Nothing Special   »   [go: up one dir, main page]

JP7074985B2 - Imaging optical system - Google Patents

Imaging optical system Download PDF

Info

Publication number
JP7074985B2
JP7074985B2 JP2018090409A JP2018090409A JP7074985B2 JP 7074985 B2 JP7074985 B2 JP 7074985B2 JP 2018090409 A JP2018090409 A JP 2018090409A JP 2018090409 A JP2018090409 A JP 2018090409A JP 7074985 B2 JP7074985 B2 JP 7074985B2
Authority
JP
Japan
Prior art keywords
lens
lens group
object side
refractive power
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018090409A
Other languages
Japanese (ja)
Other versions
JP2019197125A (en
Inventor
健太 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Priority to JP2018090409A priority Critical patent/JP7074985B2/en
Publication of JP2019197125A publication Critical patent/JP2019197125A/en
Application granted granted Critical
Publication of JP7074985B2 publication Critical patent/JP7074985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、デジタルカメラ、銀塩カメラ及びビデオカメラ等に最適であり、特に、画角が46°~65°程度で、F値がF1.2程度の、バックフォーカスの短いミラーレスカメラに最適な結像光学系に関する。 The present invention is most suitable for digital cameras, silver salt cameras, video cameras, etc., and is particularly suitable for mirrorless cameras having an angle of view of about 46 ° to 65 ° and an F value of about F1.2 and a short back focus. Imaging optical system.

一般的にF1.2程度のF値が明るい大口径レンズは、よりF値の暗いレンズに比べ入射瞳径が大きくなるため、球面収差や軸上色収差の補正が難しくなる。一方、昨今のデジタルカメラはイメージセンサが高画素化しているため、特に軸上色収差が補正不足な結像光学系の場合、結像面での像の色付きや、アウトフォーカス部でのボケ像への色付きが顕著なものとなってしまう。このような問題を解決するためには軸上色収差をより小さくなるよう補正することが重要となる。 Generally, a large-diameter lens having a bright F-number of about F1.2 has a larger entrance pupil diameter than a lens having a darker F-number, so that it is difficult to correct spherical aberration and axial chromatic aberration. On the other hand, in recent digital cameras, the image sensor has a high pixel count, so especially in the case of an imaging optical system in which axial chromatic aberration is insufficiently corrected, the image may be colored on the image plane or blurred in the out-of-focus area. The coloring of the camera becomes remarkable. In order to solve such a problem, it is important to correct the axial chromatic aberration to be smaller.

以下の特許文献において従来の結像光学系が開示されている。 The following patent documents disclose conventional imaging optical systems.

特許文献1では、画角が45°程度で、F値がF1.2程度の光学系が開示されている。 Patent Document 1 discloses an optical system having an angle of view of about 45 ° and an F value of about F1.2.

また、特許文献2では、画角が49°程度で、F値がF1.4程度の光学系が開示されている。 Further, Patent Document 2 discloses an optical system having an angle of view of about 49 ° and an F value of about F1.4.

特開2007-333790号公報Japanese Unexamined Patent Publication No. 2007-333790 特開2016-38418号公報Japanese Unexamined Patent Publication No. 2016-38418

しかしながら特許文献1で開示されている結像光学系は、軸上色収差補正が不十分であり、またバックフォーカスが長く、ミラーレスカメラに最適な結像光学系とはなっていない。 However, the imaging optical system disclosed in Patent Document 1 is insufficient in axial chromatic aberration correction and has a long back focus, so that it is not the optimum imaging optical system for a mirrorless camera.

また、特許文献2で開示されている結像光学系はバックフォーカスが短く、ミラーレスカメラには最適な結像光学系である。しかしF値がF1.4程度であるため、F値をF1.2程度まで明るくしようとした場合、開示されている結像光学系では球面収差や軸上色収差の補正が困難である。 Further, the imaging optical system disclosed in Patent Document 2 has a short back focus and is the most suitable imaging optical system for a mirrorless camera. However, since the F value is about F1.4, it is difficult to correct spherical aberration and axial chromatic aberration with the disclosed imaging optical system when trying to brighten the F value to about F1.2.

そこで、本発明は、従来の結像光学系の課題を解決し、バックフォーカスを短くすることで光学系の全長を抑えつつ、軸上色収差が良好に補正され、F値がF1.2程度のミラーレスカメラに最適な結像光学系を提供することを目的とする。 Therefore, the present invention solves the problem of the conventional imaging optical system, shortens the back focus to suppress the total length of the optical system, satisfactorily corrects axial chromatic aberration, and has an F value of about F1.2. It is an object of the present invention to provide an optimum imaging optical system for a mirrorless camera.

上記の課題を解決するために、本発明の結像光学系は、物体側から像側へ順に、
正の屈折力を有する第1レンズ群L1と、
正の屈折力を有する第2レンズ群L2と、
正の屈折力を有する第3レンズ群L3と、
負の屈折力を有する第4レンズ群L4と
からなり、
前記第1レンズ群L1は、少なくとも一つの接合レンズを有すると共に、最も物体側に負の屈折力を有するレンズ素子を配し、物体側に凸面を向け正の屈折力を有するレンズ素子を前記負の屈折力を有するレンズ素子の像側に隣接するよう配し、
フォーカシングに際して、前記第2レンズ群L2と前記第3レンズ群L3とが物体側に異なる移動量で移動するとともに、前記第1レンズ群L1と、前記第4レンズ群L4とが像面に対して固定であり、前記第1レンズ群L1の最も物体側の面から、物体側に凸面を向け負の屈折力を有するレンズ素子の像側の面までをレンズ成分L1fとし、前記レンズ成分L1fは負の屈折力を有し、以下の条件式を満足することを特徴とする。
Y/Bf > 0.80 (1)
LT/f < 4.20 (2)

Figure 0007074985000001
-7.96 < f1f/f < -1.33 (7)
但し、
Yは最大像高、
Bfは前記第4レンズ群L4の最も像側の面の面頂から像面までの距離、
LTは前記第1レンズ群L1の最も物体側の面の面頂から像面までの距離、
fはレンズ全系の無限遠合焦時の焦点距離
f1fは前記レンズ成分L1fの焦点距離であり、
Aciは以下の式で表される。
Aci = φcpi/νdcpi + φcmi/νdcmi
但し、
φcpiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの凸レンズ素子の屈折力、
νdcpiは、記第1レンズ群L1に含まれる物体側からi番目の接合レンズの凸レンズ素子のアッベ数、
φcmiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの凹レンズ素子の屈折力、
νdcmiは、記第1レンズ群L1に含まれる物体側からi番目の接合レンズの凹レンズ素子のアッベ数である。
In order to solve the above problems, the imaging optical system of the present invention is sequentially arranged from the object side to the image side.
The first lens group L1 having a positive refractive power and
The second lens group L2 having a positive refractive power,
The third lens group L3 having a positive refractive power,
It consists of a fourth lens group L4 having a negative refractive power.
The first lens group L1 has at least one bonded lens, arranges a lens element having the most negative refractive power on the object side, and directs a convex surface toward the object side to have a positive refractive power. Arranged so as to be adjacent to the image side of the lens element having the refractive power of
At the time of focusing, the second lens group L2 and the third lens group L3 move toward the object side by different amounts of movement, and the first lens group L1 and the fourth lens group L4 move with respect to the image plane. The lens component L1f is from the most object-side surface of the first lens group L1 to the image-side surface of the lens element having a negative refractive power with the convex surface facing the object side, and the lens component L1f is negative. It is characterized by having the refractive power of the above and satisfying the following conditional expression.
Y / Bf> 0.80 (1)
LT / f <4.20 (2)
Figure 0007074985000001
-7.96 <f1f / f <-1.33 (7)
however,
Y is the maximum image height,
Bf is the distance from the top of the surface on the image side of the fourth lens group L4 to the image surface.
LT is the distance from the top of the surface of the first lens group L1 on the most object side to the image plane.
f is the focal length of the entire lens system at infinity focusing ,
f1f is the focal length of the lens component L1f .
Aci is expressed by the following equation.
Aci = φcpi / νdcpi + φcmi / νdcmi
however,
φcpi is the refractive power of the convex lens element of the i-th junction lens from the object side included in the first lens group L1.
νdcpi is the Abbe number of the convex lens element of the i-th junction lens from the object side included in the first lens group L1.
φcmi is the refractive power of the concave lens element of the i-th junction lens from the object side included in the first lens group L1.
νdcmi is the Abbe number of the concave lens element of the i-th junction lens from the object side included in the first lens group L1.

また、第2の発明は、第1の発明においてさらに、前記第1レンズ群L1の最も像側に配する正の屈折力を有するレンズ素子L1pが以下の条件式を満足することを特徴とする結像光学系である。
νdL1p < 30 (4)
0.0090 < ΔPgfL1p (5)
但し、
ΔPgfL1pは前記正レンズ素子L1pの異常分散性であり、以下の式で表される。
ΔPgfL1p = PgfL1p + 0.0018×νdL1p ― 0.64833
但し、
νdL1pは前記正レンズ素子L1pのアッベ数νd、
PgfL1pは前記正レンズ素子L1pのg線とF線に関する部分分散比Pgfである。
Further, the second invention is further characterized in that, in the first invention, the lens element L1p having a positive refractive power arranged on the most image side of the first lens group L1 satisfies the following conditional expression. It is an imaging optical system.
νdL1p <30 (4)
0.0090 <ΔPgfL1p (5)
however,
ΔPgfL1p is the anomalous dispersibility of the positive lens element L1p and is expressed by the following equation.
ΔPgfL1p = PgfL1p + 0.0018 × νdL1p ― 0.64833
however,
νdL1p is the Abbe number νd of the positive lens element L1p.
PgfL1p is a partial dispersion ratio Pgf with respect to the g-line and the F-line of the positive lens element L1p.

また、第3の発明は、第1乃至第2の発明においてさらに、以下の条件式を満足することを特徴とする結像光学系である。
0.88 < Fno・(f3/f) < 1.96 (6)
但し、
Fnoは無限遠合焦時のレンズ全系のF値、
f3は前記第3レンズ群L3の焦点距離、
fはレンズ全系の無限遠合焦時の焦点距離である。
Further, the third invention is an imaging optical system characterized in that the following conditional expressions are further satisfied in the first and second inventions.
0.88 <Fno ・ (f3 / f) <1.96 (6)
however,
Fno is the F value of the entire lens system when focusing at infinity,
f3 is the focal length of the third lens group L3,
f is the focal length of the entire lens system at infinity focusing.

また、第の発明は、第1乃至第の発明においてさらに、以下の条件式を満足することを特徴とする結像光学系である。
β1b < 0.50 (8)
但し、
β1bは無限遠合焦時の前記第1レンズ群L1よりも像側に配するレンズ系の横倍率である。
Further, the fourth invention is an imaging optical system characterized in that the following conditional expressions are further satisfied in the first to third inventions.
β1b <0.50 (8)
however,
β1b is the lateral magnification of the lens system arranged on the image side of the first lens group L1 at the time of infinity focusing.

本発明によれば、従来の結像光学系の課題であった球面収差や軸上色収差を良好に補正し、バックフォーカスの短い、F値がF1.2程度のミラーレスカメラに最適な結像光学系を提供することができる。 According to the present invention, spherical aberration and axial chromatic aberration, which have been problems of conventional imaging optical systems, are satisfactorily corrected, and optimum imaging is performed for a mirrorless camera having a short back focus and an F value of about F1.2. An optical system can be provided.

本発明の実施例1に係る無限遠合焦時のレンズ構成図である。It is a lens block diagram at the time of infinity focusing which concerns on Example 1 of this invention. 本発明の実施例1に係る無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of infinity focusing which concerns on Example 1 of this invention. 本発明の実施例1に係る撮影距離2157mmにおける縦収差図である。FIG. 3 is a longitudinal aberration diagram at a shooting distance of 2157 mm according to the first embodiment of the present invention. 本発明の実施例1に係る無限遠合焦時の横収差図である。It is a lateral aberration diagram at the time of infinity focusing which concerns on Example 1 of this invention. 本発明の実施例1に係る撮影距離2157mmにおける横収差図である。FIG. 3 is a lateral aberration diagram at a shooting distance of 2157 mm according to the first embodiment of the present invention. 本発明の実施例2に係る無限遠合焦時のレンズ構成図である。It is a lens block diagram at the time of infinity focusing which concerns on Example 2 of this invention. 本発明の実施例2に係る無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of infinity focusing which concerns on Example 2 of this invention. 本発明の実施例2に係る撮影距離2158mmにおける縦収差図である。FIG. 3 is a longitudinal aberration diagram at a shooting distance of 2158 mm according to the second embodiment of the present invention. 本発明の実施例2に係る無限遠合焦時の横収差図である。It is a lateral aberration diagram at the time of infinity focusing which concerns on Example 2 of this invention. 本発明の実施例2に係る撮影距離2158mmにおける横収差図である。FIG. 3 is a lateral aberration diagram at a shooting distance of 2158 mm according to the second embodiment of the present invention. 本発明の実施例3に係る無限遠合焦時のレンズ構成図である。It is a lens block diagram at the time of infinity focusing which concerns on Example 3 of this invention. 本発明の実施例3に係る無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of infinity focusing which concerns on Example 3 of this invention. 本発明の実施例3に係る撮影距離2166mmにおける縦収差図である。It is a longitudinal aberration diagram at a shooting distance of 2166 mm according to the third embodiment of the present invention. 本発明の実施例3に係る無限遠合焦時の横収差図である。It is a lateral aberration diagram at the time of infinity focusing which concerns on Example 3 of this invention. 本発明の実施例3に係る撮影距離2166mmにおける横収差図である。FIG. 3 is a lateral aberration diagram at a shooting distance of 2166 mm according to the third embodiment of the present invention. 本発明の実施例4に係る無限遠合焦時のレンズ構成図である。It is a lens block diagram at the time of infinity focusing which concerns on Example 4 of this invention. 本発明の実施例4に係る無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of infinity focusing which concerns on Example 4 of this invention. 本発明の実施例4に係る撮影距離1764mmにおける縦収差図である。FIG. 3 is a longitudinal aberration diagram at a shooting distance of 1764 mm according to the fourth embodiment of the present invention. 本発明の実施例4に係る無限遠合焦時の横収差図である。It is a lateral aberration diagram at the time of infinity focusing which concerns on Example 4 of this invention. 本発明の実施例4に係る撮影距離1764mmにおける横収差図である。FIG. 3 is a lateral aberration diagram at a shooting distance of 1764 mm according to the fourth embodiment of the present invention. 本発明の実施例5に係る無限遠合焦時のレンズ構成図である。It is a lens block diagram at the time of infinity focusing which concerns on Example 5 of this invention. 本発明の実施例5に係る無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of infinity focusing which concerns on Example 5 of this invention. 本発明の実施例5に係る撮影距離1828mmにおける縦収差図である。It is a longitudinal aberration diagram at a shooting distance of 1828 mm according to the fifth embodiment of the present invention. 本発明の実施例5に係る無限遠合焦時の横収差図である。It is a lateral aberration diagram at the time of infinity focusing which concerns on Example 5 of this invention. 本発明の実施例5に係る撮影距離1828mmにおける横収差図である。FIG. 5 is a lateral aberration diagram at a shooting distance of 1828 mm according to the fifth embodiment of the present invention. 本発明の実施例6に係る無限遠合焦時のレンズ構成図である。It is a lens block diagram at the time of infinity focusing which concerns on Example 6 of this invention. 本発明の実施例6に係る無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of infinity focusing which concerns on Example 6 of this invention. 本発明の実施例6に係る撮影距離1709mmにおける縦収差図である。It is a longitudinal aberration diagram at a shooting distance of 1709 mm according to the sixth embodiment of the present invention. 本発明の実施例6に係る無限遠合焦時の横収差図である。It is a lateral aberration diagram at the time of infinity focusing which concerns on Example 6 of this invention. 本発明の実施例6に係る撮影距離1709mmにおける横収差図である。It is a lateral aberration diagram at a photographing distance 1709 mm which concerns on Example 6 of this invention. 本発明の実施例7に係る無限遠合焦時のレンズ構成図である。It is a lens block diagram at the time of infinity focusing which concerns on Example 7 of this invention. 本発明の実施例7に係る無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of infinity focusing which concerns on Example 7 of this invention. 本発明の実施例7に係る撮影距離1646mmにおける縦収差図である。FIG. 3 is a longitudinal aberration diagram at a shooting distance of 1646 mm according to the seventh embodiment of the present invention. 本発明の実施例7に係る無限遠合焦時の横収差図である。It is a lateral aberration diagram at the time of infinity focusing which concerns on Example 7 of this invention. 本発明の実施例7に係る撮影距離1646mmにおける横収差図である。FIG. 3 is a lateral aberration diagram at a shooting distance of 1646 mm according to the seventh embodiment of the present invention. 本発明の実施例8に係る無限遠合焦時のレンズ構成図である。It is a lens block diagram at the time of infinity focusing which concerns on Example 8 of this invention. 本発明の実施例8に係る無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of infinity focusing which concerns on Example 8 of this invention. 本発明の実施例8に係る撮影距離1565mmにおける縦収差図である。It is a longitudinal aberration diagram at a photographing distance of 1565 mm which concerns on Example 8 of this invention. 本発明の実施例8に係る無限遠合焦時の横収差図である。It is a lateral aberration diagram at the time of infinity focusing which concerns on Example 8 of this invention. 本発明の実施例8に係る撮影距離1565mmにおける横収差図である。It is a lateral aberration diagram at a photographing distance of 1565 mm which concerns on Example 8 of this invention.

以下に、本発明にかかる光学系の実施例について詳細に説明する。なお、以下の実施例の説明は本発明の光学系の一例を説明したものであり、本発明はその要旨を逸脱しない範囲において本実施例に限定されるものではない。 Hereinafter, examples of the optical system according to the present invention will be described in detail. It should be noted that the following description of the examples describes an example of the optical system of the present invention, and the present invention is not limited to the present embodiment as long as the gist of the present invention is not deviated.

本実施例の結像光学系は、物体側から像側へ順に、
正の屈折力を有する第1レンズ群L1と、
正の屈折力を有する第2レンズ群L2と、
正の屈折力を有する第3レンズ群L3と、
負の屈折力を有する第4レンズ群L4と
からなり、
前記第1レンズ群L1は、少なくとも一つの接合レンズを有すると共に、最も物体側に負の屈折力を有するレンズ素子を配し、物体側に凸面を向け正の屈折力を有するレンズ素子を前記負の屈折力を有するレンズ素子の像側に隣接するよう配し、
フォーカシングに際して、前記第2レンズ群L2と前記第3レンズ群L3とが物体側に異なる移動量で移動するとともに、前記第1レンズ群L1と、前記第4レンズ群L4とが像面に対して固定であり、以下の条件式を満足することを特徴とする。
Y/Bf > 0.80 (1)
LT/f < 4.20 (2)

Figure 0007074985000002
但し、
Yは最大像高、
Bfは前記第4レンズ群L4の最も像側の面の面頂から像面までの距離、
LTは前記第1レンズ群L1の最も物体側の面の面頂から像面までの距離、
fはレンズ全系の無限遠合焦時の焦点距離であり、
Aciは以下の式で表される。
Aci = φcpi/νdcpi + φcmi/νdcmi
但し、
φcpiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの凸レンズ素子の屈折力、
νdcpiは、記第1レンズ群L1に含まれる物体側からi番目の接合レンズの凸レンズ
素子のアッベ数、
φcmiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの凹レンズ素子の屈折力、
νdcmiは、記第1レンズ群L1に含まれる物体側からi番目の接合レンズの凹レンズ素子のアッベ数である。 The imaging optical system of this embodiment is in order from the object side to the image side.
The first lens group L1 having a positive refractive power and
The second lens group L2 having a positive refractive power,
The third lens group L3 having a positive refractive power,
It consists of a fourth lens group L4 having a negative refractive power.
The first lens group L1 has at least one bonded lens, arranges a lens element having the most negative refractive power on the object side, and directs a convex surface toward the object side to have a positive refractive power. Arranged so as to be adjacent to the image side of the lens element having the refractive power of
At the time of focusing, the second lens group L2 and the third lens group L3 move toward the object side by different amounts of movement, and the first lens group L1 and the fourth lens group L4 move with respect to the image plane. It is fixed and is characterized by satisfying the following conditional expression.
Y / Bf> 0.80 (1)
LT / f <4.20 (2)
Figure 0007074985000002
however,
Y is the maximum image height,
Bf is the distance from the top of the surface on the image side of the fourth lens group L4 to the image surface.
LT is the distance from the top of the surface of the first lens group L1 on the most object side to the image plane.
f is the focal length of the entire lens system at infinity focusing.
Aci is expressed by the following equation.
Aci = φcpi / νdcpi + φcmi / νdcmi
however,
φcpi is the refractive power of the convex lens element of the i-th junction lens from the object side included in the first lens group L1.
νdcpi is the Abbe number of the convex lens element of the i-th junction lens from the object side included in the first lens group L1.
φcmi is the refractive power of the concave lens element of the i-th junction lens from the object side included in the first lens group L1.
νdcmi is the Abbe number of the concave lens element of the i-th junction lens from the object side included in the first lens group L1.

なお、F線、d線、C線、の屈折率をそれぞれ、NF、Nd、NCとした場合、アッベ数νdは以下の式で表す。
νd = (Nd-1)/(NF-NC)
When the refractive indexes of the F line, d line, and C line are NF, Nd, and NC, respectively, the Abbe number νd is expressed by the following equation.
νd = (Nd-1) / (NF-NC)

第1レンズ群L1の最も物体側に負の屈折力を有するレンズ素子を配し、物体側に凸面を向けた正の屈折力を有するレンズ素子を前記負の屈折力を有するレンズ素子の像側に隣接するよう配することで、レンズ全系の像面湾曲補正、及びコマ収差補正を効果的に行うことができる。またさらに、第1レンズ群L1内に少なくとも1つの接合レンズを配することで、レンズ全系の軸上色収差補正を効果的に行うことができる。 A lens element having a negative refractive power is arranged on the most object side of the first lens group L1, and a lens element having a positive refractive power with a convex surface facing the object side is an image side of the lens element having a negative refractive power. By arranging the lens adjacent to the lens, it is possible to effectively correct the curvature of field and the coma of the entire lens system. Furthermore, by arranging at least one junction lens in the first lens group L1, it is possible to effectively correct the axial chromatic aberration of the entire lens system.

フォーカシングに際して、第2レンズ群L2と第3レンズ群L3とが異なる移動量で物体側に移動することで、特にフォーカシング時の球面収差変動を抑えることが可能となる。 When focusing, the second lens group L2 and the third lens group L3 move toward the object with different movement amounts, so that it is possible to suppress fluctuations in spherical aberration especially during focusing.

条件式(1)は、小型化のために、レンズ全系のバックフォーカスを規定したものである。 The conditional expression (1) defines the back focus of the entire lens system for miniaturization.

条件式(1)の下限値を超え、レンズ全系のバックフォーカスが長くなると、レンズ全系の全長が長くなるため、小型化に不利となり、ミラーレスカメラには不適当となる。 If the lower limit of the conditional expression (1) is exceeded and the back focus of the entire lens system becomes long, the total length of the entire lens system becomes long, which is disadvantageous for miniaturization and unsuitable for a mirrorless camera.

なお、上述した条件式(1)について、下限値を0.82に規定することで、前述の効果をより確実にすることができる。 By defining the lower limit value of 0.82 for the above-mentioned conditional expression (1), the above-mentioned effect can be further ensured.

条件式(2)は、光学系の過度な大型化を避けるため、レンズ全系の全長を規定したものである。 The conditional expression (2) defines the total length of the entire lens system in order to avoid excessive enlargement of the optical system.

条件式(2)の上限値を超えると、レンズ全系の全長が増大し、製品の過度な大型化や重量増大を招いてしまう。 If the upper limit of the conditional expression (2) is exceeded, the total length of the entire lens system increases, which leads to an excessive increase in size and weight of the product.

なお、上述した条件式(2)について、上限値を3.90に規定することで、前述の効果をより確実にすることができる。 By defining the upper limit value of 3.90 for the above-mentioned conditional expression (2), the above-mentioned effect can be further ensured.

条件式(3)は、高性能化のため、第1レンズ群L1に含まれる接合レンズの1次の色消し条件の和を規定したものである。 The conditional expression (3) defines the sum of the primary achromatic conditions of the bonded lens included in the first lens group L1 in order to improve the performance.

条件式(3)の上限値を超え、第1レンズ群L1に含まれる接合レンズの色消し条件の和が大きくなると、1次の色消しが不十分となるため、軸上色収差が悪化してしまう。 If the upper limit of the conditional expression (3) is exceeded and the sum of the achromatic conditions of the bonded lens included in the first lens group L1 becomes large, the primary achromatic effect becomes insufficient and the axial chromatic aberration worsens. It ends up.

なお、条件式(3)の上限値は0.0020に限定することで、前述の効果をより確実にすることができる。 By limiting the upper limit of the conditional expression (3) to 0.0020, the above-mentioned effect can be further ensured.

さらに、第1レンズ群L1の最も像側に配する正の屈折力を有するレンズ素子L1pが以下の条件式を満足することを特徴とする。
νdL1p < 30 (4)
0.0090 < ΔPgfL1p (5)
但し、
ΔPgfL1pは前記正レンズ素子L1pの異常分散性であり、以下の式で表される。
ΔPgfL1p = PgfL1p + 0.0018×νdL1p ― 0.64833
但し、
νdL1pは前記正レンズ素子L1pのアッベ数νd、
PgfL1pは前記正レンズ素子L1pのg線とF線に関する部分分散比Pgfである。
Further, the lens element L1p having a positive refractive power arranged on the most image side of the first lens group L1 is characterized by satisfying the following conditional expression.
νdL1p <30 (4)
0.0090 <ΔPgfL1p (5)
however,
ΔPgfL1p is the anomalous dispersibility of the positive lens element L1p and is expressed by the following equation.
ΔPgfL1p = PgfL1p + 0.0018 × νdL1p ― 0.64833
however,
νdL1p is the Abbe number νd of the positive lens element L1p.
PgfL1p is a partial dispersion ratio Pgf with respect to the g-line and the F-line of the positive lens element L1p.

条件式(4)及び(5)は、高性能化のため、正レンズ素子L1pのアッベ数νdと異常分散性ΔPgfを規定したものである。 The conditional expressions (4) and (5) define the Abbe number νd and the anomalous dispersibility ΔPgf of the positive lens element L1p in order to improve the performance.

なお、g線、F線、d線、C線、の屈折率をそれぞれ、Ng、NF、Nd、NCとした場合、部分分散比Pgfは以下の式で表す。
Pgf = (Ng-NF)/(NF-NC)
When the refractive indexes of the g-line, F-line, d-line, and C-line are Ng, NF, Nd, and NC, respectively, the partial dispersion ratio Pgf is expressed by the following equation.
Pgf = (Ng-NF) / (NF-NC)

条件式(4)の上限値を超えると共に条件式(5)の下限値を超え、正レンズ素子L1pのアッベ数νdが大きくなると共に異常分散性ΔPgfが小さくなると、特に、2次スペクトルの補正が不足することで、軸上色収差が悪化してしまう。 When the upper limit of the conditional expression (4) is exceeded and the lower limit of the conditional expression (5) is exceeded, the Abbe number νd of the positive lens element L1p becomes large and the anomalous dispersibility ΔPgf becomes small, the correction of the secondary spectrum is particularly corrected. Due to the shortage, the axial chromatic aberration worsens.

なお、条件式(4)の上限値は27、条件式(5)の下限値を0.0100、に限定することで、前述の効果をより確実にすることができる。 By limiting the upper limit value of the conditional expression (4) to 27 and the lower limit value of the conditional expression (5) to 0.0100, the above-mentioned effect can be further ensured.

さらに、以下の条件式を満足することを特徴とする。
0.88 < Fno・(f3/f) < 1.96 (6)
但し、
Fnoは無限遠合焦時のレンズ全系のF値、
f3は前記第3レンズ群L3の焦点距離、
fはレンズ全系の無限遠合焦時の焦点距離である。
Further, it is characterized by satisfying the following conditional expression.
0.88 <Fno ・ (f3 / f) <1.96 (6)
however,
Fno is the F value of the entire lens system when focusing at infinity,
f3 is the focal length of the third lens group L3,
f is the focal length of the entire lens system at infinity focusing.

条件式(6)は、小型化と製造誤差による性能劣化緩和のため第3レンズ群L3の屈折力と、無限遠合焦時のレンズ全系のF値を規定したものである。 Conditional expression (6) defines the refractive power of the third lens group L3 and the F value of the entire lens system at infinity in focus in order to reduce the size and alleviate the performance deterioration due to manufacturing errors.

条件式(6)の上限値を超え、無限遠合焦時のレンズ全系のF値が暗くなる、若しくは第3レンズ群L3の屈折力が弱くなると、第3レンズ群L3での見かけのF値が暗くなるため、製造誤差により第3レンズ群L3が偏芯した際の性能劣化緩和には有利になるが、フォーカシング時の移動量が増大するため、レンズ全長が長くなり、小型化には不利となる。 When the upper limit of the conditional expression (6) is exceeded and the F value of the entire lens system at infinity becomes dark, or the refractive power of the third lens group L3 becomes weak, the apparent F in the third lens group L3 Since the value becomes dark, it is advantageous for mitigating performance deterioration when the third lens group L3 is eccentric due to a manufacturing error, but since the amount of movement during focusing increases, the total length of the lens becomes long and it is suitable for miniaturization. It will be disadvantageous.

条件式(6)の下限値を超え、第3レンズ群L3の屈折力が強くなる、若しくは無限遠合焦時のレンズ全系のF値が明るくなると、フォーカシング時の移動量が減少するため、小型化には有利となるが、第3レンズ群L3での見かけのF値が明るくなるため、第3レンズ群L3における軸上光束が増大し、第3レンズ群L3の径増大を招くだけでなく、球面収差の増大を招くこととなり、これを良好に補正することが困難となる。また、製造誤差により、第3レンズ群L3が偏芯した場合、特に中心性能が大きく劣化する恐れがある。 If the lower limit of the conditional expression (6) is exceeded, the refractive power of the third lens group L3 becomes stronger, or the F value of the entire lens system at infinity focusing becomes brighter, the amount of movement during focusing decreases. Although it is advantageous for miniaturization, since the apparent F value in the third lens group L3 becomes brighter, the axial light beam in the third lens group L3 increases, and only the diameter of the third lens group L3 increases. This leads to an increase in spherical aberration, which makes it difficult to correct it satisfactorily. Further, when the third lens group L3 is eccentric due to a manufacturing error, the center performance may be significantly deteriorated.

なお、条件式(6)下限値を1.00、上限値を1.76に限定することで、前述の効果をより確実にすることができる。 By limiting the lower limit value of the conditional expression (6) to 1.00 and the upper limit value to 1.76, the above-mentioned effect can be further ensured.

さらに、第1レンズ群L1の最も物体側の面から、物体側に凸面を向け負の屈折力を有するレンズ素子の像側の面までをレンズ成分L1fとし、レンズ成分L1fは負の屈折力を有し、以下の条件式を満足することを特徴とする。
-7.96 < f1f/f < -1.33 (7)
但し、
f1fはレンズ成分L1fの焦点距離、
fはレンズ全系の無限遠合焦時の焦点距離である。
Further, the lens component L1f is from the surface on the most object side of the first lens group L1 to the surface on the image side of the lens element having a convex surface facing the object side and having a negative refractive power, and the lens component L1f has a negative refractive power. It is characterized by having and satisfying the following conditional expression.
-7.96 <f1f / f <-1.33 (7)
however,
f1f is the focal length of the lens component L1f,
f is the focal length of the entire lens system at infinity focusing.

条件式(7)は、小型化のため、レンズ成分L1fの屈折力を規定したものである。 The conditional expression (7) defines the refractive power of the lens component L1f for miniaturization.

条件式(7)の上限値を超え、レンズ成分L1fの屈折力が強くなると、レンズ成分L1fでの発散作用が強くなるため、第1レンズ群L1のうちレンズ成分L1fよりも像側に配するレンズ成分での光線高が高くなり、レンズ径が増大するため、製品径の増加を招いてしまう。 When the upper limit of the conditional expression (7) is exceeded and the refractive power of the lens component L1f becomes stronger, the divergent action of the lens component L1f becomes stronger. Since the height of the light beam in the lens component increases and the lens diameter increases, the product diameter increases.

条件式(7)の下限値を超え、レンズ成分L1fの屈折力が弱くなると、レンズ成分での発散作用が弱くなるため、第1レンズ群L1のうちレンズ成分L1fよりも像側に配するレンズ成分での光線高は高くならないが、レンズ成分L1f自体での光線高が高くなり、レンズ径が増大するため、製品径の増大を招いてしまう。 When the lower limit of the conditional equation (7) is exceeded and the refractive power of the lens component L1f is weakened, the divergent action of the lens component is weakened. Although the ray height in the component does not increase, the ray height in the lens component L1f itself increases and the lens diameter increases, which leads to an increase in the product diameter.

なお、条件式(7)上限値を―1.60、下限値を―6.70に限定することで、前述の効果をより確実にすることができる。 By limiting the upper limit value of the conditional expression (7) to −1.60 and the lower limit value to −6.70, the above-mentioned effect can be further ensured.

さらに、以下の条件式を満足することを特徴とする。
β1b < 0.50 (8)
但し、
β1bは無限遠合焦時の第1レンズ群L1よりも像側に配するレンズ系の横倍率である。
Further, it is characterized by satisfying the following conditional expression.
β1b <0.50 (8)
however,
β1b is the lateral magnification of the lens system arranged on the image side of the first lens group L1 at the time of infinity focusing.

条件式(8)は、高性能化のため、第1レンズ群L1よりも像側に配するレンズ系の横倍率を規定したものである。 The conditional expression (8) defines the lateral magnification of the lens system arranged on the image side of the first lens group L1 in order to improve the performance.

条件式(8)の上限値を超え、第1レンズ群L1よりも像側に配するレンズ系の横倍率が大きくなると第1レンズ群L1で発生した収差が拡大されるため、高性能化には不利となる。 If the upper limit of the conditional expression (8) is exceeded and the lateral magnification of the lens system arranged on the image side of the first lens group L1 becomes larger, the aberration generated in the first lens group L1 is enlarged, so that the performance is improved. Is at a disadvantage.

なお、条件式(8)の上限値は0.43、に限定することで、前述の効果をより確実にすることができる。 By limiting the upper limit of the conditional expression (8) to 0.43, the above-mentioned effect can be further ensured.

さらに、前記第4レンズ群L4の最も像側の面は、像側に凹面を向けていることが好ましい。これにより、前記凹面がフィールドフラットナーとなり、像面湾曲の補正がより効果的に行われる。 Further, it is preferable that the most image-side surface of the fourth lens group L4 has a concave surface facing the image side. As a result, the concave surface becomes a field flattener, and the curvature of field is corrected more effectively.

以下、本発明にかかる結像光学系の実施例1乃至8の数値データを示す。 Hereinafter, numerical data of Examples 1 to 8 of the imaging optical system according to the present invention are shown.

[面データ]において、面番号は物体側から数えたレンズ面又は開口絞りの番号、rは各面の曲率半径、dは各面の間隔、ndはd線(波長λ=587.56nm)に対する屈折率、νdはd線に対するアッベ数を示す。また、BFはバックフォーカスを表す。 In [plane data], the surface number is the number of the lens surface or aperture stop counted from the object side, r is the refractive index of each surface, d is the distance between the surfaces, and nd is the d line (wavelength λ = 587.56 nm). The refractive index and νd indicate the Abbe number with respect to the d line. In addition, BF represents back focus.

面番号を付した(絞り)には、平面または開口絞りに対する曲率半径∞(無限大)を記入している。 The radius of curvature ∞ (infinity) with respect to a flat surface or an aperture stop is entered in the area numbered (aperture).

[非球面データ]には[面データ]において*を付したレンズ面の非球面形状を与える各係数値を示している。非球面の形状は、光軸に直交する方向への変位をy、非球面と光軸の交点から光軸方向への変位(サグ量)をz、コーニック係数をK、4、6、8、10、12次の非球面係数をそれぞれA4、A6、A8、A10、A12と置くとき、非球面の座標が以下の式で表わされるものとする。 In [Aspherical surface data], each coefficient value that gives the aspherical surface shape of the lens surface marked with * in [Surface data] is shown. The shape of the aspherical surface is y for the displacement in the direction orthogonal to the optical axis, z for the displacement (sag amount) in the optical axis direction from the intersection of the aspherical surface and the optical axis, and K, 4, 6, 8 for the conic coefficient. When the 10th and 12th order aspherical coefficients are set as A4, A6, A8, A10, and A12, respectively, the coordinates of the aspherical surface are expressed by the following equations.

Figure 0007074985000003
Figure 0007074985000003

[各種データ]には、焦点距離等の値を示している。 [Various data] shows values such as focal length.

[可変間隔データ]には、可変間隔及びBF(バックフォーカス)の値を示している。 [Variable interval data] shows the values of the variable interval and the BF (back focus).

[レンズ群データ]には、各レンズ群を構成する最も物体側の面番号及び群全体の合成焦点距離を示している。なお、以下の全ての諸元の値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない限りミリメートル(mm)を使用するが、光学系では比例拡大と比例縮小とにおいても同等の光学性能が得られるので、これに限られるものではない。 [Lens group data] shows the surface number on the most object side constituting each lens group and the combined focal length of the entire group. In all the following specification values, the focal length f, the radius of curvature r, the lens surface spacing d, and other length units are described in millimeters (mm) unless otherwise specified, but optics. The system is not limited to this because the same optical performance can be obtained in both proportional expansion and proportional reduction.

また、各実施例に対応する収差図において、d、g、Cはそれぞれd線、g線、C線を表しており、ΔS、ΔMはそれぞれサジタル像面、メリジオナル像面を表している。さらに図1、6、11、16、21、26、31、36に示すレンズ構成図において、Sは開口絞り、Iは像面、LPFはローパスフィルター、中心を通る一点鎖線は光軸である。 Further, in the aberration diagram corresponding to each embodiment, d, g, and C represent the d-line, g-line, and C-line, respectively, and ΔS and ΔM represent the sagittal image plane and the meridional image plane, respectively. Further, in the lens configuration diagram shown in FIGS. 1, 6, 11, 16, 21, 26, 31, and 36, S is an aperture diaphragm, I is an image plane, LPF is a low-pass filter, and the alternate long and short dash line passing through the center is an optical axis.

以下に、各実施例に係る結像光学系の諸元値を示す。[面データ]において、第1列は物体側から数えたレンズ面の順番、第2列のrはレンズ面の曲率半径、第3列dはレンズ面間隔、第4列ndはd線(波長λ=587.56nm)での屈折率、第5列νdはd線(波長λ=587.56nm)でのアッベ数を表す。またr=∞は平面を表し、(BF)はバックフォーカス、(絞り)は絞り面を示し、空気の屈折率n=1.0000はその記載を省略する。 The specification values of the imaging optical system according to each embodiment are shown below. In [plane data], the first column is the order of the lens surfaces counted from the object side, the r in the second column is the radius of curvature of the lens surface, the third column d is the lens surface spacing, and the fourth column nd is the d line (wavelength). The refractive index at λ = 587.56 nm) and the fifth column νd represent the Abbe number at the d line (wavelength λ = 587.56 nm). Further, r = ∞ represents a plane, (BF) indicates a back focus, (aperture) indicates a diaphragm surface, and the refractive index n = 1.0000 of air is omitted.

図1は、実施例1に係る結像光学系の無限遠合焦時のレンズ構成図である。実施例1の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2と、フォーカシング時に第2レンズ群L2と異なる移動量で物体側に移動し正の屈折力を有する第3レンズ群L3と、フォーカシング時に固定の負の屈折力を有する第4レンズ群L4とから構成される。 FIG. 1 is a lens configuration diagram of the imaging optical system according to the first embodiment at infinity focusing. The imaging optical system of the first embodiment has a first lens group L1 having a fixed positive refractive power during focusing and a second lens group L1 moving to the object side during focusing and having a positive refractive power in order from the object side to the image side. The lens group L2, the third lens group L3 that moves toward the object with a different amount of movement from the second lens group L2 during focusing and has a positive refractive power, and the fourth lens group L4 that has a fixed negative refractive power during focusing. It is composed of and.

第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと物体側に凸面を向けた凸メニスカスレンズと物体側に凸面を向けた凹メニスカスレンズとで構成されるレンズ成分L1fと、物体側に凸面を向けた凸メニスカスレンズと、両凹レンズと両凸レンズの接合レンズと、両凹レンズと両凸レンズ素子L1pの接合レンズとから構成される。 The first lens group L1 is composed of a concave meniscus lens having a convex surface facing the object side, a convex meniscus lens having a convex surface facing the object side, and a concave meniscus lens having a convex surface facing the object side in order from the object side to the image side. It is composed of a lens component L1f to be formed, a convex meniscus lens having a convex surface facing the object side, a junction lens of a biconcave lens and a biconvex lens, and a junction lens of a biconcave lens and a biconvex lens element L1p.

第2レンズ群L2は、物体側から像側へ順に、R1面とR2面両面が非球面の両凸レンズと、両凸レンズと両凹レンズの接合レンズとから構成される。 The second lens group L2 is composed of a biconvex lens having both R1 and R2 surfaces aspherical surfaces, and a junction lens of a biconvex lens and a biconcave lens in order from the object side to the image side.

第3レンズ群L3は、物体側から像側へ順に、両凹レンズと両凸レンズの接合レンズと、両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。 The third lens group L3 includes a junction lens of a biconcave lens and a biconvex lens, a biconvex lens, and a convex meniscus lens in which both R1 and R2 surfaces are aspherical and the concave surface faces the object side, in order from the object side to the image side. Consists of.

第4レンズ群L4は、物体側から像側へ順に、両凸レンズと両凹レンズの接合レンズで構成される。 The fourth lens group L4 is composed of a junction lens of a biconvex lens and a biconcave lens in order from the object side to the image side.

開口絞りSは、第2レンズ群L2と第3レンズ群L3の間に配され、フォーカシング時に第3レンズ群L3と共に移動する。 The aperture stop S is arranged between the second lens group L2 and the third lens group L3, and moves together with the third lens group L3 during focusing.

続いて、以下に実施例1に係る結像光学系の諸元値を示す。 Subsequently, the specification values of the imaging optical system according to the first embodiment are shown below.

数値実施例1
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 174.3636 2.0000 1.51742 52.15
2 46.9132 0.1500
3 44.4646 11.8091 2.00069 25.46
4 175.7292 0.5000
5 138.0277 1.5000 1.74000 28.30
6 33.9507 4.1164
7 44.4897 3.7606 1.83400 37.34
8 60.1885 7.5271
9 -103.3975 1.0000 1.85478 24.80
10 28.1754 18.0826 1.77250 49.62
11 -90.8319 2.7978
12 -53.5734 1.0000 1.58144 40.75
13 43.2889 9.7880 2.00069 25.46
14 -206.7454 d14
15* 49.6476 8.0731 1.82080 42.71
16* -188.0627 0.1500
17 349.8022 7.3194 1.49700 81.61
18 -40.7815 1.1755 1.67270 32.17
19 69.2391 d19
(絞り) ∞ 14.5446
21 -25.2369 1.0000 1.69895 30.05
22 209.8459 3.1699 1.49700 81.61
23 -209.8459 0.2000
24 97.9223 6.7758 1.77250 49.62
25 -39.6611 0.2000
26* -535.7926 2.8646 1.80610 40.73
27* -68.4332 d27
28 62.3410 6.7964 2.00069 25.46
29 -84.5557 1.5000 1.80518 25.46
30 36.3089 17.9286
31 ∞ 2.5000 1.51680 64.20
32 ∞ BF
像面 ∞

[非球面データ]
15面 16面 26面 27面
K 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
A4 7.7557E-07 1.7836E-06 -3.8902E-06 2.4706E-06
A6 1.0202E-09 -5.0062E-10 -1.5772E-08 -1.4034E-08
A8 4.3706E-13 7.2595E-14 6.1317E-11 5.9831E-11
A10 1.2959E-16 -1.3700E-15 -6.3933E-14 -5.7108E-14
A12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

[各種データ]
INF
焦点距離 50.99
Fナンバー 1.25
全画角2ω 45.97
像高Y 21.63
レンズ全長 154.20

[可変間隔データ]
INF 撮影距離2157mm
d0 ∞ 2002.4093
d14 10.1569 8.6926
d19 3.3130 3.5348
d27 1.5000 2.7425
BF 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
L1 1 534.25
L2 15 94.67
L3 20 60.43
L4 28 -417.98
L1f 1 -184.54
Numerical Example 1
Unit: mm
[Surface data]
Face number rd nd vd
Paraboloid ∞ (d0)
1 174.3636 2.0000 1.51742 52.15
2 46.9132 0.1500
3 44.4646 11.8091 2.00069 25.46
4 175.7292 0.5000
5 138.0277 1.5000 1.74000 28.30
6 33.9507 4.1164
7 44.4897 3.7606 1.83400 37.34
8 60.1885 7.5271
9 -103.3975 1.0000 1.85478 24.80
10 28.1754 18.0826 1.77250 49.62
11 -90.8319 2.7978
12 -53.5734 1.0000 1.58144 40.75
13 43.2889 9.7880 2.00069 25.46
14 -206.7454 d14
15 * 49.6476 8.0731 1.82080 42.71
16 * -188.0627 0.1500
17 349.8022 7.3194 1.49700 81.61
18 -40.7815 1.1755 1.67270 32.17
19 69.2391 d19
(Aperture) ∞ 14.5446
21 -25.2369 1.0000 1.69895 30.05
22 209.8459 3.1699 1.49700 81.61
23 -209.8459 0.2000
24 97.9223 6.7758 1.77250 49.62
25 -39.6611 0.2000
26 * -535.7926 2.8646 1.80610 40.73
27 * -68.4332 d27
28 62.3410 6.7964 2.00069 25.46
29 -84.5557 1.5000 1.80518 25.46
30 36.3089 17.9286
31 ∞ 2.5000 1.51680 64.20
32 ∞ BF
Image plane ∞

[Aspherical data]
15 sides 16 sides 26 sides 27 sides
K 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00
A4 7.7557E-07 1.7836E-06 -3.8902E-06 2.4706E-06
A6 1.0202E-09 -5.0062E-10 -1.5772E-08 -1.4034E-08
A8 4.3706E-13 7.2595E-14 6.1317E-11 5.9831E-11
A10 1.2959E-16 -1.3700E-15 -6.3933E-14 -5.7108E-14
A12 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00

[Various data]
INF
Focal length 50.99
F number 1.25
Full angle of view 2ω 45.97
Image height Y 21.63
Lens total length 154.20

[Variable interval data]
INF Shooting distance 2157mm
d0 ∞ 2002.4093
d14 10.1569 8.6926
d19 3.3130 3.5348
d27 1.5000 2.7425
BF 1.0000 1.0000

[Lens group data]
Focal length of group origin
L1 1 534.25
L2 15 94.67
L3 20 60.43
L4 28 -417.98
L1f 1 -184.54

図6は、実施例2に係る結像光学系の無限遠合焦時のレンズ構成図である。実施例2の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2と、フォーカシング時に第2レンズ群L2と異なる移動量で物体側に移動し正の屈折力を有する第3レンズ群L3と、フォーカシング時に固定の負の屈折力を有する第4レンズ群L4とから構成される。 FIG. 6 is a lens configuration diagram of the imaging optical system according to the second embodiment at infinity focusing. In the imaging optical system of the second embodiment, the first lens group L1 having a fixed positive refractive power at the time of focusing and the second lens group L1 moving to the object side at the time of focusing and having a positive refractive power in order from the object side to the image side. The lens group L2, the third lens group L3 that moves toward the object with a different amount of movement from the second lens group L2 during focusing and has a positive refractive power, and the fourth lens group L4 that has a fixed negative refractive power during focusing. It is composed of and.

第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと物体側に凸面を向けた凸メニスカスレンズの接合レンズと物体側に凸面を向けた凹メニスカスレンズとで構成されるレンズ成分L1fと、物体側に凸面を向けた凸メニスカスレンズと、両凹レンズと両凸レンズの接合レンズと、両凹レンズと両凸レンズ素子L1pの接合レンズとから構成される。 The first lens group L1 is a junction lens of a concave meniscus lens having a convex surface facing the object side, a convex meniscus lens having a convex surface facing the object side, and a concave meniscus lens having a convex surface facing the object side in order from the object side to the image side. It is composed of a lens component L1f composed of the above, a convex meniscus lens having a convex surface facing the object side, a junction lens of a biconcave lens and a biconvex lens, and a junction lens of a biconcave lens and a biconvex lens element L1p.

第2レンズ群L2は、物体側から像側へ順に、R1面とR2面両面が非球面の両凸レンズと、両凸レンズと両凹レンズの接合レンズとから構成される。 The second lens group L2 is composed of a biconvex lens having both R1 and R2 surfaces aspherical surfaces, and a junction lens of a biconvex lens and a biconcave lens in order from the object side to the image side.

第3レンズ群L3は、物体側から像側へ順に、両凹レンズと両凸レンズの接合レンズと、両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。 The third lens group L3 includes a junction lens of a biconcave lens and a biconvex lens, a biconvex lens, and a convex meniscus lens in which both R1 and R2 surfaces are aspherical and the concave surface faces the object side, in order from the object side to the image side. Consists of.

第4レンズ群L4は、物体側から像側へ順に、両凸レンズと両凹レンズの接合レンズで構成される。 The fourth lens group L4 is composed of a junction lens of a biconvex lens and a biconcave lens in order from the object side to the image side.

開口絞りSは、第2レンズ群L2と第3レンズ群L3の間に配され、フォーカシング時に第3レンズ群L3と共に移動する。 The aperture stop S is arranged between the second lens group L2 and the third lens group L3, and moves together with the third lens group L3 during focusing.

続いて、以下に実施例2に係る結像光学系の諸元値を示す。 Subsequently, the specification values of the imaging optical system according to the second embodiment are shown below.

数値実施例2
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 161.2931 2.0000 1.54814 45.82
2 43.1964 12.0749 2.00069 25.46
3 175.9647 0.5000
4 138.2379 1.5000 1.74000 28.30
5 35.3803 4.4285
6 49.5436 3.5339 1.83400 37.34
7 68.0014 7.0556
8 -105.1012 1.0000 1.85478 24.80
9 28.1754 18.3687 1.77250 49.62
10 -93.8678 2.7725
11 -53.7480 1.0000 1.58144 40.75
12 44.0390 9.9013 2.00069 25.46
13 -177.8893 d13
14* 51.1697 7.9932 1.82080 42.71
15* -189.8824 0.1500
16 363.0987 7.5626 1.49700 81.61
17 -39.3800 2.0284 1.67270 32.17
18 70.3322 d18
(絞り) ∞ 14.4485
20 -24.6947 1.0000 1.69895 30.05
21 187.4269 3.2412 1.49700 81.61
22 -187.4269 0.2000
23 106.5129 6.3642 1.77250 49.62
24 -38.5019 0.2000
25* -471.9072 2.8399 1.80610 40.73
26* -67.1044 d26
27 62.6445 6.5203 2.00069 25.46
28 -83.9662 1.5000 1.80518 25.46
29 37.1867 18.4276
30 ∞ 2.5000 1.51680 64.20
31 ∞ BF
像面 ∞

[非球面データ]
14面 15面 25面 26面
K 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
A4 9.1564E-07 1.7187E-06 -4.0582E-06 2.0938E-06
A6 6.7897E-10 -1.1387E-09 -1.4473E-08 -1.2608E-08
A8 9.2643E-13 1.8851E-12 6.2810E-11 6.0135E-11
A10 5.0392E-16 -2.6450E-15 -7.0590E-14 -6.1286E-14
A12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

[各種データ]
INF
焦点距離 50.99
Fナンバー 1.25
全画角2ω 45.92
像高Y 21.63
レンズ全長 155.04

[可変間隔データ]
INF 撮影距離2158mm
d0 ∞ 2003.1325
d13 10.4606 8.9601
d18 2.9663 3.2231
d26 1.5000 2.7437
BF 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
L1 1 440.01
L2 14 99.53
L3 19 61.40
L4 27 -495.88
L1f 1 -190.74
Numerical Example 2
Unit: mm
[Surface data]
Face number rd nd vd
Paraboloid ∞ (d0)
1 161.2931 2.0000 1.54814 45.82
2 43.1964 12.0749 2.00069 25.46
3 175.9647 0.5000
4 138.2379 1.5000 1.74000 28.30
5 35.3803 4.4285
6 49.5436 3.5339 1.83400 37.34
7 68.0014 7.0556
8-105.1012 1.0000 1.85478 24.80
9 28.1754 18.3687 1.77250 49.62
10 -93.8678 2.7725
11 -53.7480 1.0000 1.58144 40.75
12 44.0390 9.9013 2.00069 25.46
13 -177.8893 d13
14 * 51.1697 7.9932 1.82080 42.71
15 * -189.8824 0.1500
16 363.0987 7.5626 1.49700 81.61
17 -39.3800 2.0284 1.67270 32.17
18 70.3322 d18
(Aperture) ∞ 14.4485
20 -24.6947 1.0000 1.69895 30.05
21 187.4269 3.2412 1.49700 81.61
22 -187.4269 0.2000
23 106.5129 6.3642 1.77250 49.62
24-38.5019 0.2000
25 * -471.9072 2.8399 1.80610 40.73
26 * -67.1044 d26
27 62.6445 6.5203 2.00069 25.46
28 -83.9662 1.5000 1.80518 25.46
29 37.1867 18.4276
30 ∞ 2.5000 1.51680 64.20
31 ∞ BF
Image plane ∞

[Aspherical data]
14 faces 15 faces 25 faces 26 faces
K 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00
A4 9.1564E-07 1.7187E-06 -4.0582E-06 2.0938E-06
A6 6.7897E-10 -1.1387E-09 -1.4473E-08 -1.2608E-08
A8 9.2643E-13 1.8851E-12 6.2810E-11 6.0135E-11
A10 5.0392E-16 -2.6450E-15 -7.0590E-14 -6.1286E-14
A12 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00

[Various data]
INF
Focal length 50.99
F number 1.25
Full angle of view 2ω 45.92
Image height Y 21.63
Lens total length 155.04

[Variable interval data]
INF Shooting distance 2158mm
d0 ∞ 2003.1325
d13 10.4606 8.9601
d18 2.9663 3.2231
d26 1.5000 2.7437
BF 1.0000 1.0000

[Lens group data]
Focal length of group origin
L1 1 440.01
L2 14 99.53
L3 19 61.40
L4 27 -495.88
L1f 1 -190.74

図11は、実施例3に係る結像光学系の無限遠合焦時のレンズ構成図である。実施例3の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2と、フォーカシング時に第2レンズ群L2と異なる移動量で物体側に移動し正の屈折力を有する第3レンズ群L3と、フォーカシング時に固定の負の屈折力を有する第4レンズ群L4とから構成される。 FIG. 11 is a lens configuration diagram of the imaging optical system according to the third embodiment at infinity focusing. In the imaging optical system of the third embodiment, the first lens group L1 having a fixed positive refractive power at the time of focusing and the second lens group L1 moving to the object side at the time of focusing and having a positive refractive power in order from the object side to the image side. The lens group L2, the third lens group L3 that moves toward the object with a different amount of movement from the second lens group L2 during focusing and has a positive refractive power, and the fourth lens group L4 that has a fixed negative refractive power during focusing. It is composed of and.

第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと物体側に凸面を向けた凸メニスカスレンズの接合レンズと物体側に凸面を向けた凹メニスカスレンズとで構成されるレンズ成分L1fと、物体側に凸面を向けた凸メニスカスレンズと、両凹レンズと両凸レンズの接合レンズと、両凹レンズと両凸レンズ素子L1pの接合レンズとから構成される。 The first lens group L1 is a junction lens of a concave meniscus lens having a convex surface facing the object side, a convex meniscus lens having a convex surface facing the object side, and a concave meniscus lens having a convex surface facing the object side in order from the object side to the image side. It is composed of a lens component L1f composed of the above, a convex meniscus lens having a convex surface facing the object side, a junction lens of a biconcave lens and a biconvex lens, and a junction lens of a biconcave lens and a biconvex lens element L1p.

第2レンズ群L2は、物体側から像側へ順に、R1面とR2面両面が非球面の両凸レンズと、両凸レンズと両凹レンズの接合レンズとから構成される。 The second lens group L2 is composed of a biconvex lens having both R1 and R2 surfaces aspherical surfaces, and a junction lens of a biconvex lens and a biconcave lens in order from the object side to the image side.

第3レンズ群L3は、物体側から像側へ順に、両凹レンズと両凸レンズの接合レンズと、両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。 The third lens group L3 includes a junction lens of a biconcave lens and a biconvex lens, a biconvex lens, and a convex meniscus lens in which both R1 and R2 surfaces are aspherical and the concave surface faces the object side, in order from the object side to the image side. Consists of.

第4レンズ群L4は、物体側から像側へ順に、両凸レンズと両凹レンズの接合レンズで構成される。 The fourth lens group L4 is composed of a junction lens of a biconvex lens and a biconcave lens in order from the object side to the image side.

開口絞りSは、第2レンズ群L2と第3レンズ群L3の間に配され、フォーカシング時に第3レンズ群L3と共に移動する。 The aperture stop S is arranged between the second lens group L2 and the third lens group L3, and moves together with the third lens group L3 during focusing.

続いて、以下に実施例3に係る結像光学系の諸元値を示す。 Subsequently, the specification values of the imaging optical system according to the third embodiment are shown below.

数値実施例3
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 172.5357 2.0000 1.51742 52.15
2 47.0409 11.9669 2.00069 25.46
3 250.8344 0.5000
4 172.0419 1.5000 1.74000 28.30
5 35.7808 3.8761
6 46.4746 3.6228 1.83400 37.34
7 61.9501 7.6578
8 -101.6512 1.0000 1.85478 24.80
9 28.1754 18.6827 1.77250 49.62
10 -88.4311 2.2211
11 -61.1945 1.0000 1.65412 39.68
12 39.7645 10.6991 2.00069 25.46
13 -212.9189 d13
14* 46.5925 9.0306 1.82080 42.71
15* -191.7122 0.1500
16 376.7369 7.8280 1.49700 81.61
17 -37.7685 1.2257 1.67270 32.17
18 59.8060 d18
(絞り) ∞ 11.2056
20 -25.2381 1.0000 1.69895 30.05
21 2024.4092 2.3125 1.49700 81.61
22 -2024.4092 0.2000
23 89.8224 6.7907 1.77250 49.62
24 -37.8188 0.2000
25* -805.5993 2.6710 1.80610 40.73
26* -69.8617 d26
27 100.6959 5.2583 1.95375 32.32
28 -68.6219 1.5000 1.68893 31.16
29 44.3864 22.5153
30 ∞ 2.5000 1.51680 64.20
31 ∞ BF
像面 ∞

[非球面データ]
14面 15面 25面 26面
K 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
A4 6.8204E-07 1.7383E-06 -4.5403E-06 2.2956E-06
A6 5.4170E-10 -1.6259E-09 -1.5798E-08 -1.3371E-08
A8 1.0518E-12 3.1713E-12 7.7418E-11 7.5238E-11
A10 1.2111E-15 -3.6381E-15 -1.1323E-13 -1.0015E-13
A12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

[各種データ]
INF
焦点距離 50.98
Fナンバー 1.25
全画角2ω 45.95
像高Y 21.63
レンズ全長 155.54

[可変間隔データ]
INF 撮影距離2166mm
d0 ∞ 2010.3931
d13 10.4099 8.9153
d18 3.3213 3.6814
d26 1.6952 2.8297
BF 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
L1 1 999.94
L2 14 96.99
L3 19 59.89
L4 27 -584.50
L1f 1 -195.08
Numerical Example 3
Unit: mm
[Surface data]
Face number rd nd vd
Paraboloid ∞ (d0)
1 172.5357 2.0000 1.51742 52.15
2 47.0409 11.9669 2.00069 25.46
3 250.8344 0.5000
4 172.0419 1.5000 1.74000 28.30
5 35.7808 3.8761
6 46.4746 3.6228 1.83400 37.34
7 61.9501 7.6578
8 -101.6512 1.0000 1.85478 24.80
9 28.1754 18.6827 1.77250 49.62
10 -88.4311 2.2211
11 -61.1945 1.0000 1.65412 39.68
12 39.7645 10.6991 2.00069 25.46
13 -212.9189 d13
14 * 46.5925 9.0306 1.82080 42.71
15 * -191.7122 0.1500
16 376.7369 7.8280 1.49700 81.61
17 -37.7685 1.2257 1.67270 32.17
18 59.8060 d18
(Aperture) ∞ 11.2056
20 -25.2381 1.0000 1.69895 30.05
21 2024.4092 2.3125 1.49700 81.61
22 -2024.4092 0.2000
23 89.8224 6.7907 1.77250 49.62
24 -37.8188 0.2000
25 * -805.5993 2.6710 1.80610 40.73
26 * -69.8617 d26
27 100.6959 5.2583 1.95375 32.32
28 -68.6219 1.5000 1.68893 31.16
29 44.3864 22.5153
30 ∞ 2.5000 1.51680 64.20
31 ∞ BF
Image plane ∞

[Aspherical data]
14 faces 15 faces 25 faces 26 faces
K 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00
A4 6.8204E-07 1.7383E-06 -4.5403E-06 2.2956E-06
A6 5.4170E-10 -1.6259E-09 -1.5798E-08 -1.3371E-08
A8 1.0518E-12 3.1713E-12 7.7418E-11 7.5238E-11
A10 1.2111E-15 -3.6381E-15 -1.1323E-13 -1.0015E-13
A12 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00

[Various data]
INF
Focal length 50.98
F number 1.25
Full angle of view 2ω 45.95
Image height Y 21.63
Lens total length 155.54

[Variable interval data]
INF Shooting distance 2166mm
d0 ∞ 2010.3931
d13 10.4099 8.9153
d18 3.3213 3.6814
d26 1.6952 2.8297
BF 1.0000 1.0000

[Lens group data]
Focal length of group origin
L1 1 999.94
L2 14 96.99
L3 19 59.89
L4 27 -584.50
L1f 1 -195.08

図16は、実施例4に係る結像光学系の無限遠合焦時のレンズ構成図である。実施例4の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2と、フォーカシング時に第2レンズ群L2と異なる移動量で物体側に移動し正の屈折力を有する第3レンズ群L3と、フォーカシング時に固定の負の屈折力を有する第4レンズ群L4とから構成される。 FIG. 16 is a lens configuration diagram of the imaging optical system according to the fourth embodiment at infinity focusing. In the imaging optical system of the fourth embodiment, the first lens group L1 having a fixed positive refractive power at the time of focusing and the second lens group L1 moving to the object side at the time of focusing and having a positive refractive power in order from the object side to the image side. The lens group L2, the third lens group L3 that moves toward the object with a different amount of movement from the second lens group L2 during focusing and has a positive refractive power, and the fourth lens group L4 that has a fixed negative refractive power during focusing. It is composed of and.

第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと物体側に凸面を向けた凸メニスカスレンズとR2面側が非球面で物体側に凸面を向けた凹メニスカスレンズとで構成されるレンズ成分L1fと、物体側に凹面を向けた凸メニスカスレンズと、両凹レンズと両凸レンズの接合レンズと、両凹レンズと両凸レンズの接合レンズと、両凸レンズ素子L1pとから構成される。 In the first lens group L1, in order from the object side to the image side, a concave meniscus lens having a convex surface facing the object side, a convex meniscus lens having a convex surface facing the object side, and an R2 surface side having an aspherical surface and the convex surface facing the object side. A lens component L1f composed of a concave meniscus lens, a convex meniscus lens with a concave surface facing the object side, a junction lens of a biconcave lens and a biconvex lens, a junction lens of a biconcave lens and a biconvex lens, and a biconvex lens element L1p. Consists of.

第2レンズ群L2は、物体側から像側へ順に、R2面側が非球面の両凸レンズと、両凸レンズと両凹レンズの接合レンズとから構成される。 The second lens group L2 is composed of a biconvex lens having an aspherical surface on the R2 surface side and a junction lens of a biconvex lens and a biconcave lens in order from the object side to the image side.

第3レンズ群L3は、物体側から像側へ順に、両凹レンズと両凸レンズの接合レンズと、両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。 The third lens group L3 includes a junction lens of a biconcave lens and a biconvex lens, a biconvex lens, and a convex meniscus lens in which both R1 and R2 surfaces are aspherical and the concave surface faces the object side, in order from the object side to the image side. Consists of.

第4レンズ群L4は、物体側から像側へ順に、両凸レンズと両凹レンズの接合レンズで構成される。 The fourth lens group L4 is composed of a junction lens of a biconvex lens and a biconcave lens in order from the object side to the image side.

開口絞りSは、第2レンズ群L2と第3レンズ群L3の間に配され、フォーカシング時に第3レンズ群L3と共に移動する。 The aperture stop S is arranged between the second lens group L2 and the third lens group L3, and moves together with the third lens group L3 during focusing.

続いて、以下に実施例4に係る結像光学系の諸元値を示す。 Subsequently, the specification values of the imaging optical system according to the fourth embodiment are shown below.

数値実施例4
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 302.7931 1.8000 1.55032 75.50
2 39.3515 0.5486
3 38.4312 14.5245 1.90366 31.32
4 336.0760 0.5000
5 160.1565 2.6681 1.58313 59.46
6* 31.9245 11.4472
7 -86.4442 2.9636 1.49700 81.61
8 -53.2318 0.7438
9 -47.8124 1.5000 1.85478 24.80
10 26.4054 14.2307 1.80610 40.73
11 -74.9982 2.3058
12 -50.3224 1.0000 1.71736 29.50
13 44.6926 7.5348 1.77250 49.62
14 -1000.0000 0.1500
15 80.4108 7.4064 1.92286 20.88
16 -121.8758 d16
17 50.2172 8.0662 1.80610 40.73
18* -124.4726 0.1500
19 1156.5162 5.4364 1.49700 81.61
20 -58.5090 1.0000 1.62004 36.30
21 45.2228 d21
(絞り) ∞ 11.6307
23 -27.9465 1.0000 1.71736 29.50
24 56.8941 6.3234 1.49700 81.61
25 -56.8941 0.2000
26 76.8962 7.1654 1.77250 49.62
27 -43.7202 0.2000
28* -359.1397 2.6914 1.80610 40.73
29* -68.1807 d29
30 384.5404 4.2749 2.00069 25.46
31 -83.6834 1.5000 1.62004 36.30
32 41.5521 20.8909
33 ∞ 2.5000 1.51680 64.20
34 ∞ BF
像面 ∞

[非球面データ]
6面 18面 28面 29面
K 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
A4 8.2952E-07 3.2818E-06 -2.3732E-06 4.6127E-06
A6 -1.1651E-09 -2.0568E-09 -3.5872E-09 -2.7538E-09
A8 1.1925E-11 9.5324E-13 2.1962E-11 1.9733E-11
A10 -2.5631E-14 -3.4704E-16 -6.7271E-14 -5.9502E-14
A12 3.0791E-17 0.0000E+00 0.0000E+00 0.0000E+00

[各種データ]
INF
焦点距離 41.35
Fナンバー 1.26
全画角2ω 57.17
像高Y 21.63
レンズ全長 157.00

[可変間隔データ]
INF 撮影距離1764mm
d0 ∞ 1607.0621
d16 5.8882 5.0507
d21 4.6652 4.7626
d29 3.0938 3.8339
BF 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
L1 1 343.31
L2 17 107.54
L3 22 42.17
L4 30 -131.32
L1f 1 -253.36
Numerical Example 4
Unit: mm
[Surface data]
Face number rd nd vd
Paraboloid ∞ (d0)
1 302.7931 1.8000 1.55032 75.50
2 39.3515 0.5486
3 38.4312 14.5245 1.90366 31.32
4 336.0760 0.5000
5 160.1565 2.6681 1.58313 59.46
6 * 31.9245 11.4472
7 -86.4442 2.9636 1.49700 81.61
8 -53.2318 0.7438
9 -47.8124 1.5000 1.85478 24.80
10 26.4054 14.2307 1.80610 40.73
11 -74.9982 2.3058
12 -50.3224 1.0000 1.71736 29.50
13 44.6926 7.5348 1.77250 49.62
14 -1000.0000 0.1500
15 80.4108 7.4064 1.92286 20.88
16 -121.8758 d16
17 50.2172 8.0662 1.80610 40.73
18 * -124.4726 0.1500
19 1156.5162 5.4364 1.49700 81.61
20 -58.5090 1.0000 1.62004 36.30
21 45.2228 d21
(Aperture) ∞ 11.6307
23 -27.9465 1.0000 1.71736 29.50
24 56.8941 6.3234 1.49700 81.61
25 -56.8941 0.2000
26 76.8962 7.1654 1.77250 49.62
27 -43.7202 0.2000
28 * -359.1397 2.6914 1.80610 40.73
29 * -68.1807 d29
30 384.5404 4.2749 2.00069 25.46
31 -83.6834 1.5000 1.62004 36.30
32 41.5521 20.8909
33 ∞ 2.5000 1.51680 64.20
34 ∞ BF
Image plane ∞

[Aspherical data]
6 faces 18 faces 28 faces 29 faces
K 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00
A4 8.2952E-07 3.2818E-06 -2.3732E-06 4.6127E-06
A6 -1.1651E-09 -2.0568E-09 -3.5872E-09 -2.7538E-09
A8 1.1925E-11 9.5324E-13 2.1962E-11 1.9733E-11
A10 -2.5631E-14 -3.4704E-16 -6.7271E-14 -5.9502E-14
A12 3.0791E-17 0.0000E + 00 0.0000E + 00 0.0000E + 00

[Various data]
INF
Focal length 41.35
F number 1.26
Full angle of view 2ω 57.17
Image height Y 21.63
Lens total length 157.00

[Variable interval data]
INF Shooting distance 1764mm
d0 ∞ 1607.0621
d16 5.8882 5.0507
d21 4.6652 4.7626
d29 3.0938 3.8339
BF 1.0000 1.0000

[Lens group data]
Focal length of group origin
L1 1 343.31
L2 17 107.54
L3 22 42.17
L4 30 -131.32
L1f 1 -253.36

図21は、実施例5に係る結像光学系の無限遠合焦時のレンズ構成図である。実施例5の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2と、フォーカシング時に第2レンズ群L2と異なる移動量で物体側に移動し正の屈折力を有する第3レンズ群L3と、フォーカシング時に固定の負の屈折力を有する第4レンズ群L4とから構成される。 FIG. 21 is a lens configuration diagram of the imaging optical system according to the fifth embodiment at infinity focusing. In the imaging optical system of the fifth embodiment, the first lens group L1 having a fixed positive refractive power at the time of focusing and the second lens group L1 moving to the object side at the time of focusing and having a positive refractive power in order from the object side to the image side. The lens group L2, the third lens group L3 that moves toward the object with a different amount of movement from the second lens group L2 during focusing and has a positive refractive power, and the fourth lens group L4 that has a fixed negative refractive power during focusing. It is composed of and.

第1レンズ群L1は、物体側から像側へ順に、両凹レンズと物体側に凸面を向けた凸メニスカスレンズと物体側に凸面を向けた凹メニスカスレンズとで構成されるレンズ成分L1fと、物体側に凹面を向けた凸メニスカスレンズと、両凹レンズと両凸レンズの接合レンズと、両凹レンズと両凸レンズの接合レンズと、両凸レンズ素子L1pとから構成される。 The first lens group L1 includes a lens component L1f composed of a biconcave lens, a convex meniscus lens having a convex surface facing the object side, and a concave meniscus lens having a convex surface facing the object side, in order from the object side to the image side, and an object. It is composed of a convex meniscus lens with a concave surface facing side, a junction lens of a biconcave lens and a biconvex lens, a junction lens of a biconcave lens and a biconvex lens, and a biconvex lens element L1p.

第2レンズ群L2は、物体側から像側へ順に、R2面側が非球面の両凸レンズと、両凸レンズと両凹レンズの接合レンズとから構成される。 The second lens group L2 is composed of a biconvex lens having an aspherical surface on the R2 surface side and a junction lens of a biconvex lens and a biconcave lens in order from the object side to the image side.

第3レンズ群L3は、物体側から像側へ順に、両凹レンズと両凸レンズの接合レンズと、両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。 The third lens group L3 includes a junction lens of a biconcave lens and a biconvex lens, a biconvex lens, and a convex meniscus lens in which both R1 and R2 surfaces are aspherical and the concave surface faces the object side, in order from the object side to the image side. Consists of.

第4レンズ群L4は、物体側から像側へ順に、両凸レンズと両凹レンズの接合レンズで構成される。 The fourth lens group L4 is composed of a junction lens of a biconvex lens and a biconcave lens in order from the object side to the image side.

開口絞りSは、第2レンズ群L2と第3レンズ群L3の間に配され、フォーカシング時に第3レンズ群L3と共に移動する。 The aperture stop S is arranged between the second lens group L2 and the third lens group L3, and moves together with the third lens group L3 during focusing.

続いて、以下に実施例5に係る結像光学系の諸元値を示す。 Subsequently, the specification values of the imaging optical system according to the fifth embodiment are shown below.

数値実施例5
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 -221.6420 1.8000 1.65412 39.68
2 39.9381 1.5098
3 41.6329 11.3422 2.00069 25.46
4 359.7585 0.5000
5 168.6543 2.0000 1.49700 81.61
6 39.0895 9.1587
7 -281.5253 3.0747 1.77250 49.62
8 -101.0141 1.1461
9 -76.8612 1.5000 1.85478 24.80
10 26.4054 16.3594 1.80610 40.73
11 -100.2450 3.1496
12 -52.5699 1.0000 1.71736 29.50
13 47.9875 8.9531 1.77250 49.62
14 -318.3701 0.1500
15 73.5723 8.2433 1.92286 20.88
16 -182.2771 d16
17 56.7954 8.0299 1.80610 40.73
18* -163.6673 0.1500
19 253.0059 8.0482 1.49700 81.61
20 -41.4877 1.0000 1.62004 36.30
21 46.2007 d21
(絞り) ∞ 12.3310
23 -27.4550 1.0000 1.71736 29.50
24 62.6944 5.6995 1.49700 81.61
25 -62.6944 0.2000
26 68.5803 7.4334 1.77250 49.62
27 -44.3481 0.2000
28* -624.0167 3.0706 1.80610 40.73
29* -58.6088 d29
30 4139.7996 2.9899 2.00069 25.46
31 -105.4686 1.5000 1.62004 36.30
32 39.1421 19.5027
33 ∞ 2.5000 1.51680 64.20
34 ∞ BF
像面 ∞

[非球面データ]
18面 28面 29面
K 0.0000E+00 0.0000E+00 0.0000E+00
A4 2.2162E-06 -4.4061E-06 4.7866E-06
A6 -1.4446E-09 -1.3022E-08 -1.3568E-08
A8 6.1850E-13 6.3022E-11 6.5030E-11
A10 -5.8575E-16 -8.8313E-14 -8.4692E-14
A12 0.0000E+00 0.0000E+00 0.0000E+00

[各種データ]
INF
焦点距離 41.35
Fナンバー 1.26
全画角2ω 57.17
像高Y 21.63
レンズ全長 157.00

[可変間隔データ]
INF 撮影距離1828mm
d0 ∞ 1670.8939
d16 5.4917 4.7334
d21 4.6283 4.7723
d29 2.3377 2.9520
BF 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
L1 1 163.53
L2 17 136.88
L3 22 37.65
L4 30 -83.83
L1f 1 -142.30
Numerical Example 5
Unit: mm
[Surface data]
Face number rd nd vd
Paraboloid ∞ (d0)
1 -221.6420 1.8000 1.65412 39.68
2 39.9381 1.5098
3 41.6329 11.3422 2.00069 25.46
4 359.7585 0.5000
5 168.6543 2.0000 1.49700 81.61
6 39.0895 9.1587
7 -281.5253 3.0747 1.77250 49.62
8 -101.0141 1.1461
9 -76.8612 1.5000 1.85478 24.80
10 26.4054 16.3594 1.80610 40.73
11 -100.2450 3.1496
12 -52.5699 1.0000 1.71736 29.50
13 47.9875 8.9531 1.77250 49.62
14 -318.3701 0.1500
15 73.5723 8.2433 1.92286 20.88
16 -182.2771 d16
17 56.7954 8.0299 1.80610 40.73
18 * -163.6673 0.1500
19 253.0059 8.0482 1.49700 81.61
20 -41.4877 1.0000 1.62004 36.30
21 46.2007 d21
(Aperture) ∞ 12.3310
23 -27.4550 1.0000 1.71736 29.50
24 62.6944 5.6995 1.49700 81.61
25 -62.6944 0.2000
26 68.5803 7.4334 1.77250 49.62
27 -44.3481 0.2000
28 * -624.0167 3.0706 1.80610 40.73
29 * -58.6088 d29
30 4139.7996 2.9899 2.00069 25.46
31 -105.4686 1.5000 1.62004 36.30
32 39.1421 19.5027
33 ∞ 2.5000 1.51680 64.20
34 ∞ BF
Image plane ∞

[Aspherical data]
18 faces 28 faces 29 faces
K 0.0000E + 00 0.0000E + 00 0.0000E + 00
A4 2.2162E-06 -4.4061E-06 4.7866E-06
A6 -1.4446E-09 -1.3022E-08 -1.3568E-08
A8 6.1850E-13 6.3022E-11 6.5030E-11
A10 -5.8575E-16 -8.8313E-14 -8.4692E-14
A12 0.0000E + 00 0.0000E + 00 0.0000E + 00

[Various data]
INF
Focal length 41.35
F number 1.26
Full angle of view 2ω 57.17
Image height Y 21.63
Lens total length 157.00

[Variable interval data]
INF Shooting distance 1828mm
d0 ∞ 1670.8939
d16 5.4917 4.7334
d21 4.6283 4.7723
d29 2.3377 2.9520
BF 1.0000 1.0000

[Lens group data]
Focal length of group origin
L1 1 163.53
L2 17 136.88
L3 22 37.65
L4 30 -83.83
L1f 1 -142.30

図26は、実施例6に係る結像光学系の無限遠合焦時のレンズ構成図である。実施例6の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2と、フォーカシング時に第2レンズ群L2と異なる移動量で物体側に移動し正の屈折力を有する第3レンズ群L3と、フォーカシング時に固定の負の屈折力を有する第4レンズ群L4とから構成される。 FIG. 26 is a lens configuration diagram of the imaging optical system according to the sixth embodiment at infinity focusing. In the imaging optical system of the sixth embodiment, the first lens group L1 having a fixed positive refractive power at the time of focusing and the second lens group L1 moving to the object side at the time of focusing and having a positive refractive power in order from the object side to the image side. The lens group L2, the third lens group L3 that moves toward the object with a different amount of movement from the second lens group L2 during focusing and has a positive refractive power, and the fourth lens group L4 that has a fixed negative refractive power during focusing. It is composed of and.

第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと物体側に凸面を向けた凸メニスカスレンズとR1面とR2面両面が非球面で物体側に凸面を向けた凹メニスカスレンズとで構成されるレンズ成分L1fと、物体側に凹面を向けた凸メニスカスレンズと、両凹レンズと両凸レンズの接合レンズと、物体側に凸面を向けた凹メニスカスレンズと両凸レンズの接合レンズと、両凸レンズ素子L1pとから構成される。 The first lens group L1 consists of a concave meniscus lens having a convex surface facing the object side, a convex meniscus lens having a convex surface facing the object side, and both R1 and R2 surfaces having aspherical surfaces and facing the object side in order from the object side to the image side. A lens component L1f composed of a concave meniscus lens with a convex surface, a convex meniscus lens with a concave surface facing the object side, a junction lens of a biconcave lens and a biconvex lens, and a concave meniscus lens with a convex surface facing the object side. It is composed of a junction lens of a biconvex lens and a biconvex lens element L1p.

第2レンズ群L2は、物体側から像側へ順に、R1面とR2面両面が非球面の両凸レンズと、両凸レンズと両凹レンズの接合レンズとから構成される。 The second lens group L2 is composed of a biconvex lens having both R1 and R2 surfaces aspherical surfaces, and a junction lens of a biconvex lens and a biconcave lens in order from the object side to the image side.

第3レンズ群L3は、物体側から像側へ順に、両凹レンズと両凸レンズの接合レンズと、両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。 The third lens group L3 includes a junction lens of a biconcave lens and a biconvex lens, a biconvex lens, and a convex meniscus lens in which both R1 and R2 surfaces are aspherical and the concave surface faces the object side, in order from the object side to the image side. Consists of.

第4レンズ群L4は、物体側から像側へ順に、物体側に凹面を向けた凸メニスカスレンズと両凹レンズの接合レンズで構成される。 The fourth lens group L4 is composed of a convex meniscus lens having a concave surface facing the object side and a junction lens of both concave lenses in order from the object side to the image side.

開口絞りSは、第2レンズ群L2と第3レンズ群L3の間に配され、フォーカシング時に第3レンズ群L3と共に移動する。 The aperture stop S is arranged between the second lens group L2 and the third lens group L3, and moves together with the third lens group L3 during focusing.

続いて、以下に実施例6に係る結像光学系の諸元値を示す。 Subsequently, the specification values of the imaging optical system according to the sixth embodiment are shown below.

数値実施例6
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 208.7963 1.8000 1.55032 75.50
2 37.5679 2.7643
3 45.0047 6.0937 1.90366 31.32
4 109.3983 0.5000
5* 78.5119 1.6663 1.58313 59.46
6* 31.4439 9.9385
7 -70.9895 1.8501 2.00069 25.46
8 -62.6798 1.7867
9 -42.2155 1.5004 1.80518 25.46
10 31.3468 9.5060 1.77250 49.62
11 -292.0488 0.2000
12 276.7254 1.0000 1.68893 31.16
13 44.2467 8.1039 1.77250 49.62
14 -290.6421 0.1500
15 64.5740 7.5729 1.92286 20.88
16 -177.0858 d16
17* 87.5103 5.5489 1.80610 40.73
18* -136.1628 0.1500
19 785.1137 5.2948 1.49700 81.61
20 -58.4639 1.0000 1.62004 36.30
21 74.9789 d21
(絞り) ∞ 10.9090
23 -25.5428 1.0000 1.71736 29.50
24 39.9980 8.1122 1.49700 81.61
25 -39.9980 0.2000
26 66.0200 7.6222 1.77250 49.62
27 -44.3960 1.0844
28* -500.0000 4.4095 1.80610 40.73
29* -63.0102 d29
30 -652.6258 3.0248 2.00069 25.46
31 -120.1715 1.5000 1.62004 36.30
32 37.3343 18.5186
33 ∞ 2.5000 1.51680 64.20
34 ∞ BF
像面 ∞

[非球面データ]
5面 6面 17面
K 0.0000E+00 0.0000E+00 0.0000E+00
A4 -2.4193E-06 -2.5703E-06 -6.1262E-07
A6 4.2279E-09 5.9920E-10 -9.4062E-10
A8 -6.4066E-13 2.0057E-11 8.8650E-13
A10 -6.3635E-15 -4.2154E-14 6.6622E-16
A12 1.7532E-18 2.9611E-17 0.0000E+00

18面 28面 29面
K 0.0000E+00 0.0000E+00 0.0000E+00
A4 1.8077E-06 -4.3710E-06 4.0846E-06
A6 -2.0087E-09 -8.1297E-09 -8.8949E-09
A8 2.3893E-12 3.9617E-11 3.9681E-11
A10 -6.7002E-16 -5.2134E-14 -4.4640E-14
A12 0.0000E+00 0.0000E+00 0.0000E+00

[各種データ]
INF
焦点距離 35.99
Fナンバー 1.26
全画角2ω 64.62
像高Y 21.63
レンズ全長 140.00

[可変間隔データ]
INF 撮影距離1709mm
d0 ∞ 1569.2220
d16 7.1633 6.5587
d21 3.3810 3.5102
d29 3.1483 3.6237
BF 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
L1 1 95.94
L2 17 162.29
L3 22 33.81
L4 30 -66.76
L1f 1 -94.79
Numerical Example 6
Unit: mm
[Surface data]
Face number rd nd vd
Paraboloid ∞ (d0)
1 208.7963 1.8000 1.55032 75.50
2 37.5679 2.7643
3 45.0047 6.0937 1.90366 31.32
4 109.3983 0.5000
5 * 78.5119 1.6663 1.58313 59.46
6 * 31.4439 9.9385
7 -70.9895 1.8501 2.00069 25.46
8 -62.6798 1.7867
9 -42.2155 1.5004 1.80518 25.46
10 31.3468 9.5060 1.77250 49.62
11 -292.0488 0.2000
12 276.7254 1.0000 1.68893 31.16
13 44.2467 8.1039 1.77250 49.62
14 -290.6421 0.1500
15 64.5740 7.5729 1.92286 20.88
16 -177.0858 d16
17 * 87.5103 5.5489 1.80610 40.73
18 * -136.1628 0.1500
19 785.1137 5.2948 1.49700 81.61
20 -58.4639 1.0000 1.62004 36.30
21 74.9789 d21
(Aperture) ∞ 10.9090
23 -25.5428 1.0000 1.71736 29.50
24 39.9980 8.1122 1.49700 81.61
25 -39.9980 0.2000
26 66.0200 7.6222 1.77250 49.62
27 -44.3960 1.0844
28 * -500.0000 4.4095 1.80610 40.73
29 * -63.0102 d29
30 -652.6258 3.0248 2.00069 25.46
31 -120.1715 1.5000 1.62004 36.30
32 37.3343 18.5186
33 ∞ 2.5000 1.51680 64.20
34 ∞ BF
Image plane ∞

[Aspherical data]
5 sides 6 sides 17 sides
K 0.0000E + 00 0.0000E + 00 0.0000E + 00
A4 -2.4193E-06 -2.5703E-06 -6.1262E-07
A6 4.2279E-09 5.9920E-10 -9.4062E-10
A8 -6.4066E-13 2.0057E-11 8.8650 E-13
A10 -6.3635E-15 -4.2154E-14 6.6622E-16
A12 1.7532E-18 2.9611E-17 0.0000E + 00

18 faces 28 faces 29 faces
K 0.0000E + 00 0.0000E + 00 0.0000E + 00
A4 1.8077E-06 -4.3710E-06 4.0846E-06
A6 -2.0087E-09 -8.1297E-09 -8.8949E-09
A8 2.3893E-12 3.9617E-11 3.9681E-11
A10 -6.7002E-16 -5.2134E-14 -4.4640E-14
A12 0.0000E + 00 0.0000E + 00 0.0000E + 00

[Various data]
INF
Focal length 35.99
F number 1.26
Full angle of view 2ω 64.62
Image height Y 21.63
Lens total length 140.00

[Variable interval data]
INF Shooting distance 1709mm
d0 ∞ 1569.2220
d16 7.1633 6.5587
d21 3.3810 3.5102
d29 3.1483 3.6237
BF 1.0000 1.0000

[Lens group data]
Focal length of group origin
L1 1 95.94
L2 17 162.29
L3 22 33.81
L4 30 -66.76
L1f 1 -94.79

図31は、実施例7に係る結像光学系の無限遠合焦時のレンズ構成図である。実施例7の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2と、フォーカシング時に第2レンズ群L2と異なる移動量で物体側に移動し正の屈折力を有する第3レンズ群L3と、フォーカシング時に固定の負の屈折力を有する第4レンズ群L4とから構成される。 FIG. 31 is a lens configuration diagram of the imaging optical system according to the seventh embodiment at infinity focusing. In the imaging optical system of the seventh embodiment, the first lens group L1 having a fixed positive refractive power at the time of focusing and the second lens group L1 moving to the object side at the time of focusing and having a positive refractive power in order from the object side to the image side. The lens group L2, the third lens group L3 that moves toward the object with a different amount of movement from the second lens group L2 during focusing and has a positive refractive power, and the fourth lens group L4 that has a fixed negative refractive power during focusing. It is composed of and.

第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと物体側に凸面を向けた凸メニスカスレンズとR1面とR2面両面が非球面で物体側に凸面を向けた凹メニスカスレンズとで構成されるレンズ成分L1fと、物体側に凹面を向けた凸メニスカスレンズと、両凹レンズと両凸レンズの接合レンズと、物体側に凸面を向けた凹メニスカスレンズと両凸レンズの接合レンズと、両凸レンズ素子L1pとから構成される。 The first lens group L1 consists of a concave meniscus lens having a convex surface facing the object side, a convex meniscus lens having a convex surface facing the object side, and both R1 and R2 surfaces having aspherical surfaces and facing the object side in order from the object side to the image side. A lens component L1f composed of a concave meniscus lens with a convex surface, a convex meniscus lens with a concave surface facing the object side, a junction lens of a biconcave lens and a biconvex lens, and a concave meniscus lens with a convex surface facing the object side. It is composed of a junction lens of a biconvex lens and a biconvex lens element L1p.

第2レンズ群L2は、物体側から像側へ順に、R1面とR2面両面が非球面の両凸レンズと、両凸レンズと両凹レンズの接合レンズとから構成される。 The second lens group L2 is composed of a biconvex lens having both R1 and R2 surfaces aspherical surfaces, and a junction lens of a biconvex lens and a biconcave lens in order from the object side to the image side.

第3レンズ群L3は、物体側から像側へ順に、両凹レンズと両凸レンズの接合レンズと、両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。 The third lens group L3 includes a junction lens of a biconcave lens and a biconvex lens, a biconvex lens, and a convex meniscus lens in which both R1 and R2 surfaces are aspherical and the concave surface faces the object side, in order from the object side to the image side. Consists of.

第4レンズ群L4は、物体側から像側へ順に、物体側に凹面を向けた凸メニスカスレンズと両凹レンズの接合レンズで構成される。 The fourth lens group L4 is composed of a convex meniscus lens having a concave surface facing the object side and a junction lens of both concave lenses in order from the object side to the image side.

開口絞りSは、第2レンズ群L2と第3レンズ群L3の間に配され、フォーカシング時に第3レンズ群L3と共に移動する。 The aperture stop S is arranged between the second lens group L2 and the third lens group L3, and moves together with the third lens group L3 during focusing.

続いて、以下に実施例7に係る結像光学系の諸元値を示す。 Subsequently, the specification values of the imaging optical system according to the seventh embodiment are shown below.

数値実施例7
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 226.6509 1.8000 1.55032 75.50
2 37.1876 4.0192
3 55.4122 4.7294 1.90366 31.32
4 116.5808 0.6495
5* 83.0956 1.5000 1.58313 59.46
6* 37.5827 9.2166
7 -67.9565 1.7989 2.00069 25.46
8 -62.1377 1.7966
9 -42.9597 1.5000 1.80518 25.46
10 33.3896 9.3826 1.77250 49.62
11 -1000.0000 0.2000
12 142.2232 1.0000 1.68893 31.16
13 54.6257 8.6236 1.77250 49.62
14 -141.4848 0.1500
15 66.8094 7.4639 1.92286 20.88
16 -284.8140 d16
17* 77.8044 6.3056 1.80610 40.73
18* -135.9548 0.1500
19 496.0114 6.3427 1.49700 81.61
20 -48.9846 1.0000 1.62004 36.30
21 60.3510 d21
(絞り) ∞ 10.8113
23 -25.3434 1.0000 1.71736 29.50
24 40.9982 8.0446 1.49700 81.61
25 -40.9982 0.2000
26 66.4770 7.5449 1.77250 49.62
27 -43.4716 0.2000
28* -500.0000 2.9945 1.80610 40.73
29* -64.9199 d29
30 -1421.9197 2.5574 2.00069 25.46
31 -220.5750 1.5000 1.62004 36.30
32 39.7560 19.8809
33 ∞ 2.5000 1.51680 64.20
34 ∞ BF
像面 ∞

[非球面データ]
5面 6面 17面
K 0.0000E+00 0.0000E+00 0.0000E+00
A4 -2.9369E-06 -2.8547E-06 -3.5602E-07
A6 3.6527E-09 1.1812E-09 -2.3057E-10
A8 3.2827E-12 1.9490E-11 1.0239E-12
A10 -1.5316E-14 -4.1538E-14 4.6815E-16
A12 5.5604E-18 2.0280E-17 0.0000E+00

18面 28面 29面
K 0.0000E+00 0.0000E+00 0.0000E+00
A4 2.0936E-06 -3.6957E-06 4.3899E-06
A6 -1.6258E-09 -1.3659E-08 -1.4085E-08
A8 2.4213E-12 5.7018E-11 5.7420E-11
A10 -1.3280E-15 -7.1752E-14 -6.5525E-14
A12 0.0000E+00 0.0000E+00 0.0000E+00

[各種データ]
INF
焦点距離 35.99
Fナンバー 1.26
全画角2ω 64.60
像高Y 21.63
レンズ全長 140.00

[可変間隔データ]
INF 撮影距離1646mm
d0 ∞ 1505.6085
d16 7.1493 6.5282
d21 3.8600 3.9906
d29 3.1285 3.6190
BF 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
L1 1 91.85
L2 17 173.52
L3 22 34.05
L4 30 -68.63
L1f 1 -83.09
Numerical Example 7
Unit: mm
[Surface data]
Face number rd nd vd
Paraboloid ∞ (d0)
1 226.6509 1.8000 1.55032 75.50
2 37.1876 4.0192
3 55.4122 4.7294 1.90366 31.32
4 116.5808 0.6495
5 * 83.0956 1.5000 1.58313 59.46
6 * 37.5827 9.2166
7 -67.9565 1.7989 2.00069 25.46
8 -62.1377 1.7966
9 -42.9597 1.5000 1.80518 25.46
10 33.3896 9.3826 1.77250 49.62
11 -1000.0000 0.2000
12 142.2232 1.0000 1.68893 31.16
13 54.6257 8.6236 1.77250 49.62
14 -141.4848 0.1500
15 66.8094 7.4639 1.92286 20.88
16 -284.8140 d16
17 * 77.8044 6.3056 1.80610 40.73
18 * -135.9548 0.1500
19 496.0114 6.3427 1.49700 81.61
20 -48.9846 1.0000 1.62004 36.30
21 60.3510 d21
(Aperture) ∞ 10.8113
23 -25.3434 1.0000 1.71736 29.50
24 40.9982 8.0446 1.49700 81.61
25 -40.9982 0.2000
26 66.4770 7.5449 1.77250 49.62
27 -43.4716 0.2000
28 * -500.0000 2.9945 1.80610 40.73
29 * -64.9199 d29
30 -1421.9197 2.5574 2.00069 25.46
31 -220.5750 1.5000 1.62004 36.30
32 39.7560 19.8809
33 ∞ 2.5000 1.51680 64.20
34 ∞ BF
Image plane ∞

[Aspherical data]
5 sides 6 sides 17 sides
K 0.0000E + 00 0.0000E + 00 0.0000E + 00
A4 -2.9369E-06 -2.8547E-06 -3.5602E-07
A6 3.6527E-09 1.1812E-09 -2.3057E-10
A8 3.2827E-12 1.9490E-11 1.0239E-12
A10 -1.5316E-14 -4.1538E-14 4.6815E-16
A12 5.5604E-18 2.0280E-17 0.0000E + 00

18 faces 28 faces 29 faces
K 0.0000E + 00 0.0000E + 00 0.0000E + 00
A4 2.0936E-06 -3.6957E-06 4.3899E-06
A6 -1.6258E-09 -1.3659E-08 -1.4085E-08
A8 2.4213E-12 5.7018E-11 5.7420E-11
A10 -1.3280E-15 -7.1752E-14 -6.5525E-14
A12 0.0000E + 00 0.0000E + 00 0.0000E + 00

[Various data]
INF
Focal length 35.99
F number 1.26
Full angle of view 2ω 64.60
Image height Y 21.63
Lens total length 140.00

[Variable interval data]
INF Shooting distance 1646mm
d0 ∞ 1505.6085
d16 7.1493 6.5282
d21 3.8600 3.9906
d29 3.1285 3.6190
BF 1.0000 1.0000

[Lens group data]
Focal length of group origin
L1 1 91.85
L2 17 173.52
L3 22 34.05
L4 30 -68.63
L1f 1 -83.09

図36は、実施例8に係る結像光学系の無限遠合焦時のレンズ構成図である。実施例8の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2と、フォーカシング時に第2レンズ群L2と異なる移動量で物体側に移動し正の屈折力を有する第3レンズ群L3と、フォーカシング時に固定の負の屈折力を有する第4レンズ群L4とから構成される。 FIG. 36 is a lens configuration diagram of the imaging optical system according to the eighth embodiment at infinity focusing. In the imaging optical system of the eighth embodiment, the first lens group L1 having a fixed positive refractive power at the time of focusing and the second lens group L1 moving to the object side at the time of focusing and having a positive refractive power in order from the object side to the image side. The lens group L2, the third lens group L3 that moves toward the object with a different amount of movement from the second lens group L2 during focusing and has a positive refractive power, and the fourth lens group L4 that has a fixed negative refractive power during focusing. It is composed of and.

第1レンズ群L1は、物体側から像側へ順に物体側に凸面を向けた凹メニスカスレンズと物体側に凸面を向けた凸メニスカスレンズとR1面側が非球面で物体側に凸面を向けた凹メニスカスレンズとで構成されるレンズ成分L1fと、物体側に凸面を向けた凸メニスカスレンズと、両凹レンズと両凸レンズの接合レンズと、両凸レンズと、両凸レンズ素子L1pとから構成される。 The first lens group L1 consists of a concave meniscus lens having a convex surface facing the object side in order from the object side to the image side, a convex meniscus lens having a convex surface facing the object side, and a concave lens having an aspherical surface on the R1 surface side and having a convex surface facing the object side. It is composed of a lens component L1f composed of a meniscus lens, a convex meniscus lens having a convex surface facing the object side, a junction lens of a biconcave lens and a biconvex lens, a biconvex lens, and a biconvex lens element L1p.

第2レンズ群L2は、物体側から像側へ順に、R1面とR2面両面が非球面の両凸レンズと、両凸レンズと両凹レンズの接合レンズとから構成される。 The second lens group L2 is composed of a biconvex lens having both R1 and R2 surfaces aspherical surfaces, and a junction lens of a biconvex lens and a biconcave lens in order from the object side to the image side.

第3レンズ群L3は、物体側から像側へ順に、両凹レンズと両凸レンズの接合レンズと、両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。 The third lens group L3 includes a junction lens of a biconcave lens and a biconvex lens, a biconvex lens, and a convex meniscus lens in which both R1 and R2 surfaces are aspherical and the concave surface faces the object side, in order from the object side to the image side. Consists of.

第4レンズ群L4は、物体側から像側へ順に、両凸レンズと両凹レンズの接合レンズで構成される。 The fourth lens group L4 is composed of a junction lens of a biconvex lens and a biconcave lens in order from the object side to the image side.

開口絞りSは、第2レンズ群L2と第3レンズ群L3の間に配され、フォーカシング時に第3レンズ群L3と共に移動する。 The aperture stop S is arranged between the second lens group L2 and the third lens group L3, and moves together with the third lens group L3 during focusing.

続いて、以下に実施例8に係る結像光学系の諸元値を示す。 Subsequently, the specification values of the imaging optical system according to the eighth embodiment are shown below.

数値実施例8
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 81.2891 1.8000 1.55032 75.50
2 28.9027 0.1500
3 28.2387 4.3344 2.00069 25.46
4 29.1180 9.5131
5* 158.8717 1.5000 1.55332 71.68
6 62.5908 2.1314
7 89.6194 2.3707 2.00069 25.46
8 137.3005 6.6417
9 -42.7735 1.5000 1.85478 24.80
10 38.3152 8.6871 1.77250 49.62
11 -1000.0000 0.2000
12 101.1960 5.9343 1.77250 49.62
13 -122.4102 0.1500
14 134.7565 5.4178 2.00272 19.32
15 -167.3230 d15
16* 47.8348 7.9022 1.77250 49.50
17* -174.6859 0.1500
18 316.6676 7.6993 1.49700 81.61
19 -37.0753 1.0000 1.59551 39.24
20 43.0544 d20
21 ∞ 7.3558
(絞り) -25.9789 1.0000 1.75520 27.53
23 103.0615 4.4073 1.49700 81.61
24 -103.0615 0.2000
25 83.2463 6.8030 1.77250 49.62
26 -39.5088 0.2000
27* -500.0000 3.7949 1.80610 40.73
28* -56.0409 d28
29 106.5408 4.5062 2.00069 25.46
30 -104.2136 1.5000 1.75520 27.53
31 42.8987 21.6282
32 ∞ 2.5000 1.51680 64.20
33 ∞ BF
像面 ∞

[非球面データ]
5面 16面 17面 27面 28面
K 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
A4 -1.3861E-07 3.9344E-07 2.7239E-06 -4.8096E-06 3.5677E-06
A6 7.4960E-10 6.4953E-10 -1.6905E-09 -6.1663E-09 -3.9779E-09
A8 -6.1209E-12 5.6179E-13 8.4103E-13 4.6850E-11 4.1745E-11
A10 1.1405E-14 -4.0245E-16 -1.8737E-15 -8.1995E-14 -6.4477E-14
A12 -1.0449E-17 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

[各種データ]
INF
焦点距離 35.99
Fナンバー 1.26
全画角2ω 64.09
像高Y 21.63
レンズ全長 140.00

[可変間隔データ]
INF 撮影距離1565mm
d0 ∞ 1425.1600
d15 9.3606 8.4796
d20 5.9272 6.1089
d28 2.7346 3.4339
BF 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
L1 1 266.97
L2 16 118.15
L3 21 45.62
L4 29 -186.66
L1f 1 -67.03
Numerical Example 8
Unit: mm
[Surface data]
Face number rd nd vd
Paraboloid ∞ (d0)
1 81.2891 1.8000 1.55032 75.50
2 28.9027 0.1500
3 28.2387 4.3344 2.00069 25.46
4 29.1180 9.5131
5 * 158.8717 1.5000 1.55332 71.68
6 62.5908 2.1314
7 89.6194 2.3707 2.00069 25.46
8 137.3005 6.6417
9 -42.7735 1.5000 1.85478 24.80
10 38.3152 8.6871 1.77250 49.62
11 -1000.0000 0.2000
12 101.1960 5.9343 1.77250 49.62
13 -122.4102 0.1500
14 134.7565 5.4178 2.00272 19.32
15 -167.3230 d15
16 * 47.8348 7.9022 1.77250 49.50
17 * -174.6859 0.1500
18 316.6676 7.6993 1.49700 81.61
19 -37.0753 1.0000 1.59551 39.24
20 43.0544 d20
21 ∞ 7.3558
(Aperture) -25.9789 1.0000 1.75520 27.53
23 103.0615 4.4073 1.49700 81.61
24 -103.0615 0.2000
25 83.2463 6.8030 1.77250 49.62
26 -39.5088 0.2000
27 * -500.0000 3.7949 1.80610 40.73
28 * -56.0409 d28
29 106.5408 4.5062 2.00069 25.46
30 -104.2136 1.5000 1.75520 27.53
31 42.8987 21.6282
32 ∞ 2.5000 1.51680 64.20
33 ∞ BF
Image plane ∞

[Aspherical data]
5 sides 16 sides 17 sides 27 sides 28 sides
K 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00
A4 -1.3861E-07 3.9344E-07 2.7239E-06 -4.8096E-06 3.5677E-06
A6 7.4960E-10 6.4953E-10 -1.6905E-09 -6.1663E-09 -3.9779E-09
A8 -6.1209E-12 5.6179E-13 8.4103E-13 4.6850E-11 4.1745E-11
A10 1.1405E-14 -4.0245E-16 -1.8737E-15 -8.1995E-14 -6.4477E-14
A12 -1.0449E-17 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00

[Various data]
INF
Focal length 35.99
F number 1.26
Full angle of view 2ω 64.09
Image height Y 21.63
Lens total length 140.00

[Variable interval data]
INF Shooting distance 1565mm
d0 ∞ 1425.1600
d15 9.3606 8.4796
d20 5.9272 6.1089
d28 2.7346 3.4339
BF 1.0000 1.0000

[Lens group data]
Focal length of group origin
L1 1 266.97
L2 16 118.15
L3 21 45.62
L4 29 -186.66
L1f 1 -67.03

次の[条件式対応値]には、各条件式に対応する各実施例の対応値の一覧を示す。 The following [Conditional Expression Corresponding Value] shows a list of corresponding values of each embodiment corresponding to each conditional expression.

[条件式対応値]
条件式1 条件式2 条件式3 条件式4
実施例 Y/Bf LT/f |ΣAci| vdL1p
1 1.01 3.02 0.0004 25.46
2 0.99 3.04 0.0001 25.46
3 0.83 3.05 0.0001 25.46
4 0.89 3.80 0.0018 20.88
5 0.94 3.80 0.0015 20.88
6 0.98 3.89 0.0012 20.88
7 0.93 3.89 0.0011 20.88
8 0.86 3.89 0.0013 19.32

条件式5 条件式6 条件式7 条件式8
実施例 ΔPgfL1p Fno・(f3/f) f1f/f B1b
1 0.0108 1.48 -3.62 0.10
2 0.0108 1.51 -3.74 0.12
3 0.0108 1.47 -3.83 0.05
4 0.0283 1.28 -6.13 0.12
5 0.0283 1.14 -3.44 0.25
6 0.0283 1.18 -2.63 0.38
7 0.0283 1.19 -2.31 0.39
8 0.0315 1.59 -1.86 0.13
[Conditional expression correspondence value]
Conditional expression 1 Conditional expression 2 Conditional expression 3 Conditional expression 4
Example Y / Bf LT / f | ΣAci | vdL1p
1 1.01 3.02 0.0004 25.46
2 0.99 3.04 0.0001 25.46
3 0.83 3.05 0.0001 25.46
4 0.89 3.80 0.0018 20.88
5 0.94 3.80 0.0015 20.88
6 0.98 3.89 0.0012 20.88
7 0.93 3.89 0.0011 20.88
8 0.86 3.89 0.0013 19.32

Conditional expression 5 Conditional expression 6 Conditional expression 7 Conditional expression 8
Example ΔPgfL1p Fno ・ (f3 / f) f1f / f B1b
1 0.0108 1.48 -3.62 0.10
2 0.0108 1.51 -3.74 0.12
3 0.0108 1.47 -3.83 0.05
4 0.0283 1.28 -6.13 0.12
5 0.0283 1.14 -3.44 0.25
6 0.0283 1.18 -2.63 0.38
7 0.0283 1.19 -2.31 0.39
8 0.0315 1.59 -1.86 0.13

各実施例の諸収差図から明らかなとおり、本発明によれば、従来の結像光学系の課題であった球面収差や軸上色収差を良好に補正し、バックフォーカスが短い、F値がF1.2程度のミラーレスカメラに最適な結像光学系を提供することができる。 As is clear from the various aberration diagrams of each embodiment, according to the present invention, spherical aberration and axial chromatic aberration, which have been problems of the conventional imaging optical system, are satisfactorily corrected, the back focus is short, and the F value is F1. It is possible to provide an optimum imaging optical system for a mirrorless camera of about 2.

L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
L1f レンズ成分L1f
L1p レンズ素子L1p
S 開放絞り
LPF ローパスフィルター
I 像面
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group L1f Lens component L1f
L1p Lens element L1p
S Open aperture LPF Low-pass filter I Image plane

Claims (4)

物体側から像側へ順に、
正の屈折力を有する第1レンズ群L1と、
正の屈折力を有する第2レンズ群L2と、
正の屈折力を有する第3レンズ群L3と、
負の屈折力を有する第4レンズ群L4と
からなり、
前記第1レンズ群L1は、少なくとも一つの接合レンズを有すると共に、最も物体側に負の屈折力を有するレンズ素子を配し、物体側に凸面を向けた正の屈折力を有するレンズ素子を前記負の屈折力を有するレンズ素子の像側に隣接するよう配し、
フォーカシングに際して、前記第2レンズ群L2と前記第3レンズ群L3とが物体側に異なる移動量で移動するとともに、前記第1レンズ群L1と、前記第4レンズ群L4とが像面に対して固定であり、前記第1レンズ群L1の最も物体側の面から、物体側に凸面を向け負の屈折力を有するレンズ素子の像側の面までをレンズ成分L1fとし、前記レンズ成分L1fは負の屈折力を有し、以下の条件式を満足することを特徴とする結像光学系
Y/Bf > 0.80 (1)
LT/f < 4.20 (2)
Figure 0007074985000004
-7.96 < f1f/f < -1.33 (7)
但し、
Yは最大像高、
Bfは前記第4レンズ群L4の最も像側の面の面頂から像面までの距離、
LTは前記第1レンズ群L1の最も物体側の面の面頂から像面までの距離、
fはレンズ全系の無限遠合焦時の焦点距離
f1fは前記レンズ成分L1fの焦点距離であり、
Aciは以下の式で表される。
Aci = φcpi/νdcpi + φcmi/νdcmi
但し、
φcpiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの凸レンズ素子の屈折力、
νdcpiは、記第1レンズ群L1に含まれる物体側からi番目の接合レンズの凸レンズ素子のアッベ数、
φcmiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの凹レンズ素子の屈折力、
νdcmiは、記第1レンズ群L1に含まれる物体側からi番目の接合レンズの凹レンズ素子のアッベ数である。
From the object side to the image side, in order
The first lens group L1 having a positive refractive power and
The second lens group L2 having a positive refractive power,
The third lens group L3 having a positive refractive power,
It consists of a fourth lens group L4 having a negative refractive power.
The first lens group L1 has at least one bonded lens, and has a lens element having the most negative refractive power on the object side, and the lens element having a positive refractive power with a convex surface facing the object side. Arranged so as to be adjacent to the image side of the lens element having a negative refractive power.
At the time of focusing, the second lens group L2 and the third lens group L3 move toward the object side by different amounts of movement, and the first lens group L1 and the fourth lens group L4 move with respect to the image plane. The lens component L1f is from the most object-side surface of the first lens group L1 to the image-side surface of the lens element having a negative refractive power with the convex surface facing the object side, and the lens component L1f is negative. Imaging optical system Y / Bf> 0.80 (1) , which has the refractive power of
LT / f <4.20 (2)
Figure 0007074985000004
-7.96 <f1f / f <-1.33 (7)
however,
Y is the maximum image height,
Bf is the distance from the top of the surface on the image side of the fourth lens group L4 to the image surface.
LT is the distance from the top of the surface of the first lens group L1 on the most object side to the image plane.
f is the focal length of the entire lens system at infinity focusing ,
f1f is the focal length of the lens component L1f .
Aci is expressed by the following equation.
Aci = φcpi / νdcpi + φcmi / νdcmi
however,
φcpi is the refractive power of the convex lens element of the i-th junction lens from the object side included in the first lens group L1.
νdcpi is the Abbe number of the convex lens element of the i-th junction lens from the object side included in the first lens group L1.
φcmi is the refractive power of the concave lens element of the i-th junction lens from the object side included in the first lens group L1.
νdcmi is the Abbe number of the concave lens element of the i-th junction lens from the object side included in the first lens group L1.
前記第1レンズ群L1の最も像側に配する正の屈折力を有するレンズ素子L1pが以下の条件式を満足することを特徴とする請求項1に記載の結像光学系
νdL1p < 30 (4)
0.0090 < ΔPgfL1p (5)
但し、
ΔPgfL1pは前記正レンズ素子L1pの異常分散性であり、以下の式で表される。
ΔPgfL1p = PgfL1p + 0.0018×νdL1p - 0.64833
但し、
νdL1pは前記正レンズ素子L1pのアッベ数νd、
PgfL1pは前記正レンズ素子L1pのg線とF線に関する部分分散比Pgfである。
The imaging optical system νdL1p <30 (4) according to claim 1, wherein the lens element L1p having a positive refractive power arranged on the most image side of the first lens group L1 satisfies the following conditional expression. )
0.0090 <ΔPgfL1p (5)
however,
ΔPgfL1p is the anomalous dispersibility of the positive lens element L1p and is expressed by the following equation.
ΔPgfL1p = PgfL1p + 0.0018 × νdL1p −0.64833
however,
νdL1p is the Abbe number νd of the positive lens element L1p.
PgfL1p is a partial dispersion ratio Pgf with respect to the g-line and the F-line of the positive lens element L1p.
以下の条件式を満足することを特徴とする請求項1又は請求項2に記載の結像光学系。
0.88 < Fno・(f3/f) < 1.96 (6)
但し、
Fnoは無限遠合焦時のレンズ全系のF値、
f3は前記第3レンズ群L3の焦点距離、
fはレンズ全系の無限遠合焦時の焦点距離である。
The imaging optical system according to claim 1 or 2, wherein the imaging optical system satisfies the following conditional expression.
0.88 <Fno ・ (f3 / f) <1.96 (6)
however,
Fno is the F value of the entire lens system when focusing at infinity,
f3 is the focal length of the third lens group L3,
f is the focal length of the entire lens system at infinity focusing.
以下の条件式を満足することを特徴とする請求項1乃至請求項のいずれかに記載の結像光学系。
β1b < 0.50 (8)
但し、
β1bは無限遠合焦時の前記第1レンズ群L1よりも像側に配するレンズ系の横倍率である。
The imaging optical system according to any one of claims 1 to 3 , wherein the imaging optical system satisfies the following conditional expression.
β1b <0.50 (8)
however,
β1b is the lateral magnification of the lens system arranged on the image side of the first lens group L1 at the time of infinity focusing.
JP2018090409A 2018-05-09 2018-05-09 Imaging optical system Active JP7074985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018090409A JP7074985B2 (en) 2018-05-09 2018-05-09 Imaging optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018090409A JP7074985B2 (en) 2018-05-09 2018-05-09 Imaging optical system

Publications (2)

Publication Number Publication Date
JP2019197125A JP2019197125A (en) 2019-11-14
JP7074985B2 true JP7074985B2 (en) 2022-05-25

Family

ID=68538712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018090409A Active JP7074985B2 (en) 2018-05-09 2018-05-09 Imaging optical system

Country Status (1)

Country Link
JP (1) JP7074985B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7096065B2 (en) * 2018-05-17 2022-07-05 株式会社タムロン Optical system and image pickup device
JP7467134B2 (en) * 2020-01-27 2024-04-15 キヤノン株式会社 Optical system, and imaging device and lens device having the same
WO2023176513A1 (en) * 2022-03-17 2023-09-21 株式会社ニコン Optical system, optical device, and method for manufacturing optical system
CN118805112A (en) * 2022-03-17 2024-10-18 株式会社尼康 Optical system, optical device, and method for manufacturing optical system
WO2024057640A1 (en) * 2022-09-14 2024-03-21 株式会社ニコン Optical system, optical device, and method for manufacturing optical system
WO2024171903A1 (en) * 2023-02-15 2024-08-22 株式会社ニコン Optical system, optical device, and method for manufacturing optical system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055994A (en) 2012-09-11 2014-03-27 Sony Corp Imaging lens and imaging device
JP2016038418A (en) 2014-08-05 2016-03-22 オリンパス株式会社 Imaging optical system and optical device with the same
WO2019097716A1 (en) 2017-11-20 2019-05-23 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055994A (en) 2012-09-11 2014-03-27 Sony Corp Imaging lens and imaging device
JP2016038418A (en) 2014-08-05 2016-03-22 オリンパス株式会社 Imaging optical system and optical device with the same
WO2019097716A1 (en) 2017-11-20 2019-05-23 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system

Also Published As

Publication number Publication date
JP2019197125A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
JP7074985B2 (en) Imaging optical system
CN109491045B (en) Optical system and image pickup apparatus
JP6540052B2 (en) Imaging optical system
JP4794915B2 (en) Zoom lens and imaging apparatus having the same
US10935755B2 (en) Optical system and image pickup apparatus
JP6046504B2 (en) Imaging lens system
JP6558103B2 (en) Large aperture wide angle lens
JP5827142B2 (en) Imaging optics
JP6749632B2 (en) Large aperture lens
WO2014203631A1 (en) Fixed-focal-length lens system
JP7093523B2 (en) Shooting lens
JP7123383B2 (en) Imaging optical system
JP5426353B2 (en) Zoom lens with anti-vibration function
JP6125383B2 (en) Zoom lens with anti-vibration function
JP5615141B2 (en) Zoom lens
JP2011170086A (en) Large aperture zoom lens with anti-vibration function
JP6758640B2 (en) Zoom lens
JP6322969B2 (en) Large aperture lens with anti-vibration function
JP7106099B2 (en) Imaging optical system
JP7399471B2 (en) Large diameter optical system
US8665531B2 (en) Zoom lens
JP5848099B2 (en) Inner focus type large aperture telephoto macro lens with anti-vibration function
JP7020674B2 (en) Large aperture lens
JP6112945B2 (en) Optical system and imaging apparatus having the same
JP6665615B2 (en) Large aperture telephoto lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220420

R150 Certificate of patent or registration of utility model

Ref document number: 7074985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350