JP7007217B2 - Boiler equipment, power generation equipment, and method for predicting the amount of stuck matter - Google Patents
Boiler equipment, power generation equipment, and method for predicting the amount of stuck matter Download PDFInfo
- Publication number
- JP7007217B2 JP7007217B2 JP2018040150A JP2018040150A JP7007217B2 JP 7007217 B2 JP7007217 B2 JP 7007217B2 JP 2018040150 A JP2018040150 A JP 2018040150A JP 2018040150 A JP2018040150 A JP 2018040150A JP 7007217 B2 JP7007217 B2 JP 7007217B2
- Authority
- JP
- Japan
- Prior art keywords
- amount
- boiler
- component
- exhaust gas
- ash
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 16
- 238000010248 power generation Methods 0.000 title claims description 14
- 239000007789 gas Substances 0.000 claims description 58
- 239000000446 fuel Substances 0.000 claims description 51
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims description 48
- -1 ammonium sulfate compound Chemical group 0.000 claims description 48
- 235000011130 ammonium sulphate Nutrition 0.000 claims description 48
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 29
- 239000011575 calcium Substances 0.000 claims description 27
- 229910052799 carbon Inorganic materials 0.000 claims description 27
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 27
- 239000000126 substance Substances 0.000 claims description 27
- 238000002485 combustion reaction Methods 0.000 claims description 15
- 230000003647 oxidation Effects 0.000 claims description 12
- 238000007254 oxidation reaction Methods 0.000 claims description 12
- 238000000354 decomposition reaction Methods 0.000 claims description 11
- 229910021529 ammonia Inorganic materials 0.000 claims description 10
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims description 8
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052815 sulfur oxide Inorganic materials 0.000 claims description 3
- 239000003245 coal Substances 0.000 description 33
- 238000004519 manufacturing process Methods 0.000 description 29
- 239000000463 material Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical class N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 229940126062 Compound A Drugs 0.000 description 3
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 3
- 101150041326 air-2 gene Proteins 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 150000003464 sulfur compounds Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- HSEYYGFJBLWFGD-UHFFFAOYSA-N 4-methylsulfanyl-2-[(2-methylsulfanylpyridine-3-carbonyl)amino]butanoic acid Chemical compound CSCCC(C(O)=O)NC(=O)C1=CC=CN=C1SC HSEYYGFJBLWFGD-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910021653 sulphate ion Inorganic materials 0.000 description 2
- 101150104118 ANS1 gene Proteins 0.000 description 1
- 101100510736 Actinidia chinensis var. chinensis LDOX gene Proteins 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Landscapes
- Treating Waste Gases (AREA)
- Regulation And Control Of Combustion (AREA)
- Chimneys And Flues (AREA)
Description
本発明は、炭素系燃料を用いたボイラ設備及び発電設備、並びにこれらの設備において排ガスの差圧予測に利用できる固着物の生成量予測方法に関する。 The present invention relates to boiler equipment and power generation equipment using carbon-based fuel, and a method for predicting the amount of deposits produced in these equipment, which can be used to predict the differential pressure of exhaust gas.
従来、石炭に代表される炭素系燃料を用いたボイラ設備は、炭素系燃料の燃焼により発電の駆動力となる蒸気を生成するボイラと、ボイラから排出される窒素酸化物(NOX)をアンモニア(NH3)の存在下で脱硝する脱硝装置と、等を備えている。この種のボイラ設備では、仮に脱硝装置の下流側に未反応のNH3がリークすると、そのNH3を要素として硫酸アルミニウムアンモニウム(NH4Al(SO)2)等の硫安化合物が生成され、脱硝装置の下流側で低温になると凝縮する可能性がある。さらにこのような凝縮物に灰分が付着して固着物となり、排ガスの圧力損失(差圧)が上昇する原因になる。 Conventionally, boiler equipment using carbon-based fuel represented by coal has a boiler that produces steam that is the driving force for power generation by burning carbon-based fuel, and nitrogen oxides (NO X ) emitted from the boiler are ammonia. It is equipped with a denitration device that denitrates in the presence of (NH 3 ), and the like. In this type of boiler equipment, if unreacted NH 3 leaks to the downstream side of the denitration device, ammonium sulfate compounds such as aluminum ammonium sulfate (NH 4 Al (SO) 2 ) are generated from the NH 3 as an element, and denitration is performed. It may condense at low temperatures downstream of the device. Further, ash adheres to such a condensate and becomes a fixed substance, which causes an increase in pressure loss (differential pressure) of exhaust gas.
差圧が過度に上昇すると設備に負荷がかかるおそれが高まる一方、流路を洗浄して固着物を除去するには設備の稼働停止を伴うので、必要以上に頻繁に洗浄を行うことはできない。かかる背景から、流路の洗浄を適切なタイミングで行うことができるよう、固着物の生成状況を予測し、ひいては差圧を予測することが望まれていた。この点、特許文献1では、脱硝装置の下流側に配され、排ガスの余熱を利用してボイラでの燃焼用空気を予熱する空気予熱器の差圧を測定し、漏洩したNH3濃度等の補正も加えて、差圧の上昇傾向を予測する方法が提案されている。
If the differential pressure rises excessively, there is a high possibility that the equipment will be overloaded. On the other hand, cleaning the flow path to remove the adhered matter involves stopping the operation of the equipment, so cleaning cannot be performed more frequently than necessary. From such a background, it has been desired to predict the formation state of the adhered matter and, by extension, the differential pressure so that the flow path can be washed at an appropriate timing. In this regard, in
しかしながら、特許文献1を含めた従来技術では、ボイラ設備を稼動させた上で差圧を予測する手法しか確立されておらず、使用実績のある燃料を用いた場合しか、差圧を予測することができなかった。従って、ボイラ設備での稼動実績のない燃料を用いる場合にも対応できるよう、ボイラ設備を稼動しなくても固着物の生成量を予測でき、ひいては差圧を予測できる手法が望まれていた。
However, in the prior art including
本発明は、このような事情に鑑みてなされたもので、ボイラ設備での稼動実績がない燃料であっても固着物の生成量を予測でき、また差圧の予測にも利用できるボイラ設備及び発電設備、並びに固着物の生成量予測方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and the boiler equipment and the boiler equipment which can predict the amount of deposits produced even if the fuel has not been operated in the boiler equipment and can also be used for the prediction of the differential pressure. It is an object of the present invention to provide a power generation facility and a method for predicting the amount of fixed matter produced.
上記の課題を解決する本発明の態様は、炭素系燃料を燃焼して窒素酸化物(NOX)及び硫黄酸化物(SOX)を含んだ排ガスを排出させるボイラと、前記ボイラの下流側に設けられ、アンモニア(NH3)の存在下で前記排ガス中の窒素酸化物(NOX)を脱硝する脱硝装置と、を具備するボイラ設備であって、使用を予定する前記炭素系燃料を分析して得られた該炭素系燃料由来のN成分の量、S成分の量及び灰分の量を予め取得するとともに、予め取得された前記N成分の量、前記S成分の量及び前記灰分の量、前記脱硝装置の下流側にリークしたアンモニア(NH 3 )の量に基づき、前記炭素系燃料を前記ボイラで燃焼させたときの、前記脱硝装置の下流側での固着物の生成量を予測する予測システムを具備することを特徴とするボイラ設備にある。 Aspects of the present invention for solving the above problems include a boiler that burns a carbon-based fuel to emit exhaust gas containing nitrogen oxide (NO X ) and sulfur oxide (SO X ), and a boiler downstream of the boiler. It is a boiler facility provided with a denitration device for denitrifying nitrogen oxide (NO X ) in the exhaust gas in the presence of ammonia (NH 3 ), and the carbon-based fuel to be used is analyzed. The amount of the N component, the amount of the S component, and the amount of the ash obtained from the carbon-based fuel were obtained in advance, and the amount of the N component, the amount of the S component, and the amount of the ash obtained in advance were obtained . Based on the amount of ammonia (NH 3 ) leaked to the downstream side of the denitration device, a prediction that predicts the amount of deposits produced on the downstream side of the denitration device when the carbon-based fuel is burned in the boiler. It is in a boiler facility characterized by being equipped with a system.
かかる態様によれば、上記の予測システムを具備するので、実際にその燃料でボイラ設備を稼動しなくても、予め取得されたN成分の量(N成分量)、S成分の量(S成分量)及び灰分の量(灰分量)に基づき、固着物の生成量を予測できる。かかる予測結果は、差圧の予測にも利用できる。 According to this aspect, since the above prediction system is provided, the amount of N component (N component amount) and the amount of S component (S component) obtained in advance without actually operating the boiler equipment with the fuel are provided. The amount of adhered matter can be predicted based on the amount) and the amount of ash (amount of ash). The prediction result can also be used for the prediction of the differential pressure.
ここで、前記灰分はアルミニウム(Al)成分を含んでおり、前記固着物は、前記Al成分を含んで生成される硫安化合物に前記灰分が付着したものであることが好ましい。かかる態様において、Al成分を含んで生成される硫安化合物は、固着物の原因となる化合物として代表的なものである。そのため、かかる態様によれば、固着物の原因となる代表的な組成の硫安化合物(NH4Al(SO)2等)を対象として、実際にその燃料でボイラ設備を稼動しなくても、固着物の生成量を正確に予測できる。 Here, it is preferable that the ash content contains an aluminum (Al) component, and the adhered substance is one in which the ash content is attached to a ammonium sulfate compound produced by containing the Al component. In such an embodiment, the ammonium sulfate compound produced containing the Al component is typical as a compound that causes a sticky substance. Therefore, according to such an embodiment, a ammonium sulfate compound (NH4 Al (SO) 2 , etc.) having a typical composition that causes a sticking substance is targeted, and the boiler equipment is solidified without actually operating the boiler equipment with the fuel. The amount of kimono produced can be predicted accurately.
また、前記灰分はカルシウム(Ca)成分を含んでおり、前記予測システムは、前記Ca成分による前記硫安化合物の分解率を考慮して、前記固着物の生成量を予測することが好ましい。これによれば、Ca成分による硫安化合物の分解率を考慮するので、固着物の生成量をより正確に予測できるようになる。 Further, the ash content contains a calcium (Ca) component, and it is preferable that the prediction system predicts the amount of the adhered substance in consideration of the decomposition rate of the ammonium sulfate compound by the Ca component. According to this, since the decomposition rate of the ammonium sulfate compound by the Ca component is taken into consideration, the amount of the adhered matter produced can be predicted more accurately.
また、前記予測システムは、前記排ガス中における前記Ca成分による前記S成分の消費率を考慮して、前記固着物の生成量を予測することが好ましい。これによれば、Ca成分によるS成分の消費率を考慮するので、固着物の生成量をより正確に予測できるようになる。 Further, it is preferable that the prediction system predicts the amount of the adhered substance in consideration of the consumption rate of the S component by the Ca component in the exhaust gas. According to this, since the consumption rate of the S component due to the Ca component is taken into consideration, the amount of the adhered matter produced can be predicted more accurately.
また、前記予測システムは、前記脱硝装置による二酸化硫黄(SO2)の酸化率を考慮して、前記固着物の生成量を予測することが好ましい。これによれば、脱硝装置によるSO2の酸化率を考慮するので、固着物の生成量をより正確に予測できるようになる。 Further, it is preferable that the prediction system predicts the amount of the adhered matter produced in consideration of the oxidation rate of sulfur dioxide (SO 2 ) by the denitration device. According to this, since the oxidation rate of SO 2 by the denitration device is taken into consideration, the amount of the adhered matter can be predicted more accurately.
また、前記ボイラ設備は、前記脱硝装置の下流側に、前記排ガスの余熱を利用して前記ボイラでの燃焼用空気を予熱する空気予熱器を具備しており、前記予測システムは、前記空気予熱器での前記固着物の生成量を予測することが好ましい。これによれば、固着物が生成しやすい空気予熱器の中温部および低温部を対象に、実際にその燃料でボイラ設備を稼動しなくても、固着物の生成量を正確に予測できる。 Further, the boiler equipment is provided on the downstream side of the denitration device with an air preheater that preheats the combustion air in the boiler by utilizing the residual heat of the exhaust gas, and the prediction system is equipped with the air preheating. It is preferable to predict the amount of the adhered matter produced in the vessel. According to this, it is possible to accurately predict the amount of the adhered matter generated in the middle temperature portion and the low temperature portion of the air preheater where the adhered matter is likely to be generated without actually operating the boiler equipment with the fuel.
また、前記予測システムは、予測した前記固着物の生成量に基づき前記排ガスが通過可能な流路の有効径を求め、演算された前記流路の有効径と、前記排ガスの流量と、に基づき、前記流路の上流側及び下流側の差圧を予測することが好ましい。これによれば、固着物の生成量の予測結果を利用するので、実際にその燃料でボイラ設備を稼動しなくても、予め取得されたN成分量、S成分量及び灰分量に基づき、上記の差圧を予測することができる。 Further, the prediction system obtains the effective diameter of the flow path through which the exhaust gas can pass based on the predicted amount of the adhered matter, and is based on the calculated effective diameter of the flow path and the flow rate of the exhaust gas. , It is preferable to predict the differential pressure on the upstream side and the downstream side of the flow path. According to this, since the prediction result of the amount of the adhered matter is used, the above-mentioned is based on the amount of N component, the amount of S component and the amount of ash obtained in advance without actually operating the boiler equipment with the fuel. The differential pressure can be predicted.
上記の課題を解決する本発明の他の態様は、請求項1~7の何れか一項に記載のボイラ設備と、前記ボイラで発生した蒸気が導入されて駆動力を得る蒸気タービンと、前記蒸気タービンの駆動により電力を得る発電機と、を具備することを特徴とする発電設備にある。
Another aspect of the present invention for solving the above problems is the boiler equipment according to any one of
かかる態様によれば、上記のボイラ設備を具備するので、実際にその燃料でボイラ設備を稼動しなくても、固着物の原因となる化合物の生成量を予測可能な発電設備を提供できる。かかる予測結果は、差圧の予測にも利用できる。 According to such an embodiment, since the above-mentioned boiler equipment is provided, it is possible to provide a power generation equipment capable of predicting the amount of a compound that causes a sticking substance without actually operating the boiler equipment with the fuel. The prediction result can also be used for the prediction of the differential pressure.
上記の課題を解決する本発明の更に他の態様は、炭素系燃料を燃焼して窒素酸化物(NOX)及び硫黄酸化物(SOX)を含んだ排ガスを排出させるボイラと、前記ボイラの下流側に設けられ、アンモニア(NH3)の存在下で前記排ガス中の窒素酸化物(NOX)を脱硝する脱硝装置と、を具備するボイラ設備で用いられ、使用を予定する炭素系燃料を分析して得られた該炭素系燃料由来のN成分の量、S成分の量及び灰分の量を予め取得するとともに、予め取得された前記N成分の量、前記S成分の量及び前記灰分の量、前記脱硝装置の下流側にリークしたアンモニア(NH 3 )の量に基づき、前記炭素系燃料を前記ボイラで燃焼させたときの、前記脱硝装置の下流側での固着物の生成量を予測することを特徴とする固着物の生成量予測方法にある。 Yet another aspect of the present invention that solves the above problems is a boiler that burns a carbon-based fuel to emit exhaust gas containing nitrogen oxides (NO X ) and sulfur oxides (SO X ), and the boiler. A carbon-based fuel that is used in a boiler facility equipped with a denitration device that is installed on the downstream side and denitrifies nitrogen oxides (NO X ) in the exhaust gas in the presence of ammonia (NH 3 ), and is planned to be used. The amount of the N component, the amount of the S component, and the amount of the ash obtained by the analysis are obtained in advance, and the amount of the N component, the amount of the S component, and the ash content obtained in advance are obtained. Based on the amount and the amount of ammonia (NH 3 ) leaked to the downstream side of the denitration device, the amount of deposits produced on the downstream side of the denitration device when the carbon-based fuel is burned in the boiler is predicted. It is in the method of predicting the amount of adhered matter produced, which is characterized by the above.
かかる態様によれば、上記の予測システムを具備するので、実際にその燃料でボイラ設備を稼動しなくても、予め取得されたN成分の量(N成分量)、S成分の量(S成分量)及び灰分の量(灰分量)に基づき、固着物の生成量を予測できる。かかる予測結果は、差圧の予測にも利用できる。 According to this aspect, since the above prediction system is provided, the amount of N component (N component amount) and the amount of S component (S component) obtained in advance can be obtained without actually operating the boiler equipment with the fuel. The amount of adhered matter can be predicted based on the amount) and the amount of ash (amount of ash). The prediction result can also be used for the prediction of the differential pressure.
ここで、前記灰分量として、アルミニウム(Al)成分を含んだデータを用いることが好ましい。かかる態様において、Al成分を含んで生成される硫安化合物は、固着物の原因となる化合物として代表的なものである。従って、かかる態様によれば、固着物の原因となる代表的な組成の硫安化合物を対象として、実際にその燃料でボイラ設備を稼動しなくても、固着物の生成量を正確に予測できる。 Here, it is preferable to use data containing an aluminum (Al) component as the ash content. In such an embodiment, the ammonium sulfate compound produced containing the Al component is typical as a compound that causes a sticky substance. Therefore, according to such an embodiment, it is possible to accurately predict the amount of the deposited substance produced in the ammonium sulfate compound having a typical composition that causes the adhered substance, without actually operating the boiler equipment with the fuel.
また、予測した前記固着物の生成量に基づき前記排ガスが通過可能な流路の有効径を求め、演算された前記有効径と、前記排ガスの流量と、に基づき、前記流路の上流側及び下流側の差圧を予測することが好ましい。これによれば、固着物の生成量の予測結果を利用するので、実際にその燃料でボイラ設備を稼動しなくても、予め取得されたN成分量、S成分量及び灰分量に基づき上記の差圧を予測することができる。 Further, the effective diameter of the flow path through which the exhaust gas can pass is obtained based on the predicted amount of the adhered matter, and the upstream side of the flow path and the flow rate of the exhaust gas are calculated based on the calculated effective diameter and the flow rate of the exhaust gas. It is preferable to predict the differential pressure on the downstream side. According to this, since the prediction result of the amount of the adhered matter is used, the above-mentioned amount of N component, S component amount and ash content obtained in advance can be used without actually operating the boiler equipment with the fuel. The differential pressure can be predicted.
本発明の実施形態について、図面を参照して説明する。以下の実施形態は、本発明の一態様であり、本発明の範囲内で任意に変更可能である。各図や説明中、同一の部材は同じ符号が付され、適宜説明が省略されている。各図において、各部の縮尺や形状は、説明を容易にするために便宜的に設定されている場合がある。 An embodiment of the present invention will be described with reference to the drawings. The following embodiment is an aspect of the present invention and can be arbitrarily modified within the scope of the present invention. In each figure and description, the same member is designated by the same reference numeral, and the description thereof is omitted as appropriate. In each figure, the scale and shape of each part may be set for convenience in order to facilitate explanation.
(実施形態1)
図1に示すように、ボイラ設備20は、ボイラ1と、ボイラ1に排気通路2で接続された脱硝装置3と、脱硝装置3に排気通路4で接続された空気予熱器5と、空気予熱器5の排気上流側及び排気下流側の差圧(以下、単に「差圧」と称する場合がある)を予測可能な予測システム30(図4参照)と、を具備している。図中、実線矢印は、排ガスや空気の流れを表している。
(Embodiment 1)
As shown in FIG. 1, the
ボイラ1は、石炭に代表される炭素系燃料(図中、「Fuel」)を燃焼させて発電の駆動力となる蒸気を生成する。炭素系燃料は、本発明の範囲で炭素を含んだ燃料であればよく、木材やバイオマス等の炭化水素系材料、また天然ガスや都市ガス等の炭化水素系ガスなども使用できる。脱硝装置3は、ボイラ1から排出された排ガスGs0中のNOXを、アンモニア還元法(選択触媒還元法)によりNH3の存在下で脱硝する。空気予熱器5は、脱硝装置3を経た排ガスGs1の余熱を利用して、ボイラ1での燃焼用空気(空気Air1)を予熱する。
The
ボイラ設備20における排ガスや空気の流れは以下の通りである。すなわち、粉砕機6により粉砕された石炭が、ボイラ1内に臨むように配されたバーナー群7を通じて、空気とともにボイラ1内に供給される。石炭の燃焼によって生じた高温の排ガスGs0がボイラ1から排出され、排気通路2に導かれる。排気通路2では、NH3供給部8から排ガスGs0中にNH3が供給され、脱硝装置3でNOXがH2OとN2に分解される。脱硝装置3を経た排ガスGs1は、高温のまま排気通路4に導かれ、空気予熱器5に流入する。
The flow of exhaust gas and air in the
空気予熱器5では、高温の排ガスGs1と、排ガスGs1に対向して流入する空気と、の熱交換が行われる。押込通風機9から押し込まれた空気Air1は、空気予熱器5で予熱された上で、バーナー群7を通じてボイラ1内に供給される(ボイラ1での燃焼用空気Air2)。また、一次通風機10から押し込まれた空気Air1´は、一部は空気予熱器5で予熱された上で(空気Air2´)、残りはそのまま、粉砕機6に供給される。
In the
空気予熱器5を経た排ガスGs2は排気通路11に導かれる。排ガスGs2は、排気通路11の途中に配された誘引通風機12により引き込まれ、誘引通風機12の排気上流側又は排気下流側に配された図示しない除塵装置や脱硫装置等で規定のレベル未満まで浄化された上で、最終的に煙突13から大気中に放出される。誘引通風機12は、除塵装置や脱硫装置等の途中やそれらの排気下流側に配されてもよい。
The exhaust gas Gs2 that has passed through the
ここで、空気予熱器5は、図2(a)~(b)に示すように、円筒形状のローター5aと、ローター5aの各放射状の隔壁内に充填された伝熱エレメント5bと、ローター5aを軸支する回転軸5cと、を具備している。ローター5aは、例えば、所定の密度で伝熱エレメント5bが充填された第1密度部5d、第2密度部5e及び第3密度部5fが、回転軸5cに沿って順番に設けられた三段構造を有している。
Here, as shown in FIGS. 2A to 2B, the
第3密度部5fは、第1密度部5d及び第2密度部5eよりも、伝熱エレメント5bの充填密度が小さくされている。第1密度部5d及び第2密度部5eの伝熱エレメント5bの充填密度は同一とされているが、異ならせても構わない。ローター5aは、図示しないケーシングで囲われていて、排ガスや空気の流束に沿うように回転軸5cが配され、図示しないモーター等の駆動力により、ローター5aが回転軸5cを中心に回転可能となっている。
The
ローター5aの一方面(第1密度部5d側)から排ガスGs1が流入し、排ガスGs1に対向するローター5aの他方面(第3密度部5f側)から空気Air1及び空気Air1´が流入する。回転軸5cを中心にローター5aを回転させながら、排ガスGs1により加熱された伝熱エレメント5bの熱を利用し、空気Air1及び空気Air1´を予熱させる。高温の排ガスGs1が流入する第1密度部5d側は高温となり(高温部)、空気Air1及び空気Air1´が流入する第3密度部5f側は、第1密度部5dや第2密度部5eと比べて低温となる(低温部)。
Exhaust gas Gs1 flows in from one surface of the
以上のようなボイラ設備20では、仮に脱硝装置3の排気下流側に未反応のNH3がリークすると、そのNH3を要素として硫酸アルミニウムアンモニウム(NH4Al(SO)2)等の硫安化合物が生成され、空気予熱器5の上記の中温部(空気予熱器5のローター5aの第2密度部5e)および低温部(空気予熱器5のローター5aの第3密度部5f)で凝縮する可能性がある。これに灰分が付着して固着物となり、排ガスの流路を狭めて圧力損失(差圧)を高める原因になって、図3に示すように、稼働時間tの経過とともに、空気予熱器5の排気上流側及び排気下流側の差圧ΔPが上昇していく(時点t2の差圧ΔP2>時点t1の差圧ΔP1)。
In the
一方、炭種に応じて差圧ΔPの推移が異なるため、時点t2で炭種を変更する場合、設備の稼動条件が基本的に同様としても、変更後の炭種に応じて、差圧ΔPが大きく上昇するのか(図3中、点線:Case1)小さな上昇に留まるのか(図3中、一点鎖線:Case2)、又は差圧ΔPが大きく下降するのか(図3中、破線:Case3)小さな下降に留まるのか(図3中、二点鎖線:Case4)、が異なる。
On the other hand, since the transition of the differential pressure ΔP differs depending on the coal type, when the coal type is changed at time point t2, even if the operating conditions of the equipment are basically the same, the differential pressure ΔP depends on the changed coal type. Is it a large rise (dotted line:
従前、このような差圧ΔPの予測については、ボイラ設備を稼動させた上で行う手法しか確立されていなかった。これに対し、本実施形態は、ボイラ設備20での稼動実績がない炭種であっても、排ガスの流路を狭める原因となる固着物の生成量を予測でき、その予測結果を差圧ΔPの予測に利用できるものである。勿論、本実施形態によれば、ボイラ設備20での稼動実績がある炭種について固着物の生成量を予測し、また差圧ΔPを予測することもできる。
Previously, only a method for predicting such a differential pressure ΔP was established after operating the boiler equipment. On the other hand, in the present embodiment, even if the coal type has not been operated in the
図4は、本実施形態に係る予測システム30の構成例を機能的なブロックで示している。予測システム30は、公知の構成からなるマイクロコンピュータを含んでおり、各手段はマイクロコンピュータによるプログラムの実行により実現されている。予測システム30には、図示しない記憶手段等が備えられており、各手段での演算結果や検出結果が記憶される。
FIG. 4 shows a configuration example of the
予測システム30は、データ読込手段31と、リークNH3量推定手段32と、SO3生成量推定手段33と、硫安化合物生成量予測手段34と、固着物生成量予測手段35と、差圧予測手段36と、を具備している。固着物の原因となる硫安化合物は、石炭を燃焼したときの排ガスに含まれるNH3及びSO3を要素とした反応により生成されるため、本実施形態では、固着物の生成量AKや差圧ΔPを予測するのに、硫安化合物の生成総量ANS3の予測結果を用いる。そして、その硫安化合物の生成総量ANS3を予測すべく、まずはNH3生成総量AN及びSO3生成総量AS5を推定する。
The
データ読込手段31は、設備稼働者によって入力部37に入力される燃料性状データ31a、設備稼働データ31b及び固着物性状データ31cを読み込んで、これを各手段に送信する。これらのデータは、ボイラ設備20を稼動せずとも、使用を予定する石炭を分析したり、過去の他の石炭の例に基づいたり、設備条件を参照したりすることで予め取得できる。なお、入力部37は、例えば、予測システム30に有線又は無線で接続された、設備稼働者により使用されるパーソナルコンピュータ等である。
The data reading means 31 reads the
上記の燃料性状データ31aは、使用する石炭について予め分析実験等をしたときに得られる、N成分量R1、S成分量R2及び灰分量R3である。本実施形態では、灰分にアルミニウム(Al)成分が含まれるとして、そのAl成分の量に対応するAl成分量R4も入力部37に入力可能とされている。Al成分は、硫安化合物を構成する金属成分として代表的なものであるため、このようなAl成分を考慮に入れることで、固着物の原因となる代表的な組成の硫安化合物(NH4Al(SO4)2等)を対象として、固着物の生成量を予測できるようになる。
The
Al成分が不足して硫安化合物の生成が阻害されるケースが稀である場合等には、灰分に十分量のAl成分が含まれるのが通常として、Al成分量R4の入力を不要としてもよい。硫安化合物を構成する金属成分としてAl成分は一例であり、Al成分に代替するような金属成分があれば、該金属成分が硫安化合物を構成する成分になり得る。 In rare cases where the Al component is insufficient and the formation of the ammonium sulfate compound is inhibited, the ash usually contains a sufficient amount of the Al component, and the input of the Al component amount R4 may be unnecessary. .. The Al component is an example of the metal component constituting the ammonium sulfate compound, and if there is a metal component that substitutes for the Al component, the metal component can be a component constituting the ammonium sulfate compound.
また、本実施形態では、灰分にカルシウム(Ca)成分が含まれるとして、そのCa成分の量に対応するCa成分量R5も入力部37に入力可能とされている。Ca成分を考慮することで、後述するような、Ca成分によるS成分の消費率や、Ca成分による硫安化合物の分解率を考慮することができるようになるため、固着物の生成量をより正確に予測できるようになる。
Further, in the present embodiment, assuming that the ash contains a calcium (Ca) component, the Ca component amount R5 corresponding to the amount of the Ca component can also be input to the
また、上記の設備稼働データ31bは、脱硝装置3によるSO2の酸化率R6(脱硝装置3によりSO2が酸化されてSO3となる割合)、Ca成分によるS成分の消費率R7(Ca成分との反応により排ガス中のSO3が消費される割合)及びCa成分による硫安化合物の分解率R8(Ca成分との反応により一度生成した硫安化合物が分解される割合)である。設備稼働データ31bの一部又は全部は入力を省略できるが、これらを入力することで、硫安化合物の生成に影響を与える要素を考慮に入れることができるようになる。
Further, the above
更に、上記の固着物性状データ31cは、灰分の付着比R9(硫安化合物の単位量当たりに付着する灰分量の割合)、固着物の密度R10(硫安化合物に灰分が付着して生成される固着物の密度)である。灰分の付着比R9が大きく、固着物に占める硫安化合物の割合が無視できる場合には、固着物の密度R10を実質的に灰分の密度に近似でき、固着物の密度R10を灰分の密度として扱うことができる。固着物性状データ31cは、予め記憶された固定値を用いてもよく、この場合、その入力を不要とすることができる。
Further, the above-mentioned fixed
リークNH3量推定手段32は、NH3供給部8からNH3を供給する制御において、脱硝装置3の排気下流側に未反応のままNH3がリークする場合のリークNH3量(NH3生成総量AN)を推定する。リークNH3は、脱硝装置の運転条件(排ガスGs0中のNOX量、NOxに対するNH3の比率等)や脱硝触媒の劣化状況に応じて変動するため、データ読込手段31から読み込んだN成分量R1等に基づき、リークNH3量を推定できる。
The leak NH 3 amount estimation means 32 leaks NH 3 amount (NH 3 generation) when NH 3 leaks to the exhaust downstream side of the
石炭の燃焼によりS成分の大部分はSO2となるが、燃焼時に酸素過剰である場合等、その一部がSO3となる。そこで、SO3生成量推定手段33は、そのような燃焼条件等に基づき、SO3生成率(石炭のS成分のうちSO3として生成される割合)を推定する。そして、SO3生成量推定手段33は、推定したSO3生成率と、データ読込手段31から読み込んだS成分量R2と、に基づき、ボイラ1でのSO3生成量AS1を推定する。SO3以外のS成分は全てSO2になるとすれば、上記のSO3生成率からSO2生成率を推定し、これに基づいてSO2生成量も推定できる。
Most of the S component becomes SO 2 due to the combustion of coal, but a part of it becomes SO 3 when oxygen is excessive at the time of combustion. Therefore, the SO 3 production amount estimation means 33 estimates the SO 3 production rate (the ratio of the S component of coal produced as SO 3 ) based on such combustion conditions and the like. Then, the SO 3 generation amount estimation means 33 estimates the SO 3 production amount AS1 in the
なお、上記のリークNH3量推定手段32で推定するNH3生成総量ANや、SO3生成量推定手段33で推定するSO3生成率は、各種条件の変動に応じた変動量が無視できる場合には、固定値を用いても構わない。 In addition, the fluctuation amount according to the fluctuation of various conditions can be ignored in the NH 3 generation total amount AN estimated by the leak NH 3 quantity estimation means 32 and the SO 3 generation rate estimated by the SO 3 generation amount estimation means 33. In some cases, a fixed value may be used.
SO3は、ボイラ1で生成されるだけでなく、脱硝装置3によるSO2の酸化によっても生成される。SO3が増加すると、硫安化合物の生成量の増加につながる。一方、SO3は、灰分に含まれるCaと反応して硫酸カルシウム(CaSO4)を生成し、これによりその一部が消費される。SO3が消費されると、硫安化合物の生成量の低下につながる。そこで、SO3生成量推定手段33は、上記のSO2生成量と、データ読込手段31から読み込んだSO2の酸化率R6と、に基づきSO2酸化量AS2(脱硝装置3によるSO2の酸化により新たに生成されるSO3の量)を推定する。このSO2酸化量AS2と、上記のSO3生成量AS1と、を合計し、SO3合計量AS3を推定する(下記式(1))。
SO 3 is produced not only by the
SO3合計量AS3=(SO3生成量AS1)+(SO2酸化量AS2)・・(1) SO 3 total amount AS3 = ( SO3 production amount AS1 ) + (SO2 oxidation amount AS2 ) ... (1)
そして、SO3生成量推定手段33は、上記のSO3合計量AS3と、データ読込手段31から読み込んだS成分の消費率R7と、に基づき、SO3消費量AS4(Ca成分がSO3と反応しCaSO4が生成されることで該SO3が消費される量)を推定する。これらを踏まえ、SO3生成量推定手段33は、SO3合計量AS3からSO3消費量AS4を減算し、最終的なSO3生成総量AS5を推定する(下記式(2)参照)。
Then, the SO 3 generation amount estimation means 33 is based on the above SO 3 total amount AS 3 and the consumption rate R7 of the S component read from the data reading means 31, and the SO 3 consumption amount AS 4 (Ca component is SO). The amount of SO 3 consumed by reacting with 3 to produce Ca SO 4 ) is estimated. Based on these, the SO 3 production amount estimation means 33 subtracts the SO 3 consumption amount AS 4 from the SO 3
SO3生成総量AS5=(SO3合計量AS3)-(SO3消費量AS4)・・(2) Total amount of SO 3 generated AS5 = (total amount of SO 3 AS3 )-(SO3 consumption amount AS4 ) ... ( 2 )
硫安化合物生成量予測手段34は、リークNH3量推定手段32で推定されたNH3生成総量ANと、SO3生成量推定手段33で推定されたSO3生成総量AS5と、に基づき、硫安化合物の生成量ANS1を推定する。そして、上記の硫安化合物の生成量ANS1と、データ読込手段31から読み込んだ硫安化合物の分解率R8と、に基づき、硫安化合物の分解量ANS2(Ca成分が硫安化合物と反応してCaSO4が生成されることで該硫安化合物が分解される量)を推定する。更に、硫安化合物の生成量ANS1から硫安化合物の分解量ANS2を減算し、最終的な硫安化合物の生成総量ANS3を推定する(下記式(3)参照)。 The ammonium sulfate compound production amount predicting means 34 is based on the NH 3 total production amount AN estimated by the leak NH 3 production amount estimation means 32 and the SO 3 production total amount AS 5 estimated by the SO 3 production amount estimation means 33. The amount of ammonium sulfate compound produced, ANS1 , is estimated. Then, based on the above-mentioned amount of ammonium sulfate compound produced A NS1 and the decomposition rate R8 of the ammonium sulfate compound read from the data reading means 31, the amount of decomposition of the ammonium sulfate compound A NS2 (Ca component reacts with the ammonium sulfate compound to CaSO 4 ). The amount of the ammonium sulfate compound decomposed by the formation of the compound) is estimated. Further, the decomposition amount A NS2 of the ammonium sulfate compound is subtracted from the amount of ammonium sulfate compound produced A NS1 to estimate the final total amount of ammonium sulfate compound produced A NS3 (see the following formula (3)).
硫安化合物の生成総量ANS3=(硫安化合物の生成量ANS1)-(硫安化合物の分解量ANS2)・・(3) Total amount of ammonium sulfate compound produced A NS3 = (Amount of ammonium sulfate compound produced A NS1 )-(Amount of decomposition of ammonium sulfate compound A NS2 ) ... (3)
以上までの流れを整理すると、図5(a)の通りである。石炭の燃焼により、N成分がNOXとなる。NOXに対してNH3が供給され、脱硝装置3によりN2とH2Oに分解される。一方、供給されたNH3の一部が、未反応のまま脱硝装置3の排気下流側にリークする場合がある(NH3生成総量AN)。
The flow up to the above is summarized in FIG. 5 (a). Combustion of coal makes the N component NO X. NH 3 is supplied to NO X and decomposed into N 2 and H 2 O by the
また、石炭の燃焼により、S成分がSOXとなる。SOXの大部分はSO2であるが、燃焼時に酸素過剰である場合等、僅かにSO3となる(SO3生成量AS1)。SO2の一部も、その後の脱硝装置3により酸化されてSO3となる(SO2酸化量AS2)。一方、灰分中のCa成分がSO3と反応するとCaSO4を生成し、これによりSO3が消費される(SO3消費量AS4)。従って、SO3生成量AS1とSO2酸化量AS2の合計量(SO3合計量AS3)から、SO3消費量AS4を減算した量のSO3が、空気予熱器5に流れ込む(SO3生成総量AS5)。 In addition, the S component becomes SOX due to the combustion of coal. Most of SO X is SO 2 , but it becomes SO 3 slightly when oxygen is excessive at the time of combustion (SO 3 production amount AS 1 ). A part of SO 2 is also oxidized to SO 3 by the subsequent denitration device 3 (SO 2 oxidation amount AS2 ). On the other hand, when the Ca component in the ash reacts with SO 3 , Ca SO 4 is generated, which consumes SO 3 (SO 3 consumption AS 4 ). Therefore, the amount of SO 3 obtained by subtracting the SO 3 consumption amount AS 4 from the total amount of the SO 3 production amount AS 1 and the SO 2 oxidation amount AS 2 (SO 3 total amount AS 3) flows into the air preheater 5 ( Total amount of SO 3 produced AS5 ).
NH3、SO3及びAl成分等の反応により、硫安化合物(NH4Al(SO4)2)が生成する(硫安化合物の生成量ANS1)。一方、灰分のCa成分が硫安化合物と反応してCaSO4を生成し、これにより硫安化合物が分解される(硫安化合物の分解量ANS2)。その後の硫安化合物の量が、最終的な硫安化合物の生成総量ANS3となる。 Ammonium sulfate compound (NH 4 Al (SO 4 ) 2 ) is produced by the reaction of NH 3 , SO 3 and Al components (amount of ammonium sulfate compound produced ANS 1). On the other hand, the Ca component of the ash reacts with the ammonium sulfate compound to form CaSO 4 , which decomposes the ammonium sulfate compound (decomposition amount of the ammonium sulfate compound A NS2 ). The amount of ammonium sulfate compound thereafter becomes the final total amount of ammonium sulfate compound produced ANS3 .
本実施形態の予測システム30は、上記のような硫安化合物の生成総量ANS3の予測結果を利用して、固着物の生成量AKを予測し、更には差圧ΔPを予測する。すなわち、固着物生成量予測手段35は、上記で予測した硫安化合物の生成総量ANS3に、固着物性状データ31cから読み込んだ灰分の付着比R9を乗じて、固着物の生成量AKを推定する。そして、差圧予測手段36は、上記で予測した固着物の生成量AKと、固着物性状データ31cから読み込んだ固着物の密度R10と、に基づき、固着物の体積VKを推定する。
The
例えば、硫安化合物(NH4Al(SO4)2)が凝縮して灰分が付着し、固着物となるのが空気予熱器5の中温部とすると、その中温部における排ガスの流路径D0や流路長L0は設計時点で既知である。その流路径D0において流路長L0に渡って体積VKの固着物が生成すると仮定すれば、低温部における固着物の厚さdを大まかに算出でき、そして、流路径D0から固着物の厚さdを減算することで、中温部を通過可能な流路の有効径(有効流路径D1)を大まかに演算できる(図5(b)参照)。
For example, if the ammonium sulfate compound (NH 4 Al (SO 4 ) 2 ) is condensed and ash adheres to it, and the adhered substance is the medium temperature part of the
そして、差圧予測手段36は、上記で求めた有効流路径D1と、稼動時に予定される排ガスの流量Qと、に基づき、差圧ΔPを予測する。稼動時に予定される排ガスの流量Qは、ボイラ1の過去の稼働条件等を参照することで、ボイラ設備20を稼働せずとも予め取得可能である。
Then, the differential pressure predicting means 36 predicts the differential pressure ΔP based on the effective flow path diameter D1 obtained above and the flow rate Q of the exhaust gas scheduled during operation. The flow rate Q of the exhaust gas scheduled at the time of operation can be obtained in advance without operating the
この点、差圧予測手段36は、差圧ΔPを、有効流路径D1と、排ガスの流量Qと、の関数に簡略化して求めている(下記式(4)参照)。差圧ΔPを予測するのに、有効流路径D1や排ガスの流量Q以外の他のパラメータを考慮してもよいが、下記式(4)に基づいた関数に従えば、差圧ΔPを容易に予測できる。 In this respect, the differential pressure predicting means 36 simply obtains the differential pressure ΔP as a function of the effective flow path diameter D1 and the flow rate Q of the exhaust gas (see the following equation (4)). In order to predict the differential pressure ΔP, parameters other than the effective flow path diameter D1 and the flow rate Q of the exhaust gas may be considered, but if the function based on the following equation (4) is followed, the differential pressure ΔP can be easily obtained. Can be predicted.
差圧ΔP=f(Q(排ガスの流量),D1(有効流路径))・・(4) Differential pressure ΔP = f (Q (exhaust gas flow rate), D 1 (effective flow path diameter)) ... (4)
上記の硫安化合物の生成総量ANS3や固着物の生成量AKは、マイナス(減少や分解)の概念も含む。上記式(3)で硫安化合物の生成総量ANS3がプラスであれば、硫安化合物が増加し、固着物の生成量AKもプラスとなって、固着物の体積VKもプラスとなる。そのプラスの値の程度によって有効流路径D1が縮小する程度が推定でき、それに応じて差圧ΔPの上昇の程度が予測できる。 The total amount of ammonium sulfate compound produced A NS3 and the amount of adhered substance AK also include the concept of minus (decrease or decomposition). If the total amount of ammonium sulfate compound produced ANS3 is positive in the above formula (3), the amount of ammonium sulfate compound is increased, the amount of adhered material AK is also positive, and the volume VK of the adhered material is also positive. The degree to which the effective flow path diameter D 1 is reduced can be estimated depending on the degree of the positive value, and the degree of increase in the differential pressure ΔP can be predicted accordingly.
一方、上記式(3)で硫安化合物の生成総量ANS3がマイナスであれば、硫安化合物が減少・分解し、固着物の生成量AKもマイナスとなって、固着物の体積VKもマイナスとなる。そのマイナスの値の程度によって有効流路径D1が回復(拡大)する程度が推定でき、それに応じて差圧ΔPの下降の程度が予測できる。また、排ガスの流量Qの増減に応じて、差圧ΔPの上昇又は下降の程度が予測できる。 On the other hand, if the total amount of ammonium sulfate compound produced ANS3 is negative in the above formula (3), the ammonium sulfate compound is reduced and decomposed, the amount of adhered material AK is also negative, and the volume VK of the adhered material is also negative. It becomes. The degree of recovery (expansion) of the effective flow path diameter D 1 can be estimated from the degree of the negative value, and the degree of decrease of the differential pressure ΔP can be predicted accordingly. Further, the degree of increase or decrease of the differential pressure ΔP can be predicted according to the increase or decrease of the flow rate Q of the exhaust gas.
以上説明したボイラ設備20及び固着物の生成量予測方法によれば、使用を予定する炭素系燃料を分析して得られた該炭素系燃料由来のN成分量R1、S成分量R2及び灰分量R3を予め取得する。そのため、実際にその燃料でボイラ設備20を稼動しなくても、予め取得されたN成分量R1、S成分量R2及び灰分量R3に基づき、固着物の生成量AKを予測できる。そして、予測した固着物の生成量AKに基づき排ガスが通過可能な有効流路径D1を求め、有効流路径D1と、排ガスの流量Qと、に基づき、差圧ΔPを予測できる。
According to the
加えて、本実施形態では、空気予熱器5での固着物の生成量AKを予測している。これによれば、固着物が生成しやすい空気予熱器5の中温部および低温部を対象に、実際にその燃料でボイラ設備20を稼動しなくても、固着物の生成量AKを予測できる。勿論、固着物の生成量を予測する箇所は空気予熱器5に限定されず、脱硝装置3の排気下流側で硫安化合物が生成・凝縮するような箇所があれば、その箇所を対象として固着物の生成量を予測でき、ひいては差圧ΔPを予測できる。
In addition, in the present embodiment, the amount of adhered matter AK produced by the
(実施形態2)
図6は、上記の予測手法を利用した応用例を説明するためのタイムチャート図である。図6(a)は、予測システム30に入力される、燃料の使用計画データDATAの一例である。使用計画データDATAは、将来的な期間と、その期間に応じた燃料と、を含んでいる。ここでは、将来的な期間Taで石炭aを使用し、その次の期間Tbで石炭bを使用し、更にその次の期間Tcで石炭cを使用し、また更にその次の期間Tdで石炭dを使用する使用計画が表されている。図示は省略しているが、使用計画データDATAは期間Td以降の使用計画も含んでいる。
(Embodiment 2)
FIG. 6 is a time chart diagram for explaining an application example using the above prediction method. FIG. 6A is an example of fuel usage plan data DATA input to the
使用計画データDATAにおいて、将来的な複数の期間は、連続していてもよいし連続していなくてもよい。ただ、連続していたほうが、途切れなく差圧を予測できるので好ましい。ここでは、期間に応じて異なる石炭での使用が計画されているが、期間をあけて同じ石炭を繰り返し使用する場合もある。 In the usage plan data DATA, a plurality of future periods may or may not be continuous. However, continuous pressure is preferable because the differential pressure can be predicted without interruption. Here, it is planned to use different coals depending on the period, but the same coal may be used repeatedly at intervals.
石炭a~石炭dのうち、例えば、石炭b及び石炭cが、ボイラ設備20の稼動実績のない石炭である。ただ、実施形態1で説明した予測手法は、稼動実績のある石炭a及び石炭dだけでなく、稼動実績のない石炭b及び石炭cについても適用できる。石炭a~石炭dのそれぞれや、稼動を予定するボイラ設備20について、入力部37に燃料性状データ31a、設備稼働データ31b及び固着物性状データ31cを入力することで、図6(b)に示すとおり、実際にその石炭でボイラ設備20を稼動しなくても、将来の差圧ΔPを予測できる(図中、期間Ta~期間Tdの点線)。
Of the coals a to d, for example, coal b and coal c are coals for which the
特に本例では、石炭bを使用する期間Tbに差圧ΔPが上昇していくことが予測できるので、期間Tbにおいては、差圧ΔPが大きくなり過ぎないような慎重な稼働を実施でき、これにより、設備に過大な負荷がかかることを確実に防止できる。また、石炭cを使用する期間Tcに差圧ΔPが下降していくことが予測できるので、期間Tb以降、稼働を許容できる機会がさらに増えることが期待され、ボイラ設備20の稼働時間tをより確保しやすくなる。
In particular, in this example, since it can be predicted that the differential pressure ΔP will increase during the period Tb in which the coal b is used, it is possible to carry out careful operation so that the differential pressure ΔP does not become too large during the period Tb. As a result, it is possible to reliably prevent an excessive load from being applied to the equipment. Further, since it can be predicted that the differential pressure ΔP will decrease during the period Tc in which the coal c is used, it is expected that the chances of allowing the operation will increase further after the period Tb, and the operating time t of the
図6(c)に示すとおり、所定の開始条件(start)が満たされると、そのときの差圧予測時点の初期差圧ΔPstartと、石炭aに応じた差圧変化速度と、に基づき、期間Taにおける将来の差圧が実測される(図中、期間Taの実線)。そして、期間Ta終了時の予測差圧が、連続する次の期間Tb開始時の初期差圧ΔPstartとなる。該初期差圧ΔPstartと、石炭bに応じた差圧変化速度と、に基づき、期間Tbにおける将来の差圧が実測される(図中、期間Tbの実線)。 As shown in FIG. 6 (c), when a predetermined start condition (start) is satisfied, based on the initial differential pressure ΔP start at the time of differential pressure prediction at that time and the differential pressure change rate according to the coal a. The future differential pressure in the period Ta is actually measured (solid line in the period Ta in the figure). Then, the predicted differential pressure at the end of the period Ta becomes the initial differential pressure ΔP start at the start of the next continuous period Tb. The future differential pressure in the period Tb is actually measured based on the initial differential pressure ΔP start and the differential pressure change rate according to the coal b (solid line in the period Tb in the figure).
ここで、実差圧と、予測された差圧と、に僅かなズレが生じていると、そのズレが積み重なっていく。期間Taの終了時(期間Tbの開始時)には、ズレΔD1(実差圧>予測された差圧)が生じ、期間Tbの終了時(期間Tcの開始時)には、ズレΔD2が生じている(ΔD2>ΔD1)。 Here, if there is a slight deviation between the actual differential pressure and the predicted differential pressure, the deviations will accumulate. At the end of the period Ta (at the start of the period Tb), a deviation ΔD1 (actual differential pressure> predicted differential pressure) occurs, and at the end of the period Tb (at the start of the period Tc), a deviation ΔD2 occurs. (ΔD2> ΔD1).
例えば、期間Taの終了時(期間Tbの開始時)において、ズレΔD1は所定の許容値ΔDlimを越えないが、期間Tbの終了時(期間Tcの開始時)において、ズレΔD2が許容値ΔDlimを越える場合がある。このとき、予測システム30は、ズレΔD1が許容値ΔDlimを超えたことを検知して、期間Tc開始時の初期差圧ΔPstartを始点とした上で、再び差圧ΔPを予測する。つまり、期間Tbの終了時(期間Tcの開始時)に、予測していた差圧の推移が更新されることになる。以降の期間でも、差圧の予測の更新が反映される(図6(d))。
For example, at the end of the period Ta (at the start of the period Tb), the deviation ΔD1 does not exceed the predetermined allowable value ΔD lim , but at the end of the period Tb (at the start of the period Tc), the deviation ΔD2 is the allowable value ΔD. It may exceed lim . At this time, the
使用計画データDATAにおける期間の長さの関係や、予測される差圧の推移は、図6に示した例に制限されない。また、使用計画データDATAは、図4に示した予測システム30における記憶手段(図示せず)等に格納できるが、それ以外の場所に格納されてもよい。
The relationship between the lengths of the periods in the usage plan data DATA and the transition of the predicted differential pressure are not limited to the example shown in FIG. Further, the usage plan data DATA can be stored in a storage means (not shown) in the
(実施形態3)
図7は、本実施形態に係る発電設備50の全体の構成例を示す概略系統図である。発電設備50は、実施形態1で説明したボイラ設備20と、ボイラ1で発生した蒸気が導入されて駆動力を得る蒸気タービン51と、蒸気タービン51の駆動により電力を得る発電機52と、を具備している。
(Embodiment 3)
FIG. 7 is a schematic system diagram showing an overall configuration example of the
発電設備50では、ボイラ1での炭素系燃料の燃焼により蒸気が生成される。かかる蒸気が蒸気タービン51に導入されて発電機52の駆動力が得られる。発電機52が駆動されることで、電力が得られる。蒸気タービン51の排気蒸気は復水器53で凝縮されて復水され、復水器53からの復水は給水ポンプ54の駆動によりボイラ1に給水される。
In the
本実施形態に係る発電設備50によれば、実施形態1のボイラ設備20を具備するので、実際にその燃料でボイラ設備20を稼動しなくても、使用を予定する炭素系燃料を分析して得られた該炭素系燃料由来のN成分量R1、S成分量R2及び灰分量R3を予め取得するとともに、予め取得されたN成分量R1、S成分量R2及び灰分量R3に基づき、固着物の生成量AKを予測できる。かかる予測結果は、差圧ΔPの予測にも利用できる。
According to the
(他の実施形態)
以上、本発明の一実施形態を説明したが、本発明は上記の実施形態に限定されない。例えば、図4では、予測システム30の各手段を機能的なブロックに分けて説明したが、これらの手段は、その一部又は全てが一体として構成されていてもよい。また、予測システム30も、その一部又は全てがボイラ設備20と一体に構成されていてもよい。また、燃料には、本発明の範囲内で石炭以外の炭素系燃料が含まれていてもよい。更には、本発明の範囲内で炭素系燃料以外の燃料が含まれていてもよい。
(Other embodiments)
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. For example, in FIG. 4, each means of the
1…ボイラ、2…排気通路、3…脱硝装置、4…排気通路、5…空気予熱器、5a…ローター、5b…伝熱エレメント、5c…回転軸、5d…第1密度部(高温部)、5e…第2密度部、5f…第3密度部(低温部)、6…粉砕機、7…バーナー群、8…NH3供給部、9…押込通風機、10…一次通風機、11…排気通路、12…誘引通風機、13…煙突、20…ボイラ設備、30…予測システム、31…データ読込手段、31a…燃料性状データ、31b…設備稼働データ、31c…固着物性状データ、32…リークNH3量推定手段、33…SO3生成量推定手段、34…硫安化合物生成量予測手段、35…固着物生成量予測手段、36…差圧予測手段、37…入力部、50…発電設備、51…蒸気タービン、52…発電機、53…復水器、54…給水ポンプ、Air1…燃焼用空気(空気)、Air1´…空気、AiR2…燃焼用空気(空気)、AiR2´…空気、Fuel…炭素系燃料、Gs0,Gs1,Gs2…排ガス 1 ... Boiler, 2 ... Exhaust passage, 3 ... Condenser, 4 ... Exhaust passage, 5 ... Air preheater, 5a ... Rotor, 5b ... Heat transfer element, 5c ... Rotating shaft, 5d ... First density part (high temperature part) 5, 5e ... 2nd density part, 5f ... 3rd density part (low temperature part), 6 ... crusher, 7 ... burner group, 8 ... NH 3 supply part, 9 ... push-in blower, 10 ... primary blower, 11 ... Exhaust passage, 12 ... Condenser, 13 ... Chimney, 20 ... Boiler equipment, 30 ... Prediction system, 31 ... Data reading means, 31a ... Fuel property data, 31b ... Equipment operation data, 31c ... Fixed physical property data, 32 ... Leak NH 3 amount estimation means, 33 ... SO 3 production amount estimation means, 34 ... sulfur compound production amount prediction means, 35 ... adhered matter production amount prediction means, 36 ... differential pressure prediction means, 37 ... input unit, 50 ... power generation equipment , 51 ... steam turbine, 52 ... generator, 53 ... condenser, 54 ... water supply pump, Air1 ... combustion air (air), Air1'... air, AiR2 ... combustion air (air), AiR2'... air, Fuel ... Carbon-based fuel, Gs0, Gs1, Gs2 ... Exhaust gas
Claims (11)
前記ボイラの下流側に設けられ、アンモニア(NH3)の存在下で前記排ガス中の窒素酸化物(NOX)を脱硝する脱硝装置と、を具備するボイラ設備であって、
使用を予定する前記炭素系燃料を分析して得られた該炭素系燃料由来のN成分の量、S成分の量及び灰分の量を予め取得するとともに、予め取得された前記N成分の量、前記S成分の量及び前記灰分の量、前記脱硝装置の下流側にリークしたアンモニア(NH 3 )の量に基づき、前記炭素系燃料を前記ボイラで燃焼させたときの、前記脱硝装置の下流側での固着物の生成量を予測する予測システムを具備する
ことを特徴とするボイラ設備。 A boiler that burns carbon-based fuel to emit exhaust gas containing nitrogen oxides (NO X ) and sulfur oxides (SO X ),
A boiler facility provided on the downstream side of the boiler and equipped with a denitration device for denitrifying nitrogen oxides (NO X ) in the exhaust gas in the presence of ammonia (NH 3 ).
The amount of N component, the amount of S component and the amount of ash obtained by analyzing the carbon-based fuel to be used are obtained in advance, and the amount of the N component obtained in advance, The downstream side of the denitration device when the carbon-based fuel is burned in the boiler based on the amount of the S component, the amount of the ash, and the amount of ammonia (NH 3 ) leaked to the downstream side of the denitration device. Boiler equipment characterized by being equipped with a prediction system that predicts the amount of solidified matter produced in the plant.
前記固着物は、前記Al成分を含んで生成される硫安化合物に前記灰分が付着したものである
ことを特徴とする請求項1に記載のボイラ設備。 The ash contains an aluminum (Al) component and
The boiler equipment according to claim 1, wherein the adhered substance is one in which the ash content is attached to the ammonium sulfate compound produced containing the Al component.
前記予測システムは、前記Ca成分による前記硫安化合物の分解率を考慮して、前記固着物の生成量を予測する
ことを特徴とする請求項2に記載のボイラ設備。 The ash contains a calcium (Ca) component and
The boiler equipment according to claim 2, wherein the prediction system predicts the amount of the adhered product in consideration of the decomposition rate of the ammonium sulfate compound by the Ca component.
ことを特徴とする請求項3に記載のボイラ設備。 The boiler equipment according to claim 3, wherein the prediction system predicts the amount of the adhered matter in consideration of the consumption rate of the S component by the Ca component in the exhaust gas.
ことを特徴とする請求項1~4の何れか一項に記載のボイラ設備。 The prediction system according to any one of claims 1 to 4, wherein the prediction system predicts the amount of the adhered matter in consideration of the oxidation rate of sulfur dioxide (SO 2 ) by the denitration device. Boiler equipment.
前記予測システムは、前記空気予熱器での前記固着物の生成量を予測する
ことを特徴とする請求項1~5の何れか一項に記載のボイラ設備。 The boiler equipment is provided on the downstream side of the denitration device with an air preheater that preheats the combustion air in the boiler by utilizing the residual heat of the exhaust gas.
The boiler equipment according to any one of claims 1 to 5, wherein the prediction system predicts the amount of the adhered matter produced by the air preheater.
予測した前記固着物の生成量に基づき前記排ガスが通過可能な流路の有効径を求め、演算された前記流路の有効径と、前記排ガスの流量と、に基づき、前記流路の上流側及び下流側の差圧を予測する
ことを特徴とする請求項1~6の何れか一項に記載のボイラ設備。 The prediction system is
The effective diameter of the flow path through which the exhaust gas can pass is obtained based on the predicted amount of the adhered matter, and the upstream side of the flow path is based on the calculated effective diameter of the flow path and the flow rate of the exhaust gas. The boiler equipment according to any one of claims 1 to 6, wherein the differential pressure on the downstream side is predicted.
前記ボイラで発生した蒸気が導入されて駆動力を得る蒸気タービンと、
前記蒸気タービンの駆動により電力を得る発電機と、
を具備することを特徴とする発電設備。 The boiler equipment according to any one of claims 1 to 7 and the boiler equipment.
A steam turbine in which steam generated in the boiler is introduced to obtain driving force, and
A generator that obtains electric power by driving the steam turbine, and
A power generation facility characterized by being equipped with.
前記ボイラの下流側に設けられ、アンモニア(NH3)の存在下で前記排ガス中の窒素酸化物(NOX)を脱硝する脱硝装置と、を具備するボイラ設備で用いられ、
使用を予定する炭素系燃料を分析して得られた該炭素系燃料由来のN成分の量、S成分の量及び灰分の量を予め取得するとともに、予め取得された前記N成分の量、前記S成分の量及び前記灰分の量、前記脱硝装置の下流側にリークしたアンモニア(NH 3 )の量に基づき、前記炭素系燃料を前記ボイラで燃焼させたときの、前記脱硝装置の下流側での固着物の生成量を予測する
ことを特徴とする固着物の生成量予測方法。 A boiler that burns carbon-based fuel to emit exhaust gas containing nitrogen oxides (NO X ) and sulfur oxides (SO X ),
It is used in a boiler facility provided on the downstream side of the boiler and equipped with a denitration device for denitrifying nitrogen oxides (NO X ) in the exhaust gas in the presence of ammonia (NH 3 ).
The amount of N component, the amount of S component, and the amount of ash obtained by analyzing the carbon-based fuel to be used are obtained in advance, and the amount of the N component obtained in advance, the above. Based on the amount of S component, the amount of ash, and the amount of ammonia (NH 3 ) leaked to the downstream side of the denitration device, on the downstream side of the denitration device when the carbon-based fuel is burned in the boiler. A method for predicting the amount of fixed matter produced, which comprises predicting the amount of fixed matter produced.
ことを特徴とする請求項9に記載の固着物の生成量予測方法。 The method for predicting the amount of adhered matter produced according to claim 9, wherein a ash containing an aluminum (Al) component is used.
ことを特徴とする請求項9又は10に記載の固着物の生成量予測方法。 The effective diameter of the flow path through which the exhaust gas can pass is obtained based on the predicted amount of the adhered matter, and the upstream side and the downstream side of the flow path are based on the calculated effective diameter and the flow rate of the exhaust gas. The method for predicting the amount of adhered matter produced according to claim 9 or 10, wherein the differential pressure is predicted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018040150A JP7007217B2 (en) | 2018-03-06 | 2018-03-06 | Boiler equipment, power generation equipment, and method for predicting the amount of stuck matter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018040150A JP7007217B2 (en) | 2018-03-06 | 2018-03-06 | Boiler equipment, power generation equipment, and method for predicting the amount of stuck matter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019152419A JP2019152419A (en) | 2019-09-12 |
JP7007217B2 true JP7007217B2 (en) | 2022-01-24 |
Family
ID=67948777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018040150A Active JP7007217B2 (en) | 2018-03-06 | 2018-03-06 | Boiler equipment, power generation equipment, and method for predicting the amount of stuck matter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7007217B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7333473B2 (en) * | 2019-10-09 | 2023-08-24 | タタ コンサルタンシー サービシズ リミテッド | Method and system for monitoring and predicting air preheating equipment contamination in real time |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010164455A (en) | 2009-01-16 | 2010-07-29 | Tokyo Electric Power Co Inc:The | Method and device for evaluating ash erosion |
WO2016098173A1 (en) | 2014-12-15 | 2016-06-23 | 中国電力株式会社 | Air pre-heater cleaning time predicting method and air pre-heater cleaning time predicting apparatus |
-
2018
- 2018-03-06 JP JP2018040150A patent/JP7007217B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010164455A (en) | 2009-01-16 | 2010-07-29 | Tokyo Electric Power Co Inc:The | Method and device for evaluating ash erosion |
WO2016098173A1 (en) | 2014-12-15 | 2016-06-23 | 中国電力株式会社 | Air pre-heater cleaning time predicting method and air pre-heater cleaning time predicting apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2019152419A (en) | 2019-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI450755B (en) | Method of controlling the operation of a selective catalytic reduction plant | |
JP5302597B2 (en) | Exhaust gas treatment apparatus and exhaust gas treatment method | |
EP2385226B1 (en) | Exhaust gas cleaning device | |
JP3924150B2 (en) | Gas combustion treatment method and apparatus | |
JP7007217B2 (en) | Boiler equipment, power generation equipment, and method for predicting the amount of stuck matter | |
JP5960376B1 (en) | Air preheater cleaning time prediction method and air preheater cleaning time prediction device | |
Cobb et al. | Application of selective catalytic reduction (SCR) technology for NOx reduction from refinery combustion sources | |
JP5697077B2 (en) | Denitration catalyst degradation regeneration method and degradation regeneration system | |
JP2736962B2 (en) | Denitration / desulfurization method and apparatus | |
KR101470784B1 (en) | Denitrator and denitration method | |
JP7095949B2 (en) | Boiler equipment, power generation equipment | |
JP6586812B2 (en) | Coal-fired power generation facility | |
JP6428964B1 (en) | Denitration catalyst degradation evaluation method | |
JPH1114034A (en) | Exhaust gas treating apparatus and operation method thereof | |
JPH11235516A (en) | Denitrification device for exhaust gas | |
JP4933496B2 (en) | NOx emission prediction method, operation method of gasification power plant using this method, and gasification power plant | |
JP4933485B2 (en) | NOx emission prediction method, operation method of gasification power plant using this method, and gasification power plant | |
JP3902737B2 (en) | Ammonia injection control method for denitration catalyst device of waste treatment facility | |
JP3526490B2 (en) | Exhaust gas denitration device and denitration method | |
JP2009119306A (en) | Controller of denitrification device and control method of the same | |
McCarthy et al. | Advanced NOx Aftertreatment System Performance Following 150 LNT Desulfation Events | |
JPH10265204A (en) | Operating method of sulfur recovery equipment | |
JP7247973B2 (en) | Purification control device | |
JP5911350B2 (en) | Exhaust gas purification method and apparatus | |
WO2017022520A1 (en) | Method for inhibiting degradation of denitration device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220106 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7007217 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |