 However, even if the specific amount of cooling water is more than 0.21 (L/kg-steel) or less than 0.01 (L/kg-steel), the occurrence of center porosity cannot be effectively suppressed. Since the properties inside the slab deteriorate, it is desirable to determine it within the range of 0.01 to 0.21 (L/kg-steel) according to the outer diameter and material of the slab to be cast.
また、本発明において、予め定められた比水量よりも少ない比水量とは、スプレーチップの詰まりやスケールの付着具合等によって鋳片の先端部に円周方向に冷却むらが発生しても曲りが発生しない比水量であり、必ずしも0(L/kg-steel)でなくてもよい。 Further, in the present invention, a specific water content smaller than a predetermined specific water content means that even if cooling unevenness occurs in the circumferential direction at the tip of the slab due to clogging of the spray tip, adhesion of scales, etc., bending will not occur. It is the amount of specific water that does not occur and does not necessarily have to be 0 (L/kg-steel).
また、本発明において、凝固末期冷却帯の冷却水の比水量を予め定められた比水量とする鋳片の先端部の長さは、鋳片の先端から15mでよい。鋳片の先端から15m以降は、予め定められた比水量としても連続鋳造設備からの搬出に支障のある曲りが発生しないからである。 Further, in the present invention, the length of the tip portion of the slab for which the specific water content of the cooling water in the cooling zone at the final stage of solidification is the predetermined specific water content may be 15 m from the tip of the slab. This is because, at a distance of 15 m or more from the tip of the slab, even if the specific water content is set in advance, there is no bending that hinders carrying out of the slab from the continuous casting facility.
上記本発明は、断面積が500cm2以下の小断面鋳片を連続鋳造する場合に大きな効果を発揮する。断面積が500cm2を超える場合は、鋳片の先端部における凝固末期冷却を弱冷化しなくても、搬出に支障が生じるほど鋳片の先端部に曲がりが発生しないからである。 The present invention exhibits great effects when continuously casting small cross-section slabs having a cross-sectional area of 500 cm 2 or less. This is because when the cross-sectional area exceeds 500 cm 2 , even if cooling at the end of the slab in the final stage of solidification is not weakened, the tip of the slab will not be bent enough to interfere with carrying out.
本発明において、予め定められた比水量よりも少ない状態から鋳片の進行に伴って徐々に増加させる態様は、線形であっても段階的であってもよい。 In the present invention, the manner in which the specific water content is gradually increased as the slab advances from a state of less than a predetermined specific water content may be linear or stepwise.
本発明では、鋳片の先端部が凝固末期冷却帯を通過する時の冷却水の比水量を、予め定められた比水量よりも少ない比水量から、鋳片の進行に伴って徐々に増加させる。従って、凝固末期冷却帯における鋳片の先端部の冷却むらを抑制することができ、連続鋳造設備からの搬出に支障のある曲りを抑制することができる。 In the present invention, the specific water content of the cooling water when the tip of the slab passes through the final solidification cooling zone is gradually increased from a specific water content smaller than a predetermined specific water content as the slab progresses. . Therefore, it is possible to suppress uneven cooling of the front end portion of the cast slab in the cooling zone in the final stage of solidification, and it is possible to suppress bending that hinders carrying out from the continuous casting facility.
本発明は、特に断面積が500cm2以下の鋳片を、センターポロシティの発生を安定的かつ確実に抑制しつつ連続鋳造する場合に、先端部に発生する曲がりの抑制を目的とするものである。 An object of the present invention is to suppress bending occurring at the tip of a slab having a cross-sectional area of 500 cm 2 or less, particularly in the case of continuous casting while stably and reliably suppressing the occurrence of center porosity. .
そして、前記目的を、鋳片の先端部が凝固末期冷却帯を通過する時の冷却水の比水量を、予め定められた比水量よりも少ない比水量から、鋳片の進行に伴って徐々に増加させることで実現した。 In order to achieve the above purpose, the specific water content of the cooling water when the tip of the slab passes through the cooling zone in the final stage of solidification is gradually increased from a specific water content smaller than a predetermined specific water content to gradually increase as the slab advances. This was achieved by increasing
先ず、本発明のビレット鋳片の連続鋳造方法を知見するに至った検討結果の一例について説明する。 First, an example of the study results that led to the discovery of the continuous casting method for billet slabs of the present invention will be described.
発明者らは、外径が191mm、225mm、及び310mmの下記表1に示す成分組成の低炭素鋼鋳片を連続鋳造する際、メニスカス位置から30~35mの位置に設置した凝固末期冷却帯の、鋳片の先端部が通過する時の冷却水の比水量を、0から鋳片の進行に伴って段階的に増加させた。 When continuously casting low-carbon steel slabs having outer diameters of 191 mm, 225 mm, and 310 mm and having the chemical compositions shown in Table 1 below, the inventors set a cooling zone at the end of solidification at a position 30 to 35 m from the meniscus position. , the specific amount of cooling water when the tip of the slab passes was increased stepwise from 0 as the slab progressed.
連続鋳造した鋳片の外径、鋳片の先端(鋳込み長さが0m)が凝固末期冷却帯の入口を通過するときの鋳片の表面温度、鋳片の先端~5mまでの部分、5~10mまでの部分、10~15mまでの部分、15m以降の部分が凝固末期冷却帯の入口を通過するときの冷却水の比水量Vを下記表2に示す。下記表2には凝固末期冷却完了後の鋳片先端部の曲がり発生の有無も示す。 Outer diameter of continuously cast slab, surface temperature of slab when tip of slab (casting length is 0m) passes through the inlet of cooling zone in final stage of solidification, part from tip to 5m of slab, 5~ Table 2 below shows the specific water volume V of the cooling water when the portion up to 10 m, the portion from 10 to 15 m, and the portion after 15 m pass through the inlet of the cooling zone in the final stage of solidification. Table 2 below also shows the presence or absence of bending at the tip of the cast slab after the completion of cooling in the final stage of solidification.
No.1~4は、鋳片の先端から5mまでの部分が凝固末期冷却帯の入口を通過するときの冷却水の比水量Vを0.00(L/ kg-steel)とした。そして、鋳片の先端から15m以降の部分が凝固末期冷却帯の入口を通過するときの冷却水の比水量Vを、外径が191mmのNo.1,2の鋳片は、鋳片の先端が凝固末期冷却帯の入口を通過するときの鋳片表面温度を考慮して0.07,0.13(L/ kg-steel)とした。また、外径が225mmのNo.3,4の鋳片は0.18,0.17(L/kg-steel)とした。
No. In 1 to 4, the specific water volume V of the cooling water was set to 0.00 (L/kg-steel) when the portion from the tip of the slab to 5 m passed through the inlet of the cooling zone in the final stage of solidification. Then, the specific water volume V of the cooling water when the portion 15 m or more from the tip of the slab passes through the inlet of the cooling zone in the final stage of solidification was measured using No. 1 with an outer diameter of 191 mm. For
一方、鋳片の先端から5~10mまでの部分が凝固末期冷却帯の入口を通過するときの冷却水の比水量Vは、鋳片の先端から15m以降の部分が凝固末期冷却帯の入口を通過するときの前記比水量Vよりも少ない、前記表2に示す水量とした。
On the other hand, the specific water volume V of the cooling water when the
また、鋳片の先端から10m~15mまでの部分が凝固末期冷却帯の入口を通過するときの冷却水の比水量Vは、鋳片の先端から5~10mまでの部分の前記比水量Vと、鋳片の先端から15m以降の部分の前記比水量Vの中間の比水量とした。
In addition, the specific water amount V of the cooling water when the portion 10 m to 15 m from the tip of the slab passes through the inlet of the cooling zone in the final stage of solidification is the specific water amount V of the
そして、凝固末期冷却帯での鋳片先端部の冷却を前記比水量として行った場合に、鋳片先端部の曲がり発生について調査した。 Then, when the tip of the cast slab was cooled in the cooling zone in the final stage of solidification with the above specific water content, the occurrence of bending at the tip of the cast slab was investigated.
比較として、凝固末期冷却帯での冷却水の比水量を一定とした従来方法についても、鋳片先端部の曲がり発生について調査した(No.5~7)。 For comparison, the conventional method in which the specific amount of cooling water in the cooling zone at the final stage of solidification is constant was also examined for bending at the leading edge of the cast slab (Nos. 5 to 7).
表2における曲がり発生の有無は、鋳片先端部の曲がりによって、連続鋳造設備からの搬出が困難になった場合を曲がりが発生したと評価し、搬出に支障がなければ曲りは発生しなかったと評価した。曲りが発生しなかったと評価できるのは、概ね鋳片の先端から15mまでの先端部における進行方向と直角な方向への変位量が50cm以下の場合である。 Regarding the presence or absence of bending in Table 2, when the bending of the tip of the cast slab makes it difficult to carry out from the continuous casting equipment, it is evaluated that bending has occurred. evaluated. It can be evaluated that no bending occurred when the amount of displacement in the direction perpendicular to the advancing direction at the tip of the slab up to 15 m from the tip is 50 cm or less.
No.1~No.7の鋳片の先端が凝固末期冷却帯の入口を通過したときの鋳片の表面温度と、鋳片の先端から5mの部分が凝固末期冷却帯の入口を通過したときの冷却水の比水量と、鋳片先端部の曲りの発生の有無の関係を図1に示す。 No. 1 to No. The surface temperature of the slab when the tip of the slab in 7 passes through the entrance of the cooling zone in the final stage of solidification, and the specific amount of cooling water when the part 5 m from the tip of the slab passes through the entrance of the cooling zone in the final stage of solidification , and the presence or absence of bending at the tip of the cast slab is shown in FIG.
図1に示したように、鋳片の先端が凝固末期冷却帯の入口を通過したときの表面温度によって、鋳片の先端から5mの部分が凝固末期冷却帯の入口を通過するときの、鋳片先端部に曲がりが発生する比水量が変化することが判明した。 As shown in Fig. 1, when the tip of the slab passes through the entrance of the cooling zone in the final stage of solidification, the surface temperature of the tip of the slab changes the temperature of the casting when the part 5m from the tip of the slab passes through the entrance of the cooling zone in the final stage of solidification. It was found that the specific water content at which bending occurs at one tip changes.
図1より、鋳片の先端が凝固末期冷却帯の入口を通過するときの表面温度をT(℃)とした場合、鋳片の先端から5~10mまでの部分が凝固末期冷却帯の入口を通過するときの冷却水の比水量Vを(5.7×105)×exp-0.016T(L/kg-steel)以下とすれば、鋳片先端部に曲がりが発生しないことが判明した。
From Fig. 1, when the surface temperature of the slab tip passing through the entrance of the cooling zone in the final stage of solidification is T (°C), the
つまり、鋳片の先端から5~10mまでの部分が凝固末期冷却帯の入口を通過するときの冷却水の比水量Vを、鋳片の先端から5mまでの部分が凝固末期冷却帯の入口を通過するときの比水量より多く、(5.7×105)×exp-0.016T(L/kg-steel)以下とすればよいことが判明した。しかしながら、当該比水量が少なすぎると、鋳片先端から10m以降の比水量が急激に増加することになって曲りの発生を助長する。従って、より好ましい比水量の下限は、前記比水量-0.02(L/kg-steel)である。
In other words, the specific water volume V of the cooling water when the
本発明は、前記した発明者らの検討結果に基づいてなされたものである。
すなわち、本発明のビレット鋳片の連続鋳造方法は、
鋳型内における溶鋼のメニスカスから鋳造方向に所定距離隔てた位置に設置した凝固末期冷却帯で、ビレット鋳片の先端が凝固末期冷却帯の入口を通過する際の表面温度が所定の温度範囲となるように調整されたビレット鋳片を水冷し、当該凝固末期冷却帯でビレット鋳片の凝固を完了させる際に、
前記凝固末期冷却帯での冷却水の比水量を、ビレット鋳片の先端部は、予め定められた比水量よりも少ない冷却水量からビレット鋳片の進行に伴って徐々に増加させ、ビレット鋳片の先端部が前記凝固末期冷却帯の入口から所定長さ通過した後に前記予め定められた比水量とすることが特徴である。
The present invention has been made based on the results of the inventors' studies described above.
That is, the continuous casting method for billet slabs of the present invention is
In a cooling zone in the final stage of solidification installed at a predetermined distance in the casting direction from the meniscus of molten steel in the mold, the surface temperature when the tip of the billet slab passes through the entrance of the cooling zone in the final stage of solidification falls within a predetermined temperature range. When water-cooling the billet slab adjusted as above and completing the solidification of the billet slab in the final solidification cooling zone,
The specific water amount of cooling water in the cooling zone at the final stage of solidification is gradually increased from a cooling water amount smaller than a predetermined specific water amount at the tip of the billet slab as the billet slab progresses, The specific water content is set to the predetermined specific water content after the tip of the has passed through the inlet of the cooling zone in the final stage of solidification for a predetermined length.
本発明において、凝固末期冷却帯での冷却水の比水量をビレット鋳片の進行に伴って、図2に示すように段階的に比水量を増加させる場合、ビレット鋳片の先端部から距離Lだけ隔てた部分が凝固末期冷却帯の入口を通過するときの比水量V(L/kg-steel)は下記式のように決定することが望ましい。 In the present invention, when the specific water content of cooling water in the cooling zone at the final stage of solidification is increased stepwise as shown in FIG. It is desirable to determine the specific water content V (L/kg-steel) when a portion separated by a distance of .
L=0~5m:V=0(L/kg-steel)・・・(1)
L=5~10m:V≦(5.7×105)×exp-0.016T(L/kg-steel)・・・(2)
L=10~15m:(2)式と(4)式の中間の比水量・・・(3)
L=15m以降:0.01~0.21(L/kg-steel)・・・(4)
L = 0 to 5 m: V = 0 (L/kg-steel) (1)
L=5-10m: V≦(5.7×10 5 )×exp −0.016T (L/kg-steel) (2)
L = 10 to 15 m: intermediate specific water content between formula (2) and formula (4) (3)
After L=15m: 0.01 to 0.21 (L/kg-steel) (4)
前記(2)式中のTは、鋳片の先端が凝固末期冷却帯の入口を通過するときの表面温度(℃)である。また、前記(4)式で示した比水量は、連続鋳造する鋳片の外径や材質に応じて、0.01~0.21(L/kg-steel)の範囲内で適切に設定される比水量を意味する。 T in the above formula (2) is the surface temperature (° C.) when the tip of the cast slab passes through the inlet of the cooling zone in the final stage of solidification. Further, the specific water content indicated by the above formula (4) is appropriately set within the range of 0.01 to 0.21 (L/kg-steel) according to the outer diameter and material of the slab to be continuously cast. means the specific water content.
前記(2)式で定められた比水量の開始位置を鋳片の先端から5mとしたのは、当該位置より先端側とすると、鋳片の先端部における凝固末期冷却を弱冷化する効果が弱くなるからである。反対に、鋳片の先端から5mより後方とすると、鋳片の先端から15m以降の部分の前記比水量が、例えば0.21(L/kg-steel)のように多い場合、当該位置から鋳片の先端から15mまでの間の比水量の増加が急激になりすぎるからである。 The starting position of the specific water content determined by the above formula (2) is set to 5 m from the tip of the slab because if it is set to the tip side from the position, the effect of weakening the cooling at the end of solidification at the tip of the slab is obtained. because it makes you weaker. On the other hand, if it is 5 m behind the tip of the slab, and the specific water content of the portion 15 m or later from the tip of the slab is as large as, for example, 0.21 (L / kg-steel), cast from that position. This is because the increase in specific water content between the tip of the strip and 15 m becomes too rapid.
前記凝固末期冷却帯での比水量を鋳片の進行に伴って徐々に増加させる態様は、図2に示すような段階的に増加させる場合に限らず、図3に示すように線形に増加させてもよい。 The mode of gradually increasing the specific water content in the cooling zone at the end of solidification as the slab progresses is not limited to the stepwise increase as shown in FIG. 2, but the linear increase as shown in FIG. may
線形に冷却水量を増加させる場合は、鋳片の先端から15m以降の部分の比水量が前記(4)式の比水量になるまで、鋳片の先端から15mまでの間を線形に増加させればよい。その際、鋳片の先端から5m隔てた部分が凝固末期冷却帯の入口を通過するときの冷却水の比水量Vが前記(2)式を充足することが望ましい。 When increasing the cooling water flow rate linearly, increase linearly from the tip end of the slab to 15 m until the specific water content of the portion 15 m from the tip end of the slab reaches the specific water content of the above formula (4). Just do it. At this time, it is desirable that the specific water volume V of the cooling water when the portion 5 m away from the tip of the cast slab passes through the inlet of the cooling zone in the final stage of solidification satisfies the above formula (2).
例えば、図3に示した例は、鋳片の先端から15m以降の部分を前記(4)式の比水量V(L/kg-steel)、鋳片の先端が凝固末期冷却帯の入口を通過するときの冷却水の比水量Vを0(L/kg-steel)とし、鋳片の先端の比水量と前記15m隔てた部分の比水量の2点を結ぶ直線状に比水量を増加したものである。 For example, in the example shown in FIG. The specific water content V of the cooling water is set to 0 (L/kg-steel) at this time, and the specific water content is increased linearly connecting the two points of the specific water content at the tip of the slab and the specific water content at the part separated by 15 m. is.
本発明は上記した例に限らないことは勿論であり、各請求項に記載の技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。 Of course, the present invention is not limited to the above examples, and it goes without saying that the embodiments may be changed as appropriate within the scope of the technical idea described in each claim.
例えば、図2に示した例は、鋳片の先端から5mまでの部分が凝固末期冷却帯の入口を通過するときの冷却水の比水量Vを0(L/kg-steel)としている。しかしながら、鋳片の先端が凝固末期冷却帯の入口を通過する際の表面温度によっては、必ずしも0でなくてもよい。 For example, in the example shown in FIG. 2, the specific water volume V of the cooling water is set to 0 (L/kg-steel) when the portion from the tip of the slab to 5 m passes through the inlet of the cooling zone in the final stage of solidification. However, it may not necessarily be 0 depending on the surface temperature when the tip of the cast slab passes through the inlet of the cooling zone in the final stage of solidification.
また、図2に示した例は、鋳片の先端部における凝固末期冷却帯の冷却水の比水量を3段階に変化させている。しかしながら、鋳片の先端から15m以降の部分の前記比水量が、例えば0.01(L/kg-steel)のように少ない場合は、鋳片の先端から5mまでの部分と、鋳片の先端から5m~15mまでの部分と、鋳片の先端から15m以降の部分の2段階に変化させてもよい。 In the example shown in FIG. 2, the specific amount of cooling water in the cooling zone at the final stage of solidification at the tip of the slab is changed in three stages. However, if the specific water content of the portion 15 m or more from the tip of the slab is small, such as 0.01 (L / kg-steel), the portion up to 5 m from the tip of the slab and the tip of the slab The length may be changed in two stages: a portion from 5m to 15m from the tip of the slab, and a portion after 15m from the tip of the slab.
また、図3に示した例は、鋳片の先端が凝固末期冷却帯の入口を通過するときの冷却水の比水量Vを0(L/kg-steel)としているが、当該比水量は0(L/kg-steel)より多くてもよい。反対に、鋳片の先端から5m未満の部分が凝固末期冷却帯の入口を通過するまでの冷却水の比水量Vを0(L/kg-steel)としてもよい。 In the example shown in FIG. 3, the specific water amount V of the cooling water when the tip of the cast slab passes through the inlet of the cooling zone in the final stage of solidification is set to 0 (L/kg-steel). (L/kg-steel) or more. Conversely, the specific water volume V of the cooling water may be set to 0 (L/kg-steel) until the portion less than 5 m from the tip of the cast slab passes through the inlet of the cooling zone in the final stage of solidification.
また、上記の表2に示した例は、外径が191mm、225mm、及び310mmの表1に示す成分組成の低炭素鋼鋳片を連続鋳造した場合のものである。しかしながら、表1に示した低炭素鋼以外であっても、本発明の前提となる特許文献1が対象とする種々の鋼種の鋳片を連続鋳造した場合も、本発明方法を適用することで、鋳片先端部の曲がりを抑制できることを確認している。
Further, the examples shown in Table 2 above are obtained by continuously casting low-carbon steel slabs having outer diameters of 191 mm, 225 mm and 310 mm and having chemical compositions shown in Table 1. However, even if the steel other than the low-carbon steel shown in Table 1 is used, the method of the present invention can be applied to continuous casting of slabs of various steel grades targeted by
1 鋳片
1a 先端部
1 slab 1a tip
Claims (6)
前記凝固末期冷却帯での冷却水の比水量を、ビレット鋳片の先端部は、予め定められた比水量よりも少ない比水量からビレット鋳片の進行に伴って徐々に増加させ、ビレット鋳片の先端部が前記凝固末期冷却帯の入口から15m以上通過した後に前記予め定められた比水量とすることを特徴とする、断面積が500cm 2 以下のビレット鋳片の連続鋳造方法。 A cooling zone in the final stage of solidification set in the mold at a position within the range of 15 to 45 mm in the casting direction from the meniscus of molten steel, and the surface temperature when the tip of the billet strand passes through the entrance of the cooling zone in the final stage of solidification is 900 ° C. When water-cooling the billet slab adjusted to a temperature range of 1200 ° C. and completing the solidification of the billet slab in the final solidification cooling zone,
The specific water content of the cooling water in the cooling zone at the final stage of solidification is gradually increased from a specific water content smaller than a predetermined specific water content at the tip of the billet slab as the billet slab progresses. a continuous casting method for billet slabs having a cross- sectional area of 500 cm 2 or less , wherein the specific water content is set to the predetermined specific water content after the tip of the billet has passed 15 m or more from the entrance of the cooling zone in the final stage of solidification.
L=0~5m:V=0(L/kg-steel)・・・(1)
L=5~10m:V≦(5.7×105)×exp-0.016T(L/kg-steel)・・・(2)
L=10~15m:(2)式と(4)式の中間の比水量・・・(3)
L=15m以降:0.01~0.21(L/kg-steel)・・・(4)
T:鋳片の先端部が凝固末期冷却帯の入口を通過するときの表面温度(℃) When the specific water content is increased stepwise, the specific water content V (L/kg-steel) of the cooling water when the portion separated by the distance L from the tip of the billet slab passes through the inlet of the cooling zone in the final stage of solidification is 4. The continuous casting method for billet slab according to claim 3, wherein the determination is made according to the following equation.
L = 0 to 5 m: V = 0 (L/kg-steel) (1)
L=5-10m: V≦(5.7×10 5 )×exp −0.016T (L/kg-steel) (2)
L = 10 to 15 m: intermediate specific water content between formula (2) and formula (4) (3)
After L=15m: 0.01 to 0.21 (L/kg-steel) (4)
T: Surface temperature (°C) when the tip of the cast slab passes through the entrance of the cooling zone in the final stage of solidification
T:鋳片の先端部が凝固末期冷却帯の入口を通過するときの表面温度(℃) The specific water content V (L/kg-steel) when the portion 5 m away from the tip of the billet slab passes through the inlet of the cooling zone in the final stage of solidification is (5.7×10 5 )×exp −0.016T (L /kg-steel) or less.
T: Surface temperature (°C) when the tip of the cast slab passes through the entrance of the cooling zone in the final stage of solidification
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018205449A JP7147477B2 (en) | 2018-10-31 | 2018-10-31 | Continuous casting method for billet slab |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018205449A JP7147477B2 (en) | 2018-10-31 | 2018-10-31 | Continuous casting method for billet slab |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020069512A JP2020069512A (en) | 2020-05-07 |
JP7147477B2 true JP7147477B2 (en) | 2022-10-05 |
Family
ID=70548903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018205449A Active JP7147477B2 (en) | 2018-10-31 | 2018-10-31 | Continuous casting method for billet slab |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7147477B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110877098B (en) * | 2019-11-25 | 2021-04-13 | 山西太钢不锈钢股份有限公司 | Method for reducing defects of tail section billet of high-alloy stainless steel billet |
CN112122571B (en) * | 2020-09-17 | 2021-11-12 | 北京科技大学 | Control method of forced cooling system at solidification end of large-section continuous casting round billet |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004330252A (en) | 2003-05-08 | 2004-11-25 | Sumitomo Metal Ind Ltd | Continuous casting method of round slab and round slab |
JP2005334944A (en) | 2004-05-27 | 2005-12-08 | Sumitomo Metal Ind Ltd | Continuous casting method and continuous cast slab of heat resistant low alloy steel |
JP2009006367A (en) | 2007-06-28 | 2009-01-15 | Sumitomo Metal Ind Ltd | Continuous casting method for small section billet |
JP2012218035A (en) | 2011-04-08 | 2012-11-12 | Jfe Steel Corp | METHOD FOR MANUFACTURING ROUND STEEL SLAB FOR FORMING SEAMLESS STEEL PIPE OF HIGH Cr STEEL |
JP2014073503A (en) | 2012-10-02 | 2014-04-24 | Jfe Steel Corp | Continuous casting method of steel |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2727886B2 (en) * | 1992-08-28 | 1998-03-18 | 住友金属工業株式会社 | Horizontal continuous casting method |
JP3405490B2 (en) * | 1995-06-06 | 2003-05-12 | 住友金属工業株式会社 | Method for improving slab quality in continuous casting |
-
2018
- 2018-10-31 JP JP2018205449A patent/JP7147477B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004330252A (en) | 2003-05-08 | 2004-11-25 | Sumitomo Metal Ind Ltd | Continuous casting method of round slab and round slab |
JP2005334944A (en) | 2004-05-27 | 2005-12-08 | Sumitomo Metal Ind Ltd | Continuous casting method and continuous cast slab of heat resistant low alloy steel |
JP2009006367A (en) | 2007-06-28 | 2009-01-15 | Sumitomo Metal Ind Ltd | Continuous casting method for small section billet |
JP2012218035A (en) | 2011-04-08 | 2012-11-12 | Jfe Steel Corp | METHOD FOR MANUFACTURING ROUND STEEL SLAB FOR FORMING SEAMLESS STEEL PIPE OF HIGH Cr STEEL |
JP2014073503A (en) | 2012-10-02 | 2014-04-24 | Jfe Steel Corp | Continuous casting method of steel |
Also Published As
Publication number | Publication date |
---|---|
JP2020069512A (en) | 2020-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102317492A (en) | High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe | |
JP7147477B2 (en) | Continuous casting method for billet slab | |
JP6384679B2 (en) | Manufacturing method of hot-rolled steel sheet | |
JP2015062918A (en) | Continuous casting method of steel | |
CN106536085B (en) | The continuous casing of steel | |
JP4899629B2 (en) | Billet continuous casting method | |
JP4600436B2 (en) | Continuous casting method for slabs | |
JP5716414B2 (en) | Continuous casting equipment for round slabs for seamless steel pipe production | |
JP2012110898A (en) | Continuous casting method of round cast billet for making 13cr seamless steel pipe | |
JP6634908B2 (en) | Continuous casting method | |
JP4301133B2 (en) | Method for continuous casting of round slab, method for making round slab and seamless pipe | |
JP2002307149A (en) | Continuous casting method | |
JP2018099704A (en) | Continuous casting method for steel | |
JP4222148B2 (en) | Steel continuous casting method | |
JP6036125B2 (en) | Steel continuous casting method | |
JP5343746B2 (en) | Continuous casting method of round slabs for seamless steel pipes | |
JP2001191158A (en) | Steel continuous casting method | |
JP2019171435A (en) | Method of continuous casting | |
JP6787497B2 (en) | Continuous steel casting method | |
WO2016162906A1 (en) | Method for manufacturing slab using continuous casting machine | |
JP3402291B2 (en) | Continuously cast slab, method for continuously casting the same, and method for producing a thick steel plate | |
JP2011194421A (en) | Continuous casting method for steel | |
JP5760746B2 (en) | Continuous casting method of round slab for 13Cr seamless steel pipe making | |
JP2013075325A (en) | CONTINUOUS CASTING METHOD OF ROUND STRAND FOR 13Cr SEAMLESS STEEL PIPE | |
JP5195636B2 (en) | Manufacturing method of continuous cast slab |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210603 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220614 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220823 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220905 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7147477 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |