Nothing Special   »   [go: up one dir, main page]

JP7002660B2 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP7002660B2
JP7002660B2 JP2020535416A JP2020535416A JP7002660B2 JP 7002660 B2 JP7002660 B2 JP 7002660B2 JP 2020535416 A JP2020535416 A JP 2020535416A JP 2020535416 A JP2020535416 A JP 2020535416A JP 7002660 B2 JP7002660 B2 JP 7002660B2
Authority
JP
Japan
Prior art keywords
mixed refrigerant
azeotropic mixed
compressor
temperature
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020535416A
Other languages
English (en)
Other versions
JPWO2020031319A1 (ja
Inventor
悟 梁池
宗 野本
肇 藤本
隆 池田
裕士 佐多
昌彦 中川
哲二 七種
悠介 有井
洋貴 佐藤
亮 築山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020031319A1 publication Critical patent/JPWO2020031319A1/ja
Application granted granted Critical
Publication of JP7002660B2 publication Critical patent/JP7002660B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、非共沸混合冷媒が循環する冷凍サイクル装置に関する。
従来、非共沸混合冷媒が循環する冷凍サイクル装置が知られている。たとえば、特開平6-101912号公報(特許文献1)には、非共沸混合冷媒の組成を検出する冷媒組成センサを備える冷凍サイクル装置が開示されている。当該冷凍サイクル装置によれば、循環する非共沸混合冷媒の組成に応じて制御目標が変更されることにより、非共沸混合冷媒の組成が変化した場合でも安定した運転を行うことができる。
特開平6-101912号公報
特許文献1には、HFC32およびHFC134aが混合された非共沸混合冷媒の組成を検出する冷媒組成センサの構成が開示されている。しかし、3種類以上の冷媒を含む非共沸混合冷媒が循環する冷凍サイクル装置においては、当該冷媒組成センサによって非共沸混合冷媒の組成を検出することは困難である。特許文献1に開示されている冷凍サイクル装置によると、非共沸混合冷媒に含まれる冷媒の数によっては冷凍サイクル装置の性能低下を抑制することが困難になり得る。
本発明は、上述のような課題を解決するためになされたものであり、その目的は、非共沸混合冷媒に含まれる冷媒の数によらず、冷凍サイクル装置の性能低下を抑制することである。
本発明に係る冷凍サイクル装置においては、特定組成比を有する非共沸混合冷媒が循環する。冷凍サイクル装置は、圧縮機と、第1熱交換器と、冷媒容器と、減圧部と、第2熱交換器とを備える。非共沸混合冷媒は、圧縮機、第1熱交換器、冷媒容器、減圧部、および第2熱交換器の順に循環する。第1の場合の圧縮機の駆動周波数は、第2の場合の圧縮機の駆動周波数よりも大きい。第1の場合において、特定圧力における非共沸混合冷媒の第1温度と基準温度との差が第1しきい値よりも大きい。第2の場合において、第1温度と基準温度との差が第1しきい値よりも小さい。特定圧力は、減圧部から流出する非共沸混合冷媒の圧力である。
本発明に係る冷凍サイクル装置によれば、減圧部から流出する非共沸混合冷媒の圧力における非共沸混合冷媒の温度に関して、第1の場合の圧縮機の駆動周波数を第2の場合の圧縮機の駆動周波数よりも大きくすることにより、非共沸混合冷媒の組成比の変化を冷凍サイクル装置の制御に反映させる。その結果、非共沸混合冷媒に含まれる冷媒の数によらず、冷凍サイクル装置の性能低下を抑制することができる。
実施の形態1に係る冷凍サイクル装置の構成を示す機能ブロック図である。 非共沸混合冷媒としてR463Aを用いたときの、レシーバ内のガス冷媒量と循環組成比との関係を示す図である。 非共沸混合冷媒の圧力、エンタルピ、および温度の関係を示すモリエル線図である。 図1の制御装置によって行なわれる駆動周波数の補正処理の流れを示すフローチャートである。 蒸発器の流入ポートから流出ポートの間の位置に応じた非共沸混合冷媒の温度、および当該位置の非共沸混合冷媒と熱交換する空気の温度を併せて示す図である。 レシーバ内のガス冷媒量と温度センサによって検出される温度との関係、およびレシーバ内のガス冷媒量と吸入圧力における飽和液および飽和蒸気の平均温度との関係を併せて示す図である。 実施の形態1の変形例に係る冷凍サイクル装置の制御装置によって行なわれる駆動周波数の補正処理の流れを示すフローチャートである。 実施の形態1の変形例2に係る冷凍サイクル装置の構成を示す機能ブロック図である。 実施の形態1の変形例3に係る冷凍サイクル装置の制御装置によって行なわれる駆動周波数の補正処理の流れを示すフローチャートである。 実施の形態2に係る冷凍サイクル装置の運転開始時に行なわれる処理の流れを示すフローチャートである。 実施の形態3に係る冷凍サイクル装置の構成を示す機能ブロック図である。 図11の制御装置によって行なわれる冷媒不足の報知処理の流れを示すフローチャートである。 実施の形態4に係る冷凍サイクル装置の構成を示す図である。 図13の制御装置によって行なわれる冷媒不足の報知処理の流れを示すフローチャートである。 実施の形態5に係る冷凍サイクル装置の制御装置によって行なわれる、追加チャージが可能か否かの判定処理の流れを示すフローチャートである。 実施の形態6に係る冷凍サイクル装置の構成を示す機能ブロック図である。 非共沸混合冷媒の圧力、エンタルピ、および温度の関係を示すモリエル線図である。 図16の制御装置によって行なわれる駆動周波数の補正処理の流れを示すフローチャートである。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
実施の形態1.
図1は、実施の形態1に係る冷凍サイクル装置100の構成を示す機能ブロック図である。図1に示されるように、冷凍サイクル装置100は、圧縮機1と、凝縮器2(第1熱交換器)と、レシーバ3(冷媒容器)と、減圧部4と、蒸発器5(第2熱交換器)と、制御装置10と、温度センサ101と、圧力センサ102,103とを備える。減圧部4は、膨張弁41(第1減圧装置)と、キャピラリチューブ42(第2減圧装置)とを含む。
冷凍サイクル装置100においては、非共沸混合冷媒(たとえばR463A)が圧縮機1、凝縮器2、レシーバ3、膨張弁41、および蒸発器5の順に循環するとともに、圧縮機1、凝縮器2、レシーバ3、およびキャピラリチューブ42の順に循環する。
温度センサ101は、キャピラリチューブ42から流出する非共沸混合冷媒の温度T1(第1温度)を測定する。圧力センサ102は、圧縮機1に吸入される非共沸混合冷媒の圧力Ps(特定圧力)を検出する。圧力センサ103は、圧縮機1から吐出される非共沸混合冷媒の圧力Pdを検出する。
制御装置10は、圧縮機1の駆動周波数fcを制御することにより、圧縮機1が単位時間当たりに吐出する非共沸混合冷媒の量を制御する。制御装置10は、温度センサ101、および圧力センサ102,103から温度T2、および圧力Ps,Pdをそれぞれ受ける。制御装置10は、記憶部11を含む。記憶部11には、たとえば非共沸混合冷媒の物性値、および特定パラメータ(たとえば蒸発温度あるいは凝縮温度)の制御目標値が予め保存されている。
レシーバ3には、液体の非共沸混合冷媒が貯留されるとともに、非共沸混合冷媒に含まれる冷媒のうち他の冷媒よりも比較的沸点が低い冷媒(低沸点冷媒)が気化する。非共沸混合冷媒が冷凍サイクル装置100を循環することに伴い、レシーバ3に含まれる気体の冷媒(ガス冷媒)が増加する。冷凍サイクル装置100を循環する非共沸混合冷媒に含まれる低沸点冷媒が減少するため、冷凍サイクル装置100を循環する非共沸混合冷媒の組成比(循環組成比)が変化する。
図2は、非共沸混合冷媒としてR463Aを用いたときの、レシーバ3内のガス冷媒量と循環組成比との関係を示す図である。図2において、横軸のレシーバ3内のガス冷媒量は、初期冷媒量(冷凍サイクル装置100に封入された非共沸混合冷媒の量)に対するレシーバ3内のガス冷媒量の割合として表されている。図6においても同様である。
R463Aは、R32、R125、R1234yf、R134a、およびCO2を、36:30:14:14:6の重量パーセント(wt%)比で含む。R463Aには、冷媒圧力を確保するためにCO2が含まれる。R32、R125、R1234yf、R134a、およびCO2の1気圧での沸点は、それぞれ、-51.7℃、-48.1℃、-29.4℃、-26.1℃、および-78.5℃である。CO2は、R463Aに含まれる冷媒の中で沸点が最も低い。なお、冷凍サイクル装置100を循環する非共沸混合冷媒は、R463Aに限定されない。
図2に示されるように、レシーバ3内のガス冷媒量が0である場合、R32、R125、R1234yf、R134a、およびCO2の循環組成比は、R463Aの組成比(初期値)に等しい。レシーバ3内のガス冷媒量の増加に伴い、CO2およびR32の循環組成比が減少する。一方で、R125、R1234yf、およびR134aの循環組成比が増加する。
図3は、非共沸混合冷媒の圧力、エンタルピ、および温度の関係を示すモリエル線図である。図3において、点線は循環組成比が初期値である場合のモリエル線図を示し、実線は循環組成比が初期値から変化した場合のモリエル線図を示す。状態C1からC2の過程が、圧縮機1による断熱圧縮過程を示す。状態C2からC3への過程が凝縮器2による凝縮過程を表す。状態C3からC4への過程が減圧部4による減圧過程を表す。状態C4からC1への過程が蒸発器5による蒸発過程を表す。なお、飽和液線上の状態C5および飽和蒸気線上の状態C6の各々は、圧力がPsの状態である。
図3に示されるように、非共沸混合冷媒の循環組成比の変化にともない、モリエル線図が変化する。特に、同一圧力での蒸発過程の温度(蒸発温度)が上昇する。その結果、非共沸混合冷媒と冷却対象の熱媒体との温度差が減少し、冷凍サイクル装置100の冷却能力が低下する。
そこで、冷凍サイクル装置100においては、循環組成比が初期値である場合の状態C4の温度(図3における点線のモリエル線図における状態C4の温度)を基準温度Trとして、温度センサ101によって実際に測定した温度T1と基準温度Trとの差に応じて圧縮機1の駆動周波数fcを変化させることにより、非共沸混合冷媒の組成比の変化を冷凍サイクル装置100の制御に反映させる。その結果、非共沸混合冷媒に含まれる冷媒の数によらず、冷凍サイクル装置100の性能低下を抑制することができる。また、冷凍サイクル装置100においては、配管の外表面に設置可能な温度センサ101を用いるため、配管内部に設置する必要のある静電容量センサを用いて非共沸混合冷媒の組成比を検出する場合と比較して、故障した温度センサ101を交換することが容易である。
図4は、図1の制御装置10によって行なわれる駆動周波数fcの補正処理の流れを示すフローチャートである。図4に示される処理は、冷凍サイクル装置100に対する統合的な制御を行なう不図示のメインルーチンから定期的に呼び出される。図7、図9、および図18に示される処理についても同様である。以下では、ステップを単にSと記載する。
図4に示されるように、制御装置10は、S101において圧縮機1の吐出圧力PdからエンタルピHslを算出し、処理をS102に進める。吐出圧力PdとエンタルピHslとの対応関係m1(Hsl=m1(Pd))は、予め記憶部11に保存されている。
制御装置10は、S102において吸入圧力PsおよびエンタルピHslから基準温度Trを算出し、処理をS103に進める。吸入圧力Ps、エンタルピHsl、および基準温度Trの対応関係m2(Tr=m2(Ps,Hsl))は、予め記憶部11に保存されている。制御装置10は、S103において温度T1と基準温度Trとの差ΔT(ΔT=T1-Tr)を算出して、処理をS104に進める。
制御装置10は、S104において差ΔTがしきい値α(第1しきい値)よりも大きいか否かを判定する。差ΔTがしきい値αよりも大きい場合(S104においてYES)、制御装置10は、S105において駆動周波数fcを一定量上昇させて処理をメインルーチンに返す。駆動周波数fcの上昇により、蒸発器5を単位時間に通過する非共沸混合冷媒の量が増加する。その結果、蒸発器5における熱交換量が増加し、蒸発温度が低下する。差ΔTがしきい値α以下である場合(S104においてNO)、制御装置10は、処理をS106に進める。
制御装置10は、S106において差ΔTがしきい値β(第2しきい値)よりも小さいか否かを判定する。しきい値βはしきい値αよりも小さい。差ΔTがしきい値βよりも小さい場合(S106においてYES)、制御装置10は、S107において駆動周波数fcを一定量低下させて処理をメインルーチンに返す。駆動周波数fcの低下により、蒸発器5を単位時間に通過する非共沸混合冷媒の量が減少する。その結果、蒸発器5における熱交換量が減少し、蒸発温度が上昇する。差ΔTがしきい値β以上である場合(S106においてNO)、制御装置10は、処理をメインルーチンに返す。
差ΔTがしきい値β以上、かつしきい値α以下である場合、駆動周波数fcは補正されず、安定する。しきい値α,βは、シミュレーションあるいは実機実験によって適宜決定することができる。しきい値α,βは、記憶部11に予め保存されている。
図4に示される処理において、非共沸混合冷媒に関する対応関係m1,m2は予め得られている情報であるため、非共沸混合冷媒に含まれる冷媒の数によらず、差ΔTの算出が可能である。図4に示される処理によれば、差ΔTを用いて循環組成比の変化を冷凍サイクル装置100の制御に反映することができる。その結果、非共沸混合冷媒に含まれる冷媒の数によらず、冷凍サイクル装置100の性能低下を抑制することができる。
図5は、蒸発器5の流入ポートから流出ポートの間の位置に応じた非共沸混合冷媒の温度、および当該位置の非共沸混合冷媒と熱交換する空気の温度を併せて示す図である。図5において、曲線A1は、空気の温度変化を表す。曲線R0は、循環組成比が初期値である場合の温度変化を表す。曲線R1は、循環組成比が変化しても駆動周波数fcを補正しない(図4に示される処理を行なわない)場合の温度変化を表す。曲線R2は、非共沸混合冷媒の組成比の変化に応じて駆動周波数fcを補正する(図4に示される処理を行なう)場合の温度変化を表す。
図5に示されるように、循環組成比が変化しても駆動周波数fcを補正しない場合(曲線R1)の蒸発器5内の非共沸混合冷媒の温度は、循環組成比が初期値である場合(曲線R0)の蒸発器5内の非共沸混合冷媒の温度よりも高い。循環組成比が変化しても駆動周波数fcを補正しない場合、蒸発温度が目標蒸発温度から乖離して空気との温度差が想定よりも小さくなるため、冷凍サイクル装置100の冷却能力が所望の冷却能力よりも低下する。
一方、非共沸混合冷媒の組成比の変化に応じて駆動周波数を補正する場合(曲線R2)の蒸発器5内の非共沸混合冷媒の温度は、非共沸混合冷媒の組成比が初期値から変化しない場合(曲線R0)の蒸発器5内の非共沸混合冷媒の温度とほぼ同程度である。蒸発温度を目標蒸発温度に近づけることができるため、循環組成比の変化による冷凍サイクル装置100の冷却能力の低下を抑制することができる。
なお、図4においては、駆動周波数fcを補正することにより、循環組成比の変化を冷凍サイクル装置100の制御に反映させる場合について説明した。差ΔTに応じて駆動周波数fcが結果的に補正されれば、どのような補正処理でもよく、たとえば、差ΔTに応じて特定パラメータの制御目標値を補正することにより、当該制御目標値を実現するために必要な駆動周波数として算出された値に駆動周波数fcが補正されるようにしてもよい。
実施の形態1の変形例1.
図4においては、駆動周波数fcを一定量ずつ上昇あるいは低下させる場合について説明した。駆動周波数fcの補正の方法は、蒸発温度を所望の温度に近づけられればどのような方法でもよく、たとえば、駆動周波数fcの補正量を差ΔTに比例させてもよい。
図6は、レシーバ3内のガス冷媒量と温度センサ101によって検出される温度T1との関係(曲線E1)、およびレシーバ3内のガス冷媒量と吸入圧力Psにおける飽和液および飽和蒸気の平均温度との関係(曲線E2)を併せて示す図である。吸入圧力Psにおける飽和液および飽和蒸気の平均温度は、図3における状態C5の温度、および状態C6の温度の平均値である。当該平均値と蒸発温度との間には相関関係があるため、冷凍サイクル装置100においては、当該平均値を制御することにより、蒸発温度を制御する。
図6に示されるように、レシーバ3内のガス冷媒量の増加に応じて、温度T1および平均温度は同様の態様で増加する。温度T1の変化量と平均温度の変化量との関係は比例関係として近似することができる。そこで、実施の形態1の変形例1においては、駆動周波数fcの初期値f0からの補正量を差ΔTに比例させる。
図7は、実施の形態1の変形例1に係る冷凍サイクル装置の制御装置によって行なわれる駆動周波数fcの補正処理の流れを示すフローチャートである。図7に示されるS101~S103の処理は、図4に示されるS101~S103と同様である。
図7に示されるように、制御装置は、S101~S103を行なって差ΔTを算出した後、処理をS114に進める。制御装置は、S114において、差ΔTに比例定数κを乗じた補正量を算出し、当該補正量を初期値f0に加えて駆動周波数fcを更新した後、処理を不図示のメインルーチンに返す。比例定数κは、シミュレーションあるいは実機実験によって適宜決定することができる。図7に示される処理によっても、非共沸混合冷媒の組成比の変化による冷凍サイクル装置の性能低下を抑制することができる。
実施の形態1の変形例2.
実施の形態1においては、温度センサ101がキャピラリチューブ42から流出する非共沸混合冷媒の温度を検出する場合について説明した。温度センサ101が検出する温度T1は、減圧部4から流出する非共沸混合冷媒の温度であればよい。温度T1は、たとえば図8に示される実施の形態1の変形例2に係る冷凍サイクル装置100Aのように、膨張弁41から流出する非共沸混合冷媒の温度でもよい。膨張弁41から流出する非共沸混合冷媒の温度を検出することにより、冷凍サイクル装置100Aのようにレシーバ3と圧縮機1との間にキャピラリチューブのような減圧装置がない構成においても、循環組成比の変化を冷凍サイクル装置の制御に反映させることができる。その結果、冷凍サイクル装置の性能低下を抑制することができる。
実施の形態1の変形例3.
温度センサ101が故障した場合、温度T1が実際の非共沸混合冷媒の温度から乖離する。温度センサ101が故障した状態で図4に示される処理を行なうと、冷凍サイクル装置100の運転が不安定になり得る。そこで、図9に示される処理のように、温度T1がしきい値γ(第3しきい値)よりも大きい場合(S111においてNO)、温度センサ101が故障しているとして、駆動周波数fcを一定割合(たとえば10%)だけ上昇させる(S112)ようにしてもよい。このような処理を行なうことにより、温度センサ101が故障している場合でも凝縮器2および蒸発器5における熱交換量の低下を防止することができるため、冷凍サイクル装置100の能力が不足することを防止することができる。
以上、実施の形態1、および変形例1~3に係る冷凍サイクル装置によれば、非共沸混合冷媒に含まれる冷媒の数によらず、冷凍サイクル装置の性能低下を抑制することができる。
実施の形態2.
冷凍サイクル装置が正常である場合、循環組成比は、非共沸混合冷媒が循環を繰り返す過程で或る一定の値で安定することが多い。そのため、実施の形態1で説明したような補正処理により、循環組成比の変化を冷凍サイクル装置の制御に反映させた場合、圧縮機の運転が安定する駆動周波数、および特定パラメータの制御目標値は、2回目以降の冷凍サイクル装置の運転においては、初回の運転の場合とほぼ同じになることが多い。そこで、実施の形態2においては、冷凍サイクル装置の停止時に特定パラメータの制御目標値の補正量を制御装置の記憶部に保存する。圧縮機の運転が2回目以降である場合には、特定パラメータが、制御目標値の初期値に記憶部に保存された補正量が加えられた値となるように圧縮機の駆動周波数を制御する。その結果、制御目標値の補正に要する時間を短縮するため、冷凍サイクル装置の運転が安定するまでに要する時間を短縮することができる。
図10は、実施の形態2に係る冷凍サイクル装置の運転開始時に行なわれる処理の流れを示すフローチャートである。図10に示される処理は、不図示のメインルーチンによって呼び出される。図10に示されるように、制御装置は、S201において今回の冷凍サイクル装置の運転が初回か否かを判定する。今回の冷凍サイクル装置の運転が初回である場合(S201においてYES)、制御装置は、S202において初期値を制御目標値に設定して処理をメインルーチンに返す。今回の冷凍サイクル装置の運転が2回目以降である場合(S201においてNO)、制御装置は、S203において、記憶部に保存されている補正量を初期値に加えた値を制御目標値に設定して処理をメインルーチンに返す。
以上、実施の形態2に係る冷凍サイクル装置によれば、非共沸混合冷媒に含まれる冷媒の数によらず、冷凍サイクル装置の性能低下を抑制することができる。また、実施の形態2に係る冷凍サイクル装置によれば、圧縮機の駆動周波数が安定するまでの時間を短縮することができる。
実施の形態3.
循環組成比は、冷媒漏洩によっても変化する。そこで、実施の形態3においては、冷媒漏洩の発生を表示装置に表示する構成について説明する。
図11は、実施の形態3に係る冷凍サイクル装置300の構成を示す機能ブロック図である。冷凍サイクル装置300の構成は、図1に示される冷凍サイクル装置100の構成に表示装置301が加えられるとともに、制御装置10が制御装置30に置き換えられている。これら以外の構成は同様であるため、説明を繰り返さない。
スローリーク等の冷媒漏洩が生じると、冷媒漏洩が生じている間、冷凍サイクル装置300を循環組成比が変化し続ける。そのため、冷媒漏洩が生じている状態で駆動周波数fcの補正処理を行なうと、駆動周波数fcがいつまでも安定せず、上昇し続ける可能性がある。
圧縮機1の故障を防止するため、圧縮機1の駆動周波数fcには、通常、上限値が設定されている。冷媒漏洩による熱交換量の不足を補うために、圧縮機1の駆動周波数fcを当該上限値以上に補正する必要が生じると、所望の能力を実現することができず、能力不足の状態で冷凍サイクル装置を運転し続けることになる。
そこで、冷凍サイクル装置300においては、圧縮機1の駆動周波数fcが、基準周波数を超えた場合に、冷凍サイクル装置300を循環する非共沸混合冷媒が不足していると判定し、表示装置301に非共沸混合冷媒が不足していることを表示する。ユーザは、非共沸混合冷媒の不足を表示装置301を介して知ることができるため、冷凍サイクル装置300が能力不足となる前に非共沸混合冷媒の追加、あるいは入れ替え等の対策を講じることができる。
図12は、図11の制御装置30によって行なわれる冷媒不足の報知処理の流れを示すフローチャートである。図12に示される処理は、不図示のメインルーチンによって定期的に呼び出される。図12に示されるように、制御装置30は、S301において駆動周波数fcが基準周波数νよりも大きいか否かを判定する。駆動周波数fcが基準周波数νよりも大きい場合(S301においてYES)、制御装置30は、S302において冷媒不足を表示装置301に表示して処理をメインルーチンに返す。駆動周波数fcが基準周波数ν以下である場合(S301においてNO)、制御装置30は、処理をメインルーチンに返す。なお、基準周波数νは、圧縮機1の駆動周波数の上限値よりも小さい値であり、シミュレーションあるいは実機実験によって適宜決定される。実施の形態4において説明する図14においても同様である。
以上、実施の形態3に係る冷凍サイクル装置によれば、非共沸混合冷媒に含まれる冷媒の数によらず、冷凍サイクル装置の性能低下を抑制することができる。また、実施の形態3に係る冷凍サイクル装置によれば、ユーザは、冷凍サイクル装置が能力不足となる前に冷媒不足を知ることができる。
実施の形態4.
実施の形態3においては、冷凍サイクル装置が備える表示装置に非共沸混合冷媒が不足していることが表示される場合について説明した。実施の形態4においては、冷凍サイクル装置が通信装置を備え、非共沸混合冷媒の不足が当該通信装置によって外部の表示装置に送信される場合について説明する。実施の形態4に係る冷凍サイクル装置によれば、ユーザは、常時冷凍サイクル装置の近くにいて冷媒不足の発生を監視している必要はない。ユーザは、遠隔地にいる保守管理者からの連絡を受けることにより、冷凍サイクル装置が能力不足となる前に冷媒不足を知ることができる。
図13は、実施の形態4に係る冷凍サイクル装置400の構成を示す図である。冷凍サイクル装置400の構成は、図1に示される冷凍サイクル装置100の構成に通信装置401が加えられるとともに、制御装置10が制御装置40に置き換えられている。これら以外の構成は同様であるため、説明を繰り返さない。通信装置401は、たとえばインターネットを介して外部の表示装置901に接続されている。
図14は、図13の制御装置40によって行なわれる冷媒不足の報知処理の流れを示すフローチャートである。図14に示される処理は、不図示のメインルーチンによって定期的に呼び出される。図14に示されるように、制御装置40は、S401において駆動周波数fcが基準周波数νよりも大きいか否かを判定する。駆動周波数fcが基準周波数νよりも大きい場合(S401においてYES)、制御装置40は、S402において、冷媒不足を通信装置401を介して外部の表示装置901に送信し、処理をメインルーチンに返す。駆動周波数fcが基準周波数ν以下である場合(S401においてNO)、制御装置40は、処理をメインルーチンに返す。
以上、実施の形態4に係る冷凍サイクル装置によれば、非共沸混合冷媒に含まれる冷媒の数によらず、冷凍サイクル装置の性能低下を抑制することができる。また、実施の形態4に係る冷凍サイクル装置によれば、冷凍サイクル装置を循環する非共沸混合冷媒が不足していることを遠隔地において知ることができる。
実施の形態5.
非共沸混合冷媒が冷凍サイクル装置から漏洩した場合、冷凍サイクル装置に所望の性能を発揮させるためには、非共沸混合冷媒の不足を解消する必要がある。非共沸混合冷媒の不足を解消する方法としては、非共沸混合冷媒を追加して不足量を補う方法(追加チャージ)、および冷凍サイクル装置に残存する非共沸混合冷媒を冷凍サイクル装置の仕様上定められた量で入れ替える方法(再チャージ)を挙げることができる。
非共沸混合冷媒の漏洩が継続すると、循環組成比の変化量が増加する。当該変化量によっては非共沸混合冷媒を追加チャージしても、冷凍サイクル装置に所望の性能を回復させるためには、圧縮機の駆動周波数を上限値よりも大きくする必要が生じ得る。このような場合は、再チャージを行なう必要がある。そこで、実施の形態5においては、追加チャージが可能か否かを判定する構成について説明する。実施の形態5に係る冷凍サイクル装置によれば、ユーザは、追加チャージ、あるいは再チャージのいずれを行なうべきか知ることができるため、冷媒不足に対して適切な対策を講じることができる。
実施の形態5に係る冷凍サイクル装置においては、実施の形態2に係る冷凍サイクル装置と同様に、冷凍サイクル装置の停止時に特定パラメータの制御目標値の補正量が制御装置の記憶部に保存される。また、実施の形態5に係る冷凍サイクル装置においては、実施の形態3または4に係る冷凍サイクル装置と同様に、表示装置に冷媒不足であることが表示される。
図15は、実施の形態5に係る冷凍サイクル装置の制御装置によって行なわれる、追加チャージが可能か否かの判定処理の流れを示すフローチャートである。図15に示される処理は、不図示のメインルーチンによって呼び出される。
図15に示されるように、制御装置は、S501において初期冷媒量および記憶部に保存されている制御目標値の補正量から、非共沸混合冷媒の不足量を算出し、処理をS502に進める。制御装置は、S502において、非共沸混合冷媒の不足量を冷凍サイクル装置に追加した場合の予測補正量を算出し、処理をS503に進める。制御装置は、S503において予測補正量が基準補正量δよりも小さいか否かを判定する。基準補正量δは、圧縮機の駆動周波数fcの上限値に基づいて算出された値であり、予め記憶部に保存されている。
予測補正量が基準補正量δよりも小さい場合(S503においてYES)、制御装置は、S504において、追加チャージが可能であることを表示装置に表示し、処理をメインルーチンに返す。予測補正量が基準補正量δ以上である場合(S503においてNO)、制御装置は、S505において、再チャージが必要であることを表示装置に表示し、処理をメインルーチンに返す。
以上、実施の形態5に係る冷凍サイクル装置によれば、非共沸混合冷媒に含まれる冷媒の数によらず、冷凍サイクル装置の性能低下を抑制することができる。また、実施の形態5に係る冷凍サイクル装置によれば、ユーザは、冷媒不足に対して適切な対策を講じることができる。
実施の形態6.
実施の形態1においては、冷媒容器から流出した冷媒を第2減圧装置を介して圧縮機に戻す構成について説明した。実施の形態6においては、過冷却度を確保するために、冷媒容器から流出した非共沸混合冷媒と第2減圧装置から流出した非共沸混合冷媒との間で熱交換が行なわれる構成について説明する。実施の形態6に係る冷凍サイクル装置によれば、冷凍サイクル装置の効率を向上させることができる。
図16は、実施の形態6に係る冷凍サイクル装置600の構成を示す機能ブロック図である。冷凍サイクル装置600の構成は、図1に示される冷凍サイクル装置100の構成に内部熱交換器7(第3熱交換器)、温度センサ104、および圧力センサ105が追加されているとともに、圧縮機1、キャピラリチューブ42、および制御装置10が、圧縮機1B、膨張弁42B(第2減圧装置)、および制御装置60にそれぞれ置き換えられた構成である。これら以外の構成は同様であるため、説明を繰り返さない。
図16に示されるように、圧縮機1Bは、圧縮機構に連通するインジェクションポートを有する。内部熱交換器7は、レシーバ3と膨張弁41との間に接続されている。膨張弁42Bから流出した非共沸混合冷媒は、内部熱交換器7を通過した後、圧縮機1Bのインジェクションポートに吸入される。内部熱交換器7において、レシーバ3から流出した非共沸混合冷媒が膨張弁42Bから流出した非共沸混合冷媒によって冷却される。
温度センサ101は、膨張弁42Bと内部熱交換器7との間を流れる非共沸混合冷媒の温度T1を検出する。温度センサ104は、内部熱交換器7と膨張弁41との間を流れる非共沸混合冷媒の温度T2を検出する。圧力センサ102は、蒸発器5と圧縮機1Bとの間を流れる非共沸混合冷媒の圧力Psを検出する。圧力センサ103は、圧縮機1Bから吐出される非共沸混合冷媒の圧力Pdを検出する。圧力センサ105は、膨張弁42Bと内部熱交換器7との間を流れる非共沸混合冷媒の圧力Pinj(特定圧力)を検出する。
制御装置60は、圧縮機1Bの駆動周波数fcを制御することにより、圧縮機1Bが単位時間当たりに吐出する非共沸混合冷媒の量を制御する。制御装置60は、温度センサ101,104、および圧力センサ102,103,105から温度T1,T2、圧力Ps,Pd,Pinjをそれぞれ受ける。制御装置60は、記憶部61を含む。記憶部61には、たとえば非共沸混合冷媒の物性値、および特定パラメータの制御目標値が予め保存されている。
図17は、非共沸混合冷媒の圧力、エンタルピ、および温度の関係を示すモリエル線図である。図17に示されるように、状態C61から、C62およびC63を経由してC64に至る過程は、圧縮機1Bによる断熱圧縮過程を表す。状態C61からC62への過程は、吸入ポートとインジェクションポートとの間における断熱圧縮過程を表す。状態C63からC64への過程は、インジェクションポートと吐出ポートとの間における断熱圧縮過程を表す。状態C62のエンタルピよりも低いエンタルピを有する非共沸混合冷媒が内部熱交換器7からインジェクションポートに流入することにより、非共沸混合冷媒の状態は、状態C62から状態C63に変化する。
状態C64からC65への過程は、凝縮器2による凝縮過程を表す。状態C65からC66への過程は、内部熱交換器7における熱交換過程を表す。当該熱交換過程において過冷却度が確保される。状態C66からC68への過程は膨張弁41による減圧過程を表す。状態C68からC61への過程は、蒸発器5による蒸発過程を表す。状態C66からC67への過程は、膨張弁42Bによる減圧過程を表す。状態C67からC69への過程は、内部熱交換器7における熱交換過程を表す。状態C69の非共沸混合冷媒が圧縮機1Bのインジェクションポートに流入する。
図18は、図16の制御装置60によって行なわれる駆動周波数fcの補正処理の流れを示すフローチャートである。図18に示されるフローチャートは、図4に示されるフローチャートのS101がS601に置き換えられたフローチャートである。それ以外の処理は同様である。
図18に示されるように、制御装置60は、S601において、圧縮機1Bの吐出圧力Pdおよび温度T2からエンタルピHslを算出し、処理をS102に進める。吐出圧力Pd、温度T2、およびエンタルピHslの対応関係m3(Hsl=m3(Pd,T2))は、予め記憶部61に保存されている。制御装置60は、S102~S107を行ない、駆動周波数fcを補正し、処理をメインルーチンに返す。
以上、実施の形態6に係る冷凍サイクル装置によれば、非共沸混合冷媒に含まれる冷媒の数によらず、冷凍サイクル装置の性能低下を抑制することができる。また、実施の形態6に係る冷凍サイクル装置によれば、冷凍サイクル装置の効率を向上させることができる。
今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わせて実施することも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1,1B 圧縮機、2 凝縮器、3 レシーバ、4 減圧部、5 蒸発器、7 内部熱交換器、10,30,40,60 制御装置、11,61 記憶部、41,42B 膨張弁、42 キャピラリチューブ、100,100A,300,400,600 冷凍サイクル装置、101,104 温度センサ、102,103,105 圧力センサ、301,901 表示装置、401 通信装置。

Claims (12)

  1. 共沸混合冷媒が循環する冷凍サイクル装置であって、
    圧縮機と、
    第1熱交換器と、
    冷媒容器と、
    減圧部と、
    第2熱交換器とを備え、
    前記非共沸混合冷媒は、前記圧縮機、前記第1熱交換器、前記冷媒容器、前記減圧部、および前記第2熱交換器の順に循環し、
    第1の場合の前記圧縮機の駆動周波数は、第2の場合の前記圧縮機の駆動周波数よりも大きく、
    前記第1の場合において、特定圧力における前記非共沸混合冷媒の第1温度と基準温度との差が第1しきい値よりも大きく、
    前記第2の場合において、前記差が前記第1しきい値よりも小さく、
    前記特定圧力は、前記減圧部から流出する前記非共沸混合冷媒の圧力であり、
    前記基準温度は、前記冷媒容器内の気体の前記非共沸混合冷媒の量が0である場合の、前記減圧部に流入する液体の前記非共沸混合冷媒のエンタルピおよび前記特定圧力に対応する、前記非共沸混合冷媒の温度である、冷凍サイクル装置。
  2. 前記減圧部は、第1減圧装置および第2減圧装置を含み、
    前記非共沸混合冷媒は、前記圧縮機、前記第1熱交換器、前記冷媒容器、前記第1減圧装置、および前記第2熱交換器の順に循環するとともに、前記圧縮機、前記第1熱交換器、前記冷媒容器、および前記第2減圧装置の順に循環し、
    前記特定圧力は、前記第2減圧装置から流出する前記非共沸混合冷媒の圧力である、請求項1に記載の冷凍サイクル装置。
  3. 第3熱交換器をさらに備え、
    前記非共沸混合冷媒は、前記圧縮機、前記第1熱交換器、前記冷媒容器、前記第3熱交換器、前記第1減圧装置、および前記第2熱交換器の順に循環するとともに、前記圧縮機、前記第1熱交換器、前記冷媒容器、前記第3熱交換器、前記第2減圧装置、および前記第3熱交換器の順に循環する、請求項2に記載の冷凍サイクル装置。
  4. 前記第1温度は、前記第2減圧装置から流出する前記非共沸混合冷媒の温度である、請求項2または3に記載の冷凍サイクル装置。
  5. 前記差が第2しきい値よりも小さい場合の前記圧縮機の駆動周波数は、前記差が前記第2しきい値よりも大きい場合の前記圧縮機の駆動周波数よりも小さく、
    前記第2しきい値は、前記第1しきい値よりも小さい、請求項1~4のいずれか1項に記載の冷凍サイクル装置。
  6. 前記圧縮機を制御する制御装置と、
    表示装置とをさらに備え、
    前記制御装置は、前記圧縮機の駆動周波数が基準周波数を超えた場合、前記非共沸混合冷媒が不足していることを前記表示装置に表示する、請求項1~5のいずれか1項に記載の冷凍サイクル装置。
  7. 前記圧縮機を制御する制御装置と、
    通信装置とをさらに備え、
    前記制御装置は、前記圧縮機の駆動周波数が基準周波数を超えた場合、前記非共沸混合冷媒が不足していることを前記通信装置を介して外部の表示装置に通信する、請求項1~5のいずれか1項に記載の冷凍サイクル装置。
  8. 前記圧縮機を制御して、蒸発温度を制御目標値に近づける制御装置をさらに備え、
    前記制御装置は、
    前記冷凍サイクル装置の初回の運転の開始時において、前記蒸発温度の制御目標値に初期値を設定し、
    前記差に応じて前記蒸発温度の制御目標値を補正し、前記冷凍サイクル装置の運転の停止時に、前記制御目標値の補正量を保存し、
    前記冷凍サイクル装置の2回目以降の運転の開始時において、前記蒸発温度の制御目標値を記初期値に前記補正量を加えた値に設定する、請求項1~5のいずれか1項に記載の冷凍サイクル装置。
  9. 前記制御装置は、
    前記非共沸混合冷媒の初期冷媒量および保存された前記補正量から前記非共沸混合冷媒の不足量を算出し、
    前記不足量が前記冷凍サイクル装置に追加された場合の、前記制御目標値の予測補正量を算出し、
    前記予測補正量が基準補正量よりも小さい場合、前記不足量と同量の前記非共沸混合冷媒を追加することが可能であることを報知し、
    前記予測補正量が前記基準補正量よりも大きい場合、前記冷凍サイクル装置内の前記非共沸混合冷媒を前記冷凍サイクル装置の仕様上定められた量の前記非共沸混合冷媒で入れ替える必要があることを報知する、請求項8に記載の冷凍サイクル装置。
  10. 前記第1温度を測定して前記制御装置に出力する温度センサをさらに備え、
    前記温度センサが故障している場合、前記温度センサが出力する温度は第3しきい値よりも大きく、
    前記第1温度が前記第3しきい値よりも大きい場合の前記圧縮機の駆動周波数は、前記第1温度が前記第3しきい値よりも小さい場合の前記圧縮機の駆動周波数よりも大きい、請求項6~9のいずれか1項に記載の冷凍サイクル装置。
  11. 前記非共沸混合冷媒は、二酸化炭素を含み、
    前記非共沸混合冷媒に占める前記二酸化炭素の割合は、50重量パーセント以下である、請求項1~10のいずれか1項に記載の冷凍サイクル装置。
  12. 前記非共沸混合冷媒は、R463Aを含む、請求項11に記載の冷凍サイクル装置。
JP2020535416A 2018-08-09 2018-08-09 冷凍サイクル装置 Active JP7002660B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029871 WO2020031319A1 (ja) 2018-08-09 2018-08-09 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JPWO2020031319A1 JPWO2020031319A1 (ja) 2021-05-20
JP7002660B2 true JP7002660B2 (ja) 2022-01-20

Family

ID=69414067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020535416A Active JP7002660B2 (ja) 2018-08-09 2018-08-09 冷凍サイクル装置

Country Status (3)

Country Link
JP (1) JP7002660B2 (ja)
CN (1) CN112513541B (ja)
WO (1) WO2020031319A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7154388B2 (ja) * 2019-03-26 2022-10-17 三菱電機株式会社 室外機及びそれを備える冷凍サイクル装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141322A (ja) 1999-11-12 2001-05-25 Matsushita Refrig Co Ltd ヒートポンプ装置
JP2002522737A (ja) 1998-08-03 2002-07-23 ヨーク・インターナショナル・コーポレーション 三成分冷媒混合物の組成を測定するための方法及びシステム
JP2010175106A (ja) 2009-01-28 2010-08-12 Sanyo Electric Co Ltd 冷凍装置
JP2011007346A (ja) 2009-06-23 2011-01-13 Panasonic Corp 空気調和機
WO2012172597A1 (ja) 2011-06-14 2012-12-20 三菱電機株式会社 空気調和装置
WO2014080436A1 (ja) 2012-11-20 2014-05-30 三菱電機株式会社 冷凍装置
WO2016203827A1 (ja) 2015-06-16 2016-12-22 東芝キヤリア株式会社 冷凍機及び冷凍装置
WO2017151488A1 (en) 2016-02-29 2017-09-08 The Chemours Company Fc, Llc Refrigerant mixtures comprising difluoromethane, pentafluoroethane, tetrafluoroethane, tetrafluoropropene, and carbon dioxide and uses thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3178103B2 (ja) * 1992-08-31 2001-06-18 株式会社日立製作所 冷凍サイクル
JPH1068555A (ja) * 1996-08-27 1998-03-10 Mitsubishi Heavy Ind Ltd 冷凍サイクルの循環冷媒組成検出方法並びにその検出方法を用いた冷凍装置
US10001308B2 (en) * 2011-12-22 2018-06-19 Mitsubishi Electric Corporation Refrigeration cycle device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002522737A (ja) 1998-08-03 2002-07-23 ヨーク・インターナショナル・コーポレーション 三成分冷媒混合物の組成を測定するための方法及びシステム
JP2001141322A (ja) 1999-11-12 2001-05-25 Matsushita Refrig Co Ltd ヒートポンプ装置
JP2010175106A (ja) 2009-01-28 2010-08-12 Sanyo Electric Co Ltd 冷凍装置
JP2011007346A (ja) 2009-06-23 2011-01-13 Panasonic Corp 空気調和機
WO2012172597A1 (ja) 2011-06-14 2012-12-20 三菱電機株式会社 空気調和装置
WO2014080436A1 (ja) 2012-11-20 2014-05-30 三菱電機株式会社 冷凍装置
WO2016203827A1 (ja) 2015-06-16 2016-12-22 東芝キヤリア株式会社 冷凍機及び冷凍装置
WO2017151488A1 (en) 2016-02-29 2017-09-08 The Chemours Company Fc, Llc Refrigerant mixtures comprising difluoromethane, pentafluoroethane, tetrafluoroethane, tetrafluoropropene, and carbon dioxide and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
三菱電機株式会社,R463Aコンデンシングユニット,2018年05月

Also Published As

Publication number Publication date
CN112513541A (zh) 2021-03-16
CN112513541B (zh) 2022-04-26
WO2020031319A1 (ja) 2020-02-13
JPWO2020031319A1 (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
EP3121541B1 (en) Refrigerating device and refrigerating device control method
JP6555311B2 (ja) ガス漏れ量推定方法及び冷凍装置の運転方法
JP5132772B2 (ja) 非共沸混合冷媒及び冷凍サイクル装置
EP3012556B1 (en) Refrigeration cycle device
JP5981376B2 (ja) 空気調和機、および空気調和機の運転方法
US20180363965A1 (en) Refrigeration cycle apparatus
JP5808410B2 (ja) 冷凍サイクル装置
JP7002660B2 (ja) 冷凍サイクル装置
JP6902390B2 (ja) 冷凍サイクル装置
JPH0835725A (ja) 非共沸混合冷媒を用いた冷凍空調装置
JP6937935B2 (ja) 冷凍サイクル装置
CN111279141B (zh) 制冷空调装置以及控制装置
WO2010118745A2 (en) A method of controlling operation of a vapour compression system
JP7034318B2 (ja) 冷凍サイクル装置
JP2005106314A (ja) 冷凍装置
JP6590768B2 (ja) 空気調和機
JP7105903B2 (ja) 冷凍サイクル装置
JP6903233B2 (ja) 室外機および冷凍サイクル装置
EP4400786A1 (en) A refrigeration system and a method of operating a refrigeration system
WO2024069896A1 (ja) 空気調和機
KR20200131122A (ko) 헌팅 제어 알고리즘이 개선된 공기조화기
JP2020003204A (ja) 冷凍機及び冷凍装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227

R150 Certificate of patent or registration of utility model

Ref document number: 7002660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150