JP7029719B2 - Biomarker - Google Patents
Biomarker Download PDFInfo
- Publication number
- JP7029719B2 JP7029719B2 JP2017167226A JP2017167226A JP7029719B2 JP 7029719 B2 JP7029719 B2 JP 7029719B2 JP 2017167226 A JP2017167226 A JP 2017167226A JP 2017167226 A JP2017167226 A JP 2017167226A JP 7029719 B2 JP7029719 B2 JP 7029719B2
- Authority
- JP
- Japan
- Prior art keywords
- gene
- seq
- replaced
- encoded
- nucleotide sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
本発明は、ARID2変異遺伝子および/またはMUC17変異遺伝子を含む、肝細胞癌に罹患した対象の予後の良または不良を診断するためのバイオマーカーに関する。 The present invention relates to biomarkers for diagnosing good or poor prognosis of subjects suffering from hepatocellular carcinoma, including the ARID2 mutant gene and / or the MUC17 mutant gene.
肝細胞癌は、世界的に罹患者数が極めて多い癌であり、毎年約100万人の新たな発症例があるとされている。また、癌の進行度合(ステージ)により異なるものの、肝細胞癌に罹患した対象の5年生存率は悪い。 Hepatocellular carcinoma is a cancer with an extremely large number of affected people worldwide, and it is estimated that there are about 1 million new cases of hepatocellular carcinoma every year. In addition, the 5-year survival rate of subjects suffering from hepatocellular carcinoma is poor, although it depends on the stage of cancer progression.
肝細胞癌は、化学療法や放射線療法に抵抗性を示し、手術が唯一の完全寛解療法とされてきたが、肝細胞癌に罹患した対象の予後の良または不良を的確に診断することができれば、手術以外の治療方法や、手術後の治療についてもより効果的な治療方法を選択し、過度な治療を避けることができる。 Although hepatocellular carcinoma has been resistant to chemotherapy and radiation therapy and surgery has been the only complete remission therapy, if the prognosis of subjects with hepatocellular carcinoma can be accurately diagnosed. , It is possible to select a treatment method other than surgery and a more effective treatment method for post-surgery treatment, and avoid excessive treatment.
これまでに、癌患者の予後を予測する方法は色々と試みられてきたが(例えば、特許文献1参照)、特に肝細胞癌患者の治療後の予後を予測する方法について満足できるものではなく、更なる改良や別のアプローチが求められている。 Various methods for predicting the prognosis of cancer patients have been tried so far (see, for example, Patent Document 1), but the method for predicting the prognosis after treatment of hepatocellular carcinoma patients is not particularly satisfactory. Further improvements and alternative approaches are needed.
また、癌抑制遺伝子はその遺伝子機能を不活化することにより癌の発生を誘引するものとして知られているが、癌の発生以外にも癌の治療後の予後に関与する因子は多岐に渡ることから、癌抑制遺伝子と治療後の予後との関係、特に特定の癌抑制遺伝子と肝細胞癌治療後の予後との関係についてはこれまでに全く知られていない。 In addition, cancer suppressor genes are known to induce the development of cancer by inactivating their gene functions, but there are various factors involved in the prognosis after cancer treatment other than the development of cancer. Therefore, the relationship between the cancer suppressor gene and the prognosis after treatment, particularly the relationship between a specific cancer suppressor gene and the prognosis after treatment with hepatocellular carcinoma, is completely unknown.
本発明は、ARID2変異遺伝子および/またはMUC17変異遺伝子を含む、肝細胞癌に罹患した対象の予後の良または不良を診断するためのバイオマーカーを提供すること等を目的とする。 It is an object of the present invention to provide a biomarker containing an ARID2 mutant gene and / or a MUC17 mutant gene for diagnosing a good or bad prognosis of a subject suffering from hepatocellular carcinoma.
本発明者らは、肝細胞癌切除例において、全エキソン解析(WES; whole exome sequencing)の結果と、予後との関連について検討したところ、ARID2変異遺伝子およびMUC17変異遺伝子が、肝細胞癌(特に、非B非C(NBNC)型肝細胞癌)に罹患した対象の予後の良または不良を診断するためのバイオマーカーとなり得ることを見出した。本発明はこれらの知見によるものである。 The present inventors investigated the relationship between the results of whole exome sequencing (WES) and the prognosis in hepatocellular carcinoma resected cases, and found that the ARID2 mutant gene and the MUC17 mutant gene were found in hepatocellular carcinoma (particularly). , Non-B non-C (NBNC) type hepatocellular carcinoma), found to be a biomarker for diagnosing good or bad prognosis of subjects. The present invention is based on these findings.
すなわち、本発明によれば、以下の発明が提供される。
[1]ARID2変異遺伝子および/またはMUC17変異遺伝子を含む、肝細胞癌に罹患した対象の予後の良または不良を診断するためのバイオマーカー。
[2]ARID2変異遺伝子が下記変異の一以上を含むものである、[1]に記載のバイオマーカー:
(i)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の674番目のグアニンがアデニンに置換されたナンセンス変異、
(ii)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の1322番のアデニンがグアニンに置換されたミスセンス変異、
(iii)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の1088番のチミンがシトシンに置換されたミスセンス変異、
(iv)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の5362番のアデニンがチミンに置換されたナンセンス変異、および
(v)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の792番のグアニンがアデニンに置換されたナンセンス変異。
[3]MUC17変異遺伝子が下記変異の一以上を含むものである、[1]または[2]に記載のバイオマーカー:
(i)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の1622番目のシトシンがチミンに置換されたミスセンス変異、
(ii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の3332番目のグアニンがチミンに置換されたミスセンス変異、
(iii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の9692番目のアデニンがシトシンに置換されたミスセンス変異、
(iv)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の2238番目のシトシンがアデニンに置換されたミスセンス変異、
(v)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の6595番目のシトシンがアデニンに置換されたミスセンス変異、
(vi)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の2909番目のグアニンがチミンに置換されたミスセンス変異、
(vii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の8919番目のアデニンがシトシンに置換されたミスセンス変異、
(viii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の3533番目のアデニンがグアニンに置換されたミスセンス変異、および
(ix)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の7751番目のアデニンがチミンに置換されたミスセンス変異。
[4]腫瘍組織の外科的切除後の、肝細胞癌に罹患した対象の予後の良または不良を診断するための、[1]~[3]のいずれかに記載のバイオマーカー。
[5]肝細胞癌が非B非C(NBNC)型肝細胞癌である、[1]~[4]のいずれかに記載のバイオマーカー。
[6]肝細胞癌に罹患した対象から得られた腫瘍組織中のARID2遺伝子および/またはMUC17遺伝子の変異の有無を検出することを含む、肝細胞癌に罹患した該対象の予後の良または不良の診断方法。
[7]腫瘍組織の外科的切除後の、肝細胞癌に罹患した対象の予後の良または不良の診断を行う、[6]に記載の方法。
[8]無再発生存期間が2年以上の場合に肝細胞癌に罹患した対象の予後が良いと診断される、[6]または[7]に記載の方法。
[9]肝細胞癌が非B非C(NBNC)型肝細胞癌である、[6]~[8]のいずれかに記載の方法。
[10]検出が全エキソン解析により行われる、[6]~[9]のいずれかに記載の方法。
[11]肝細胞癌に罹患した対象から得られた腫瘍組織中のARID2遺伝子および/またはMUC17遺伝子の変異の有無を検出することを含む、肝細胞癌に罹患した該対象の予後の良または不良の診断を補助する方法。
[12]肝細胞癌に罹患した対象から得られた腫瘍組織中のARID2遺伝子および/またはMUC17遺伝子の変異の有無を検出することを含む、肝細胞癌に罹患した該対象の予後の良または不良のインビトロ分析方法。
[13]以下の工程を含む、肝細胞癌に罹患した対象の予後推定方法:
(1)対象から腫瘍組織および血球細胞を得る工程、
(2)血球細胞を正常組織として、腫瘍組織中のARID2遺伝子および/またはMUC17遺伝子の変異の有無を全エキソン解析により検出する工程、および
(3)変異がある場合には肝細胞癌に罹患した該対象の予後が不良であると推定し、変異が無い場合には肝細胞癌に罹患した該対象の予後が良いと推定する工程。
That is, according to the present invention, the following invention is provided.
[1] A biomarker for diagnosing a good or poor prognosis of a subject suffering from hepatocellular carcinoma, which comprises an ARID2 mutant gene and / or a MUC17 mutant gene.
[2] The biomarker according to [1], wherein the ARID2 mutant gene contains one or more of the following mutations:
(I) A nonsense mutation in which guanine at position 674 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with adenine.
(Ii) A missense mutation in which the adenine of 1322 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with guanine.
(Iii) A missense mutation in which thymine No. 1088 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with cytosine.
(Iv) A nonsense mutation in which adenine No. 5362 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with thymine, and (v) the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene. Nonsense mutation in which 792 guanine was replaced with adenine.
[3] The biomarker according to [1] or [2], wherein the MUC17 mutant gene contains one or more of the following mutations:
(I) A missense mutation in which cytosine at position 1622 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with thymine.
(Ii) A missense mutation in which the guanine at position 3332 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with thymine.
(Iii) A missense mutation in which the adenine at position 9692 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is substituted with cytosine.
(Iv) A missense mutation in which cytosine at position 2238 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with adenine.
(V) A missense mutation in which cytosine at position 6595 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with adenine.
(Vi) A missense mutation in which the guanine at position 2909 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with thymine.
(Vii) A missense mutation in which the adenine at position 8919 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with cytosine.
(Viii) A missense mutation in which the adenine at position 3533 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with guanine, and (ix) the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene. A missense mutation in which the 7751th adenine was replaced with thymine.
[4] The biomarker according to any one of [1] to [3] for diagnosing a good or poor prognosis of a subject suffering from hepatocellular carcinoma after surgical resection of tumor tissue.
[5] The biomarker according to any one of [1] to [4], wherein the hepatocellular carcinoma is a non-B non-C (NBNC) type hepatocellular carcinoma.
[6] Good or poor prognosis of a subject suffering from hepatocellular carcinoma, including detecting the presence or absence of mutations in the ARID2 gene and / or the MUC17 gene in tumor tissue obtained from the subject suffering from hepatocellular carcinoma. Diagnosis method.
[7] The method according to [6], wherein a good or bad prognosis of a subject suffering from hepatocellular carcinoma is diagnosed after surgical resection of tumor tissue.
[8] The method according to [6] or [7], wherein a subject suffering from hepatocellular carcinoma is diagnosed with a good prognosis when the recurrence-free survival time is 2 years or more.
[9] The method according to any one of [6] to [8], wherein the hepatocellular carcinoma is a non-B non-C (NBNC) type hepatocellular carcinoma.
[10] The method according to any one of [6] to [9], wherein the detection is performed by whole exon analysis.
[11] Good or poor prognosis of a subject suffering from hepatocellular carcinoma, including detecting the presence or absence of mutations in the ARID2 gene and / or the MUC17 gene in tumor tissue obtained from the subject suffering from hepatocellular carcinoma. How to assist in the diagnosis of.
[12] Good or poor prognosis of a subject suffering from hepatocellular carcinoma, including detecting the presence or absence of mutations in the ARID2 gene and / or the MUC17 gene in tumor tissue obtained from the subject suffering from hepatocellular carcinoma. In vitro analysis method.
[13] A method for estimating the prognosis of a subject suffering from hepatocellular carcinoma, which comprises the following steps:
(1) Step of obtaining tumor tissue and blood cells from a subject,
(2) Using blood cells as normal tissue, the step of detecting the presence or absence of mutations in the ARID2 gene and / or the MUC17 gene in the tumor tissue by whole exon analysis, and (3) suffering from hepatocellular carcinoma if there are mutations. A step of presuming that the prognosis of the subject is poor, and if there is no mutation, the prognosis of the subject suffering from hepatocellular carcinoma is presumed to be good.
本発明によれば、ARID2変異遺伝子および/またはMUC17変異遺伝子を含むバイオマーカーを用いることにより、肝細胞癌、特に非B非C(NBNC)型肝細胞癌に罹患した対象の予後の良または不良を診断することができる。 According to the present invention, the prognosis of a subject suffering from hepatocellular carcinoma, particularly non-B non-C (NBNC) type hepatocellular carcinoma, is good or poor by using a biomarker containing an ARID2 mutant gene and / or a MUC17 mutant gene. Can be diagnosed.
本発明によれば、ARID2遺伝子および/またはMUC17遺伝子の変異の有無を調べることにより、肝細胞癌(好ましくは、NBNC型肝細胞癌)に罹患した対象の予後の良または不良を診断することができる。すなわち、ARID2遺伝子および/またはMUC17遺伝子に変異があれば、肝細胞癌(好ましくは、NBNC型肝細胞癌)に罹患した対象の予後が不良と推定することができ、ARID2遺伝子および/またはMUC17遺伝子に変異がなければ、肝細胞癌(好ましくは、NBNC型肝細胞癌)に罹患した対象の予後が良いと推定することができる。本発明において、対象とはヒト以外の動物(馬、牛などの家畜、犬、猫などの愛玩動物、動物園などで飼育されている鑑賞動物など)であってもよいが、好ましくはヒトである。 According to the present invention, it is possible to diagnose the prognosis of a subject suffering from hepatocellular carcinoma (preferably NBNC type hepatocellular carcinoma) by examining the presence or absence of mutations in the ARID2 gene and / or the MUC17 gene. can. That is, if there is a mutation in the ARID2 gene and / or the MUC17 gene, it can be presumed that the prognosis of the subject suffering from hepatocellular carcinoma (preferably NBNC type hepatocellular carcinoma) is poor, and the ARID2 gene and / or the MUC17 gene can be estimated. If there is no mutation in the gene, it can be estimated that the prognosis of the subject suffering from hepatocellular carcinoma (preferably NBNC type hepatocellular carcinoma) is good. In the present invention, the target may be an animal other than humans (livestock such as horses and cows, pet animals such as dogs and cats, ornamental animals bred in zoos, etc.), but is preferably human. ..
本発明によれば、ARID2変異遺伝子(DNA)および/またはMUC17変異遺伝子(DNA)を含む、肝細胞癌に罹患した対象の予後の良または不良を診断するためのバイオマーカーを提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a biomarker containing an ARID2 mutant gene (DNA) and / or a MUC17 mutant gene (DNA) for diagnosing a good or poor prognosis of a subject suffering from hepatocellular carcinoma. ..
本発明によれば、ARID2変異遺伝子(DNA)および/またはMUC17変異遺伝子(DNA)である、肝細胞癌に罹患した対象の予後の良または不良を診断するためのバイオマーカーを提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a biomarker for diagnosing a good or bad prognosis of a subject suffering from hepatocellular carcinoma, which is an ARID2 mutant gene (DNA) and / or a MUC17 mutant gene (DNA). ..
本発明のバイオマーカーの好ましい態様によれば、ARID2変異遺伝子は下記変異の一以上を含むものである:
(i)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の674番目のグアニンがアデニンに置換されたナンセンス変異、
(ii)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の1322番のアデニンがグアニンに置換されたミスセンス変異、
(iii)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の1088番のチミンがシトシンに置換されたミスセンス変異、
(iv)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の5362番のアデニンがチミンに置換されたナンセンス変異、および
(v)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の792番のグアニンがアデニンに置換されたナンセンス変異。
According to a preferred embodiment of the biomarker of the present invention, the ARID2 mutant gene comprises one or more of the following mutations:
(I) A nonsense mutation in which guanine at position 674 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with adenine.
(Ii) A missense mutation in which the adenine of 1322 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with guanine.
(Iii) A missense mutation in which thymine No. 1088 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with cytosine.
(Iv) A nonsense mutation in which adenine No. 5362 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with thymine, and (v) the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene. Nonsense mutation in which 792 guanine was replaced with adenine.
本発明のバイオマーカーのより好ましい態様によれば、ARID2変異遺伝子は下記変異のいずれか一つを含むものである:
(i)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の674番目のグアニンがアデニンに置換されたナンセンス変異、
(ii)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の1322番のアデニンがグアニンに置換されたミスセンス変異、
(iii)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の1088番のチミンがシトシンに置換されたミスセンス変異、
(iv)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の5362番のアデニンがチミンに置換されたナンセンス変異、および
(v)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の792番のグアニンがアデニンに置換されたナンセンス変異。
すなわち、本発明のバイオマーカーのより好ましい態様によれば、上記変異を一つ含むARID2変異遺伝子をバイオマーカーとして提供することができる。ここで、ミスセンス変異とは、遺伝子上のあるアミノ酸に対応するコドンの塩基配列が突然変異により変化し、別のアミノ酸に対応したコドン(missense codon)になることをいう。また、ナンセンス変異とはアミノ酸を指定しているコドンを停止コドンへ変化させる突然変異をいう。
According to a more preferred embodiment of the biomarker of the present invention, the ARID2 mutant gene comprises any one of the following mutations:
(I) A nonsense mutation in which guanine at position 674 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with adenine.
(Ii) A missense mutation in which the adenine of 1322 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with guanine.
(Iii) A missense mutation in which thymine No. 1088 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with cytosine.
(Iv) A nonsense mutation in which adenine No. 5362 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with thymine, and (v) the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene. Nonsense mutation in which 792 guanine was replaced with adenine.
That is, according to a more preferable embodiment of the biomarker of the present invention, an ARID2 mutant gene containing one of the above mutations can be provided as a biomarker. Here, a missense mutation means that the base sequence of a codon corresponding to a certain amino acid on a gene is changed by the mutation to become a codon (missense codon) corresponding to another amino acid. A nonsense mutation is a mutation that changes a codon that specifies an amino acid to a stop codon.
本発明のバイオマーカーの別の好ましい態様によれば、ARID2変異遺伝子は下記変異の一以上を含むものである:
(i)ARID2遺伝子の配列番号2のアミノ酸配列の225番のトリプトファン(Trp)が停止コドンに置換された変異、
(ii)ARID2遺伝子の配列番号2のアミノ酸配列の441番のリジン(Lys)がアルギニン(Arg)に置換された変異、
(iii)ARID2遺伝子の配列番号2のアミノ酸配列の363番のロイシン(Leu)がプロリン(Pro)に置換された変異、
(iv)ARID2遺伝子の配列番号2のアミノ酸配列の1788番のアルギニン(Arg)が停止コドンに置換された変異、および
(v)ARID2遺伝子の配列番号2のアミノ酸配列の264番のトリプトファン(Trp)が停止コドンに置換された変異。
According to another preferred embodiment of the biomarker of the present invention, the ARID2 mutant gene comprises one or more of the following mutations:
(I) A mutation in which tryptophan ( Trp ) at No. 225 in the amino acid sequence of SEQ ID NO: 2 of the ARID2 gene is replaced with a stop codon .
(Ii) A mutation in which lysine (Lys) No. 441 of the amino acid sequence of SEQ ID NO: 2 of the ARID2 gene is replaced with arginine (Arg).
(Iii) A mutation in which leucine (Leu) No. 363 of the amino acid sequence of SEQ ID NO: 2 of the ARID2 gene is replaced with proline (Pro).
(Iv) A mutation in which arginine (Arg) of 1788 in the amino acid sequence of SEQ ID NO: 2 of the ARID2 gene was replaced with a stop codon, and (v) tryptophan (Trp) of 264 of the amino acid sequence of SEQ ID NO: 2 of the ARID2 gene. A mutation in which is replaced with a stop codon.
本発明のバイオマーカーの別のより好ましい態様によれば、ARID2変異遺伝子は下記変異のいずれか一つを含むものである:
(i)ARID2遺伝子の配列番号2のアミノ酸配列の225番のトリプトファン(Trp)が停止コドンに置換された変異、
(ii)ARID2遺伝子の配列番号2のアミノ酸配列の441番のリジン(Lys)がアルギニン(Arg)に置換された変異、
(iii)ARID2遺伝子の配列番号2のアミノ酸配列の363番のロイシン(Leu)がプロリン(Pro)に置換された変異、
(iv)ARID2遺伝子の配列番号2のアミノ酸配列の1788番のアルギニン(Arg)が停止コドンに置換された変異、および
(v)ARID2遺伝子の配列番号2のアミノ酸配列の264番のトリプトファン(Trp)が停止コドンに置換された変異。
According to another more preferred embodiment of the biomarker of the invention, the ARID2 mutant gene comprises any one of the following mutations:
(I) A mutation in which tryptophan ( Trp ) at No. 225 in the amino acid sequence of SEQ ID NO: 2 of the ARID2 gene is replaced with a stop codon .
(Ii) A mutation in which lysine (Lys) No. 441 of the amino acid sequence of SEQ ID NO: 2 of the ARID2 gene is replaced with arginine (Arg).
(Iii) A mutation in which leucine (Leu) No. 363 of the amino acid sequence of SEQ ID NO: 2 of the ARID2 gene is replaced with proline (Pro).
(Iv) A mutation in which arginine (Arg) of 1788 in the amino acid sequence of SEQ ID NO: 2 of the ARID2 gene was replaced with a stop codon, and (v) tryptophan (Trp) of 264 of the amino acid sequence of SEQ ID NO: 2 of the ARID2 gene. A mutation in which is replaced with a stop codon.
ここで、配列番号1で示されるヌクレオチド配列は、ARID2遺伝子のイントロン部分の配列を含まないcDNA配列である。また、配列番号2で示されるアミノ酸配列は、配列番号1のcDNA配列に対応するアミノ酸配列である。ARID2遺伝子中の変異は、例えば、肝細胞癌に罹患した対象から得られた腫瘍組織中のARID2遺伝子について、全エキソン解析を行うことにより、変異を検出することができる。この全エキソン解析はどのような方法を用いてもよいが、好ましくは、血球細胞を正常組織として腫瘍特異的遺伝子変異を特定して、腫瘍特異的一塩基変異数を算出することにより行うことができる。 Here, the nucleotide sequence represented by SEQ ID NO: 1 is a cDNA sequence that does not contain the sequence of the intron portion of the ARID2 gene. The amino acid sequence shown in SEQ ID NO: 2 is an amino acid sequence corresponding to the cDNA sequence of SEQ ID NO: 1. Mutations in the ARID2 gene can be detected, for example, by performing a total exon analysis of the ARID2 gene in a tumor tissue obtained from a subject suffering from hepatocellular carcinoma. Any method may be used for this total exon analysis, but it is preferably performed by identifying tumor-specific gene mutations using blood cells as normal tissues and calculating the number of tumor-specific single-base mutations. can.
本発明のバイオマーカーの好ましい態様によれば、MUC17変異遺伝子は下記変異の一以上を含むものである:
(i)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の1622番目のシトシンがチミンに置換されたミスセンス変異、
(ii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の3332番目のグアニンがチミンに置換されたミスセンス変異、
(iii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の9692番目のアデニンがシトシンに置換されたミスセンス変異、
(iv)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の2238番目のシトシンがアデニンに置換されたミスセンス変異、
(v)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の6595番目のシトシンがアデニンに置換されたミスセンス変異、
(vi)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の2909番目のグアニンがチミンに置換されたミスセンス変異、
(vii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の8919番目のアデニンがシトシンに置換されたミスセンス変異、
(viii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の3533番目のアデニンがグアニンに置換されたミスセンス変異、および
(ix)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の7751番目のアデニンがチミンに置換されたミスセンス変異。
According to a preferred embodiment of the biomarker of the present invention, the MUC17 mutant gene comprises one or more of the following mutations:
(I) A missense mutation in which cytosine at position 1622 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with thymine.
(Ii) A missense mutation in which the guanine at position 3332 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with thymine.
(Iii) A missense mutation in which the adenine at position 9692 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is substituted with cytosine.
(Iv) A missense mutation in which cytosine at position 2238 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with adenine.
(V) A missense mutation in which cytosine at position 6595 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with adenine.
(Vi) A missense mutation in which the guanine at position 2909 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with thymine.
(Vii) A missense mutation in which the adenine at position 8919 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with cytosine.
(Viii) A missense mutation in which the adenine at position 3533 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with guanine, and (ix) the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene. A missense mutation in which the 7751th adenine was replaced with thymine.
本発明のバイオマーカーのより好ましい態様によれば、MUC17変異遺伝子は、下記変異のいずれか一つを含むものである:
(i)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の1622番目のシトシンがチミンに置換されたミスセンス変異、
(ii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の3332番目のグアニンがチミンに置換されたミスセンス変異、
(iii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の9692番目のアデニンがシトシンに置換されたミスセンス変異、
(iv)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の2238番目のシトシンがアデニンに置換されたミスセンス変異、
(v)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の6595番目のシトシンがアデニンに置換されたミスセンス変異、
(vi)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の2909番目のグアニンがチミンに置換されたミスセンス変異、
(vii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の8919番目のアデニンがシトシンに置換されたミスセンス変異、
(viii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の3533番目のアデニンがグアニンに置換されたミスセンス変異、および
(ix)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の7751番目のアデニンがチミンに置換されたミスセンス変異。
すなわち、本発明のバイオマーカーのより好ましい態様によれば、上記変異を一つ含むMUC17変異遺伝子を含むバイオマーカーを提供することができる。
According to a more preferred embodiment of the biomarker of the present invention, the MUC17 mutant gene comprises any one of the following mutations:
(I) A missense mutation in which cytosine at position 1622 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with thymine.
(Ii) A missense mutation in which the guanine at position 3332 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with thymine.
(Iii) A missense mutation in which the adenine at position 9692 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is substituted with cytosine.
(Iv) A missense mutation in which cytosine at position 2238 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with adenine.
(V) A missense mutation in which cytosine at position 6595 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with adenine.
(Vi) A missense mutation in which the guanine at position 2909 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with thymine.
(Vii) A missense mutation in which the adenine at position 8919 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with cytosine.
(Viii) A missense mutation in which the adenine at position 3533 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with guanine, and (ix) the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene. A missense mutation in which the 7751th adenine was replaced with thymine.
That is, according to a more preferable embodiment of the biomarker of the present invention, it is possible to provide a biomarker containing a MUC17 mutant gene containing one of the above mutations.
本発明のバイオマーカーの好ましい別の態様によれば、MUC17変異遺伝子は下記変異の一以上を含むものである:
(i)MUC17遺伝子の配列番号4のアミノ酸配列の541番のプロリン(Pro)がロイシン(Leu)に置換された変異、
(ii)MUC17遺伝子の配列番号4のアミノ酸配列の1111番のアルギニン(Arg)がメチオニン(Met)に置換された変異、
(iii)MUC17遺伝子の配列番号4のアミノ酸配列の3231番のアスパラギン(Asn)がトレオニン(Thr)に置換された変異、
(iv)MUC17遺伝子の配列番号4のアミノ酸配列の746番のセリン(Ser)がアルギニン(Arg)に置換された変異、
(v)MUC17遺伝子の配列番号4のアミノ酸配列の2199番のアルギニン(Arg)がセリン(Ser)に置換された変異、
(vi)MUC17遺伝子の配列番号4のアミノ酸配列の970番のグリシン(Gly)がバリン(Val)に置換された変異、
(vii)MUC17遺伝子の配列番号4のアミノ酸配列の2973番のグルタミン酸(Glu)がアスパラギン酸(Asp)に置換された変異、
(viii)MUC17遺伝子の配列番号4のアミノ酸配列の1178番のアスパラギン(Asn)がセリン(Ser)に置換された変異、および
(ix)MUC17遺伝子の配列番号4のアミノ酸配列の2584番のリシン(Lys)がメチオニン(Met)に置換された変異。
According to another preferred embodiment of the biomarker of the invention, the MUC17 mutant gene comprises one or more of the following mutations:
(I) A mutation in which proline (Pro) No. 541 of the amino acid sequence of SEQ ID NO: 4 of the MUC17 gene is replaced with leucine (Leu).
(Ii) A mutation in which arginine (Arg) of 1111 in the amino acid sequence of SEQ ID NO: 4 of the MUC17 gene is replaced with methionine (Met).
(Iii) A mutation in which asparagine (Asn) No. 3231 in the amino acid sequence of SEQ ID NO: 4 of the MUC17 gene is replaced with threonine (Thr),
(Iv) A mutation in which serine (Ser) of No. 746 of the amino acid sequence of SEQ ID NO: 4 of the MUC17 gene is replaced with arginine (Arg),
(V) A mutation in which arginine (Arg) of 2199 in the amino acid sequence of SEQ ID NO: 4 of the MUC17 gene is replaced with serine (Ser).
(Vi) Mutation in which glycine (Gly) No. 970 of the amino acid sequence of SEQ ID NO: 4 of the MUC17 gene is replaced with Valin (Val),
(Vii) A mutation in which glutamic acid (Glu) No. 2973 of the amino acid sequence of SEQ ID NO: 4 of the MUC17 gene was replaced with aspartic acid (Asp),
(Viii) A mutation in which asparagine (Asn) No. 1178 in the amino acid sequence of SEQ ID NO: 4 of the MUC17 gene was replaced with serine (Ser), and lysine No. 2584 of the amino acid sequence of SEQ ID NO: 4 of the (ix) MUC17 gene. Lys) is replaced with methionine (Met).
本発明のバイオマーカーの別の好ましい態様によれば、MUC17変異遺伝子は下記変異のいずれか一つを含むものである:
(i)MUC17遺伝子の配列番号4のアミノ酸配列の541番のプロリン(Pro)がロイシン(Leu)に置換された変異、
(ii)MUC17遺伝子の配列番号4のアミノ酸配列の1111番のアルギニン(Arg)がメチオニン(Met)に置換された変異、
(iii)MUC17遺伝子の配列番号4のアミノ酸配列の3231番のアスパラギン(Asn)がトレオニン(Thr)に置換された変異、
(iv)MUC17遺伝子の配列番号4のアミノ酸配列の746番のセリン(Ser)がアルギニン(Arg)に置換された変異、
(v)MUC17遺伝子の配列番号4のアミノ酸配列の2199番のアルギニン(Arg)がセリン(Ser)に置換された変異、
(vi)MUC17遺伝子の配列番号4のアミノ酸配列の970番のグリシン(Gly)がバリン(Val)に置換された変異、
(vii)MUC17遺伝子の配列番号4のアミノ酸配列の2973番のグルタミン酸(Glu)がアスパラギン酸(Asp)に置換された変異、
(viii)MUC17遺伝子の配列番号4のアミノ酸配列の1178番のアスパラギン(Asn)がセリン(Ser)に置換された変異、および
(ix)MUC17遺伝子の配列番号4のアミノ酸配列の2584番のリシン(Lys)がメチオニン(Met)に置換された変異。
According to another preferred embodiment of the biomarker of the present invention, the MUC17 mutant gene comprises any one of the following mutations:
(I) A mutation in which proline (Pro) No. 541 of the amino acid sequence of SEQ ID NO: 4 of the MUC17 gene is replaced with leucine (Leu).
(Ii) A mutation in which arginine (Arg) of 1111 in the amino acid sequence of SEQ ID NO: 4 of the MUC17 gene is replaced with methionine (Met).
(Iii) A mutation in which asparagine (Asn) No. 3231 in the amino acid sequence of SEQ ID NO: 4 of the MUC17 gene is replaced with threonine (Thr),
(Iv) A mutation in which serine (Ser) of No. 746 of the amino acid sequence of SEQ ID NO: 4 of the MUC17 gene is replaced with arginine (Arg),
(V) A mutation in which arginine (Arg) of 2199 in the amino acid sequence of SEQ ID NO: 4 of the MUC17 gene is replaced with serine (Ser).
(Vi) Mutation in which glycine (Gly) No. 970 of the amino acid sequence of SEQ ID NO: 4 of the MUC17 gene is replaced with Valin (Val),
(Vii) A mutation in which glutamic acid (Glu) No. 2973 of the amino acid sequence of SEQ ID NO: 4 of the MUC17 gene was replaced with aspartic acid (Asp),
(Viii) A mutation in which asparagine (Asn) No. 1178 in the amino acid sequence of SEQ ID NO: 4 of the MUC17 gene was replaced with serine (Ser), and lysine No. 2584 of the amino acid sequence of SEQ ID NO: 4 of the (ix) MUC17 gene. Lys) is replaced with methionine (Met).
ここで、配列番号3で示されるヌクレオチド配列は、MUC17遺伝子のイントロン部分の配列を含まないcDNA配列である。また、配列番号4で示されるアミノ酸配列は、配列番号3のcDNA配列に対応するアミノ酸配列である。MUC17遺伝子中の変異は、例えば、肝細胞癌に罹患した対象から得られた腫瘍組織中のMUC17遺伝子について、全エキソン解析を行うことにより、変異を検出することができる。この全エキソン解析はどのような方法を用いてもよいが、好ましくは、血球細胞を正常組織として腫瘍特異的遺伝子変異を特定して、腫瘍特異的一塩基変異数(SNV: Single Nucleotide Variant)を算出することにより行うことができる。 Here, the nucleotide sequence shown by SEQ ID NO: 3 is a cDNA sequence that does not contain the sequence of the intron portion of the MUC17 gene. The amino acid sequence shown in SEQ ID NO: 4 is an amino acid sequence corresponding to the cDNA sequence of SEQ ID NO: 3. Mutations in the MUC17 gene can be detected, for example, by performing a total exon analysis of the MUC17 gene in tumor tissue obtained from a subject suffering from hepatocellular carcinoma. Any method may be used for this whole exon analysis, but it is preferable to identify tumor-specific gene mutations using blood cells as normal tissues and determine the number of tumor-specific single nucleotide polymorphisms (SNVs). It can be done by calculation.
本明細書において、「予後が良い(予後の良)」とは、肝細胞癌の治療後の経過の見通しが良いことをいい、好ましくは無再発生存期間が長いことをいう。無再発生存期間は、長いほど良いが、2年以上であることが好ましい。 In the present specification, "good prognosis (good prognosis)" means that the prospect of the course after treatment of hepatocellular carcinoma is good, and preferably the recurrence-free survival time is long. The longer the recurrence-free survival time, the better, but it is preferably 2 years or more.
本明細書において、「予後が不良(予後の不良)」とは、肝細胞癌の治療後の経過の見通しが悪いことをいい、好ましくは無再発生存期間が短いことをいう。
肝細胞癌の治療後の無再発生存期間が短いと予後が悪く、とりわけ2年未満であると特に予後が悪いとされる。
As used herein, "poor prognosis (poor prognosis)" means poor prospects for the post-treatment course of hepatocellular carcinoma, preferably short recurrence-free survival.
If the recurrence-free survival period after treatment for hepatocellular carcinoma is short, the prognosis is poor, and if it is less than 2 years, the prognosis is particularly poor.
本発明の好ましい態様によれば、本発明のバイオマーカーは、腫瘍組織の外科的切除後の、肝細胞癌に罹患した対象の予後の良または不良を診断するための用いることができる。 According to a preferred embodiment of the invention, the biomarkers of the invention can be used to diagnose good or poor prognosis of a subject suffering from hepatocellular carcinoma after surgical resection of tumor tissue.
また、本発明の好ましい態様によれば、本発明のバイオマーカーは、非B非C(NBNC)(Non B Non C Hepatocellular Carcinoma)型肝細胞癌に罹患した対象の予後の良または不良を診断するための用いることができる。ここで、非B非C型肝細胞癌とは、B型肝炎やC型肝炎に基づかない肝細胞癌をいう。 Further, according to a preferred embodiment of the present invention, the biomarker of the present invention diagnoses a good or poor prognosis of a subject suffering from non-B Non-C Hepatocellular Carcinoma (NBNC) type hepatocellular carcinoma. Can be used for. Here, the non-B non-C hepatocellular carcinoma refers to hepatocellular carcinoma that is not based on hepatitis B or hepatitis C.
本発明の別の態様によれば、肝細胞癌に罹患した対象から得られた腫瘍組織中のARID2遺伝子および/またはMUC17遺伝子の変異の有無を検出することを含む、肝細胞癌に罹患した該対象の予後の良または不良の診断方法が提供される。 According to another aspect of the present invention, the hepatocellular carcinoma suffering, comprising detecting the presence or absence of mutations in the ARID2 gene and / or the MUC17 gene in tumor tissue obtained from a subject suffering from hepatocellular carcinoma. A method of diagnosing a good or bad prognosis of a subject is provided.
本発明の診断方法の好ましい態様によれば、腫瘍組織の外科的切除後の、肝細胞癌に罹患した対象の予後の良または不良の診断を行う。 According to a preferred embodiment of the diagnostic method of the present invention, a good or bad prognosis of a subject suffering from hepatocellular carcinoma is diagnosed after surgical resection of tumor tissue.
本発明の診断方法の好ましい態様によれば、無再発生存期間が2年以上の場合に肝細胞癌に罹患した対象の予後が良いと診断される。 According to a preferred embodiment of the diagnostic method of the present invention, a subject suffering from hepatocellular carcinoma is diagnosed with a good prognosis when the recurrence-free survival time is 2 years or more.
本発明の診断方法の好ましい態様によれば、肝細胞癌が非B非C(NBNC)型肝細胞癌である。 According to a preferred embodiment of the diagnostic method of the present invention, the hepatocellular carcinoma is a non-B non-C (NBNC) type hepatocellular carcinoma.
本発明の診断方法の好ましい態様によれば、検出が全エキソン解析により行われる。この全エキソン解析はどのような方法を用いてもよいが、好ましくは、血球細胞を正常組織として腫瘍特異的遺伝子変異を特定して、腫瘍特異的一塩基変異数を算出することにより行うことができる。また、ARID2遺伝子および/またはMUC17遺伝子の変異等は、本発明のバイオマーカーと同じであってもよい。 According to a preferred embodiment of the diagnostic method of the present invention, detection is performed by whole exon analysis. Any method may be used for this total exon analysis, but it is preferably performed by identifying tumor-specific gene mutations using blood cells as normal tissues and calculating the number of tumor-specific single-base mutations. can. Further, mutations in the ARID2 gene and / or the MUC17 gene may be the same as the biomarkers of the present invention.
本発明の別の態様によれば、肝細胞癌に罹患した対象から得られた腫瘍組織中のARID2遺伝子および/またはMUC17遺伝子の変異の有無を検出することを含む、肝細胞癌に罹患した該対象の予後の良または不良の診断を補助する方法が提供される。ここで、補助とは、医師等の判断を補助することを意味する。また、ARID2遺伝子および/またはMUC17遺伝子の変異等は、本発明のバイオマーカーと同じであってもよい。 According to another aspect of the present invention, the hepatocellular carcinoma suffering, comprising detecting the presence or absence of mutations in the ARID2 gene and / or the MUC17 gene in tumor tissue obtained from a subject suffering from hepatocellular carcinoma. Methods are provided to assist in diagnosing good or poor prognosis for a subject. Here, the term "assistance" means assisting the judgment of a doctor or the like. Further, mutations in the ARID2 gene and / or the MUC17 gene may be the same as the biomarkers of the present invention.
本発明の別の態様によれば、肝細胞癌に罹患した対象から得られた腫瘍組織中のARID2遺伝子および/またはMUC17遺伝子の変異の有無を検出することを含む、肝細胞癌に罹患した該対象の予後の良または不良のインビトロ分析方法が提供される。また、ARID2遺伝子および/またはMUC17遺伝子の変異等は、本発明のバイオマーカーと同じであってもよい。 According to another aspect of the present invention, the hepatocellular carcinoma suffering, comprising detecting the presence or absence of mutations in the ARID2 gene and / or the MUC17 gene in tumor tissue obtained from a subject suffering from hepatocellular carcinoma. An in vitro analysis method with good or poor prognosis for the subject is provided. Further, mutations in the ARID2 gene and / or the MUC17 gene may be the same as the biomarkers of the present invention.
本発明の別の態様によれば、以下の工程を含む、肝細胞癌に罹患した対象の予後推定方法が提供される:
(1)対象から腫瘍組織および血球細胞を得る工程、
(2)血球細胞を正常組織として、腫瘍組織中のARID2遺伝子および/またはMUC17遺伝子の変異の有無を全エキソン解析により検出する工程、および
(3)変異がある場合には肝細胞癌に罹患した該対象の予後が不良であると推定し、変異が無い場合には肝細胞癌に罹患した該対象の予後が良いと推定する工程。
According to another aspect of the present invention, there is provided a method for estimating the prognosis of a subject suffering from hepatocellular carcinoma, which comprises the following steps:
(1) Step of obtaining tumor tissue and blood cells from a subject,
(2) Using blood cells as normal tissue, the step of detecting the presence or absence of mutations in the ARID2 gene and / or the MUC17 gene in the tumor tissue by whole exon analysis, and (3) suffering from hepatocellular carcinoma if there are mutations. A step of presuming that the prognosis of the subject is poor, and if there is no mutation, the prognosis of the subject suffering from hepatocellular carcinoma is presumed to be good.
本発明の予後推定方法の好ましい態様によれば、非腫瘍組織が血球細胞であることが好ましい。また、ARID2遺伝子および/またはMUC17遺伝子の変異等は、本発明のバイオマーカーと同じであってもよい。 According to a preferred embodiment of the prognosis estimation method of the present invention, it is preferable that the non-tumor tissue is a blood cell. Further, mutations in the ARID2 gene and / or the MUC17 gene may be the same as the biomarkers of the present invention.
以下の例に基づいて本発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited to these examples.
試験例1
静岡県立静岡がんセンターにて、2014年1月~2016年5月までの間に肝細胞癌患者に対して根治切除が行われた106例のうち、非B非C(NBNC)型肝細胞癌患者の55例から得られたサンプルに基づいて以下の実験を行った。NBNC型肝細胞癌患者の患者背景については下記表1の通りである。
得られたサンプルから全エキソン解析(WES)により一塩基変異(SNV: Single Nucleotide Variant)が認められる遺伝子を抽出した。
腫瘍組織のWESにはLife Technologies社製のIon Protonを用い、血球細胞を正常組織として腫瘍特異的遺伝子変異を特定して、腫瘍特異的一塩基変異数の算定を行った。
Non-B non-C (NBNC) type hepatocellular carcinoma out of 106 patients who underwent radical resection for hepatocellular carcinoma patients from January 2014 to May 2016 at Shizuoka Prefectural Shizuoka Cancer Center The following experiments were performed based on samples obtained from 55 cancer patients. The patient background of NBNC type hepatocellular carcinoma patients is shown in Table 1 below.
From the obtained sample, a gene in which a single nucleotide polymorphism (SNV: Single Nucleotide Variant) was observed was extracted by whole exon analysis (WES).
Ion Proton manufactured by Life Technologies was used for WES of tumor tissue, and tumor-specific gene mutations were identified using blood cells as normal tissues, and the number of tumor-specific single-base mutations was calculated.
上記において全エキソン解析(WES)により抽出した遺伝子と、病理学的因子とが、無再発生存率(RFS)に与える影響について検討し、その結果を下記表2~4に示す。 The effects of the genes extracted by total exon analysis (WES) and pathological factors on the recurrence-free survival rate (RFS) were examined above, and the results are shown in Tables 2 to 4 below.
NBNC型肝細胞癌患者の55例中、MUC17変異遺伝子を有する9例では、野生型のMUC17遺伝子の以下の位置に変異を有することが分かった。
(1)コードされるDNAの位置:c.1622C>T・・・ミスセンス、
蛋白コード:p.Pro541Leu
(2)コードされるDNAの位置:c.3332G>T・・・ミスセンス、
蛋白コード:p.Arg1111Met
(3)コードされるDNAの位置:c.9692A>C・・・ミスセンス、
蛋白コード:p.Asn3231Thr
(4)コードされるDNAの位置:c.2238C>A・・・ミスセンス、
蛋白コード:p.Ser746Arg
(5)コードされるDNAの位置:c.6595C>A・・・ミスセンス、
蛋白コード:p.Arg2199Ser
(6)コードされるDNAの位置:c.2909G>T・・・ミスセンス、
蛋白コード:p.Gly970Val
(7)コードされるDNAの位置:c.8919A>C・・・ミスセンス、
蛋白コード:p.Glu2973Asp
(8)コードされるDNAの位置:c.3533A>G・・・ミスセンス、
蛋白コード:p.Asn1178Ser
(9)コードされるDNAの位置:c.7751A>T・・・ミスセンス、
蛋白コード:p.Lys2584Met
Of the 55 patients with NBNC-type hepatocellular carcinoma, 9 with the MUC17 mutant gene were found to have mutations at the following positions of the wild-type MUC17 gene.
(1) Position of encoded DNA: c. 1622C> T ... Missense,
Protein code: p. Pro541Leu
(2) Position of encoded DNA: c. 3332G> T ... Missense,
Protein code: p. Arg1111Met
(3) Position of encoded DNA: c. 9692A> C ... Missense,
Protein code: p. Asn3231Thr
(4) Position of encoded DNA: c. 2238C> A ... Missense,
Protein code: p. Ser746Arg
(5) Position of encoded DNA: c. 6595C> A ... Missense,
Protein code: p. Arg2199Ser
(6) Position of encoded DNA: c. 2909G> T ... Missense,
Protein code: p. Gly970Val
(7) Position of encoded DNA: c. 8919A> C ... Missense,
Protein code: p. Glu2973Asp
(8) Position of encoded DNA: c. 3533A> G ... Missense,
Protein code: p. Asn1178Ser
(9) Position of encoded DNA: c. 7751A> T ... Missense,
Protein code: p. Lys2584Met
NBNC型肝細胞癌患者の55例中、ARID2変異遺伝子を有する5例では、野生型のARID2遺伝子の以下の位置に変異を有することが分かった。
(1)コードされるDNAの位置:c.674G>A・・・ナンセンス、
蛋白コード:p.Lys441Arg
(2)コードされるDNAの位置:c.1322A>G・・・ミスセンス、
蛋白コード:p.Lys441Arg
(3)コードされるDNAの位置:c.1088T>C・・・ミスセンス、
蛋白コード:p.Leu363Pro
(4)コードされるDNAの位置:c.5362A>T・・・ナンセンス、
蛋白コード:p.Arg1788*
(5)コードされるDNAの位置:c.792G>A・・・ナンセンス、
蛋白コード:p.Trp264*
Of the 55 patients with NBNC-type hepatocellular carcinoma, 5 with the ARID2 mutant gene were found to have mutations at the following positions of the wild-type ARID2 gene.
(1) Position of encoded DNA: c. 674G> A ... Nonsense,
Protein code: p. Lys441Arg
(2) Position of encoded DNA: c. 1322A> G ... Missense,
Protein code: p. Lys441Arg
(3) Position of encoded DNA: c. 1088T> C ... Missense,
Protein code: p. Leu363Pro
(4) Position of encoded DNA: c. 5362A> T ... Nonsense,
Protein code: p. Arg1788 *
(5) Position of encoded DNA: c. 792G> A ... Nonsense,
Protein code: p. Trp264 *
上記表3および4における、単変量解析はログランク検定を用い、多変量解析はCox回帰分析を用いて行った。 The univariate analysis in Tables 3 and 4 above was performed using the logrank test, and the multivariate analysis was performed using Cox regression analysis.
また、上記表2~4に加え、MUC17遺伝子およびARID2遺伝子における変異の有無による無再発生存期間(RFS)の比較を、それぞれ図1および図2に示す。 In addition to Tables 2-4 above, comparisons of recurrence-free time-to-lives (RFS) with and without mutations in the MUC17 and ARID2 genes are shown in FIGS. 1 and 2, respectively.
以上の結果から、MUC17遺伝子またはARID2遺伝子に変異がある場合には、RFSが短くなることが分かった。 From the above results, it was found that RFS is shortened when there is a mutation in the MUC17 gene or the ARID2 gene.
Claims (7)
ARID2変異遺伝子が下記変異(A-i)から(A-v)の一以上を含むものでありMUC17変異遺伝子が下記変異(M-i)から(M-ix)の一以上を含むものである、使用:
(A-i)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の674番目のグアニンがアデニンに置換されたナンセンス変異、
(A-ii)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の1322番のアデニンがグアニンに置換されたミスセンス変異、
(A-iii)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の1088番のチミンがシトシンに置換されたミスセンス変異、
(A-iv)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の5362番のアデニンがチミンに置換されたナンセンス変異、および
(A-v)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の792番のグアニンがアデニンに置換されたナンセンス変異;
(M-i)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の1622番目のシトシンがチミンに置換されたミスセンス変異、
(M-ii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の3332番目のグアニンがチミンに置換されたミスセンス変異、
(M-iii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の9692番目のアデニンがシトシンに置換されたミスセンス変異、
(M-iv)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の2238番目のシトシンがアデニンに置換されたミスセンス変異、
(M-v)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の6595番目のシトシンがアデニンに置換されたミスセンス変異、
(M-vi)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の2909番目のグアニンがチミンに置換されたミスセンス変異、
(M-vii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の8919番目のアデニンがシトシンに置換されたミスセンス変異、
(M-viii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の3533番目のアデニンがグアニンに置換されたミスセンス変異、および
(M-ix)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の7751番目のアデニンがチミンに置換されたミスセンス変異。 The use of the ARID2 or MUC17 mutant gene, or the ARID2 mutant gene and the MUC17 mutant gene , as a biomarker for diagnosing a good or poor prognosis of a subject suffering from hepatocellular carcinoma .
The ARID2 mutant gene comprises one or more of the following mutations (A-i) to (Av) and the MUC17 mutant gene comprises one or more of the following mutations (M-i) to (M-ix). :
(A-i) A nonsense mutation in which the guanine at position 674 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with adenine.
(A-ii) A missense mutation in which the adenine of 1322 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with guanine.
(A-iii) A missense mutation in which thymine No. 1088 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with cytosine.
The nonsense mutation in which adenine of 5362 of the nucleotide sequence shown by SEQ ID NO: 1 encoded by the (A-iv) ARID2 gene is replaced with thymine, and the encoded SEQ ID NO: 1 of the (Av) ARID2 gene are shown. A nonsense mutation in which guanine No. 792 of the nucleotide sequence is replaced with adenine;
(Mi) A missense mutation in which cytosine at position 1622 of the nucleotide sequence set forth in SEQ ID NO: 3 of the MUC17 gene is replaced with thymine,
(M-ii) A missense mutation in which the guanine at position 3332 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with thymine.
(M-iii) A missense mutation in which the adenine at position 9692 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with cytosine.
(M-iv) A missense mutation in which cytosine at position 2238 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with adenine.
(Mv) A missense mutation in which cytosine at position 6595 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with adenine.
(M-vi) A missense mutation in which the guanine at position 2909 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with thymine.
(M-vii) A missense mutation in which the adenine at position 8919 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with cytosine.
The missense mutation in which the adenine at position 3533 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the (M-viii) MUC17 gene is replaced with guanine, and the encoded SEQ ID NO: 3 of the (M-ix) MUC17 gene are shown. A missense mutation in which the adenine at position 7751 of the nucleotide sequence is replaced with thymine.
ARID2変異遺伝子が下記変異(A-i)から(A-v)の一以上を含むものでありMUC17変異遺伝子が下記変異(M-i)から(M-ix)の一以上を含むものである、肝細胞癌に罹患した該対象の予後の良または不良の診断を補助する方法:
(A-i)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の674番目のグアニンがアデニンに置換されたナンセンス変異、
(A-ii)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の1322番のアデニンがグアニンに置換されたミスセンス変異、
(A-iii)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の1088番のチミンがシトシンに置換されたミスセンス変異、
(A-iv)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の5362番のアデニンがチミンに置換されたナンセンス変異、および
(A-v)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の792番のグアニンがアデニンに置換されたナンセンス変異;
(M-i)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の1622番目のシトシンがチミンに置換されたミスセンス変異、
(M-ii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の3332番目のグアニンがチミンに置換されたミスセンス変異、
(M-iii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の9692番目のアデニンがシトシンに置換されたミスセンス変異、
(M-iv)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の2238番目のシトシンがアデニンに置換されたミスセンス変異、
(M-v)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の6595番目のシトシンがアデニンに置換されたミスセンス変異、
(M-vi)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の2909番目のグアニンがチミンに置換されたミスセンス変異、
(M-vii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の8919番目のアデニンがシトシンに置換されたミスセンス変異、
(M-viii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の3533番目のアデニンがグアニンに置換されたミスセンス変異、および
(M-ix)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の7751番目のアデニンがチミンに置換されたミスセンス変異。 Includes detecting the presence or absence of mutations in the ARID2 and / or MUC17 genes in tumor tissue obtained from subjects with hepatocellular carcinoma.
A liver in which the ARID2 mutant gene contains one or more of the following mutations (Ai) to (Av) and the MUC17 mutant gene contains one or more of the following mutations (Mi) to (M-ix). Methods to assist in diagnosing good or poor prognosis for the subject with cell carcinoma:
(A-i) A nonsense mutation in which the guanine at position 674 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with adenine.
(A-ii) A missense mutation in which the adenine of 1322 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with guanine.
(A-iii) A missense mutation in which thymine No. 1088 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with cytosine.
The nonsense mutation in which adenine of 5362 of the nucleotide sequence shown by SEQ ID NO: 1 encoded by the (A-iv) ARID2 gene is replaced with thymine, and the encoded SEQ ID NO: 1 of the (Av) ARID2 gene are shown. A nonsense mutation in which guanine No. 792 of the nucleotide sequence is replaced with adenine;
(Mi) A missense mutation in which cytosine at position 1622 of the nucleotide sequence set forth in SEQ ID NO: 3 of the MUC17 gene is replaced with thymine,
(M-ii) A missense mutation in which the guanine at position 3332 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with thymine.
(M-iii) A missense mutation in which the adenine at position 9692 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with cytosine.
(M-iv) A missense mutation in which cytosine at position 2238 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with adenine.
(Mv) A missense mutation in which cytosine at position 6595 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with adenine.
(M-vi) A missense mutation in which the guanine at position 2909 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with thymine.
(M-vii) A missense mutation in which the adenine at position 8919 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with cytosine.
The missense mutation in which the adenine at position 3533 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the (M-viii) MUC17 gene is replaced with guanine, and the encoded SEQ ID NO: 3 of the (M-ix) MUC17 gene are shown. A missense mutation in which the adenine at position 7751 of the nucleotide sequence is replaced with thymine.
(A-i)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の674番目のグアニンがアデニンに置換されたナンセンス変異、
(A-ii)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の1322番のアデニンがグアニンに置換されたミスセンス変異、
(A-iii)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の1088番のチミンがシトシンに置換されたミスセンス変異、
(A-iv)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の5362番のアデニンがチミンに置換されたナンセンス変異、および
(A-v)ARID2遺伝子のコードされる配列番号1で示されるヌクレオチド配列の792番のグアニンがアデニンに置換されたナンセンス変異;
(M-i)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の1622番目のシトシンがチミンに置換されたミスセンス変異、
(M-ii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の3332番目のグアニンがチミンに置換されたミスセンス変異、
(M-iii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の9692番目のアデニンがシトシンに置換されたミスセンス変異、
(M-iv)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の2238番目のシトシンがアデニンに置換されたミスセンス変異、
(M-v)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の6595番目のシトシンがアデニンに置換されたミスセンス変異、
(M-vi)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の2909番目のグアニンがチミンに置換されたミスセンス変異、
(M-vii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の8919番目のアデニンがシトシンに置換されたミスセンス変異、
(M-viii)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の3533番目のアデニンがグアニンに置換されたミスセンス変異、および
(M-ix)MUC17遺伝子のコードされる配列番号3で示されるヌクレオチド配列の7751番目のアデニンがチミンに置換されたミスセンス変異。 Includes detecting the presence or absence of mutations in the ARID2 gene and / or the MUC17 gene in tumor tissue obtained from subjects suffering from hepatocellular carcinoma, and the ARID2 mutated genes are the following mutations (A-i) to (Av). A method for in vitro analysis of a subject suffering from hepatocellular carcinoma having a good or poor prognosis, which comprises one or more of the MUC17 mutant genes and one or more of the following mutations (Mi) to (M-ix). :
(A-i) A nonsense mutation in which the guanine at position 674 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with adenine.
(A-ii) A missense mutation in which the adenine of 1322 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with guanine.
(A-iii) A missense mutation in which thymine No. 1088 of the nucleotide sequence represented by SEQ ID NO: 1 encoded by the ARID2 gene is replaced with cytosine.
The nonsense mutation in which adenine of 5362 of the nucleotide sequence shown by SEQ ID NO: 1 encoded by the (A-iv) ARID2 gene is replaced with thymine, and the encoded SEQ ID NO: 1 of the (Av) ARID2 gene are shown. A nonsense mutation in which guanine No. 792 of the nucleotide sequence is replaced with adenine;
(Mi) A missense mutation in which cytosine at position 1622 of the nucleotide sequence set forth in SEQ ID NO: 3 of the MUC17 gene is replaced with thymine,
(M-ii) A missense mutation in which the guanine at position 3332 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with thymine.
(M-iii) A missense mutation in which the adenine at position 9692 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with cytosine.
(M-iv) A missense mutation in which cytosine at position 2238 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with adenine.
(Mv) A missense mutation in which cytosine at position 6595 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with adenine.
(M-vi) A missense mutation in which the guanine at position 2909 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with thymine.
(M-vii) A missense mutation in which the adenine at position 8919 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the MUC17 gene is replaced with cytosine.
The missense mutation in which the adenine at position 3533 of the nucleotide sequence represented by SEQ ID NO: 3 encoded by the (M-viii) MUC17 gene is replaced with guanine, and the encoded SEQ ID NO: 3 of the (M-ix) MUC17 gene are shown. A missense mutation in which the adenine at position 7751 of the nucleotide sequence is replaced with thymine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017167226A JP7029719B2 (en) | 2017-08-31 | 2017-08-31 | Biomarker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017167226A JP7029719B2 (en) | 2017-08-31 | 2017-08-31 | Biomarker |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019041653A JP2019041653A (en) | 2019-03-22 |
JP7029719B2 true JP7029719B2 (en) | 2022-03-04 |
Family
ID=65812488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017167226A Active JP7029719B2 (en) | 2017-08-31 | 2017-08-31 | Biomarker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7029719B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014522993A (en) | 2011-08-08 | 2014-09-08 | カリス ライフ サイエンシズ ルクセンブルク ホールディングス エス.アー.エール.エル. | Biomarker compositions and methods |
JP2017519488A (en) | 2014-04-21 | 2017-07-20 | ナテラ, インコーポレイテッド | Mutation detection and chromosomal segment ploidy |
-
2017
- 2017-08-31 JP JP2017167226A patent/JP7029719B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014522993A (en) | 2011-08-08 | 2014-09-08 | カリス ライフ サイエンシズ ルクセンブルク ホールディングス エス.アー.エール.エル. | Biomarker compositions and methods |
JP2017519488A (en) | 2014-04-21 | 2017-07-20 | ナテラ, インコーポレイテッド | Mutation detection and chromosomal segment ploidy |
Non-Patent Citations (4)
Title |
---|
Cell,2017年06月15日,Vol.169, No.7,pp1327-1341 |
Gastroenterology,2015年,Vol.149, No.5,pp1226-1239 |
Nature Genetics,2012年,Vol.44, No.7,pp760-764 |
Oncotarget,2011年,Vol.2, No.11,pp886-891 |
Also Published As
Publication number | Publication date |
---|---|
JP2019041653A (en) | 2019-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gandolfi et al. | First WNK4-hypokalemia animal model identified by genome-wide association in Burmese cats | |
Philipp et al. | Multiple loci are associated with dilated cardiomyopathy in Irish wolfhounds | |
Myles‐Worsley et al. | Deletion at the SLC1A1 glutamate transporter gene co‐segregates with schizophrenia and bipolar schizoaffective disorder in a 5‐generation family | |
WO2014017491A1 (en) | Fusion gene of cep55 gene and ret gene | |
Drögemüller et al. | An unusual splice defect in the mitofusin 2 gene (MFN2) is associated with degenerative axonopathy in Tyrolean Grey cattle | |
Leng et al. | Mutations in mevalonate pathway genes in patients with familial or sporadic porokeratosis | |
Zhang et al. | Lentiginous phenotypes caused by diverse pathogenic genes (SASH1 and PTPN11): clinical and molecular discrimination | |
Al-Khersan et al. | A novel MERTK mutation causing retinitis pigmentosa | |
Pagadala et al. | Germline modifiers of the tumor immune microenvironment implicate drivers of cancer risk and immunotherapy response | |
Schiemann et al. | Sequence capture and massively parallel sequencing to detect mutations associated with malignant hyperthermia | |
Amador et al. | Polymorphisms of xenobiotic metabolizing genes in oropharyngeal carcinoma | |
Edvardsen et al. | Linkage disequilibrium pattern of the ATM gene in breast cancer patients and controls; association of SNPs and haplotypes to radio-sensitivity and post-lumpectomy local recurrence | |
Zhu et al. | Identification of susceptibility gene mutations associated with the pathogenesis of familial nonmedullary thyroid cancer | |
JP7029719B2 (en) | Biomarker | |
Sarma et al. | Point mutations in the DNA binding domain of p53 contribute to glioma progression and poor prognosis | |
Nastase et al. | Platinum drug sensitivity polymorphisms in stage III non-small cell lung cancer with invasion of mediastinal lymph nodes | |
CN108588085A (en) | The kit for screening of malignant arrhythmia, the method for building up of animal model and application | |
Charfeddine et al. | Clinical and molecular investigation of Buschke‐Fischer‐Brauer in consanguineous Tunisian families | |
Santisteban-Espejo et al. | Identification of prognostic factors in classic Hodgkin lymphoma by integrating whole slide imaging and next generation sequencing | |
Mayr et al. | Sequence of an exon of the feline p53 gene—Mutation in a lymphosarcoma | |
CN114875148A (en) | Familial multiple lipoma detection kit and application of primer group | |
Soussi | Analysis of p53 gene alterations in cancer: a critical view | |
Okumura et al. | Congenic mapping and allele-specific alteration analysis of Stmm1 locus conferring resistance to early-stage chemically induced skin papillomas | |
CN115798584B (en) | Method for simultaneously detecting forward and reverse mutation of EGFR gene T790M and C797S | |
CN103993016B (en) | HIF2A gene mutation body and detect with apply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210323 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220209 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7029719 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |