JP7003859B2 - Manufacturing method of surface-coated near-infrared shielding fine particles and surface-coated near-infrared shielding fine particles - Google Patents
Manufacturing method of surface-coated near-infrared shielding fine particles and surface-coated near-infrared shielding fine particles Download PDFInfo
- Publication number
- JP7003859B2 JP7003859B2 JP2018133269A JP2018133269A JP7003859B2 JP 7003859 B2 JP7003859 B2 JP 7003859B2 JP 2018133269 A JP2018133269 A JP 2018133269A JP 2018133269 A JP2018133269 A JP 2018133269A JP 7003859 B2 JP7003859 B2 JP 7003859B2
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- vacuum chamber
- infrared shielding
- atomic layer
- reaction gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Optical Filters (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Surface Treatment Of Glass (AREA)
- Chemical Vapour Deposition (AREA)
Description
本発明は、可視波長領域に高い透過特性を有しかつ近赤外線波長領域に高い吸収特性を有する近赤外線遮蔽微粒子に係り、特に、原子層堆積(ALD)法を用いた原子層堆積(ALD)装置により近赤外線遮蔽微粒子表面にピンホールのない被覆層を形成してその耐候性を高めた表面被覆近赤外線遮蔽微粒子とその製造方法に関するものである。 The present invention relates to near-infrared shielding fine particles having high transmission characteristics in the visible wavelength region and high absorption characteristics in the near-infrared wavelength region, and in particular, atomic layer deposition (ALD) using the atomic layer deposition (ALD) method. The present invention relates to surface-coated near-infrared shielding fine particles having a coating layer without pinholes formed on the surface of the near-infrared shielding fine particles by an apparatus to improve the weather resistance, and a method for producing the same.
太陽光線のうち、長波長領域の近赤外線(熱線)は、熱エネルギーとして人体に感じる波長領域の光であり、室内、車内の温度上昇の原因ともなる。一方、短波長領域の紫外線は、日焼け、しみ、そばかす、発癌、視力障害等人体に悪影響を及ぼし、物品に係る機械的強度の低下、色褪せ等の外観劣化、食品の劣化、印刷物に係る色調の低下等を引き起こすものである。 Of the sun's rays, near-infrared rays (heat rays) in the long wavelength region are light in the wavelength region that the human body perceives as heat energy, and cause a rise in temperature inside the room and the vehicle. On the other hand, ultraviolet rays in the short wavelength region adversely affect the human body such as sunburn, spots, freckles, carcinogenesis, and visual impairment, resulting in deterioration of mechanical strength of articles, deterioration of appearance such as fading, deterioration of foods, and color tones of printed matter. It causes a decrease and the like.
これ等の不要な近赤外線(熱線)や有害な紫外線のうち、近赤外線(熱線)を遮蔽するために、近赤外線を遮蔽する日射遮蔽膜を基材上に形成して日射遮蔽機能を持たせたガラス基板、プラスチック板、フィルム等の透明基材が使用されている。そして、従来、上記日射遮蔽膜として、伝導電子を多量に持つ金、銀、銅、アルミニウム等の薄膜を日射遮蔽材料とした日射遮蔽膜が用いられてきた。 Of these unnecessary near-infrared rays (heat rays) and harmful ultraviolet rays, in order to shield near-infrared rays (heat rays), a solar-shielding film that shields near-infrared rays is formed on the base material to provide a solar-shielding function. Transparent substrates such as glass substrates, plastic plates, and films are used. Conventionally, as the above-mentioned solar-shielding film, a solar-shielding film using a thin film of gold, silver, copper, aluminum or the like having a large amount of conduction electrons as a solar-shielding material has been used.
一方、日射遮蔽材料を含有する塗布液を透明基材上に塗布して日射遮蔽膜を形成し、日射遮蔽機能を持たせた透明基材を簡便かつ低コストで製造する方法も提案されている。 On the other hand, a method has also been proposed in which a coating liquid containing a solar shielding material is applied onto a transparent substrate to form a solar shielding film, and a transparent substrate having a solar shielding function can be produced easily and at low cost. ..
例えば、特許文献1には、六ホウ化物が自由電子を多量に保有していること、当該六ホウ化物を微粒子化し高度に分散させることによって可視光領域に透過率の極大を持つと共に、可視光領域に近い近赤外領域に強いプラズマ反射を発現して透過率の極小を持つようになることが開示されている。
For example,
また、特許文献2は、樹脂若しくはガラス等の固体媒質中に六ホウ化物微粒子を分散させた分散体が、厚さ0.1μm~50mmのフィルム若しくはボードを構成している六ホウ化物粒子分散体を開示している。
Further,
しかし、六ホウ化物微粒子は、空気中の水蒸気や水によって表面が分解劣化(酸化物や水酸化物に変化)することが知られており、特に微細粒子であるほど劣化による日射遮蔽効果の損失割合は大きい。日射遮蔽材料は、その特質から基本的には屋外で使用され、高い耐候性が要求される場合も少なくない。そして、六ホウ化物微粒子を含有する一部の光学部材(フィルム、樹脂シート等)においては、空気中の水蒸気や水分がマトリクス中に徐々に浸透し、六ホウ化物粒子表面を分解することで200~2600nm領域の透過率が経時的に上昇してしまい、日射遮蔽性能が徐々に劣化する問題があった。 However, it is known that the surface of hexaboride fine particles is decomposed and deteriorated (changes to oxides and hydroxides) due to water vapor and water in the air. The ratio is large. Due to its characteristics, solar shielding materials are basically used outdoors and are often required to have high weather resistance. Then, in some optical members (films, resin sheets, etc.) containing hexaboride fine particles, water vapor and moisture in the air gradually permeate into the matrix and decompose the surface of the hexaboride particles 200. There is a problem that the transmittance in the ~ 2600 nm region increases with time, and the solar shading performance gradually deteriorates.
この問題に対し、上記特許文献2は、アルコキシシラン等の表面処理剤を用いて六ホウ化物粒子表面を被覆し、六ホウ化物粒子の耐水性を改善する方法を提案している。
To solve this problem,
また、特許文献3は、加水分解性シラン化合物を用いて六ホウ化物粒子表面にシリカの被覆層を形成する表面被覆六ホウ化物粒子の製造方法を提案している。すなわち、この製造方法は、六ホウ化物粒子が有機溶媒中に分散された分散液に、有機金属化合物(この化合物は六ホウ化物粒子の分散機能と下記加水分解性シラン化合物の重合促進機能を有する)を添加し、該有機金属化合物を六ホウ化物粒子表面に吸着させた後、水と上記加水分解性シラン化合物を添加して有機金属化合物が吸着された六ホウ化物粒子表面を加水分解性シラン化合物で被覆する。次いで、加水分解性シラン化合物で被覆された六ホウ化物粒子の分散液から溶媒を除去した後、有機金属化合物の分解温度以上の条件で六ホウ化物粒子を加熱焼成し、更に、得られた粉状体を粉砕してシリカの被覆層が形成された表面被覆六ホウ化物粒子を製造する方法であった。 Further, Patent Document 3 proposes a method for producing surface-coated hexaboride particles in which a coating layer of silica is formed on the surface of hexaboride particles using a hydrolyzable silane compound. That is, this production method has an organic metal compound (this compound has a function of dispersing hexavalent particles and a function of promoting polymerization of the following hydrolyzable silane compound) in a dispersion liquid in which hexaborized particles are dispersed in an organic solvent. ) Is added and the organic metal compound is adsorbed on the surface of the hexaboride particles, and then water and the above-mentioned hydrolyzable silane compound are added to the surface of the hexaboride particles on which the organic metal compound is adsorbed. Cover with compound. Next, after removing the solvent from the dispersion of the hexaboride particles coated with the hydrolyzable silane compound, the hexaboride particles were heated and fired under the conditions of the decomposition temperature of the organic metal compound or higher, and further, the obtained powder was obtained. It was a method of producing surface-coated hexaboride particles in which a silica-coated layer was formed by crushing the state.
しかし、アルコキシシラン等の表面処理剤を用いた上記特許文献2の方法は、六ホウ化物粒子の平均一次粒子径が200nm以下と微細になった場合、六ホウ化物微粒子と共にアルコキシシラン等の濃度が高くなると、加水分解・重縮合反応過程において六ホウ化物微粒子同士が凝集し易くなり、表面処理は、六ホウ化物微粒子同士が凝集した凝集体上になされる状態になる。このため、表面処理後において媒体攪拌ミル等の機械的な分散処理が必要となり、該分散処理を経た場合、シリカ成分を介しクラスター構造を形成していた微粒子同士が解離する際にシリカ被覆層を有しない面が露出した六ホウ化物微粒子ができてしまい、各種基材に対して十分な透明性と耐水性を付与させることは困難であった。また、シリカの被覆層を形成する上記特許文献3の方法は、特許文献2に較べ改善はされているものの上記課題を解消するまでには至っていなかった。
However, in the method of
一方、特許文献4は、日射遮蔽機能を有するタングステン酸化物微粒子や複合タングステン酸化物微粒子が適用された日射遮蔽用合わせ構造体を提案している。 On the other hand, Patent Document 4 proposes a combined structure for solar radiation shielding to which tungsten oxide fine particles having a solar radiation shielding function or composite tungsten oxide fine particles are applied.
すなわち、特許文献4で提案された上記構造体は、日射遮蔽機能を有する微粒子を含む中間層を、板ガラス、プラスチック、日射遮蔽機能を有する微粒子を含むプラスチックから選ばれた2枚の合わせ板間に介在させて成る日射遮蔽用合わせ構造体であって、
日射遮蔽機能を有する微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.0<z/y<3.0)で表されるタングステン酸化物微粒子、および/または、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0<z/y≦3.0)で表される複合タングステン酸化物微粒子で構成されることを特徴とするものである。
That is, in the above structure proposed in Patent Document 4, an intermediate layer containing fine particles having a solar shielding function is placed between two laminated plates selected from flat glass, plastic, and plastic containing fine particles having a solar shielding function. It is a laminated structure for shielding solar radiation that is intervened.
The fine particles having a solar radiation shielding function are tungsten oxide fine particles represented by the general formula WyOz (where W is tungsten, O is oxygen, 2.0 <z / y <3.0), and / or the general formula MxWyOz. (However, M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au. , Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re One or more elements selected from, W is tungsten, O is oxygen, and composite tungsten oxide fine particles represented by 0.001 ≦ x / y ≦ 1, 2.0 <z / y ≦ 3.0). It is characterized by being composed.
しかし、非特許文献1に記載されているように、上記複合タングステン酸化物微粒子には、以下の劣化現象を有することが知られている。
(1)紫外線の照射によって複合タングステン酸化物微粒子周囲の樹脂等からH+が複合タングステン酸化物微粒子に入り込んで着色するカラーリング現象
(2)複合タングステン酸化物微粒子(Cs0.33WO3)周囲の水分が複合タングステン酸化物微粒子表面のCsプラズモン吸収を弱める酸化現象
However, as described in Non-Patent
(1) Coloring phenomenon in which H + enters the composite tungsten oxide fine particles from the resin around the composite tungsten oxide fine particles and is colored by irradiation with ultraviolet rays (2) Moisture around the composite tungsten oxide fine particles (Cs 0.33 WO 3 ) Is an oxidation phenomenon that weakens the absorption of Cs plasmon on the surface of composite tungsten oxide fine particles.
そこで、複合タングステン酸化物微粒子の上記劣化現象を抑制するため、特許文献5は、特許文献3と同様、有機溶媒に分散された複合タングステン酸化物微粒子の分散液に、上述した有機金属化合物を添加して混合液とした後、該混合液を攪拌しながらシラン化合物を添加し、該シラン化合物および有機金属化合物を複合タングステン微粒子表面に被覆した後、該混合液を乾固し、該固化物を解砕処理してシラン化合物または/および有機金属化合物で被覆されている赤外線遮蔽微粒子を提案している。 Therefore, in order to suppress the deterioration phenomenon of the composite tungsten oxide fine particles, Patent Document 5 adds the above-mentioned organic metal compound to the dispersion liquid of the composite tungsten oxide fine particles dispersed in the organic solvent, as in Patent Document 3. Then, the silane compound was added while stirring the mixed solution, the silane compound and the organic metal compound were coated on the surface of the composite tungsten fine particles, and then the mixed solution was dried to dryness to obtain the solidified product. We propose infrared shielding fine particles that have been crushed and coated with a silane compound and / or an organic metal compound.
しかし、特許文献3と同様、上記課題(複合タングステン酸化物微粒子の劣化現象)は改善されるものの、解消するまでには至っていなかった。 However, as in Patent Document 3, although the above-mentioned problem (deterioration phenomenon of composite tungsten oxide fine particles) is improved, it has not been solved yet.
このように、日射遮蔽機能を有するホウ化物微粒子および複合タングステン酸化物微粒子では、空気中の水蒸気等に起因した分解劣化、紫外線照射に起因する特性劣化現象等が知見されており、これ等の劣化現象を効果的に抑制できる方法が望まれていた。 As described above, in the boride fine particles and the composite tungsten oxide fine particles having a solar radiation shielding function, decomposition deterioration due to water vapor in the air, characteristic deterioration phenomenon due to ultraviolet irradiation, etc. have been found, and these deteriorations have been found. A method capable of effectively suppressing the phenomenon has been desired.
本発明はこのような問題点に着目してなされたもので、その課題とするところは、ホウ化物微粒子若しくは複合タングステン酸化物微粒子から選択される近赤外線遮蔽微粒子の表面にピンホールのない被覆層を形成し、該被覆層により水蒸気や紫外線照射に起因した劣化現象を抑制できる表面被覆近赤外線遮蔽微粒子の製造方法を提供し、合わせてこの製造方法により得られる表面被覆近赤外線遮蔽微粒子を提供することにある。 The present invention has been made by paying attention to such a problem, and the subject thereof is a coating layer having no pinhole on the surface of near-infrared shielding fine particles selected from borohydride fine particles or composite tungsten oxide fine particles. To provide a method for producing surface-coated near-infrared shielding fine particles capable of suppressing deterioration phenomena caused by water vapor or ultraviolet irradiation by the coating layer, and also to provide surface-coated near-infrared shielding fine particles obtained by this production method. There is something in it.
そこで、上記課題を解決するため、本発明者は、非特許文献2に記載された原子層堆積(Atomic Layer Deposition:ALD)法に注目すると共に、ピンホールのない上記被覆層の形成にALD法の採用を試みた。すなわち、ALD法は、原子層(分子層)を構成する元素が含まれる原料ガスを真空装置内に交互に導入し、真空装置内に収容された被成膜体である微粒子の最表面に吸着された分子と、次に導入される原料ガスとの反応により単原子(単分子)層ずつ堆積させる方法で、被覆層の膜厚を原子層レベルで制御することができる方法である。そして、近赤外線遮蔽微粒子における被覆層の形成にALD法を適用したところ、スパッタリング法に較べ成膜速度は遅いが、原料ガスが細部にまで行き渡るためピンホールのない薄膜を形成でき、しかも被成膜体表面の凹凸に影響されずに微細な隙間へも薄膜を形成できることが確認された。本発明はこのような技術的検討と分析に基づき完成されたものである。
Therefore, in order to solve the above-mentioned problems, the present inventor pays attention to the atomic layer deposition (ALD) method described in
すなわち、本発明に係る第1の発明は、
近赤外線遮蔽微粒子と、該近赤外線遮蔽微粒子表面を被覆する被覆層とで構成される表面被覆近赤外線遮蔽微粒子の製造方法において、
複合タングステン酸化物微粒子、ホウ化物微粒子から選択される1種以上の平均粒径10~500nmの近赤外線遮蔽微粒子と、Al2O3、SiO2、SiOAl、SiC、SiOC、SiCNから選択されかつ近赤外線遮蔽微粒子表面を被覆する1種以上の原子層から成る被覆層とで上記表面被覆近赤外線遮蔽微粒子が構成され、
第1反応ガス吸着工程と排気工程および第2反応ガス反応工程と排気工程から成る1サイクルで1原子層が形成される原子層堆積(ALD)法を用いた原子層堆積(ALD)装置により該1原子層を4層以上成膜して1種以上の原子層から成る被覆層を形成することを特徴とし、
また、本発明に係る第2の発明は、
近赤外線遮蔽微粒子と、該近赤外線遮蔽微粒子表面を被覆する被覆層とで構成された表面被覆近赤外線遮蔽微粒子の製造方法において、
複合タングステン酸化物微粒子、ホウ化物微粒子から選択される1種以上の平均粒径10~500nmの近赤外線遮蔽微粒子と、Al2O3、SiO2、SiOAl、SiC、SiOC、SiCNから選択されかつ近赤外線遮蔽微粒子表面を被覆する1種以上の原子層から成る第一被覆層と、Al2O3、SiO2から選択されかつ第一被覆層表面を被覆する1種以上の原子層から成る第二被覆層とで上記表面被覆近赤外線遮蔽微粒子が構成され、
第1反応ガス吸着工程と排気工程および第2反応ガス反応工程と排気工程から成る1サイクルで1原子層が形成される原子層堆積(ALD)法を用いた原子層堆積(ALD)装置により該1原子層を4層以上成膜して1種以上の原子層から成る第一被覆層を形成すると共に、
上記原子層堆積(ALD)法を用いた原子層堆積(ALD)装置により該1原子層を1層以上成膜して1種以上の原子層から成る第二被覆層を形成することを特徴とするものである。
That is, the first invention according to the present invention is
In a method for producing surface-coated near-infrared shielding fine particles, which comprises a near-infrared shielding fine particle and a coating layer covering the surface of the near-infrared shielding fine particle.
One or more types of near-infrared shielding fine particles having an average particle size of 10 to 500 nm selected from composite tungsten oxide fine particles and borohydride fine particles, and Al 2 O 3, SiO 2 , SiO Al, SiC, SiOC, and SiC N are selected and close to each other. The surface-coated near-infrared shielding fine particles are composed of a coating layer composed of one or more atomic layers that coat the surface of the infrared-shielding fine particles.
The atomic layer deposition (ALD) apparatus using the atomic layer deposition (ALD) method, in which one atomic layer is formed in one cycle consisting of a first reaction gas adsorption step and an exhaust step and a second reaction gas reaction step and an exhaust step, is used. It is characterized in that four or more atomic layers are formed to form a coating layer composed of one or more atomic layers.
Further, the second invention according to the present invention is
In a method for producing surface-coated near-infrared shielding fine particles composed of a near-infrared shielding fine particle and a coating layer covering the surface of the near-infrared shielding fine particle.
One or more kinds of near-infrared shielding fine particles having an average particle size of 10 to 500 nm selected from composite tungsten oxide fine particles and borohydride fine particles, and Al 2 O 3, SiO 2 , SiO Al, SiC, SiOC, and SiC N are selected and close to each other. A first coating layer consisting of one or more atomic layers covering the surface of infrared shielding fine particles, and a second consisting of one or more atomic layers selected from Al 2 O 3 and SiO 2 and covering the surface of the first coating layer. The coating layer constitutes the surface-coated near-infrared shielding fine particles.
The atomic layer deposition (ALD) apparatus using the atomic layer deposition (ALD) method, in which one atomic layer is formed in one cycle consisting of a first reaction gas adsorption step and an exhaust step and a second reaction gas reaction step and an exhaust step, is used. One atomic layer is formed into four or more layers to form a first coating layer composed of one or more atomic layers, and at the same time.
It is characterized in that one or more atomic layers are formed by an atomic layer deposition (ALD) apparatus using the atomic layer deposition (ALD) method to form a second coating layer composed of one or more atomic layers. It is something to do.
次に、本発明に係る第3の発明は、
第1の発明または第2の発明に記載の表面被覆近赤外線遮蔽微粒子の製造方法において、
排気機構を有する複数の真空チャンバが近赤外線遮蔽微粒子の移動を制御する微粒子移動用開閉バルブを介して鉛直方向に連通して配置され、かつ、上記第1反応ガス吸着工程と第2反応ガス反応工程を行う少なくとも一対の真空チャンバに反応ガス導入機構が設けられた原子層堆積(ALD)装置を用いて上記被覆層または上記第一被覆層と第二被覆層を形成することを特徴とし、
第4の発明は、
第3の発明に記載の表面被覆近赤外線遮蔽微粒子の製造方法において、
上記複数の真空チャンバが、一定量の近赤外線遮蔽微粒子が導入される第1真空チャンバと、微粒子移動用開閉バルブを介し第1真空チャンバから導入される上記微粒子の表面に第1反応ガスを化学吸着させる第2真空チャンバと、微粒子移動用開閉バルブを介し第2真空チャンバから第1反応ガスを化学吸着した上記微粒子が導入されかつ第2真空チャンバから流れ込んだ過剰な第1反応ガスと副生成物を排気する第3真空チャンバと、微粒子移動用開閉バルブを介し第3真空チャンバから導入される上記微粒子の該表面に化学吸着された第1反応ガスと第2反応ガスを反応させて1原子層を形成する第4真空チャンバと、微粒子移動用開閉バルブを介し第4真空チャンバから1原子層を形成した上記微粒子が導入されかつ第4真空チャンバから流れ込んだ過剰な第2反応ガスと副生成物を排気する第5真空チャンバとで構成され、かつ、最上部の第1真空チャンバには一定量の近赤外線遮蔽微粒子を導入する微粒子導入用開閉バルブが設けられると共に、最下部の第5真空チャンバには原子層が形成された近赤外線遮蔽微粒子を排出する微粒子排出用開閉バルブが設けられた原子層堆積(ALD)装置により第3の発明に記載された上記原子層堆積(ALD)装置が構成されていることを特徴とし、
また、第5の発明は、
第3の発明または第4の発明に記載の表面被覆近赤外線遮蔽微粒子の製造方法において、
原子層が形成された近赤外線遮蔽微粒子を排出する微粒子排出用開閉バルブを具備する最下部の真空チャンバに該微粒子排出用開閉バルブを介し搬送用真空チャンバが連通して設けられ、かつ、上記搬送用真空チャンバは最上部の真空チャンバにその微粒子導入用開閉バルブを介し連通して設けられていると共に、搬送用真空チャンバ内の搬送機構により原子層が形成された近赤外線遮蔽微粒子を搬送して最上部の真空チャンバ内に導入する原子層堆積(ALD)装置により第4の発明に記載された上記原子層堆積(ALD)装置が構成されていることを特徴とするものである。
Next, the third invention according to the present invention is
In the method for producing surface-coated near-infrared shielding fine particles according to the first invention or the second invention.
A plurality of vacuum chambers having an exhaust mechanism are arranged in vertical direction via an opening / closing valve for moving fine particles that controls the movement of near-infrared shielding fine particles, and the first reaction gas adsorption step and the second reaction gas reaction are described above. It is characterized in that the coating layer or the first coating layer and the second coating layer are formed by using an atomic layer deposition (ALD) device provided with a reaction gas introduction mechanism in at least a pair of vacuum chambers in which the process is performed.
The fourth invention is
In the method for producing surface-coated near-infrared shielding fine particles according to the third invention.
The plurality of vacuum chambers chemically apply the first reaction gas to the surface of the first vacuum chamber into which a certain amount of near-infrared shielding fine particles are introduced and the surface of the fine particles introduced from the first vacuum chamber via an opening / closing valve for moving the fine particles. The fine particles that chemically adsorbed the first reaction gas from the second vacuum chamber via the second vacuum chamber to be adsorbed and the opening / closing valve for moving the fine particles were introduced and by-produced with the excess first reaction gas that flowed from the second vacuum chamber. One atom by reacting the first reaction gas and the second reaction gas chemically adsorbed on the surface of the fine particles introduced from the third vacuum chamber through the third vacuum chamber for exhausting the object and the opening / closing valve for moving the fine particles. The fine particles having formed a single atomic layer were introduced from the 4th vacuum chamber via the 4th vacuum chamber forming the layer and the opening / closing valve for moving the fine particles, and the excess second reaction gas and by-production flowing from the 4th vacuum chamber were introduced. It is composed of a fifth vacuum chamber that exhausts things, and the first vacuum chamber at the top is provided with an on-off valve for introducing fine particles that introduces a certain amount of near-infrared shielding fine particles, and the fifth vacuum at the bottom. The atomic layer deposition (ALD) device described in the third invention is provided by the atomic layer deposition (ALD) device provided with an open / close valve for discharging fine particles in the chamber, which discharges near-infrared shielding fine particles having an atomic layer formed therein. Characterized by being configured
Moreover, the fifth invention is
In the method for producing surface-coated near-infrared shielding fine particles according to the third invention or the fourth invention.
A transport vacuum chamber is provided in communication with the lowermost vacuum chamber provided with a fine particle discharge open / close valve for discharging near-infrared shielding fine particles on which an atomic layer is formed via the fine particle discharge open / close valve, and the above-mentioned transport is performed. The vacuum chamber is provided in communication with the uppermost vacuum chamber via an opening / closing valve for introducing fine particles, and also transports near-infrared shielding fine particles having an atomic layer formed by a transport mechanism in the transport vacuum chamber. It is characterized in that the atomic layer deposition (ALD) apparatus described in the fourth invention is configured by the atomic layer deposition (ALD) apparatus introduced into the uppermost vacuum chamber.
更に、本発明に係る第6の発明は、
第1の発明または第2の発明に記載の表面被覆近赤外線遮蔽微粒子の製造方法において、
上記複合タングステン酸化物微粒子が、一般式MxWyOz(Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、BiおよびIから成る群から選択される少なくとも1種の元素を表し、x、y、zは、0.01≦x≦1、0.001≦x/y≦1、2.2≦z/y≦3.0を満たす)で表される複合タングステン酸化物微粒子で構成され、
上記ホウ化物微粒子が、一般式XBm(但し、Xは、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caから成る群から選択される少なくとも1種以上の金属元素、mは上記一般式におけるホウ素量を示す数字であり、4.0≦m≦6.2を満たす)で表されるホウ化物微粒子で構成されることを特徴とし、
第7の発明は、
近赤外線遮蔽微粒子と、該近赤外線遮蔽微粒子表面を被覆する被覆層とで構成される表面被覆近赤外線遮蔽微粒子において、
第1の発明~第6の発明のいずれかに記載の表面被覆近赤外線遮蔽微粒子の製造方法で得られることを特徴とするものである。
Furthermore, the sixth invention according to the present invention is
In the method for producing surface-coated near-infrared shielding fine particles according to the first invention or the second invention.
The composite tungsten oxide fine particles are the general formula MxWyOz (M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, Represents at least one element selected from the group consisting of V, Mo, Ta, Re, Be, Hf, Os, Bi and I, where x, y, z are 0.01≤x≤1, 0.001. It is composed of composite tungsten oxide fine particles represented by ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3.0).
The boride fine particles are composed of the general formula XBm (where X is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, Ca). At least one kind of metal element selected from the group, m is a numerical value indicating the amount of boron in the above general formula, and is composed of boride fine particles represented by 4.0 ≦ m ≦ 6.2). Characterized by that
The seventh invention is
In the surface-coated near-infrared shielding fine particles composed of the near-infrared shielding fine particles and the coating layer covering the surface of the near-infrared shielding fine particles.
It is characterized by being obtained by the method for producing surface-coated near-infrared shielding fine particles according to any one of the first invention to the sixth invention.
本発明に係る第1の発明方法によれば、第1反応ガス吸着工程と排気工程および第2反応ガス反応工程と排気工程から成る1サイクルで1原子層が形成される原子層堆積(ALD)法を用いた原子層堆積(ALD)装置により、近赤外線遮蔽微粒子(複合タングステン酸化物微粒子および/またはホウ化物微粒子)表面に、Al2O3、SiO2、SiOAl、SiC、SiOC、SiCNから選択された1種以上の原子層から成る被覆層を形成し、
また、本発明に係る第2の発明方法によれば、第1反応ガス吸着工程と排気工程および第2反応ガス反応工程と排気工程から成る1サイクルで1原子層が形成される原子層堆積(ALD)法を用いた原子層堆積(ALD)装置により、近赤外線遮蔽微粒子(複合タングステン酸化物微粒子および/またはホウ化物微粒子)表面に、Al2O3、SiO2、SiOAl、SiC、SiOC、SiCNから選択された1種以上の原子層から成る第一被覆層を形成すると共に、上記原子層堆積(ALD)法を用いた原子層堆積(ALD)装置により、第一被覆層表面にAl2O3、SiO2から選択された1種以上の原子層から成る第二被覆層を形成して表面被覆近赤外線遮蔽微粒子を製造している。
According to the first method of invention according to the present invention, atomic layer deposition (ALD) in which one atomic layer is formed in one cycle consisting of a first reaction gas adsorption step and an exhaust step and a second reaction gas reaction step and an exhaust step. Select from Al 2 O 3, SiO 2 , SiO Al, SiC, SiOC, SiC N on the surface of near-infrared shielding fine particles (composite tungsten oxide fine particles and / or borohydride fine particles) by an atomic layer deposition (ALD) device using the method. Forming a coating layer consisting of one or more atomic layers
Further, according to the second method of the present invention, atomic layer deposition (in which one atomic layer is formed in one cycle consisting of a first reaction gas adsorption step and an exhaust step and a second reaction gas reaction step and an exhaust step) Al 2 O 3, SiO 2 , SiO Al, SiC, SiOC, SiC N An atomic layer deposition (ALD) device using the atomic layer deposition (ALD) method described above forms an first coating layer consisting of one or more atomic layers selected from the above, and Al 2 O is applied to the surface of the first coating layer. 3. A second coating layer composed of one or more atomic layers selected from SiO 2 is formed to produce surface-coated near-infrared shielding fine particles.
そして、原子層堆積(ALD)装置により形成される上記被覆層若しくは第一被覆層と第二被覆層はピンホールのない原子層でそれぞれ構成されているため、従来、水蒸気や紫外線照射等に起因してホウ化物微粒子や複合タングステン酸化物微粒子において発生していた分解劣化や特性劣化現象を効果的に抑制できる効果を有する。 Since the above-mentioned coating layer or the first coating layer and the second coating layer formed by the atomic layer deposition (ALD) apparatus are each composed of an atomic layer without pinholes, they are conventionally caused by water vapor, ultraviolet irradiation, or the like. Therefore, it has the effect of effectively suppressing the decomposition deterioration and characteristic deterioration phenomenon that have occurred in the boride fine particles and the composite tungsten oxide fine particles.
以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
本発明は、近赤外線遮蔽微粒子と該近赤外線遮蔽微粒子表面を被覆する被覆層とで構成される表面被覆近赤外線遮蔽微粒子の製造方法に関するものである。 The present invention relates to a method for producing surface-coated near-infrared shielding fine particles composed of a near-infrared shielding fine particle and a coating layer covering the surface of the near-infrared shielding fine particle.
そして、本発明の第一実施形態に係る表面被覆近赤外線遮蔽微粒子の製造方法は、
複合タングステン酸化物微粒子、ホウ化物微粒子から選択される1種以上の平均粒径10~500nmの近赤外線遮蔽微粒子と、Al2O3、SiO2、SiOAl、SiC、SiOC、SiCNから選択されかつ近赤外線遮蔽微粒子表面を被覆する1種以上の原子層から成る被覆層とで表面被覆近赤外線遮蔽微粒子が構成され、
第1反応ガス吸着工程と排気工程および第2反応ガス反応工程と排気工程から成る1サイクルで1原子層が形成される原子層堆積(ALD)法を用いた原子層堆積(ALD)装置により該1原子層を4層以上成膜して1種以上の原子層から成る被覆層を形成することを特徴とし、
本発明の第二実施形態に係る表面被覆近赤外線遮蔽微粒子の製造方法は、
複合タングステン酸化物微粒子、ホウ化物微粒子から選択される1種以上の平均粒径10~500nmの近赤外線遮蔽微粒子と、Al2O3、SiO2、SiOAl、SiC、SiOC、SiCNから選択されかつ近赤外線遮蔽微粒子表面を被覆する1種以上の原子層から成る第一被覆層と、Al2O3、SiO2から選択されかつ第一被覆層表面を被覆する1種以上の原子層から成る第二被覆層とで表面被覆近赤外線遮蔽微粒子が構成され、
第1反応ガス吸着工程と排気工程および第2反応ガス反応工程と排気工程から成る1サイクルで1原子層が形成される原子層堆積(ALD)法を用いた原子層堆積(ALD)装置により該1原子層を4層以上成膜して1種以上の原子層から成る第一被覆層を形成すると共に、
上記原子層堆積(ALD)法を用いた原子層堆積(ALD)装置により該1原子層を1層以上成膜して1種以上の原子層から成る第二被覆層を形成することを特徴とするものである。
The method for producing surface-coated near-infrared shielding fine particles according to the first embodiment of the present invention is
One or more types of near-infrared shielding fine particles having an average particle size of 10 to 500 nm selected from composite tungsten oxide fine particles and borohydride fine particles, and Al 2 O 3, SiO 2 , SiO Al, SiC, SiOC, and SiC N are selected and close to each other. The surface-coated near-infrared shielding fine particles are composed of a coating layer composed of one or more atomic layers that coat the surface of the infrared-shielding fine particles.
The atomic layer deposition (ALD) apparatus using the atomic layer deposition (ALD) method, in which one atomic layer is formed in one cycle consisting of a first reaction gas adsorption step and an exhaust step and a second reaction gas reaction step and an exhaust step, is used. It is characterized in that four or more atomic layers are formed to form a coating layer composed of one or more atomic layers.
The method for producing surface-coated near-infrared shielding fine particles according to the second embodiment of the present invention is as follows.
One or more kinds of near-infrared shielding fine particles having an average particle size of 10 to 500 nm selected from composite tungsten oxide fine particles and borohydride fine particles, and Al 2 O 3, SiO 2 , SiO Al, SiC, SiOC, and SiC N are selected and close to each other. A first coating layer consisting of one or more atomic layers covering the surface of infrared shielding fine particles, and a second consisting of one or more atomic layers selected from Al 2 O 3 and SiO 2 and covering the surface of the first coating layer. The surface-coated near-infrared shielding fine particles are composed of the coating layer.
The atomic layer deposition (ALD) apparatus using the atomic layer deposition (ALD) method, in which one atomic layer is formed in one cycle consisting of a first reaction gas adsorption step and an exhaust step and a second reaction gas reaction step and an exhaust step, is used. One atomic layer is formed into four or more layers to form a first coating layer composed of one or more atomic layers, and at the same time.
It is characterized in that one or more atomic layers are formed by an atomic layer deposition (ALD) apparatus using the atomic layer deposition (ALD) method to form a second coating layer composed of one or more atomic layers. It is something to do.
以下、1.被成膜体となる近赤外線遮蔽微粒子、2.原子層堆積法で得られる被覆膜(膜種)とその膜材料(反応ガス)、3.被覆層の構造、4.原子層堆積装置(1)原子層堆積(Atomic Layer Deposition:ALD)法、(2)本発明方法で使用される原子層堆積(ALD)装置、および、(3)原子層堆積(ALD)装置を用いた表面被覆近赤外線遮蔽微粒子の製造方法について順に説明する。 Below, 1. Near-infrared shielding fine particles to be the film to be deposited 2. 2. Coating film (membrane type) and its film material (reaction gas) obtained by the atomic layer deposition method. Structure of the coating layer, 4. Atomic layer deposition equipment (1) Atomic layer deposition (ALD) method, (2) Atomic layer deposition (ALD) equipment used in the method of the present invention, and (3) Atomic layer deposition (ALD) equipment. The method for producing the surface-coated near-infrared shielding fine particles used will be described in order.
1.被成膜体となる近赤外線遮蔽微粒子
本発明の表面被覆近赤外線遮蔽微粒子を構成する「近赤外線遮蔽微粒子」には、複合タングステン酸化物微粒子、ホウ化物微粒子が用いられる。
1. 1. Near-infrared shielding fine particles to be the film to be deposited
As the "near-infrared shielding fine particles" constituting the surface-coated near-infrared shielding fine particles of the present invention, composite tungsten oxide fine particles and boride fine particles are used.
尚、複合タングステン酸化物微粒子とホウ化物微粒子は、それぞれを混合して適用してもよいし、あるいは、混合せずに個々に適用してもよく任意である。 The composite tungsten oxide fine particles and the boride fine particles may be mixed and applied, or may be individually applied without being mixed.
(1)複合タングステン酸化物微粒子
複合タングステン酸化物微粒子は、一般式MxWyOz(Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、BiおよびIからなる群から選択される少なくとも1種の元素を表し、x、y、zは、0.01≦x≦1、0.001≦x/y≦1、2.2≦z/y≦3.0を満たす)で表される複合タングステン酸化物微粒子で構成され、その平均粒径が10nm~500nmであることを特徴としている。
(1) Composite tungsten oxide fine particles The composite tungsten oxide fine particles are of the general formula MxWyOz (M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co. , Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br , Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi and I represent at least one element selected from the group, x, y, z is 0.01 ≦ It is composed of composite tungsten oxide fine particles represented by (satisfying x ≦ 1, 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3.0), and has an average particle size of 10 nm to 500 nm. It is characterized by being.
一般に、自由電子を含む材料は、プラズマ振動によって波長200nm~2600nmの太陽光線における領域周辺の電磁波に反射吸収応答を示すことが知られている。このような物質の粉末を光の波長より小さい粒径の微粒子とすると、可視光領域(380nm~780nm)の幾何学散乱が低減されて可視光領域の透明性が得られることが知られている。尚、本明細書において、「透明性」とは、可視光領域の光に対して散乱が少なく透過性が高いという意味で用いている。 In general, it is known that a material containing free electrons exhibits a reflection absorption response to electromagnetic waves around a region in a sun ray having a wavelength of 200 nm to 2600 nm due to plasma oscillation. It is known that when the powder of such a substance is made into fine particles having a particle size smaller than the wavelength of light, geometric scattering in the visible light region (380 nm to 780 nm) is reduced and transparency in the visible light region can be obtained. .. In the present specification, "transparency" is used in the sense that there is little scattering and high transparency with respect to light in the visible light region.
一般に、WO3中には有効な自由電子が存在しないため、近赤外線領域の吸収反射特性が少なく、赤外線遮蔽材料としては有効ではない。 In general, since there are no effective free electrons in WO 3 , the absorption and reflection characteristics in the near infrared region are small, and it is not effective as an infrared shielding material.
一方、酸素欠損を持つWO3や、WO3にNa等の陽性元素を添加した、所謂タングステンブロンズは、導電性材料であり、自由電子を持つ材料であることが知られている。そして、これ等の自由電子を持つ材料の単結晶等の分析により、赤外線領域の光に対する自由電子の応答が示唆されている。 On the other hand, WO 3 having an oxygen deficiency and so-called tungsten bronze obtained by adding a positive element such as Na to WO 3 are known to be conductive materials and materials having free electrons. Analysis of these single crystals of materials with free electrons suggests the response of free electrons to light in the infrared region.
当該タングステンと酸素との組成範囲の特定部分において、赤外線遮蔽材料として特に有効な範囲があることが見出されており、可視光領域においては透明で、近赤外線領域においては吸収を持つタングステン酸化物、または/および、複合タングステン酸化物微粒子を媒体に分散させた赤外線遮蔽材料微粒子分散体が作製されている。 It has been found that there is a particularly effective range as an infrared shielding material in a specific part of the composition range of tungsten and oxygen, and a tungsten oxide that is transparent in the visible light region and has absorption in the near infrared region. And / or, an infrared shielding material fine particle dispersion in which composite tungsten oxide fine particles are dispersed in a medium is produced.
酸素量の制御と、自由電子を生成する元素の添加とを併用した赤外線遮蔽材料として、上記した一般式MxWyOz(但し、Mは、前記M元素、Wはタングステン、Oは酸素)で記載したとき、0.01≦x≦1、0.001≦x/y≦1、2.2≦z/y≦3.0の関係を満たす赤外線遮蔽材料が望ましい。 When the above-mentioned general formula MxWyOz (where M is the M element, W is tungsten, O is oxygen) is described as an infrared shielding material in which control of the amount of oxygen and addition of an element that generates free electrons are used in combination. , 0.01 ≦ x ≦ 1, 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3.0, an infrared shielding material that satisfies the relationship is desirable.
まず、元素Mの添加量を示すx/yの値について説明する。 First, the value of x / y indicating the amount of the element M added will be described.
x/yの値が0.001より大きければ、十分な量の自由電子が生成され目的とする赤外線遮蔽効果を得ることができる。そして、元素Mの添加量が多いほど、自由電子の供給量が増加し、赤外線遮蔽効率も上昇するが、x/yの値が1程度で当該効果も飽和する。また、x/yの値が1より小さければ、当該赤外線遮蔽材料中に不純物相が生成されるのを回避できるので好ましい。 If the value of x / y is larger than 0.001, a sufficient amount of free electrons are generated and the desired infrared shielding effect can be obtained. As the amount of the element M added increases, the supply amount of free electrons increases and the infrared shielding efficiency also increases, but the effect is saturated when the value of x / y is about 1. Further, when the value of x / y is smaller than 1, it is preferable because it is possible to avoid the formation of an impurity phase in the infrared shielding material.
また、元素Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上であることが好ましい。 The element M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au. , Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be , Hf, Os, Bi, and I are preferably one or more.
ここで、元素Mが添加された当該MxWyOzにおける、安定性の観点からは、元素Mは、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reのうちのうちから選択される1種類以上の元素であることがより好ましく、赤外線遮蔽材料としての光学特性、耐候性を向上させる観点からは、上記元素Mにおいてアルカリ土類金属元素、遷移金属元素、4B族元素、5B族元素に属するものが、更に好ましい。 Here, from the viewpoint of stability in the MxWyOz to which the element M is added, the element M is an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh. , Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te , Ti, Nb, V, Mo, Ta, Re, more preferably one or more elements, and from the viewpoint of improving the optical properties and weather resistance as an infrared shielding material, the above. More preferably, the element M belongs to an alkaline earth metal element, a transition metal element, a 4B group element, and a 5B group element.
次に、酸素量の制御を示すz/yの値について説明する。z/yの値については、MxWyOzで表記される赤外線遮蔽材料においても、上記特許文献4のWyOzで表記される赤外線遮蔽材料と同様の機構が働くことに加え、z/y=3.0においても、上述した元素Mの添加量による自由電子の供給があるため、2.2≦z/y≦3.0が好ましく、更に好ましくは2.45≦z/y≦3.0である。 Next, the value of z / y indicating the control of the amount of oxygen will be described. Regarding the value of z / y, in addition to the same mechanism as the infrared shielding material expressed in WyOz of Patent Document 4 working in the infrared shielding material expressed in MxWyOz, at z / y = 3.0. However, since there is a supply of free electrons depending on the amount of the element M added, 2.2 ≦ z / y ≦ 3.0 is preferable, and 2.45 ≦ z / y ≦ 3.0 is more preferable.
更に、上記複合タングステン酸化物微粒子が六方晶の結晶構造を有する場合、当該微粒子の可視光領域の透過が向上し、近赤外領域の吸収が向上する。この六方晶の結晶構造の模式的な平面図である図1を参照しながら説明する。図1において、符号1で示すWO6単位にて形成される8面体が、6個集合して六角形の空隙が構成され、当該空隙中に、符号2で示す元素Mが配置して1箇の単位を構成し、この1箇の単位が多数集合して六方晶の結晶構造を構成する。
Further, when the composite tungsten oxide fine particles have a hexagonal crystal structure, the transmission of the fine particles in the visible light region is improved, and the absorption in the near infrared region is improved. This will be described with reference to FIG. 1, which is a schematic plan view of the crystal structure of the hexagonal crystal. In FIG. 1, six octahedrons formed by WO 6 units indicated by
可視光領域の透過を向上させ、近赤外領域の吸収を向上させる効果を得るためには、複合タングステン酸化物微粒子中に、図1で説明した単位構造(WO6単位で形成される8面体が6個集合して六角形の空隙が構成され、当該空隙中に元素Mが配置した構造)が含まれていれば良く、当該複合タングステン酸化物微粒子が、結晶質であっても非晶質であっても構わない。 In order to obtain the effect of improving the transmission in the visible light region and improving the absorption in the near infrared region, the unit structure described in FIG. 1 (an octahedron formed in WO 6 units) is contained in the composite tungsten oxide fine particles. A hexagonal void is formed by gathering six of them, and the structure in which the element M is arranged in the void) may be contained, and the composite tungsten oxide fine particles are amorphous even if they are crystalline. It doesn't matter.
この六角形の空隙に元素Mの陽イオンが添加されて存在するとき、可視光領域の透過が向上し、近赤外領域の吸収が向上する。ここで、一般的には、イオン半径の大きな元素Mを添加したとき当該六方晶が形成され、具体的には、Cs、K、Rb、Tl、In、Ba、Snを添加したとき六方晶が形成されやすい。勿論これ等以外の元素でも、WO6単位で形成される六角形の空隙に上述した元素Mが存在すれば良く、上記元素に限定される訳ではない。 When the cation of the element M is added to the hexagonal void and exists, the transmission in the visible light region is improved and the absorption in the near infrared region is improved. Here, in general, the hexagonal crystal is formed when the element M having a large ionic radius is added, and specifically, the hexagonal crystal is formed when Cs, K, Rb, Tl, In, Ba, Sn are added. Easy to form. Of course, even with elements other than these, the above-mentioned element M may be present in the hexagonal voids formed in WO 6 units, and the present invention is not limited to the above-mentioned elements.
六方晶の結晶構造を有する複合タングステン酸化物微粒子が均一な結晶構造を有するとき、添加元素Mの添加量は、x/yの値で0.2以上0.5以下が好ましく、更に好ましくは0.33である。x/yの値が0.33となることで、上述した元素Mが六角形の空隙の全てに配置されると考えられる。 When the composite tungsten oxide fine particles having a hexagonal crystal structure have a uniform crystal structure, the amount of the additive element M added is preferably 0.2 or more and 0.5 or less in terms of x / y, more preferably 0. It is .33. When the value of x / y becomes 0.33, it is considered that the above-mentioned element M is arranged in all the hexagonal voids.
また、六方晶以外で、正方晶、立方晶のタングステンブロンズも赤外線遮蔽材料として有効である。結晶構造によって、近赤外線領域の吸収位置が変化する傾向があり、立方晶<正方晶<六方晶の順に、吸収位置が長波長側に移動する傾向がある。また、それに付随して可視光線領域の吸収が少ないのは、六方晶、正方晶、立方晶の順であり、よって、より可視光領域の光を透過して、より赤外線領域の光を遮蔽する用途には、六方晶のタングステンブロンズを用いることが好ましい。但し、ここで述べた光学特性の傾向は、あくまで大まかな傾向であり、添加元素の種類や、添加量、酸素量によって変化するものであり、本発明がこれに限定されるわけではない。 In addition to hexagonal crystals, tetragonal and cubic tungsten bronze are also effective as infrared shielding materials. The absorption position in the near-infrared region tends to change depending on the crystal structure, and the absorption position tends to move to the long wavelength side in the order of cubic <tetragonal <hexagonal. Along with this, the absorption in the visible light region is less in the order of hexagonal crystal, tetragonal crystal, and cubic crystal, so that light in the visible light region is transmitted more and light in the infrared region is shielded. For applications, it is preferable to use hexagonal tungsten bronze. However, the tendency of the optical characteristics described here is only a rough tendency and changes depending on the type of added element, the added amount, and the amount of oxygen, and the present invention is not limited to this.
複合タングステン酸化物微粒子を含有する赤外線遮蔽材料は、近赤外線領域、特に1000nm付近の光を大きく吸収するため、その透過色調は青色系から緑色系となる物が多い。 Since the infrared shielding material containing the composite tungsten oxide fine particles largely absorbs light in the near infrared region, particularly in the vicinity of 1000 nm, the transmitted color tone of the material often changes from bluish to green.
また、近赤外線遮蔽微粒子の平均粒径は10nm~500nmであることを要し、使用目的によって上記範囲から適宜選定することができる。まず、透明性を保持した応用に使用する場合は、500nm以下の粒子径を有していることが好ましい。これは、500nmよりも小さい粒子は、散乱により光を完全に遮蔽することが無く、可視光線領域の視認性を保持し、同時に効率良く透明性を保持することができるからである。特に可視光領域の透明性を重視する場合は、更に粒子による散乱を考慮することが好ましい。 Further, the average particle size of the near-infrared shielding fine particles needs to be 10 nm to 500 nm, and can be appropriately selected from the above range depending on the purpose of use. First, when used for applications that maintain transparency, it is preferable to have a particle size of 500 nm or less. This is because particles smaller than 500 nm do not completely block light due to scattering, and can maintain visibility in the visible light region and at the same time efficiently maintain transparency. In particular, when the transparency in the visible light region is emphasized, it is preferable to further consider scattering by particles.
この粒子による散乱の低減を重視するとき、粒子径は200nm以下、好ましくは100nm以下が良い。この理由は、粒子の粒子径が小さければ、幾何学散乱若しくはミー散乱による、400nm~780nmの可視光線領域の光の散乱が低減される結果、赤外線遮蔽材料が曇りガラスのようになり、鮮明な透明性が得られなくなるのを回避できるからである。すなわち、粒子径が200nm以下になると、上記幾何学散乱若しくはミー散乱が低減し、レイリー散乱領域になる。レイリー散乱領域では、散乱光強度は粒子径の6乗に比例するため、粒子径の減少に伴い散乱が低減し透明性が向上するからである。更に粒子径が100nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、粒子径が小さい方が好ましい。 When the reduction of scattering by the particles is emphasized, the particle diameter is preferably 200 nm or less, preferably 100 nm or less. The reason for this is that if the particle size of the particles is small, the scattering of light in the visible light region of 400 nm to 780 nm due to geometric scattering or Mie scattering is reduced, and as a result, the infrared shielding material becomes like frosted glass and is clear. This is because it is possible to avoid loss of transparency. That is, when the particle size is 200 nm or less, the geometrical scattering or Mie scattering is reduced, and a Rayleigh scattering region is formed. This is because in the Rayleigh scattering region, the scattered light intensity is proportional to the sixth power of the particle size, so that scattering is reduced and transparency is improved as the particle size decreases. Further, when the particle size is 100 nm or less, the scattered light becomes very small, which is preferable. From the viewpoint of avoiding light scattering, it is preferable that the particle size is small.
(2)ホウ化物微粒子
次に、ホウ化物微粒子は、一般式XBm(但し、Xは、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caから成る群から選択される少なくとも1種類以上の金属元素、mは上記一般式におけるホウ素量を示す数字であり、4.0≦m≦6.2を満たす)で表されるホウ化物微粒子で構成され、上記微粒子の平均粒径が10nm~500nmであることを特徴としている。
(2) Boride fine particles Next, the boride fine particles are of the general formula XBm (where X is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb. , Lu, Sr, Ca, at least one kind of metal element selected from the group, m is a numerical value indicating the amount of boron in the above general formula, and is represented by 4.0≤m≤6.2). It is composed of fine boride fine particles, and is characterized in that the average particle size of the fine particles is 10 nm to 500 nm.
近赤外線遮蔽微粒子としては、上述した一般式XBmにおいて、4.0≦m≦6.2であることが好ましい。すなわち、ホウ化物微粒子としては、通常の場合、ホウ化物微粒子を含む粉体は、実際には、XB4、XB6、XB12等の混合物である。例えば、代表的なホウ化物微粒子である6ホウ化物の場合において、X線回折の結果から単一相であると判断されても、実際には5.8<m<6.2となり、微量に他相を含んでいると考えられる。ここで、m≧4となる場合は、XB、XB2等の生成が抑制されており、理由は不明であるが、赤外線吸収特性が向上する。一方、m<6.2となる場合は、ホウ化物微粒子以外に酸化ホウ素粒子が発生することが抑制される。酸化ホウ素粒子は吸湿性があるため、ホウ化物粉体中に酸化ホウ素粒子が混入すると、ホウ化物粉体の耐湿性が低下し、近赤外線吸収特性の経時劣化が大きくなってしまう。そこで、m<6.2として、酸化ホウ素粒子の発生を抑制することが好ましい。 The near-infrared shielding fine particles are preferably 4.0 ≦ m ≦ 6.2 in the above-mentioned general formula XBm. That is, as the boride fine particles, usually, the powder containing the boride fine particles is actually a mixture of XB 4 , XB 6 , XB 12 , and the like. For example, in the case of 6-boride, which is a typical boride fine particle, even if it is determined from the result of X-ray diffraction that it is a single phase, it is actually 5.8 <m <6.2, which is a very small amount. It is considered to contain other phases. Here, when m ≧ 4, the generation of XB, XB 2 , etc. is suppressed, and the reason is unknown, but the infrared absorption characteristic is improved. On the other hand, when m <6.2, the generation of boron oxide particles other than the boride fine particles is suppressed. Since the boron oxide particles are hygroscopic, if the boron oxide particles are mixed in the boride powder, the moisture resistance of the boride powder is lowered and the near-infrared absorption characteristics are significantly deteriorated with time. Therefore, it is preferable to suppress the generation of boron oxide particles by setting m <6.2.
上記ホウ化物の内、XB4、XB6が主体となっていることが好ましく、更に一部XB12を含んでいても良い。ここで、mとは、得られたホウ化物微粒子を含む粉体を化学分析し、X元素の1原子に対するBの原子数比を示すものである。 Among the above borides, it is preferable that XB 4 and XB 6 are the main constituents, and a part of XB 12 may be contained. Here, m indicates the atomic number ratio of B to one atom of the X element by chemically analyzing the obtained powder containing the borohydride fine particles.
以下の説明においては、ホウ化物としてm=6の場合の6ホウ化物を例として説明する。 In the following description, 6 borides in the case of m = 6 as borides will be described as an example.
本発明に使用される6ホウ化物には、LaB6、CeB6、PrB6、NdB6、SmB6、EuB6、GdB6、TbB6、DyB6、HoB6、ErB6、TmB6、YbB6、LuB6、SrB6、CaB6およびYB6が挙げられる。 The 6 borides used in the present invention include LaB 6 , CeB 6 , PrB 6 , NdB 6 , SmB 6 , EuB 6 , GdB 6 , TbB 6 , DyB 6 , HoB 6 , ErB 6 , TmB 6 , and YbB 6 . , LuB 6 , SrB 6 , CaB 6 and YB 6 .
本発明に使用される6ホウ化物微粒子は、その表面が酸化していないことが好ましいが、通常は僅かに酸化していることが多く、また微粒子の分散工程で表面の酸化が起こることはある程度避けられない。しかしその場合でも近赤外線吸収効果を発現する有効性に変わりはない。またこれ等の微粒子は、結晶としての完全性が高いほど大きい近赤外線吸収効果が得られるが、結晶性が低くX線回折でブロードな回折ピークを生じるようなものであっても、微粒子内部の基本的な結合が立方晶CaB6タイプの構造を有するものであるならば近赤外線吸収効果を発現する。加えて、6ホウ化物微粒子は無機物質のため耐候性にも優れている。 It is preferable that the surface of the 6-boride fine particles used in the present invention is not oxidized, but usually the surface is slightly oxidized, and the surface is oxidized to some extent in the fine particle dispersion step. Inevitable. However, even in that case, there is no change in the effectiveness of exhibiting the near-infrared absorption effect. Further, these fine particles have a larger near-infrared absorption effect as the crystal perfection is higher, but even if the crystallinity is low and a broad diffraction peak is generated by X-ray diffraction, the inside of the fine particles is formed. If the basic bond has a cubic CaB 6 type structure, it exhibits a near-infrared absorption effect. In addition, since the 6-boride fine particles are inorganic substances, they have excellent weather resistance.
これ等の6ホウ化物微粒子は、暗い青紫色や緑色等の粉末であるが、可視光波長に比べて粒径を十分小さくし、この小さな粒径を有する微粒子を繊維の表面および/または内部に分散して含有させた状態においては、可視光透過性が生じるが、赤外線吸収能は十分強く保持できる。これは、6ホウ化物微粒子中の自由電子の量が多く、当該微粒子内部および表面の自由電子によるプラズモン吸収およびバンド間間接遷移の吸収エネルギーが、ちょうど可視から近赤外光の付近にあるために、この波長領域の熱線が選択的に反射・吸収されるためであると考えられる。実験によれば、これ等6ホウ化物微粒子を十分細かく且つ均一に分散した膜では、透過率が波長400~700nmの間に極大値をもち、かつ、波長700~1800nmの間に極小値をもつことが判明した。そこで、当該6ホウ化物微粒子を透明基材の表面および/または内部に含有した分散体においても、同様の透過率の波長特性を得ることができる。 These 6-borified fine particles are powders such as dark bluish purple and green, but the particle size is sufficiently smaller than that of the visible light wavelength, and the fine particles having this small particle size are placed on the surface and / or inside of the fiber. In the dispersed state, visible light transmission occurs, but the infrared absorption ability can be sufficiently strongly maintained. This is because the amount of free electrons in the 6 borohydride particles is large, and the absorption energy of plasmon absorption and interband indirect transition by the free electrons inside and on the surface of the particles is just in the vicinity of visible to near-infrared light. It is considered that this is because the heat rays in this wavelength region are selectively reflected and absorbed. According to the experiment, in the film in which these 6 boride fine particles are sufficiently finely and uniformly dispersed, the transmittance has a maximum value in the wavelength range of 400 to 700 nm and a minimum value in the wavelength range of 700 to 1800 nm. It has been found. Therefore, even in a dispersion containing the 6-boride fine particles on the surface and / or inside of the transparent substrate, wavelength characteristics having the same transmittance can be obtained.
ここで、人間の可視光波長が380~780nmであり、視感度が550nm付近をピークとする釣鐘型であることを考慮すると、このような6ホウ化物微粒子を含有した分散体では可視光を有効に透過し、それ以外の熱線を有効に反射・吸収することが理解される。 Here, considering that the visible light wavelength of human beings is 380 to 780 nm and the visual sensitivity is a bell shape having a peak in the vicinity of 550 nm, visible light is effective in such a dispersion containing 6 borohydride fine particles. It is understood that it penetrates into the light and effectively reflects and absorbs other heat rays.
また、6ホウ化物微粒子の単位重量あたりの赤外線吸収能力は非常に高く、ITOやATOと比較して、40~100分の1以下の使用量でその効果を発揮することができる。従って、所望の透明基材への微粒子の添加量が少なくても充分な赤外線吸収能を確保することができるので、基材の物性を損なうことが無いという利点を有する。勿論、所望により大量に添加することも可能であり、透明基材の表面および/または内部での6ホウ化物微粒子の含有量は、透明基材の固形分に対して、0.001重量%~30重量%の範囲で選択することができる。更に、6ホウ化物微粒子添加後の透明基材の重量や原料コストを考慮した観点からは、好ましくは0.005重量%~15重量%の範囲、更に好ましくは0.005重量%~10重量%の範囲で選択すると良い。添加量が0.001重量%以上であれば、基材が厚くても十分な赤外線吸収効果を得ることができ、30重量%未満であれば分散体作製への悪影響も無い。10重量%未満であれば更に好ましい。 In addition, the infrared absorption capacity per unit weight of the 6-boride fine particles is very high, and the effect can be exhibited at a usage amount of 40 to 1/100 or less as compared with ITO and ATO. Therefore, even if the amount of fine particles added to the desired transparent substrate is small, sufficient infrared absorption ability can be ensured, which has the advantage of not impairing the physical properties of the substrate. Of course, it can be added in a large amount if desired, and the content of the 6-boride fine particles on the surface and / or inside of the transparent substrate is 0.001% by weight or more with respect to the solid content of the transparent substrate. It can be selected in the range of 30% by weight. Further, from the viewpoint of considering the weight of the transparent base material after the addition of the 6-boride fine particles and the raw material cost, it is preferably in the range of 0.005% by weight to 15% by weight, more preferably 0.005% by weight to 10% by weight. It is good to select within the range of. If the addition amount is 0.001% by weight or more, a sufficient infrared absorption effect can be obtained even if the base material is thick, and if it is less than 30% by weight, there is no adverse effect on the dispersion preparation. It is more preferable if it is less than 10% by weight.
また、6ホウ化物微粒子と共に、遠赤外線を放射する能力を有する物質の微粒子を基材表面および/または内部に含有させるのも好ましい構成である。当該遠赤外線放射物質の微粒子として、例えばZrO2、SiO2、TiO2、Al2O3、MnO2、MgO、Fe2O3、CuO等の金属酸化物、ZrC、SiC、TiC等の炭化物、ZrN、Si3N4、AlN等の窒化物等を挙げることができる。 Further, it is also preferable to contain fine particles of a substance having an ability to emit far infrared rays on the surface and / or inside of the base material together with the 6 boride fine particles. Examples of the fine particles of the far-infrared radiation material include metal oxides such as ZrO 2 , SiO 2 , TiO 2 , Al 2 O 3 , MnO 2 , MgO, Fe 2 O 3 , and CuO, and carbides such as ZrC, SiC, and TiC. Nitridees such as ZrN, Si 3N 4 , AlN and the like can be mentioned.
6ホウ化物微粒子は、波長0.3~2μmの太陽光等の光エネルギーを吸収する性質を持っており、特に波長1μm付近の近赤外領域の光を選択的に吸収して、再輻射するか、若しくは熱に変換する。上述した遠赤外線放射物質の微粒子は、6ホウ化物微粒子が吸収したエネルギーを受け取って、中・遠赤外線波長の熱エネルギーに転換し、放射する能力を有している。例えば、ZrO2微粒子は、6ホウ化物微粒子によって吸収された熱を、波長2~20μmの熱エネルギーに転換し放射する。従って、吸収したエネルギーを微粒子間で交換し効率良く放射するため、より効果的な保温がなされる。 6 The borohydride fine particles have a property of absorbing light energy such as sunlight having a wavelength of 0.3 to 2 μm, and in particular, selectively absorb light in the near infrared region near a wavelength of 1 μm and re-radiate it. Or convert to heat. The above-mentioned fine particles of the far-infrared radiation substance have the ability to receive the energy absorbed by the 6-bodied fine particles, convert it into heat energy of medium and far-infrared wavelengths, and radiate it. For example, the ZrO 2 fine particles convert the heat absorbed by the 6-boride fine particles into heat energy having a wavelength of 2 to 20 μm and radiate it. Therefore, the absorbed energy is exchanged between the fine particles and radiated efficiently, so that more effective heat retention is achieved.
次に、6ホウ化物微粒子の好ましい粒径について説明する。 Next, the preferable particle size of the 6-boride fine particles will be described.
上述したように6ホウ化物微粒子の平均粒径が10nm~500nmであることを要し、使用目的によって上記範囲から適宜選定することができる。まず、透明性を保持した応用に使用する場合は、500nm以下の粒子径を有していることが好ましい。これは、500nmよりも小さい粒子は、散乱により光を完全に遮蔽することが無く、可視光線領域の視認性を保持し、同時に効率良く透明性を保持することができるからである。特に可視光領域の透明性を重視する場合は、更に粒子による散乱を考慮することが好ましい。 As described above, the average particle size of the 6-boride fine particles is required to be 10 nm to 500 nm, and can be appropriately selected from the above range depending on the purpose of use. First, when used for applications that maintain transparency, it is preferable to have a particle size of 500 nm or less. This is because particles smaller than 500 nm do not completely block light due to scattering, and can maintain visibility in the visible light region and at the same time efficiently maintain transparency. In particular, when the transparency in the visible light region is emphasized, it is preferable to further consider scattering by particles.
更に、意匠性の観点からは、透明性を保持したまま近赤外線の効率良い遮蔽を行なうことが求められる。ところが、6ホウ化物微粒子の粒子径が大きいと、幾何学散乱若しくは回折散乱によって400~780nmの可視光領域の光を散乱して曇りガラスのようになり、鮮明な透明性が得にくくなる。そこで、6ホウ化物微粒子の粒子径を500nmよりも小さくした場合、可視光を遮蔽しないので、可視光領域の透明性を保持したまま効率良く近赤外線を遮蔽することができる。 Further, from the viewpoint of design, it is required to efficiently shield near infrared rays while maintaining transparency. However, when the particle size of the 6 borohydride fine particles is large, the light in the visible light region of 400 to 780 nm is scattered by geometrical scattering or diffraction scattering to become like frosted glass, and it becomes difficult to obtain clear transparency. Therefore, when the particle size of the 6-boride fine particles is smaller than 500 nm, visible light is not shielded, so that near-infrared rays can be efficiently shielded while maintaining the transparency of the visible light region.
更に、6ホウ化物微粒子径が200nm以下になると、上記散乱が低減してミー散乱若しくはレイリー散乱領域になる。特に、レイリー散乱領域まで粒子径が減少すると、散乱光強度は分散粒子径の6乗に比例するため、粒子径の減少に伴い散乱が低減し透明性が向上する。更に100nm以下になると散乱光は非常に少なくなり好ましい。そこで、特に可視光領域の透明性を重視する場合には、6ホウ化物微粒子径は200nm以下がよく、更に好ましくは100nm以下がよい。 Further, when the diameter of the 6-boride fine particles is 200 nm or less, the scattering is reduced to become a Mie scattering or Rayleigh scattering region. In particular, when the particle size is reduced to the Rayleigh scattering region, the scattered light intensity is proportional to the sixth power of the dispersed particle size, so that the scattering is reduced and the transparency is improved as the particle size is reduced. Further, when it is 100 nm or less, the scattered light becomes very small, which is preferable. Therefore, when the transparency in the visible light region is particularly important, the diameter of the 6-boride fine particles is preferably 200 nm or less, more preferably 100 nm or less.
2.原子層堆積法で得られる被覆膜(膜種)とその膜材料(反応ガス)
ALD法で被覆膜(被覆層)を形成する反応ガスは各社から販売されている。本発明で採用した被覆膜の代表的な反応ガスを以下の表1に示す。
2. 2. Coating film (membrane type) obtained by atomic layer deposition method and its membrane material (reaction gas)
Reaction gases that form a coating film (coating layer) by the ALD method are sold by various companies. Table 1 below shows typical reaction gases of the coating film used in the present invention.
これ等の代表的な膜材料(反応ガス)を表1にまとめるが、ここに示した膜材料(反応ガス)に限定されるものではない。また、これ等の膜材料から成る酸化膜に加え、類似する炭化膜、窒化膜あるいはこれ等の合成膜であってもよい。 These typical membrane materials (reaction gas) are summarized in Table 1, but are not limited to the membrane materials (reaction gas) shown here. Further, in addition to an oxide film made of these film materials, a similar carbonized film, a nitrided film, or a synthetic film thereof may be used.
3.被覆層の構造
近赤外線遮蔽微粒子(複合タングステン酸化物微粒子および/またはホウ化物微粒子)表面に形成される被覆層(被覆膜)の構造としては、第1反応ガス吸着工程と排気工程および第2反応ガス反応工程と排気工程から成る1サイクルで1原子層が形成される原子層堆積(ALD)法を用いた原子層堆積(ALD)装置により、該1原子層が4層以上成膜されて1種以上の原子層から成る被覆層(被覆膜)が少なくとも1種以上形成されていればよく、被覆膜の総数、膜の順番、組合せ、膜厚等が限定されるものではない。
3. 3. Coating layer structure
The structure of the coating layer (coating film) formed on the surface of the near-infrared shielding fine particles (composite tungsten oxide fine particles and / or borohydride fine particles) includes a first reaction gas adsorption step, an exhaust step, and a second reaction gas reaction step. Atomic layer deposition (ALD) device using the atomic layer deposition (ALD) method, in which one atomic layer is formed in one cycle consisting of the above-mentioned and exhaust steps, four or more layers of the one atomic layer are formed and one or more kinds are formed. It is sufficient that at least one kind of coating layer (coating film) composed of atomic layers is formed, and the total number of coating films, the order of the films, the combination, the film thickness, and the like are not limited.
例えば、第1反応ガス吸着工程と排気工程および第2反応ガス反応工程と排気工程から成る1サイクルで1原子層が形成される原子層堆積(ALD)法を用いた原子層堆積(ALD)装置により、図2に示す近赤外線遮蔽微粒子(複合タングステン酸化物微粒子および/またはホウ化物微粒子)30の表面を、Al2O3、SiO2、SiOAl、SiC、SiOC、SiCNから選択された1種の原子層が4層以上成膜されて成る被覆層31で被覆する構造が挙げられる。
For example, an atomic layer deposition (ALD) apparatus using an atomic layer deposition (ALD) method in which one atomic layer is formed in one cycle consisting of a first reaction gas adsorption step and an exhaust step and a second reaction gas reaction step and an exhaust step. As a result, the surface of the near-infrared shielding fine particles (composite tungsten oxide fine particles and / or horide fine particles) 30 shown in FIG. 2 is selected from Al 2 O 3, SiO 2 , SiO Al, SiC, SiOC, and SiC N. Examples thereof include a structure in which four or more atomic layers are formed and covered with a
また、上記原子層堆積(ALD)法を用いた原子層堆積(ALD)装置により、図3に示す近赤外線遮蔽微粒子(複合タングステン酸化物微粒子および/またはホウ化物微粒子)40の表面を、Al2O3、SiO2、SiOAl、SiC、SiOC、SiCNから選択された1種の原子層が4層以上成膜されて成る第一被覆層41で被覆し、該第一被覆層41の表面を、Al2O3、SiO2から選択された1種の原子層が1層以上成膜されて成る第二被覆層42で被覆する構造が挙げられる。Al2O3、SiO2から選択された1種から成る被覆層は、両者とも酸素透過性、水蒸気透過性が低く、1種の原子層が1層以上成膜されていれば被覆層として効果が現れる。
Further, by the atomic layer deposition (ALD) apparatus using the atomic layer deposition (ALD) method, the surface of the near-infrared shielding fine particles (composite tungsten oxide fine particles and / or borohydride fine particles) 40 shown in FIG. 3 is subjected to Al 2 The surface of the
更に、上記原子層堆積(ALD)法を用いた原子層堆積(ALD)装置により、図4に示す近赤外線遮蔽微粒子(複合タングステン酸化物微粒子および/またはホウ化物微粒子)50の表面を、Al2O3、SiO2、SiOAl、SiC、SiOC、SiCNから選択された2種の原子層51a、51b(原子層51aの原子層数と原子層51bの原子層数との合計が4層以上)から成る第一被覆層51で被覆し、該第一被覆層の表面を、Al2O3、SiO2から選択された1種の原子層(1層以上)から成る第二被覆層52で被覆する構造が挙げられる。
Further, by the atomic layer deposition (ALD) apparatus using the atomic layer deposition (ALD) method, the surface of the near-infrared shielding fine particles (composite tungsten oxide fine particles and / or borohydride fine particles) 50 shown in FIG. 4 is subjected to Al 2 From two types of
4.原子層堆積装置
(1)原子層堆積(Atomic Layer Deposition:ALD)法
原子層堆積(Atomic Layer Deposition:ALD、上記したようにALDと略記する場合がある)は、原子層(分子層)を構成する元素が含まれる原料ガスを真空装置内に交互に導入し、真空装置内に配置された被成膜体の最表面に吸着された分子と、次に導入される原料ガスとの反応により単原子(単分子)層ずつ堆積させる方法で、被覆膜の膜厚を原子層レベルで制御できる方法である(非特許文献2参照)。
4. Atomic layer deposition equipment
(1) Atomic Layer Deposition (ALD) Method Atomic Layer Deposition (ALD, sometimes abbreviated as ALD as described above) contains elements that make up the atomic layer (molecular layer). The raw material gas is alternately introduced into the vacuum device, and a single atom (single molecule) is generated by the reaction between the molecules adsorbed on the outermost surface of the film to be deposited placed in the vacuum device and the raw material gas to be introduced next. ) This is a method in which the film thickness of the coating film can be controlled at the atomic layer level by depositing layers at a time (see Non-Patent Document 2).
そして、ALD法は、被成膜体側から単原子(単分子)層ずつ堆積しながら成膜が始まる方法であるため、被成膜体(例えば耐熱性樹脂フィルム)に対しピンホールのない金属膜を形成することが可能となる。更に、ALD法においては原料がガスであるため、スパッタリング法や真空蒸着法で多発するスプラッシュ現象(膜原料が固まりのまま被成膜体に飛来する現象)の発生もない。従って、スプラッシュが成膜中の膜に付着し、それが脱落してピンホールになるような現象もない。一方、真空成膜法(真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビームスパッタリング法等)においては、金属クラスターが被成膜体上に飛来して被成膜体表面に付着し、金属クラスターが結合して膜を形成していくため、潜在的に金属クラスター間にピンホールを作ってしまう可能性があり、ALD法とは大きく異なっている。 Since the ALD method is a method in which film formation starts while depositing single atom (single molecule) layers from the film surface to be filmed, a metal film having no pinholes with respect to the film to be filmed (for example, a heat resistant resin film). Can be formed. Further, in the ALD method, since the raw material is gas, the splash phenomenon (a phenomenon in which the film raw material is agglomerated and flies to the film-deposited body) that frequently occurs in the sputtering method or the vacuum vapor deposition method does not occur. Therefore, there is no phenomenon that the splash adheres to the film being formed and falls off to form a pinhole. On the other hand, in the vacuum film formation method (vacuum vapor deposition method, sputtering method, ion plating method, ion beam sputtering method, etc.), metal clusters fly onto the film-deposited object and adhere to the surface of the film-deposited object to form a metal. Since the clusters combine to form a film, there is a possibility of potentially forming pinholes between the metal clusters, which is very different from the ALD method.
また、直進性が高いスパッタリング法や真空蒸着法においては均一な成膜が困難である表面に凹凸を有する被成膜体面上にも、ALD法では均一な成膜が可能であり、高アスペクト比の形状構成においても均一な成膜が可能である。また、ALD法で用いられる真空装置においては、PVD法やCVD法で用いられる真空装置に必要であった高価な電源ユニット等を必要としないため、従来の成膜方法と比較して成膜コストの低減も図れる。更に、ALD法においては、一般的な平行平板型プラズマCVD法等で得られる膜と比較して、低温でも緻密な膜が得られることが分かってきている。 In addition, the ALD method enables uniform film formation even on the surface of the film to be filmed, which has irregularities on the surface, which is difficult to form uniformly with the sputtering method and vacuum vapor deposition method, which have high straightness, and has a high aspect ratio. Uniform film formation is possible even with the shape configuration of. Further, the vacuum apparatus used in the ALD method does not require an expensive power supply unit or the like required for the vacuum apparatus used in the PVD method or the CVD method, so that the film formation cost is higher than that of the conventional film formation method. Can also be reduced. Further, it has been found that in the ALD method, a dense film can be obtained even at a low temperature as compared with the film obtained by a general parallel plate type plasma CVD method or the like.
これ等の特徴に着目して、ALD法は、有機ELの硫化亜鉛薄膜や化合物半導体であるガリウムヒ素薄膜の形成手法として研究開発がなされており、最近では、ALD法により形成されたHfO2/Al2O3膜がDRAMキャパシタ膜として提案されている(特許文献6参照)。 Focusing on these characteristics, the ALD method has been researched and developed as a method for forming a zinc sulfide thin film of an organic EL and a gallium arsenic thin film which is a compound semiconductor. Recently, HfO 2 / formed by the ALD method has been carried out. An Al 2 O 3 film has been proposed as a DRAM capacitor film (see Patent Document 6).
このALD法においては、上記原子層(分子層)を構成する元素のそれぞれが含まれる第1反応ガス(原料ガス)と第2反応ガス(原料ガス)を、真空装置(反応室)内に交互に導入する下記A~H工程で1サイクルが構成され、サイクル数により膜厚の調整が行なわれる。 In this ALD method, a first reaction gas (raw material gas) and a second reaction gas (raw material gas) containing each of the elements constituting the atomic layer (molecular layer) are alternately placed in a vacuum apparatus (reaction chamber). One cycle is configured by the following steps A to H to be introduced into the above, and the film thickness is adjusted according to the number of cycles.
A:真空装置(反応室)に第1反応ガス(原料ガス)を導入する工程、
B:被成膜体の最表面に第1反応ガスが化学吸着する工程、
C:被成膜体の最表面が第1反応ガスで飽和する工程、
D:真空装置(反応室)から過剰な第1反応ガスと副生成物を排気する工程、
E:真空装置(反応室)に第2反応ガス(原料ガス)を導入する工程、
F:被成膜体の最表面に吸着している第1反応ガスと第2反応ガスが反応する工程、
G:被成膜体の最表面が第2反応ガスで飽和する工程、
H:真空装置(反応室)から過剰な第2反応ガスと副生成物を排気する工程。
A: The process of introducing the first reaction gas (raw material gas) into the vacuum device (reaction chamber),
B: A process in which the first reaction gas is chemically adsorbed on the outermost surface of the film to be deposited.
C: A step in which the outermost surface of the film-deposited body is saturated with the first reaction gas,
D: Step of exhausting excess first reaction gas and by-products from the vacuum device (reaction chamber),
E: The process of introducing the second reaction gas (raw material gas) into the vacuum device (reaction chamber),
F: A step in which the first reaction gas adsorbed on the outermost surface of the film to be formed reacts with the second reaction gas.
G: A step in which the outermost surface of the film-deposited body is saturated with the second reaction gas,
H: A process of exhausting excess second reaction gas and by-products from the vacuum apparatus (reaction chamber).
そして、ALD法では、第1反応ガスと第2反応ガスを選択することにより、SiO2、Al2O5、ZrO2、HfO2、Ta2O5、TiO2等の酸化物膜、AlN、TaN、TiN、TaSiN、TiSiN等の窒化物膜、Cu、Ru、Ir、Ni、Pt等の金属膜、CaF2、SrF2、MgF2等のフッ化物膜、GaAs、InP、GaP等の化合物膜の成膜が可能である。 In the ALD method, by selecting the first reaction gas and the second reaction gas, oxide films such as SiO 2 , Al 2 O 5 , ZrO 2 , HfO 2 , Ta 2 O 5 , and TiO 2 , AlN, Nitride film such as TaN, TiN, TaSiN, TiSiN, metal film such as Cu, Ru, Ir, Ni, Pt, fluoride film such as CaF 2 , SrF 2 , MgF 2 , compound film such as GaAs, InP, GaP. Can be formed.
例えば、ALD法で最も多く成膜が行われているAl2O3の単原子(単分子)層を形成する場合、下記4工程で1サイクルが完成する。 For example, in the case of forming a monatomic (monomolecular) layer of Al 2 O 3 in which the most film formation is performed by the ALD method, one cycle is completed in the following four steps.
(i)第1反応ガスである水分子を導入して被成膜体の最表面にOH基を吸着させる。
(最初の反応)
H2O → 被成膜体表面:O-H + (1/2)H2
(1層目以降の反応)
:O-Al(CH3)2 +2H2O → :O-Al(OH)2+2CH4
(ii)過剰水分子と副生成物CH4をパージ排気する。
(iii)Al2O3膜の原料ガスとなる第2反応ガスTMA[Trimethyl Aluminum:Al(CH3)3]ガスを導入する。TMA分子がOH基と反応してCH4ガスが発生する。
(1層目の反応)
:O-H + Al(CH3)3 → :O-Al(CH3)2 +CH4
(iv)過剰なTMAガスと副生成物CH4ガスをパージ排気する。
(I) Water molecules, which are the first reaction gas, are introduced to adsorb OH groups on the outermost surface of the film-deposited body.
(First reaction)
H 2 O → Surface of film to be filmed: OH + (1/2) H 2
(Reaction after the first layer)
: O-Al (CH 3 ) 2 + 2H 2 O →: O-Al (OH) 2 + 2CH 4
(Ii) Excess water molecules and by-product CH 4 are purged and exhausted.
(Iii) A second reaction gas TMA [Trimethyl Aluminum: Al (CH 3 ) 3 ] gas, which is a raw material gas for the Al 2 O 3 membrane, is introduced. TMA molecules react with OH groups to generate CH 4 gas.
(Reaction of the first layer)
: O-H + Al (CH 3 ) 3 →: O-Al (CH 3 ) 2 + CH 4
(Iv) Excessive TMA gas and by-product CH 4 gas are purged and exhausted.
この4工程で約0.1nmのAl2O3膜が形成されるので、要求する膜厚に到達するまで上記4工程のサイクルを繰り返して膜厚を増加させる。 Since an Al 2 O 3 film having a thickness of about 0.1 nm is formed in these four steps, the cycle of the above four steps is repeated until the required film thickness is reached to increase the film thickness.
尚、上記(iii)工程における(1層目の反応)の後、(iv)工程を経て、2サイクル目の(i)工程に入った場合は(1層目以降の反応)となる。また、上述したA~H工程において、A~C工程は上記(i)工程に対応し、D工程は上記(ii)工程に対応し、また、E~G工程は上記(iii)工程に対応し、H工程は上記(iv)工程に対応している。 In addition, when the step (i) of the second cycle is entered through the step (iv) after the (reaction of the first layer) in the step (iii), the reaction is (reaction of the first layer and subsequent layers). Further, in the above-mentioned steps A to H, the steps A to C correspond to the above step (i), the step D corresponds to the above step (ii), and the steps E to G correspond to the above step (iii). However, the H step corresponds to the above (iv) step.
また、反応を促進させるため、ALD法は、被成膜体を加熱(100~300℃)し、あるいは、第1反応ガスと第2反応ガスとの反応の際に直接プラズマを印加する方式や、反応室外でプラズマを使用し活性化された反応基を反応室に導入する方式等のプラズマALD法を行うことができる。 Further, in order to promote the reaction, the ALD method is a method in which the film-deposited body is heated (100 to 300 ° C.) or plasma is directly applied at the time of the reaction between the first reaction gas and the second reaction gas. , A plasma ALD method such as a method of introducing a reactive group activated by using plasma outside the reaction chamber into the reaction chamber can be performed.
ALD法は、例示したAl2O3層以外の膜種においても、反応ガスが異なるだけで、基本的には、「第1反応ガスの導入」、「パージ」、「第2反応ガスの導入」、「パージ」の4工程で1層の成膜が可能である。また、ALD法による成膜は不純物が取り込まれることが少なく、精製作用があるため、純度の低い反応ガスを使用しても高純度の膜を得ることができる。 In the ALD method, the reaction gas is different even in the membrane types other than the exemplified Al 2 O 3 layer, and basically, "introduction of the first reaction gas", "purge", and "introduction of the second reaction gas" are performed. , And "purge", one layer can be formed. Further, since impurities are rarely incorporated in the film formation by the ALD method and there is a purification action, a high-purity film can be obtained even if a reaction gas having a low purity is used.
(2)本発明方法で使用される原子層堆積(ALD)装置
本発明方法で用いられる原子層堆積(ALD)装置について、第1反応ガス吸着工程と排気工程および第2反応ガス反応工程と排気工程から成る「1サイクルの工程」が半連続的に行える原子層堆積(ALD)装置を例に挙げて説明する。
(2) Atomic layer deposition (ALD) device used in the method of the present invention Regarding the atomic layer deposition (ALD) device used in the method of the present invention, the first reaction gas adsorption step and the exhaust step and the second reaction gas reaction step and the exhaust An atomic layer deposition (ALD) device capable of semi-continuously performing a "one-cycle process" consisting of steps will be described as an example.
この原子層堆積装置は、図5に示すように一定量の近赤外線遮蔽微粒子が導入される第1真空チャンバ331と、微粒子移動用開閉バルブ312を介し第1真空チャンバ331から導入される微粒子336の表面に第1反応ガスを化学吸着させる第2真空チャンバ332と、微粒子移動用開閉バルブ313を介し第2真空チャンバ332から第1反応ガスを化学吸着した微粒子337が導入されかつ第2真空チャンバ332から流れ込んだ過剰な第1反応ガスと副生成物を排気する第3真空チャンバ333と、微粒子移動用開閉バルブ314を介し第3真空チャンバ333から導入される微粒子337の該表面に化学吸着された第1反応ガスと第2反応ガスを反応させて原子層を形成する第4真空チャンバ334と、微粒子移動用開閉バルブ315を介し第4真空チャンバ334から原子層を形成した微粒子338が導入されかつ第4真空チャンバ334から流れ込んだ過剰な第2反応ガスと副生成物を排気する第5真空チャンバ335とで構成され、
最上部の第1真空チャンバ331には一定量の近赤外線遮蔽微粒子を導入する微粒子導入用開閉バルブ311が設けられると共に、最下部の第5真空チャンバ335には原子層が形成された微粒子338を排出する粒子排出用開閉バルブ316が設けられており、
各真空チャンバの上記排気機構が、排気メインバルブ302を介し真空ポンプ301に接続された共通排気管303と、各真空チャンバに付設された排気バルブ304、305、306、307、308を介し上記共通排気管303に接続された個別排気管とで構成され、個別排気管の真空チャンバ側には微粒子の吸い込みを防止する吸い込み防止フィルタ324、325、326、327、328がそれぞれ設けられていると共に、
上記第1反応ガスの吸着工程を行う第2真空チャンバ332と第2反応ガスの反応工程を行う第4真空チャンバ334に設けられる反応ガス導入機構が、反応ガスの供給源(図示せず)に接続されかつガス流量計(MFC:マスフローコントローラ)317、318が付設された反応ガス導入管と、各反応ガス導入管に付設されたガス導入バルブ309、310とで構成されている。
As shown in FIG. 5, this atomic layer depositing device has a
The uppermost
The exhaust mechanism of each vacuum chamber is common to the
The reaction gas introduction mechanism provided in the
尚、微粒子の導入、移動、排出に係る各バルブの開閉制御、真空チャンバの上記排気機構に係る制御、および、真空チャンバの上記反応ガス導入機構に係る制御は、原子層堆積装置に付設された一般的な制御手段(図示せず)によりなされる。 The control of opening and closing of each valve related to the introduction, movement, and discharge of fine particles, the control of the exhaust mechanism of the vacuum chamber, and the control of the reaction gas introduction mechanism of the vacuum chamber were added to the atomic layer deposition apparatus. It is done by general control means (not shown).
以下、上記原子層堆積装置について具体的に説明する。 Hereinafter, the atomic layer deposition apparatus will be specifically described.
5基の真空チャンバ(第1真空チャンバ331、第2真空チャンバ332、第3真空チャンバ333、第4真空チャンバ334、および、第5真空チャンバ335)の機能を以下に記載するが、第1真空チャンバ331~第5真空チャンバ335がALD法で1層の原子層(分子層)が形成される1サイクルの4工程に相当する。
The functions of the five vacuum chambers (
第1真空チャンバ331:排気室
第2真空チャンバ332:微粒子の最表面に成膜するための第1反応ガスが供給される化学吸着室
第3真空チャンバ333:過剰な第1反応ガスと副生成物を排気する排気室
第4真空チャンバ334:微粒子の最表面に成膜するための第2反応ガスが供給される化学反応室
第5真空チャンバ335:過剰な第2反応ガスと副生成物を排気する排気室
1st vacuum chamber 331: Exhaust chamber 2nd vacuum chamber 332: Chemical adsorption chamber to which the 1st reaction gas for forming a film on the outermost surface of fine particles is supplied 3rd vacuum chamber 333: Excessive 1st reaction gas and by-production Exhaust chamber for exhausting objects 4th vacuum chamber 334: Chemical reaction chamber to which a 2nd reaction gas for forming a film on the outermost surface of fine particles is supplied 5th vacuum chamber 335: Excessive 2nd reaction gas and by-products Exhaust chamber to exhaust
この原子層堆積装置において、第1真空チャンバ331(排気室)、第2真空チャンバ332(化学吸着室)、第3真空チャンバ333(排気室)、第4真空チャンバ334(化学反応室)、および、第5真空チャンバ335(排気室)には、上述したように排気バルブ304、305、306、307、308がそれぞれ付設されており、各排気バルブを経由して共通排気管303に接続されている。
In this atomic layer deposition apparatus, the first vacuum chamber 331 (exhaust chamber), the second vacuum chamber 332 (chemical adsorption chamber), the third vacuum chamber 333 (exhaust chamber), the fourth vacuum chamber 334 (chemical reaction chamber), and , The fifth vacuum chamber 335 (exhaust chamber) is provided with
上記共通排気管303には、排気メインバルブ302を経由して真空ポンプ(ドライポンプ)301が接続されており、各真空チャンバの個別排気管には微粒子を吸い込まないように上述の吸い込み防止フィルタ324、325、326、327、328が取り付けられている。
A vacuum pump (dry pump) 301 is connected to the
また、この原子層堆積装置においては、ガス流量計(MFC:マスフローコントローラ)317、318により第1反応ガスと第2反応ガスの流量が制御され、化学吸着室と化学反応室である各真空チャンバ(第2真空チャンバ332と第4真空チャンバ334)に設けられた吹き込みパイプから各真空チャンバ内に第1反応ガスと第2反応ガスが導入される。尚、符号329と330は、吹き込みパイプの先端に設けられたフィルタを示している。
Further, in this atomic layer deposition apparatus, the flow rates of the first reaction gas and the second reaction gas are controlled by a gas flow meter (MFC: mass flow controller) 317 and 318, and each vacuum chamber which is a chemical adsorption chamber and a chemical reaction chamber is controlled. The first reaction gas and the second reaction gas are introduced into each vacuum chamber from the blowing pipes provided in (the
また、この原子層堆積装置においては、反応を促進させるため、各真空チャンバの外周面に加熱用線状部材319、320、321、322、323が巻回されている。
Further, in this atomic layer deposition apparatus, heating
また、この原子層堆積装置において、最上部の真空チャンバ331における上流側と最下部の真空チャンバ335における下流側が、真空槽(図示せず)に接続されている場合、真空が確保されることを条件に真空チャンバ331(排気室)と真空チャンバ335(排気室)を省略して上記真空槽に機能を兼ねさせることも可能である。
Further, in this atomic layer depositing device, when the upstream side in the
また、この原子層堆積装置においては、微粒子表面を被覆する被覆層を構成する1層の原子層(分子層)を形成する1サイクルの工程が第1真空チャンバ331~第5真空チャンバ335で半連続的になされ、1層の原子層(分子層)が形成された微粒子から成る粉体を最下部の真空チャンバ335に設けられた微粒子排出用開閉バルブ316を開閉して排出させることができる。
Further, in this atomic layer depositing device, one cycle of forming one atomic layer (molecular layer) constituting the coating layer covering the surface of fine particles is half in the
また、1サイクルの工程を実施して1層の原子層(分子層)が形成された表面被覆近赤外線遮蔽微粒子に対し、更に1層の原子層(分子層)を形成する1サイクル工程を繰り返して原子層(分子層)形成のサイクル数を増やし、該原子層を4層以上成膜して被覆層を形成するとともに、該被覆層の膜厚を増加させることができる。 In addition, one cycle step of forming one atomic layer (molecular layer) is repeated for the surface-coated near-infrared shielding fine particles in which one atomic layer (molecular layer) is formed by carrying out one cycle step. The number of cycles for forming the atomic layer (molecular layer) can be increased, and four or more atomic layers can be formed to form a coating layer, and the film thickness of the coating layer can be increased.
尚、1サイクル工程を追加するには、最下部の第5真空チャンバ335に原子層(分子層)が形成された微粒子を排出する微粒子排出用開閉バルブ316を介し搬送用真空チャンバ(図示せず)を連通して設け、かつ、この搬送用真空チャンバを、最上部の第1真空チャンバ331にその微粒子導入用開閉バルブ311を介し連通して設けると共に、搬送用真空チャンバ内に設けられた図示外の搬送機構により上記原子層(分子層)が形成された微粒子から成る粉体を搬送して第1真空チャンバ331内に導入することで可能となる。
In order to add a one-cycle step, a vacuum chamber for transfer (not shown) via a fine particle discharge opening /
(2)上記原子層堆積装置を用いた表面被覆近赤外線遮蔽微粒子の製造方法
(a)1つの真空チャンバのみに近赤外線遮蔽微粒子が配置される場合
まず、5基の真空チャンバの内、1つの真空チャンバのみに上記微粒子が配置される場合について、微粒子の移動を基準にして説明する。
(2) Method for manufacturing surface-coated near-infrared shielding fine particles using the above atomic layer deposition device (a) When near-infrared shielding fine particles are arranged in only one vacuum chamber First, one of the five vacuum chambers The case where the fine particles are arranged only in the vacuum chamber will be described with reference to the movement of the fine particles.
(a-1)図5(a)に示す微粒子導入用開閉バルブ311、微粒子移動用開閉バルブ312、313、314、315、および、微粒子排出用開閉バルブ316の全てを閉止する。
(A-1) The opening /
(a-2)真空ポンプ(ドライポンプ)301を起動させてから排気メインバルブ302を開放し、かつ、第1真空チャンバ331(排気室)の排気バルブ304、第2真空チャンバ332(化学吸着室)の排気バルブ305、第3真空チャンバ333(排気室)の排気バルブ306、第4真空チャンバ334(化学反応室)の排気バルブ307、および、第5真空チャンバ335(排気室)の排気バルブ308を開放して排気する。
(A-2) After starting the vacuum pump (dry pump) 301, the exhaust
(a-3)第1~第5真空チャンバの上記排気バルブ304~308を閉止した後、第1真空チャンバ331(排気室)の微粒子導入用開閉バルブ311のみを開放し、第1真空チャンバ331(排気室)内に一定量の微粒子336を落下導入させ、然る後、上記微粒子導入用開閉バルブ311を閉止する。次いで、第1~第5真空チャンバの上記排気バルブ304~308を開放して排気する。
(A-3) After closing the
(a-4)排気した後、第1~第5真空チャンバの上記排気バルブ304~308を閉止し、然る後、第1真空チャンバ331と第2真空チャンバ332間の微粒子移動用開閉バルブ312を開放し、第2真空チャンバ332(化学吸着室)内に上記微粒子336を落下導入させた後、微粒子移動用開閉バルブ312を閉止する。次いで、第1~第5真空チャンバの上記排気バルブ304~308を開放して排気する。
(A-4) After exhausting, the
(a-5)第1~第5真空チャンバの上記排気バルブ304~308が開放された状態で第2真空チャンバ332(化学吸着室)のガス導入バルブ309を開放し、かつ、ガス流量計(MFC)317によりガス流量を設定した後、フィルタ329が先端に設けられた吹き込みパイプから、設定した導入時間、第1反応ガスを第2真空チャンバ332(化学吸着室)内に導入し、その後、ガス導入バルブ309を閉止する。
(A-5) With the
(a-6)第1~第5真空チャンバの上記排気バルブ304~308を閉止した後、第2真空チャンバ332と第3真空チャンバ333間の微粒子移動用開閉バルブ313を開放し、第1反応ガスが表面に化学吸着された微粒子337を第3真空チャンバ333(排気室)内に落下導入させ、かつ、上記微粒子移動用開閉バルブ313を閉止した後、第1~第5真空チャンバの上記排気バルブ304~308を開放して排気し、更に、排気バルブ306より第2真空チャンバ332から第3真空チャンバ333内に流れ込んだ過剰な第1反応ガスと副生成物も排気する。
(A-6) After closing the
(a-7)第1~第5真空チャンバの上記排気バルブ304~308を閉止した後、第3真空チャンバ333と第4真空チャンバ334間の微粒子移動用開閉バルブ314を開放し、第1反応ガスが表面に化学吸着された微粒子337を第4真空チャンバ334(化学反応室)内に落下導入させ、然る後、上記微粒子移動用開閉バルブ314を閉止する。次いで、第1~第5真空チャンバの上記排気バルブ304~308を開放して排気する。
(A-7) After closing the
(a-8)第1~第5真空チャンバの上記排気バルブ304~308が開放された状態で第4真空チャンバ334(化学反応室)のガス導入バルブ310を開放し、かつ、ガス流量計(MFC)318によりガス流量を設定した後、フィルタ330が先端に設けられた吹き込みパイプから、設定した導入時間、第2反応ガスを第4真空チャンバ334(化学反応室)内に導入し、その後、ガス導入バルブ310を閉止する。
(A-8) With the
(a-9)第1~第5真空チャンバの上記排気バルブ304~308を閉止した後、第4真空チャンバ334(化学反応室)と第5真空チャンバ335(排気室)間の微粒子移動用開閉バルブ315を開放し、第1反応ガスと第2反応ガスとの反応により1層の原子層(分子層)が形成された微粒子338を第5真空チャンバ335(排気室)内に落下導入させ、かつ、上記微粒子移動用開閉バルブ315を閉止した後、第1~第5真空チャンバの上記排気バルブ304~308を開放して排気し、更に、排気バルブ308より第4真空チャンバ334から第5真空チャンバ335内に流れ込んだ過剰な第2反応ガスと副生成物も排気する。
(A-9) After closing the
(a-10)第1~第5真空チャンバの上記排気バルブ304~308を閉止した後、第5真空チャンバ335(排気室)の微粒子排出用開閉バルブ316を開放し、上記微粒子338を落下排出させた後、上記微粒子排出用開閉バルブ316を閉止する。
(A-10) After closing the
上記操作(a-1)~操作(a-10)により微粒子表面に1層の原子層(分子層)が形成された近赤外線遮蔽微粒子を製造することができる。 By the above operations (a-1) to (a-10), it is possible to produce near-infrared shielding fine particles in which one atomic layer (molecular layer) is formed on the surface of the fine particles.
尚、1サイクル工程を追加するため、最下部の第5真空チャンバ335(排気室)の微粒子排出用開閉バルブ316と最上部の第1真空チャンバ331(排気室)の微粒子導入用開閉バルブ311間に、搬送機構を内部に有する上記搬送用真空チャンバ(図示せず)が連通して設けられている場合には、以下の操作(a-11)が追加される。
In order to add a one-cycle process, between the opening /
(a-11)上記微粒子排出用開閉バルブ316を介し図示外の搬送用真空チャンバ内に落下導入された微粒子338を、当該搬送用真空チャンバ内の搬送機構により最上部に位置する第1真空チャンバ331(排気室)の微粒子導入用開閉バルブ311前部に搬送し、1サイクル工程を追加するための上記操作(a-1)~操作(a-10)が繰り返される。
(A-11) The first vacuum chamber located at the uppermost part by the transport mechanism in the transport vacuum chamber for the
(b)全ての真空チャンバ内に近赤外線遮蔽微粒子が配置される場合
次に、5基の全真空チャンバ内に上記微粒子が配置される場合について、微粒子の移動を基準にして説明する。
(B) Case where near-infrared shielding fine particles are arranged in all vacuum chambers Next, a case where the fine particles are arranged in all five vacuum chambers will be described with reference to the movement of the fine particles.
尚、5基の全真空チャンバ内に微粒子が配置される場合とは、第1真空チャンバ331(排気室)内に未処理の微粒子若しくは原子層が形成された微粒子が導入され、この微粒子が第2真空チャンバ332内に落下導入された後、上記「1つの真空チャンバのみに近赤外線遮蔽微粒子が配置される場合」と異なり、上記微粒子が排出されて空状態の第1真空チャンバ331(排気室)内に、再度、未処理の微粒子若しくは原子層が形成された微粒子が落下導入される。そして、最初に導入された微粒子に対し第2真空チャンバ332内において第1反応ガスの化学吸着が終了した後、第1反応ガスが表面に化学吸着された微粒子を第3真空チャンバ333内に落下導入すると共に、第1真空チャンバ331(排気室)内に2番目に導入された微粒子を第2真空チャンバ332内に落下導入し、2番目に導入された微粒子が排出されて空状態の第1真空チャンバ331(排気室)内に、再度、3番目の微粒子が落下導入される。これ等の工程が半連続的に行われることで全ての真空チャンバ内に近赤外線遮蔽微粒子が配置されることになる場合を意味する。
When the fine particles are arranged in all five vacuum chambers, untreated fine particles or fine particles having an atomic layer formed are introduced into the first vacuum chamber 331 (exhaust chamber), and the fine particles are the first. 2 Unlike the case where the near-infrared shielding fine particles are arranged in only one vacuum chamber after being dropped and introduced into the
(b-1)上記工程を経て、第1~第5の各真空チャンバでそれぞれの処理操作が行われ、第1真空チャンバ331、第2真空チャンバ332、第3真空チャンバ333、第4真空チャンバ334、および、第5真空チャンバ335の全真空チャンバ内に定量の微粒子が配置された状態となる。
(B-1) Through the above steps, each processing operation is performed in each of the first to fifth vacuum chambers, and the
(b-2)各真空チャンバにおける処理操作が終了した後、第1~第5真空チャンバの排気バルブ304~308を閉止し、然る後、第5真空チャンバ335の微粒子排出用開閉バルブ316のみを開放して原子層が形成された微粒子338を排出する。
(B-2) After the processing operation in each vacuum chamber is completed, the
(b-3)上記微粒子排出用開閉バルブ316を閉止した後、第1~第5真空チャンバの排気バルブ304~308を開放して排気し、然る後、第1~5真空チャンバの上記排気バルブ304~308を閉止する。次いで、第5真空チャンバ335と第4真空チャンバ334間の微粒子移動用開閉バルブ315のみを開放して第4真空チャンバ334から処理済の微粒子を第5真空チャンバ335内に導入する。
(B-3) After closing the opening /
(b-4)第5真空チャンバ335と第4真空チャンバ334間の上記微粒子移動用開閉バルブ315を閉止した後、第1~第5真空チャンバの排気バルブ304~308を開放して排気し、然る後、第1~第5真空チャンバの上記排気バルブ304~308を閉止する。次いで、第4真空チャンバ334と第3真空チャンバ333間の微粒子移動用開閉バルブ314のみを開放して第3真空チャンバ333から処理済の微粒子337を第4真空チャンバ334内に導入する。
(B-4) After closing the opening /
(b-5)第4真空チャンバ334と第3真空チャンバ333間の上記微粒子移動用開閉バルブ314を閉止した後、第1~第5真空チャンバの排気バルブ304~308を開放して排気し、然る後、第1~5真空チャンバの上記排気バルブ304~308を閉止する。次いで、第3真空チャンバ333と第2真空チャンバ332間の微粒子移動用開閉バルブ313のみを開放して第2真空チャンバ332から処理済の粉体を第3真空チャンバ333内に導入する。
(B-5) After closing the opening /
(b-6)第3真空チャンバ333と第2真空チャンバ332間の上記微粒子移動用開閉バルブ313を閉止した後、第1~第5真空チャンバの排気バルブ304~308を開放して排気し、然る後、第1~5真空チャンバの上記排気バルブ304~308を閉止する。次いで、第2真空チャンバ332と第1真空チャンバ331間の微粒子移動用開閉バルブ312のみを開放して第1真空チャンバから処理済の微粒子336を第2真空チャンバ332内に導入する。
(B-6) After closing the opening /
(b-7)第2真空チャンバ332と第1真空チャンバ331間の上記微粒子移動用開閉バルブ312を閉止した後、第1~第5真空チャンバの排気バルブ304~308を開放して排気し、然る後、第1~5真空チャンバの上記排気バルブ304~308を閉止する。次いで、第1真空チャンバ331の微粒子導入用開閉バルブ311のみを開放して第1真空チャンバ331内に未処理の微粒子若しくは原子層が形成された微粒子を導入し、微粒子の導入が完了してから微粒子導入用開閉バルブ311を閉止する。
(B-7) After closing the opening /
上記操作(b-7)が終了すると、5基の各真空チャンバにおいて、上段側から下段側の真空チャンバ内に微粒子が移動配置された状態となるため、各真空チャンバにおける処理操作を行う。そして、各真空チャンバにおける処理操作が終了した後、上記操作(b-1)~操作(b-7)を行うことにより上段側から下段側の真空チャンバ内に微粒子が移動配置された状態となるため、各真空チャンバにおける処理操作を行う。 When the above operation (b-7) is completed, the fine particles are moved and arranged in the vacuum chambers from the upper stage side to the lower stage side in each of the five vacuum chambers, so that the processing operation in each vacuum chamber is performed. Then, after the processing operation in each vacuum chamber is completed, the fine particles are moved and arranged in the vacuum chamber from the upper stage side to the lower stage side by performing the above operations (b-1) to (b-7). Therefore, the processing operation in each vacuum chamber is performed.
この工程を繰り返し行うことにより、微粒子表面に1層の原子層(分子層)が形成された近赤外線遮蔽微粒子を半連続的に製造することができる。 By repeating this step, it is possible to semi-continuously produce near-infrared shielding fine particles in which one atomic layer (molecular layer) is formed on the surface of the fine particles.
このように全ての真空チャンバ(排気室、化学吸着室、化学反応室)に微粒子が存在していても、下流側の真空チャンバから順番に微粒子排出用開閉バルブ316、微粒子移動用開閉バルブ315、314、313、312、および、微粒子導入用開閉バルブ311を操作することで、微粒子移動用開閉バルブを開放したときに反応ガスが混合されることはない。
In this way, even if fine particles are present in all the vacuum chambers (exhaust chamber, chemical adsorption chamber, chemical reaction chamber), the open /
(c)真空チャンバの隔室(チャンバ一つおき)に微粒子が配置される場合
次に、真空チャンバ5基の内、空の真空チャンバを介しチャンバ一つおきに微粒子が配置される場合について、微粒子の移動を基準にして説明する。
(C) When fine particles are arranged in separate chambers (every other chamber) of the vacuum chamber Next, regarding the case where fine particles are arranged in every other chamber of the five vacuum chambers via an empty vacuum chamber. The explanation will be given with reference to the movement of fine particles.
尚、チャンバ一つおきに微粒子が配置される場合とは、第1真空チャンバ331(排気室)内に未処理の微粒子若しくは原子層が形成された微粒子が導入され、この微粒子が第2真空チャンバ332内に落下導入された後、上記「全ての真空チャンバ内に近赤外線遮蔽微粒子が配置される場合」と異なり、第1真空チャンバ331(排気室)内に微粒子を導入せずに空状態のままとする。そして、第2真空チャンバ332内に導入された微粒子に対し第1反応ガスの化学吸着が終了した後、第1反応ガスが表面に化学吸着された微粒子を第3真空チャンバ333内に落下導入し、かつ、第1真空チャンバ331(排気室)内に2番目の微粒子を導入することで第2真空チャンバ332内が空状態となる。次いで、第2真空チャンバ332から第3真空チャンバ333内に流れ込んだ過剰な第1反応ガスと副生成物を排気した後、第1反応ガスが表面に化学吸着された微粒子を第3真空チャンバ333から第4真空チャンバ334内に落下導入し、かつ、第1真空チャンバ331から2番目の微粒子も第2真空チャンバ332内に落下導入するが、第1真空チャンバ331(排気室)内に微粒子を導入せずに空状態のままとする。これ等の工程が半連続的に行われることでチャンバ一つおきに微粒子が配置されることになる場合を意味する。
When fine particles are arranged in every other chamber, untreated fine particles or fine particles having an atomic layer formed are introduced into the first vacuum chamber 331 (exhaust chamber), and these fine particles are used in the second vacuum chamber. After being dropped and introduced into the 332, unlike the above-mentioned "when the near-infrared shielding fine particles are arranged in all the vacuum chambers", the fine particles are not introduced into the first vacuum chamber 331 (exhaust chamber) and are in an empty state. Leave it as it is. Then, after the chemical adsorption of the first reaction gas to the fine particles introduced into the
(c-1)上記工程を経て、第1~第5の各真空チャンバでそれぞれの処理操作が行われて、図5(a)に示すように第1真空チャンバ331、第3真空チャンバ333および第5真空チャンバ335内に定量の微粒子が配置された状態となる。
(C-1) Through the above steps, each processing operation is performed in each of the first to fifth vacuum chambers, and as shown in FIG. 5A, the
(c-2)各真空チャンバにおける処理操作が終了した後、第1~第5真空チャンバの排気バルブ304~308を閉止する。その後、第1真空チャンバ331と第2真空チャンバ332間、第3真空チャンバ333と第4真空チャンバ334間の各微粒子移動用開閉バルブ312、314を開放し、図5(b)に示すように上段側真空チャンバから処理済の微粒子を第2真空チャンバ332と第4真空チャンバ334内にそれぞれ導入し、かつ、第5真空チャンバ335の微粒子排出用開閉バルブ316も開放して原子層が形成された微粒子338を排出する。
(C-2) After the processing operation in each vacuum chamber is completed, the
(c-3)第1真空チャンバ331と第2真空チャンバ332間、第3真空チャンバ333と第4真空チャンバ334間の各微粒子移動用開閉バルブ312、314、および、上記微粒子排出用開閉バルブ316を閉止した後、第2真空チャンバ332および第4真空チャンバ334内に定量の微粒子が存在する状態で、第1~第5真空チャンバの排気バルブ304~308を開放して排気する。
(C-3) Open /
(c-4)第2真空チャンバ332と第4真空チャンバ334の各真空チャンバにおける排気処理操作が終了した後、第1~第5真空チャンバの排気バルブ304~308を閉止する。次いで、第2真空チャンバ332と第3真空チャンバ333間、第4真空チャンバ334と第5真空チャンバ335間の各微粒子移動用開閉バルブ313、315を開放して上段側真空チャンバから処理済の微粒子を第3真空チャンバ333と第5真空チャンバ335内にそれぞれ導入すると共に、第1真空チャンバ331の微粒子導入用開閉バルブ311を開放して第1真空チャンバ331内に未処理の微粒子若しくは原子層が形成された微粒子を導入し、第1真空チャンバ331内への微粒子導入が完了してから第2真空チャンバ332と第3真空チャンバ333間、第4真空チャンバ334と第5真空チャンバ335間の各微粒子移動用開閉バルブ313、315、および、上記微粒子導入用開閉バルブ311を閉止する。その後、第1~5真空チャンバの排気バルブ304~308を開放して排気する。
(C-4) After the exhaust treatment operation in each of the
操作(c-4)が終了すると、図5(a)に示す第1真空チャンバ331、第3真空チャンバ333および第5真空チャンバ335内に定量の微粒子が移動配置された状態となるため、各真空チャンバにおける処理操作を行う。各真空チャンバにおける処理操作が終了した後、操作(c-1)~操作(c-4)を行って上段側から下段側の真空チャンバに微粒子を移動配置し、各真空チャンバにおける処理操作を行う。この工程を繰り返して微粒子表面に1層の原子層(分子層)が形成された近赤外線遮蔽微粒子を半連続的に製造することができる。
When the operation (c-4) is completed, a certain amount of fine particles are moved and arranged in the
上記(c-1)~(c-4)のように操作することで、微粒子移動用開閉バルブ312、314と微粒子排出用開閉バルブ316を同時に開放[すなわち、操作(c-2)]しても第1反応ガスと第2反応ガスが混合されることはなく、また、微粒子移動用開閉バルブ313、315と微粒子導入用開閉バルブ311を同時に開放[すなわち、操作(c-4)]しても第1反応ガスと第2反応ガスが混合されることはない。
By operating as described in (c-1) to (c-4) above, the opening /
以下、本発明に係る参考例と実施例について具体的に説明する。 Hereinafter, reference examples and examples according to the present invention will be specifically described.
[参考例1]
図5に示した原子層堆積装置を適用し、近赤外線遮蔽微粒子である平均粒径50nmの複合タングステン酸化物微粒子Cs0.33WO3(住友金属鉱山株式会社製、以下、CWO微粒子と略記する場合がある)の表面に1原子層から成るAl2O3膜を形成した。
[Reference Example 1]
Applying the atomic layer deposition equipment shown in FIG. 5, composite tungsten oxide fine particles with an average particle size of 50 nm, which are near-infrared shielding fine particles, Cs 0.33 WO 3 (manufactured by Sumitomo Metal Mining Co., Ltd., hereinafter abbreviated as CWO fine particles). An Al 2 O 3 film consisting of a single atomic layer was formed on the surface of (1).
尚、上記原子層堆積装置では、最下部の第5真空チャンバ335に、その微粒子排出用開閉バルブ316を介して搬送用真空チャンバ(図示せず)が連通して設けられ、かつ、最上部の第1真空チャンバ331に、その微粒子導入用開閉バルブ311を介して上記搬送用真空チャンバが連通して設けられており、搬送用真空チャンバ内に設けられた図示外の搬送機構により原子層が形成された微粒子を搬送して第1真空チャンバ331内に導入できるようになっている。このため、1サイクルの工程を実施して1層の原子層が形成された近赤外線遮蔽微粒子に対し、更に1サイクル工程を繰り返して原子層形成のサイクル数が増やせるようになっている。
In the atomic layer depositing device, a transport vacuum chamber (not shown) is provided in communication with the lowermost
以下、CWO微粒子表面に被覆層の一部を構成するAl2O3膜(1原子層)が形成された表面被覆近赤外線遮蔽微粒子の製造手順について説明する。 Hereinafter, a procedure for manufacturing surface-coated near-infrared shielding fine particles in which an Al 2 O 3 film (1 atomic layer) constituting a part of the coating layer is formed on the surface of CWO fine particles will be described.
(1-1)図5(a)に示す微粒子導入用開閉バルブ311、微粒子移動用開閉バルブ312、313、314、315、および、微粒子排出用開閉バルブ316を全て閉止した。
(1-1) The on-off valve for introducing
(1-2)真空ポンプ(ドライポンプ)301を起動させてから排気メインバルブ302を開放し、第1真空チャンバ331(排気室)の排気バルブ304、第2真空チャンバ332(化学吸着室)の排気バルブ305、第3真空チャンバ333(排気室)の排気バルブ306、第4真空チャンバ334(化学反応室)の排気バルブ307、および、第5真空チャンバ335(排気室)の排気バルブ308を開放して排気した。
(1-2) After starting the vacuum pump (dry pump) 301, the exhaust
(1-3)第1~第5真空チャンバの排気バルブ304~308を閉止した後、第1真空チャンバ331(排気室)の微粒子導入用開閉バルブ311のみを開放し、第1真空チャンバ331(排気室)内に5gのCWO微粒子(複合タングステン酸化物微粒子)336を落下導入させ、然る後、上記粒子導入用開閉バルブ311を閉止した。次いで、第1~第5真空チャンバの排気バルブ304~308を開放して排気した。
(1-3) After closing the
(1-4)排気した後、第1~第5真空チャンバの排気バルブ304~308を閉止し、然る後、第1真空チャンバ331と第2真空チャンバ332間の微粒子移動用開閉バルブ312を開放し、第2真空チャンバ332(化学吸着室)内に上記CWO微粒子336を落下導入させた後、微粒子移動用開閉バルブ312を閉止した。次いで、第1~第5真空チャンバの排気バルブ304~308を開放して排気した。
(1-4) After exhausting, the
(1-5)第1~第5真空チャンバの上記排気バルブ304~308が開放された状態で第2真空チャンバ332(化学吸着室)のガス導入バルブ309を開放し、ガス流量計(MFC)317により第1反応ガスである水蒸気の流量を30sccmに設定し、かつ、導入時間を5分間に設定して吹き込みパイプ(パイプ先端にフィルタ329を有する)から第2真空チャンバ332(化学吸着室)内に第1反応ガス(水蒸気)を5分間導入し、その後、ガス導入バルブ309を閉止した。
(1-5) With the
(1-6)第1~第5真空チャンバの上記排気バルブ304~308を閉止した後、第2真空チャンバ332と第3真空チャンバ333間の微粒子移動用開閉バルブ313を開放し、第1反応ガス(水蒸気)が表面に化学吸着されたCWO微粒子337を第3真空チャンバ333(排気室)内に落下導入させ、かつ、微粒子移動用開閉バルブ313を閉止した後、第1~第5真空チャンバの上記排気バルブ304~308を開放して排気し、更に、排気バルブ306より第2真空チャンバ332から第3真空チャンバ333内に流れ込んだ過剰な第1反応ガスと副生成物を5分間排気した。
(1-6) After closing the
(1-7)第1~第5真空チャンバの排気バルブ304~308を閉止した後、第3真空チャンバ333と第4真空チャンバ334間の微粒子移動用開閉バルブ314を開放し、第1反応ガスが表面に化学吸着されたCWO微粒子337を第4真空チャンバ334(化学反応室)内に落下導入させ、然る後、上記微粒子移動用開閉バルブ314を閉止した。次いで、第1~第5真空チャンバの排気バルブ304~308を開放して排気した。
(1-7) After closing the
(1-8)第1~第5真空チャンバの上記排気バルブ304~308が開放された状態で第4真空チャンバ334(化学反応室)のガス導入バルブ310を開放し、ガス流量計(MFC)318により第2反応ガスであるTMA(Trimethyl Aluminum)の流量を30sccmに設定し、かつ、導入時間を5分間に設定して吹き込みパイプ(パイプ先端にフィルタ330を有する)から第4真空チャンバ334(化学反応室)内に第2反応ガス(TMA)を5分間導入し、その後、ガス導入バルブ310を閉止した。
(1-8) With the
(1-9)第1~第5真空チャンバの排気バルブ304~308を閉止した後、第4真空チャンバ334(化学反応室)と第5真空チャンバ335(排気室)間の微粒子移動用開閉バルブ315を開放して第1反応ガス(水蒸気)と第2反応ガス(TMA)との反応により1層の原子層が形成されたCWO微粒子338を第5真空チャンバ335(排気室)内に落下導入させ、次いで、上記微粒子移動用開閉バルブ315を閉止した後、第1~第5真空チャンバの排気バルブ304~308を開放して排気し、該排気バルブ308より第4真空チャンバ334から第5真空チャンバ335内に流れ込んだ過剰な第2反応ガスと副生成物を5分間排気した。
(1-9) After closing the
(1-10)第1~第5真空チャンバの排気バルブ304~308を閉止した後、第5真空チャンバ335(排気室)の微粒子排出用開閉バルブ316を開放し、上記1層の原子層が形成されたCWO微粒子338を落下排出させた後、上記微粒子排出用開閉バルブ316を閉止した。
(1-10) After closing the
上記操作(1-1)~操作(1-10)によりCWO微粒子の表面にAl2O3膜(原子層)が1層形成された参考例1に係る表面被覆近赤外線遮蔽微粒子を製造した。 The surface-coated near-infrared shielding fine particles according to Reference Example 1 in which one Al 2 O 3 film (atomic layer) was formed on the surface of the CWO fine particles by the above operations (1-1) to (1-10) were produced.
[実施例1、参考例2]
上記参考例1において、1サイクル工程でAl2O3膜(原子層)を1層形成した後、最下部の第5真空チャンバ335(排気室)から、上述した搬送用真空チャンバを経て、最上部の第1真空チャンバ331(排気室)へCWO微粒子を搬送する搬送機構を用いて原子層形成の1サイクル工程を繰り返し、Al2O3膜(原子層)の形成を複数回(原子層数2~16層)行った。
[Example 1, reference example 2]
In Reference Example 1 above, after forming one layer of Al 2 O 3 film (atomic layer) in one cycle step, the first layer is passed from the lowermost fifth vacuum chamber 335 (exhaust chamber) through the above-mentioned transfer vacuum chamber. Using a transport mechanism that transports CWO fine particles to the upper first vacuum chamber 331 (exhaust chamber), one cycle step of atomic layer formation is repeated, and Al 2 O 3 film (atomic layer) is formed multiple times (number of atomic layers). 2 to 16 layers).
すなわち、被覆層を構成する原子層数が2層である参考例2に係る表面被覆近赤外線遮蔽微粒子、被覆層を構成する原子層数が4層、8層および16層である実施例1に係る表面被覆近赤外線遮蔽微粒子を製造した。 That is, in the surface-coated near-infrared shielding fine particles according to Reference Example 2 in which the number of atomic layers constituting the coating layer is two, and in Example 1 in which the number of atomic layers constituting the coating layer is 4, 8, and 16. The surface-coated near-infrared shielding fine particles were produced.
[参考例3]
図5に示した上記原子層堆積装置を適用し、近赤外線遮蔽微粒子である平均粒径50nmの複合タングステン酸化物微粒子Cs0.33WO3(CWO微粒子と略記する場合がある)の表面に1原子層から成るSiO2膜を形成した。
[Reference Example 3]
Applying the above atomic layer deposition equipment shown in FIG. 5, a single atomic layer is applied to the surface of composite tungsten oxide fine particles Cs 0.33 WO 3 (sometimes abbreviated as CWO fine particles) having an average particle size of 50 nm, which are near-infrared shielding fine particles. A SiO 2 film composed of was formed.
以下、CWO微粒子表面に被覆層の一部を構成するSiO2膜(1原子層)が形成された表面被覆近赤外線遮蔽微粒子の製造手順について説明する。 Hereinafter, a procedure for manufacturing surface-coated near-infrared shielding fine particles in which a SiO 2 film (1 atomic layer) constituting a part of the coating layer is formed on the surface of CWO fine particles will be described.
(3-1)図5(a)に示す微粒子導入用開閉バルブ311、微粒子移動用開閉バルブ312、313、314、315、および、微粒子排出用開閉バルブ316を全て閉止した。
(3-1) The on-off valve for introducing
(3-2)真空ポンプ(ドライポンプ)301を起動させてから排気メインバルブ302を開放し、第1真空チャンバ331(排気室)の排気バルブ304、第2真空チャンバ332(化学吸着室)の排気バルブ305、第3真空チャンバ333(排気室)の排気バルブ306、第4真空チャンバ334(化学反応室)の排気バルブ307、および、第5真空チャンバ335(排気室)の排気バルブ308を開放して排気した。
(3-2) After starting the vacuum pump (dry pump) 301, the exhaust
(3-3)第1~第5真空チャンバの排気バルブ304~308を閉止した後、第1真空チャンバ331(排気室)の微粒子導入用開閉バルブ311のみを開放し、第1真空チャンバ331(排気室)内に5gのCWO微粒子(複合タングステン酸化物微粒子)336を落下導入させ、然る後、上記微粒子導入用開閉バルブ311を閉止した。次いで、第1~第5真空チャンバの排気バルブ304~308を開放して排気した。
(3-3) After closing the
(3-4)排気した後、第1~第5真空チャンバの排気バルブ304~308を閉止し、然る後、第1真空チャンバ331と第2真空チャンバ332間の微粒子移動用開閉バルブ312を開放し、第2真空チャンバ332(化学吸着室)内に上記CWO微粒子336を落下導入させた後、微粒子移動用開閉バルブ312を閉止した。次いで、第1~第5真空チャンバの排気バルブ304~308を開放して排気した。
(3-4) After exhausting, the
(3-5)第1~第5真空チャンバの上記排気バルブ304~308が開放された状態で第2真空チャンバ332(化学吸着室)のガス導入バルブ309を開放し、ガス流量計(MFC)317により第1反応ガスである水蒸気の流量を30sccmに設定し、かつ、導入時間を5分間に設定して吹き込みパイプ(パイプ先端にフィルタ329を有する)から第2真空チャンバ332(化学吸着室)内に第1反応ガス(水蒸気)を5分間導入し、その後、ガス導入バルブ309を閉止した。
(3-5) With the
(3-6)第1~第5真空チャンバの上記排気バルブ304~308を閉止した後、第2真空チャンバ332と第3真空チャンバ333間の微粒子移動用開閉バルブ313を開放し、第1反応ガス(水蒸気)が表面に化学吸着されたCWO微粒子337を第3真空チャンバ333(排気室)内に落下導入させ、かつ、微粒子移動用開閉バルブ313を閉止した後、第1~第5真空チャンバの上記排気バルブ304~308を開放して排気し、更に、排気バルブ306より第2真空チャンバ332から第3真空チャンバ333内に流れ込んだ過剰な第1反応ガスと副生成物を5分間排気した。
(3-6) After closing the
(3-7)第1~第5真空チャンバの排気バルブ304~308を閉止した後、第3真空チャンバ333と第4真空チャンバ334間の微粒子移動用開閉バルブ314を開放し、第1反応ガスが表面に化学吸着されたCWO微粒子337を第4真空チャンバ334(化学反応室)内に落下導入させ、然る後、上記微粒子移動用開閉バルブ314を閉止した。次いで、第1~第5真空チャンバの排気バルブ304~308を開放して排気した。
(3-7) After closing the
(3-8)第1~第5真空チャンバの上記排気バルブ304~308が開放された状態で第4真空チャンバ334(化学反応室)のガス導入バルブ310を開放し、ガス流量計(MFC)318により第2反応ガスであるTDMASの流量を30sccmに設定し、かつ、導入時間を5分間に設定して吹き込みパイプ(パイプ先端にフィルタ330を有する)から第4真空チャンバ334(化学反応室)内に第2反応ガス(TDMAS)を5分間導入し、その後、ガス導入バルブ310を閉止した。
(3-8) With the
(3-9)第1~第5真空チャンバの排気バルブ304~308を閉止した後、第4真空チャンバ334(化学反応室)と第5真空チャンバ335(排気室)間の微粒子移動用開閉バルブ315を開放して第1反応ガス(水蒸気)と第2反応ガス(TDMAS)との反応により1層の原子層が形成されたCWO微粒子338を第5真空チャンバ335(排気室)内に落下導入させ、次いで、上記微粒子移動用開閉バルブ315を閉止した後、第1~第5真空チャンバの排気バルブ304~308を開放して排気し、該排気バルブ308より第4真空チャンバ334から第5真空チャンバ335内に流れ込んだ過剰な第2反応ガスと副生成物を5分間排気した。
(3-9) After closing the
(3-10)第1~第5真空チャンバの排気バルブ304~308を閉止した後、第5真空チャンバ335(排気室)の微粒子排出用開閉バルブ316を開放し、上記1層の原子層が形成されたCWO微粒子338を落下排出させた後、上記微粒子排出用開閉バルブ316を閉止した。
(3-10) After closing the
上記操作(3-1)~操作(3-10)によりCWO微粒子の表面にSiO2膜(原子層)が1層形成された参考例3に係る近赤外線遮蔽微粒子を製造した。 The near-infrared shielding fine particles according to Reference Example 3 in which one SiO 2 film (atomic layer) was formed on the surface of the CWO fine particles by the above operations (3-1) to (3-10) were produced.
[実施例2、参考例4]
上記参考例3において、1サイクル工程でSiO2膜(原子層)を1層形成した後、最下部の第5真空チャンバ335(排気室)から、上述した搬送用真空チャンバを経て、最上部の第1真空チャンバ331(排気室)へCWO微粒子を搬送する搬送機構を用いて原子層形成の1サイクル工程を繰り返し、SiO2膜(原子層)の形成を複数回(原子層数2~16層)行った。
[Example 2, Reference Example 4]
In Reference Example 3 above, after forming one SiO 2 film (atomic layer) in one cycle step, the uppermost vacuum chamber 335 (exhaust chamber) at the lowermost part passes through the above-mentioned transport vacuum chamber. One cycle step of atomic layer formation is repeated using a transfer mechanism for transporting CWO fine particles to the first vacuum chamber 331 (exhaust chamber), and the SiO 2 film (atomic layer) is formed multiple times (the number of atomic layers is 2 to 16). )went.
すなわち、被覆層を構成する原子層数が2層である参考例4に係る表面被覆近赤外線遮蔽微粒子、被覆層を構成する原子層数が4層、8層および16層である実施例2に係る表面被覆近赤外線遮蔽微粒子を製造した。 That is, in the surface-coated near-infrared shielding fine particles according to Reference Example 4 in which the number of atomic layers constituting the coating layer is two, and in Example 2 in which the number of atomic layers constituting the coating layer is 4, 8, and 16. The surface-coated near-infrared shielding fine particles were produced.
[実施例3]
図5に示した上記原子層堆積装置を適用し、実施例1と同様にして、1サイクル工程でAl2O3膜(原子層)を1層形成した後、最下部の第5真空チャンバ335(排気室)から、上述した搬送用真空チャンバを経て、最上部の第1真空チャンバ331(排気室)へCWO微粒子を搬送する搬送機構を用いて原子層形成の1サイクル工程を繰り返し、4原子層のAl2O3膜(原子層)から成る第一被覆層を形成した。
[Example 3]
The above atomic layer deposition apparatus shown in FIG. 5 is applied to form one Al 2 O 3 film (atomic layer) in one cycle step in the same manner as in Example 1, and then the lowermost
次に、第4真空チャンバ334(化学反応室)内に導入する第2反応ガスをTMAからTDMASに変更した後、参考例3と同様にして、4原子層のAl2O3膜(原子層)から成る第一被覆層表面に1原子層のSiO2膜(原子層)から成る第二被覆層を形成した。 Next, after changing the second reaction gas to be introduced into the fourth vacuum chamber 334 (chemical reaction chamber) from TMA to TDMS, the 4-atomic layer Al 2 O 3 film (atomic layer) is the same as in Reference Example 3. ), A second coating layer composed of a 1-atomic layer SiO 2 film (atomic layer) was formed on the surface of the first coating layer.
すなわち、平均粒径50nmの複合タングステン酸化物微粒子(CWO微粒子)と、該微粒子表面を被覆する4原子層のAl2O3膜(原子層)から成る第一被覆層と、該第一被覆層表面を被覆する1原子層のSiO2膜(原子層)から成る第二被覆層とで構成される実施例3に係る表面被覆近赤外線遮蔽微粒子を製造した。 That is, a first coating layer composed of composite tungsten oxide fine particles (CWO fine particles) having an average particle size of 50 nm, an Al 2 O 3 film (atomic layer) having a 4-atomic layer covering the surface of the fine particles, and the first coating layer. The surface-coated near-infrared shielding fine particles according to Example 3 composed of a second coating layer composed of a SiO 2 film (atomic layer) having one atomic layer covering the surface were produced.
[耐環境、耐湿熱性試験]
参考例1~4および実施例1~3で得られた表面被覆近赤外線遮蔽微粒子を8重量部、トルエン84重量部、分散剤8重量部を混合し、ビーズミルにより分散処理を行い、分散液を作製した。
[Environment resistance, moisture resistance test]
8 parts by weight, 84 parts by weight of toluene, and 8 parts by weight of the dispersant were mixed with the surface-coated near-infrared shielding fine particles obtained in Reference Examples 1 to 4 and Examples 1 to 3, and the dispersion treatment was performed by a bead mill to prepare a dispersion liquid. Made.
得られた分散液10重量部とハードコート用紫外線硬化樹脂(固形分100%)5重量部とを混合して遮蔽膜形成用塗液を調製し、バーコーターを用いて石英ガラス基板上に塗布して被膜を形成した。 10 parts by weight of the obtained dispersion liquid and 5 parts by weight of an ultraviolet curable resin for hard coating (solid content 100%) are mixed to prepare a coating liquid for forming a shielding film, which is applied onto a quartz glass substrate using a bar coater. To form a film.
形成された被膜を60℃で30秒間乾燥し、溶剤を蒸発させた後、高圧水銀ランプの光で硬化させて近赤外線遮蔽膜を得た。 The formed film was dried at 60 ° C. for 30 seconds, the solvent was evaporated, and then the film was cured with the light of a high-pressure mercury lamp to obtain a near-infrared shielding film.
得られた近赤外線遮蔽膜に対し、下記「紫外線照射テスト」を実施し、分光光度計により可視波長領域(500nm付近)の最大透過率の変化を測定した。 The following "ultraviolet irradiation test" was carried out on the obtained near-infrared shielding film, and the change in the maximum transmittance in the visible wavelength region (around 500 nm) was measured by a spectrophotometer.
また、下記「高温高湿環境テスト」を実施し、分光光度計により赤外線波長領域(820nm付近)の透過率の変化を測定した。 In addition, the following "high temperature and high humidity environment test" was carried out, and the change in transmittance in the infrared wavelength region (around 820 nm) was measured with a spectrophotometer.
<1>紫外線照射テスト
アイUVテスター(岩崎電気製)を用いて「紫外線照射テスト」を行った。
<1> Ultraviolet irradiation test An "ultraviolet irradiation test" was performed using an eye UV tester (manufactured by Iwasaki Electric).
暴露条件として、メタルハライドランプ強度は100mW/cm2で、暴露時間は1時間、暴露面は試料の膜面から行った。 As the exposure conditions, the metal halide lamp intensity was 100 mW / cm 2 , the exposure time was 1 hour, and the exposure surface was from the film surface of the sample.
<2>高温高湿環境テスト
得られた近赤外線遮蔽膜試験サンプルを、85℃、95%RH環境下に3日間暴露し、当該高温高湿環境試験前後における赤外線域最大透過率の変化を測定した。
<2> High temperature and high humidity environment test The obtained near-infrared shielding film test sample was exposed to 85 ° C. and 95% RH environment for 3 days, and the change in the maximum infrared transmittance before and after the high temperature and high humidity environment test was measured. did.
<3>得られた試験結果を表2と表3に示す。 <3> The obtained test results are shown in Tables 2 and 3.
尚、比較例として、被覆層が形成されていない(すなわち原子層数が0)複合タングステン酸化物粉末を用いて得られた試験サンプルの結果を表2に示した。 As a comparative example, Table 2 shows the results of a test sample obtained by using a composite tungsten oxide powder having no coating layer formed (that is, the number of atomic layers is 0).
[評 価]
(1)複合タングステン酸化物微粒子(CWO微粒子)表面にALD法で被覆層を形成した場合、被覆層を構成する原子層数が2層以上で効果が現れるが、紫外線照射テスト、高温高湿環境テストにおいて僅かながら劣化が認められることが確認される(参考例2および参考例4参照)。
[evaluation]
(1) When a coating layer is formed on the surface of composite tungsten oxide fine particles (CWO fine particles) by the ALD method, the effect appears when the number of atomic layers constituting the coating layer is two or more, but the ultraviolet irradiation test and high temperature and high humidity environment It is confirmed that a slight deterioration is observed in the test (see Reference Example 2 and Reference Example 4).
(2)但し、被覆層を構成する原子層数が1層の場合には、比較例(原子層数が0)と差異がないことも確認される(参考例1および参考例3参照)。 (2) However, when the number of atomic layers constituting the coating layer is one, it is also confirmed that there is no difference from the comparative example (the number of atomic layers is 0) (see Reference Example 1 and Reference Example 3).
(3)他方、被覆層を構成する原子層数が4層以上(実施例1および実施例2)の場合、および、第一被覆層を構成する原子層数が4層でかつ第二被覆層が1層(実施例3)の場合は、紫外線照射によっても、高温高湿環境によっても、複合タングステン酸化物微粒子(CWO微粒子)における赤外線遮蔽性能の劣化は認められないことが確認される。 (3) On the other hand, when the number of atomic layers constituting the coating layer is 4 or more (Examples 1 and 2), and the number of atomic layers constituting the first coating layer is 4 and the second coating layer is formed. In the case of one layer (Example 3), it is confirmed that the infrared shielding performance of the composite tungsten oxide fine particles (CWO fine particles) is not deteriorated by the irradiation with ultraviolet rays or the high temperature and high humidity environment.
本発明方法により得られる表面被覆近赤外線遮蔽微粒子は、水蒸気や紫外線照射等に起因した分解劣化や特性劣化現象を抑制できるため、塗布膜、各種樹脂練り込み基材、合わせガラス等に添加される日射遮蔽材料として利用される産業上の利用可能性を有している。 The surface-coated near-infrared shielding fine particles obtained by the method of the present invention can suppress decomposition deterioration and characteristic deterioration phenomenon caused by water vapor, ultraviolet irradiation, etc., and are therefore added to coating films, various resin kneaded substrates, laminated glass, and the like. It has industrial applicability to be used as a solar shielding material.
1 WO6単位
2 元素M
30 近赤外線遮蔽微粒子
31 被覆層
40 近赤外線遮蔽微粒子
41 第一被覆層
42 第二被覆層
50 近赤外線遮蔽微粒子
51 第一被覆層
51a 原子層
51b 原子層(51aとは種類の異なる原子層)
52 第二被覆層
301 真空ポンプ
302 排気メインバルブ
303 共通排気管
304、305、306、307、308 排気バルブ
309、310 ガス導入バルブ
311 微粒子導入用開閉バルブ
312、313、314、315 微粒子移動用開閉バルブ
316 微粒子排出用開閉バルブ
317、318 ガス流量計(MFC:マスフローコントローラ)
319、320、321、322、323 加熱用線状部材
324、325、326、327、328 吸い込み防止フィルタ
329、330 フィルタ
331 第1真空チャンバ(排気室)
332 第2真空チャンバ(化学吸着室)
333 第3真空チャンバ(排気室)
334 第4真空チャンバ(化学反応室)
335 第5真空チャンバ(排気室)
336、337、338 微粒子
1 WO 6
30 Near-infrared shielding
52
309, 310
319, 320, 321, 322, 323 Heating
332 Second vacuum chamber (chemical adsorption chamber)
333 Third vacuum chamber (exhaust chamber)
334 4th vacuum chamber (chemical reaction chamber)
335 5th vacuum chamber (exhaust chamber)
336, 337, 338 fine particles
Claims (7)
複合タングステン酸化物微粒子、ホウ化物微粒子から選択される1種以上の平均粒径10~500nmの近赤外線遮蔽微粒子と、Al2O3、SiO2、SiOAl、SiC、SiOC、SiCNから選択されかつ近赤外線遮蔽微粒子表面を被覆する1種以上の原子層から成る被覆層とで上記表面被覆近赤外線遮蔽微粒子が構成され、
第1反応ガス吸着工程と排気工程および第2反応ガス反応工程と排気工程から成る1サイクルで1原子層が形成される原子層堆積(ALD)法を用いた原子層堆積(ALD)装置により該1原子層を4層以上成膜して1種以上の原子層から成る被覆層を形成することを特徴とする表面被覆近赤外線遮蔽微粒子の製造方法。 In a method for producing surface-coated near-infrared shielding fine particles, which comprises a near-infrared shielding fine particle and a coating layer covering the surface of the near-infrared shielding fine particle.
One or more types of near-infrared shielding fine particles having an average particle size of 10 to 500 nm selected from composite tungsten oxide fine particles and borohydride fine particles, and Al 2 O 3, SiO 2 , SiO Al, SiC, SiOC, and SiC N are selected and close to each other. The surface-coated near-infrared shielding fine particles are composed of a coating layer composed of one or more atomic layers that coat the surface of the infrared-shielding fine particles.
The atomic layer deposition (ALD) apparatus using an atomic layer deposition (ALD) method in which one atomic layer is formed in one cycle consisting of a first reaction gas adsorption step and an exhaust step and a second reaction gas reaction step and an exhaust step. A method for producing surface-coated near-infrared shielding fine particles, which comprises forming four or more atomic layers to form a coating layer composed of one or more atomic layers.
複合タングステン酸化物微粒子、ホウ化物微粒子から選択される1種以上の平均粒径10~500nmの近赤外線遮蔽微粒子と、Al2O3、SiO2、SiOAl、SiC、SiOC、SiCNから選択されかつ近赤外線遮蔽微粒子表面を被覆する1種以上の原子層から成る第一被覆層と、Al2O3、SiO2から選択されかつ第一被覆層表面を被覆する1種以上の原子層から成る第二被覆層とで上記表面被覆近赤外線遮蔽微粒子が構成され、
第1反応ガス吸着工程と排気工程および第2反応ガス反応工程と排気工程から成る1サイクルで1原子層が形成される原子層堆積(ALD)法を用いた原子層堆積(ALD)装置により該1原子層を4層以上成膜して1種以上の原子層から成る第一被覆層を形成すると共に、
上記原子層堆積(ALD)法を用いた原子層堆積(ALD)装置により該1原子層を1層以上成膜して1種以上の原子層から成る第二被覆層を形成することを特徴とする表面被覆近赤外線遮蔽微粒子の製造方法。 In a method for producing surface-coated near-infrared shielding fine particles composed of a near-infrared shielding fine particle and a coating layer covering the surface of the near-infrared shielding fine particle.
One or more kinds of near-infrared shielding fine particles having an average particle size of 10 to 500 nm selected from composite tungsten oxide fine particles and borohydride fine particles, and Al 2 O 3, SiO 2 , SiO Al, SiC, SiOC, and SiC N are selected and close to each other. A first coating layer consisting of one or more atomic layers covering the surface of infrared shielding fine particles, and a second consisting of one or more atomic layers selected from Al 2 O 3 and SiO 2 and covering the surface of the first coating layer. The coating layer constitutes the surface-coated near-infrared shielding fine particles.
The atomic layer deposition (ALD) apparatus using the atomic layer deposition (ALD) method, in which one atomic layer is formed in one cycle consisting of a first reaction gas adsorption step and an exhaust step and a second reaction gas reaction step and an exhaust step, is used. One atomic layer is formed into four or more layers to form a first coating layer composed of one or more atomic layers, and at the same time.
It is characterized in that one or more atomic layers are formed by an atomic layer deposition (ALD) apparatus using the atomic layer deposition (ALD) method to form a second coating layer composed of one or more atomic layers. A method for producing surface-coated near-infrared shielding fine particles.
上記ホウ化物微粒子が、一般式XBm(但し、Xは、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caから成る群から選択される少なくとも1種以上の金属元素、mは上記一般式におけるホウ素量を示す数字であり、4.0≦m≦6.2を満たす)で表されるホウ化物微粒子で構成されることを特徴とする請求項1または2に記載の表面被覆近赤外線遮蔽微粒子の製造方法。 The composite tungsten oxide fine particles are the general formula MxWyOz (M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, Represents at least one element selected from the group consisting of V, Mo, Ta, Re, Be, Hf, Os, Bi and I, where x, y, z are 0.01≤x≤1, 0.001. It is composed of composite tungsten oxide fine particles represented by ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3.0).
The boride fine particles are composed of the general formula XBm (where X is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, Ca). At least one kind of metal element selected from the group, m is a numerical value indicating the amount of boron in the above general formula, and is composed of boride fine particles represented by 4.0 ≦ m ≦ 6.2). The method for producing surface-coated near-infrared shielding fine particles according to claim 1 or 2, wherein the surface-coated near-infrared shielding fine particles are produced.
請求項1~6のいずれかに記載の表面被覆近赤外線遮蔽微粒子の製造方法で得られることを特徴とする表面被覆近赤外線遮蔽微粒子。 In the surface-coated near-infrared shielding fine particles composed of the near-infrared shielding fine particles and the coating layer covering the surface of the near-infrared shielding fine particles.
A surface-coated near-infrared ray-shielding fine particle, which is obtained by the method for producing a surface-coated near-infrared ray-shielding fine particle according to any one of claims 1 to 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018133269A JP7003859B2 (en) | 2018-07-13 | 2018-07-13 | Manufacturing method of surface-coated near-infrared shielding fine particles and surface-coated near-infrared shielding fine particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018133269A JP7003859B2 (en) | 2018-07-13 | 2018-07-13 | Manufacturing method of surface-coated near-infrared shielding fine particles and surface-coated near-infrared shielding fine particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020012023A JP2020012023A (en) | 2020-01-23 |
JP7003859B2 true JP7003859B2 (en) | 2022-01-21 |
Family
ID=69170211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018133269A Active JP7003859B2 (en) | 2018-07-13 | 2018-07-13 | Manufacturing method of surface-coated near-infrared shielding fine particles and surface-coated near-infrared shielding fine particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7003859B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021116212A (en) * | 2020-01-28 | 2021-08-10 | 住友金属鉱山株式会社 | Infrared absorbing fine particle powder, infrared absorbing fine particle powder dispersion, infrared absorbing fine particle dispersion, and manufacturing methods therefor |
JP7443889B2 (en) * | 2020-03-31 | 2024-03-06 | 住友金属鉱山株式会社 | Dispersion liquid for forming an infrared shielding film |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004535514A (en) | 2001-07-18 | 2004-11-25 | ザ・リージエンツ・オブ・ザ・ユニバーシテイ・オブ・コロラド | Method of forming inorganic thin film on organic polymer surface |
JP2007308341A (en) | 2006-05-19 | 2007-11-29 | Sumitomo Metal Mining Co Ltd | Method for producing surface-coated hexaboride particle |
JP2011187934A (en) | 2010-02-15 | 2011-09-22 | Tokyo Electron Ltd | Film formation method, and film formation apparatus and method for using the same |
JP2017155112A (en) | 2016-03-01 | 2017-09-07 | 住友金属鉱山株式会社 | Near infrared absorptive adhesive composition and production method of the same, and near infrared absorptive adhesive film |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6233219B2 (en) * | 2014-07-14 | 2017-11-22 | 住友金属鉱山株式会社 | Ultraviolet shielding powder and method for producing the same |
JP6287654B2 (en) * | 2014-07-14 | 2018-03-07 | 住友金属鉱山株式会社 | Method for producing ultraviolet shielding powder |
US20170088952A1 (en) * | 2015-09-28 | 2017-03-30 | Ultratech, Inc. | High-throughput multichamber atomic layer deposition systems and methods |
-
2018
- 2018-07-13 JP JP2018133269A patent/JP7003859B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004535514A (en) | 2001-07-18 | 2004-11-25 | ザ・リージエンツ・オブ・ザ・ユニバーシテイ・オブ・コロラド | Method of forming inorganic thin film on organic polymer surface |
JP2007308341A (en) | 2006-05-19 | 2007-11-29 | Sumitomo Metal Mining Co Ltd | Method for producing surface-coated hexaboride particle |
JP2011187934A (en) | 2010-02-15 | 2011-09-22 | Tokyo Electron Ltd | Film formation method, and film formation apparatus and method for using the same |
JP2017155112A (en) | 2016-03-01 | 2017-09-07 | 住友金属鉱山株式会社 | Near infrared absorptive adhesive composition and production method of the same, and near infrared absorptive adhesive film |
Also Published As
Publication number | Publication date |
---|---|
JP2020012023A (en) | 2020-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Windisch Jr et al. | Synthesis and characterization of transparent conducting oxide cobalt–nickel spinel films | |
Taunk et al. | Synthesis and optical properties of chemical bath deposited ZnO thin film | |
Poongodi et al. | Structural, optical and visible light photocatalytic properties of nanocrystalline Nd doped ZnO thin films prepared by spin coating method | |
JP5070796B2 (en) | Solar radiation shielding film forming coating solution, solar radiation shielding film, and substrate having solar radiation shielding function | |
US7011732B2 (en) | Magnetic transparent conducting oxide film and method of making | |
JP2011529804A (en) | Stone plate-like article having high resistance to deterioration caused by sunlight, manufactured from a stone aggregate coated with a transparent thin film of TiO2 or ZnO by a dry evaporation method | |
JP7003859B2 (en) | Manufacturing method of surface-coated near-infrared shielding fine particles and surface-coated near-infrared shielding fine particles | |
EP2188048A1 (en) | Photocatalytic composition for anti-reflection and the glass substrate coated with the composition | |
Majumder | Synthesis and characterisation of SnO 2 films obtained by a wet chemical process. | |
Asikainen et al. | Growth of In2S3 thin films by atomic layer epitaxy | |
Eshaghi et al. | Preparation and photo-induced superhydrophilicity of composite TiO2–SiO2–In2O3 thin film | |
Chadwick et al. | Photo-activity and low resistivity in N/Nb Co-doped TiO 2 thin films by combinatorial AACVD | |
Prepelita et al. | Rapid thermal annealing for high-quality ITO thin films deposited by radio-frequency magnetron sputtering | |
Koida et al. | Effective mass of high-mobility In 2 O 3-based transparent conductive oxides fabricated by solid-phase crystallization | |
KR101602486B1 (en) | Fabricating method of light shielding structure | |
Abd El-Rahman et al. | Preparation and characterization of nanostructured titanium oxynitride films for the application in self-cleaning and photoelectrochemical water splitting | |
JP4826126B2 (en) | Solar radiation shielding film forming coating solution, solar radiation shielding film, and substrate having solar radiation shielding function | |
JP2020002446A (en) | Atomic layer deposition apparatus and method of manufacturing coating film formation particle using the same | |
JP2007297260A (en) | Hyperfine particle zinc oxide and its production method | |
Zhao et al. | Preparation of wide optical spectrum and high antireflection MgF2 thin film with SF6 as reactive gas | |
Singh et al. | Vacuum deposition of stoichiometric crystalline PbS films: the effect of sulfurizing environment during deposition | |
Abbas et al. | The effect of silver oxide on the structural and optical properties of ZnO: AgO thin films | |
Khare | Factors affecting the electro-optical and structural characteristics of nano crystalline Cu doped (Cd–Zn) S films | |
Zaware et al. | Properties of thin ZnS: Mn films sprayed by improved method: The role of Mn ion concentration | |
Joishy et al. | Optical and electrical properties of Zn 1− x Cd x O thin films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210329 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211126 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7003859 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |