Nothing Special   »   [go: up one dir, main page]

JP7074697B2 - Positive electrode material for lithium secondary batteries - Google Patents

Positive electrode material for lithium secondary batteries Download PDF

Info

Publication number
JP7074697B2
JP7074697B2 JP2019029242A JP2019029242A JP7074697B2 JP 7074697 B2 JP7074697 B2 JP 7074697B2 JP 2019029242 A JP2019029242 A JP 2019029242A JP 2019029242 A JP2019029242 A JP 2019029242A JP 7074697 B2 JP7074697 B2 JP 7074697B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019029242A
Other languages
Japanese (ja)
Other versions
JP2020136114A (en
Inventor
大介 堀川
隆太 杉浦
宰平 藤本
遼介 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Toyota Motor Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Toyota Motor Corp filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019029242A priority Critical patent/JP7074697B2/en
Publication of JP2020136114A publication Critical patent/JP2020136114A/en
Application granted granted Critical
Publication of JP7074697B2 publication Critical patent/JP7074697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池の正極材料に関する。 The present invention relates to a positive electrode material for a lithium secondary battery.

近年、リチウム二次電池は、パソコン、携帯端末等のポータブル電源や、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両駆動用電源などに好適に用いられている。 In recent years, lithium secondary batteries have been suitably used for portable power sources such as personal computers and mobile terminals, and vehicle drive power sources for electric vehicles (EV), hybrid vehicles (HV), plug-in hybrid vehicles (PHV) and the like. There is.

リチウム二次電池は、その普及に伴いさらなる高性能化が望まれている。一般的に、リチウム二次電池の正極には、リチウムイオンを吸蔵および放出可能な正極活物質が用いられている。リチウム二次電池の性能を向上させるために、正極活物質粒子の表面を、ホウ素を含有するリチウム化合物で被覆した正極材料を用いる技術が知られている(例えば、特許文献1および2参照)。 With the widespread use of lithium secondary batteries, further improvement in performance is desired. Generally, a positive electrode active material capable of storing and releasing lithium ions is used for the positive electrode of a lithium secondary battery. In order to improve the performance of a lithium secondary battery, there is known a technique of using a positive electrode material in which the surface of positive electrode active material particles is coated with a lithium compound containing boron (see, for example, Patent Documents 1 and 2).

特開2016-33854号公報Japanese Unexamined Patent Publication No. 2016-33854 特開2013-37950号公報Japanese Unexamined Patent Publication No. 2013-37950

本発明者が鋭意検討した結果、従来技術の正極材料には、これを用いたリチウム二次電池の抵抗低減に改善の余地があることを見出した。また、従来技術の正極材料には、これを用いたリチウム二次電池の高温サイクル特性に改善の余地があることを見出した。さらに、従来技術の正極材料には、耐湿性に改善の余地があることを見出した。 As a result of diligent studies by the present inventor, it has been found that there is room for improvement in the resistance reduction of the lithium secondary battery using the positive electrode material of the prior art. It was also found that there is room for improvement in the high temperature cycle characteristics of the lithium secondary battery using the positive electrode material of the prior art. Furthermore, it has been found that the positive electrode material of the prior art has room for improvement in moisture resistance.

そこで本発明は、耐湿性が高く、リチウム二次電池の抵抗を小さくすることができ、かつリチウム二次電池の高温サイクル特性を向上させることができる、正極材料を提供することを目的とする。 Therefore, an object of the present invention is to provide a positive electrode material which has high moisture resistance, can reduce the resistance of a lithium secondary battery, and can improve the high temperature cycle characteristics of a lithium secondary battery.

ここに開示されるリチウム二次電池の正極材料は、正極活物質粒子と、前記正極活物質粒子の表面にLiBOと、前記正極活物質粒子の表面にLiB(OH)と、を含む。
このような構成によれば、耐湿性が高く、リチウム二次電池の抵抗を小さくすることができ、かつリチウム二次電池の高温サイクル特性(特に、高温下での繰り返し充放電に対する容量劣化耐性)を向上させることができる正極材料が提供される。
The positive electrode material of the lithium secondary battery disclosed herein includes positive electrode active material particles, Li 3 BO 3 on the surface of the positive electrode active material particles, and Li B (OH) 4 on the surface of the positive electrode active material particles. include.
According to such a configuration, the moisture resistance is high, the resistance of the lithium secondary battery can be reduced, and the high temperature cycle characteristics of the lithium secondary battery (particularly, the capacity deterioration resistance to repeated charging and discharging at high temperature). A positive electrode material that can improve the above is provided.

ここに開示されるリチウム二次電池の正極材料の好ましい一態様では、LiBOと、LiB(OH)とが接触している。
このような構成によれば、耐湿性向上効果、電池抵抗低減効果、および高温サイクル特性向上効果が特に高くなる。
ここに開示されるリチウム二次電池の正極材料の好ましい一態様では、LiBOの量が、前記正極活物質粒子に対して、0.01質量%以上10質量%以下である。
このような構成によれば、耐湿性向上効果、電池抵抗低減効果、および高温サイクル特性向上効果が特に高くなる。
ここに開示されるリチウム二次電池の正極材料の好ましい一態様では、LiB(OH)の量が、前記正極活物質粒子に対して、0.001質量%以上2質量%以下である。
このような構成によれば、耐湿性向上効果、電池抵抗低減効果、および高温サイクル特性向上効果が特に高くなる。
In a preferred embodiment of the positive electrode material of the lithium secondary battery disclosed herein, Li 3 BO 3 and Li B (OH) 4 are in contact with each other.
With such a configuration, the effect of improving moisture resistance, the effect of reducing battery resistance, and the effect of improving high temperature cycle characteristics are particularly high.
In a preferred embodiment of the positive electrode material of the lithium secondary battery disclosed herein, the amount of Li 3 BO 3 is 0.01% by mass or more and 10% by mass or less with respect to the positive electrode active material particles.
With such a configuration, the effect of improving moisture resistance, the effect of reducing battery resistance, and the effect of improving high temperature cycle characteristics are particularly high.
In a preferred embodiment of the positive electrode material of the lithium secondary battery disclosed herein, the amount of LiB (OH) 4 is 0.001% by mass or more and 2% by mass or less with respect to the positive electrode active material particles.
With such a configuration, the effect of improving moisture resistance, the effect of reducing battery resistance, and the effect of improving high temperature cycle characteristics are particularly high.

本発明の一実施形態に係る正極材料の一例の模式断面図である。It is a schematic cross-sectional view of an example of the positive electrode material which concerns on one Embodiment of this invention. 本発明の一実施形態に係る正極材料を用いて構築されるリチウム二次電池の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the lithium secondary battery constructed by using the positive electrode material which concerns on one Embodiment of this invention. 本発明の一実施形態に係る正極材料を用いて構築されるリチウム二次電池の捲回電極体の構成を示す模式図である。It is a schematic diagram which shows the structure of the winding electrode body of the lithium secondary battery constructed by using the positive electrode material which concerns on one Embodiment of this invention.

以下、本発明による実施の形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けないリチウム二次電池の正極材料の一般的な構成)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, embodiments according to the present invention will be described. It should be noted that matters other than those specifically mentioned in the present specification and necessary for carrying out the present invention (for example, a general configuration of a positive electrode material of a lithium secondary battery which does not characterize the present invention) are described. It can be grasped as a design matter of a person skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in the present specification and the common general technical knowledge in the art.

なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、いわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。
また、本明細書において「リチウム二次電池」とは、電荷担体としてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池をいう。
In the present specification, the "secondary battery" generally refers to a power storage device capable of being repeatedly charged and discharged, and is a term including a so-called storage battery and a power storage element such as an electric double layer capacitor.
Further, in the present specification, the "lithium secondary battery" refers to a secondary battery that uses lithium ions as a charge carrier and realizes charge / discharge by the transfer of charges accompanying the lithium ions between the positive and negative electrodes.

本実施形態に係るリチウム二次電池の正極材料は、正極活物質粒子と、当該正極活物質粒子の表面にLiBOと、当該正極活物質粒子の表面にLiB(OH)と、を含む。すなわち、正極活物質粒子の表面に、LiBOおよびLiB(OH)の2種類のホウ素含有リチウム化合物が共存している。 The positive electrode material of the lithium secondary battery according to the present embodiment includes positive electrode active material particles, Li 3 BO 3 on the surface of the positive electrode active material particles, and Li B (OH) 4 on the surface of the positive electrode active material particles. include. That is, two types of boron-containing lithium compounds, Li 3 BO 3 and Li B (OH) 4 , coexist on the surface of the positive electrode active material particles.

本実施形態に係る正極材料に含まれる正極活物質としては、リチウム二次電池に用いられる公知の正極活物質を用いてよい。具体的に例えば、リチウム複合酸化物、リチウム遷移金属リン酸化合物等を用いることができる。正極活物質の結晶構造は、特に限定されず、層状構造、スピネル構造、オリビン構造等であってよい。 As the positive electrode active material contained in the positive electrode material according to the present embodiment, a known positive electrode active material used in a lithium secondary battery may be used. Specifically, for example, a lithium composite oxide, a lithium transition metal phosphoric acid compound, or the like can be used. The crystal structure of the positive electrode active material is not particularly limited, and may be a layered structure, a spinel structure, an olivine structure, or the like.

リチウム複合酸化物としては、遷移金属元素として、Ni、Co、Mnのうちの少なくとも1種を含むリチウム遷移金属複合酸化物が好ましく、その具体例としては、リチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、リチウムニッケルマンガン系複合酸化物、リチウムニッケルコバルトマンガン系複合酸化物、リチウムニッケルコバルトアルミニウム系複合酸化物、リチウム鉄ニッケルマンガン系複合酸化物等が挙げられる。 As the lithium composite oxide, a lithium transition metal composite oxide containing at least one of Ni, Co, and Mn is preferable as the transition metal element, and specific examples thereof include a lithium nickel-based composite oxide and a lithium cobalt-based composite oxide. Examples thereof include composite oxides, lithium manganese-based composite oxides, lithium nickel-manganese-based composite oxides, lithium nickel-cobalt manganese-based composite oxides, lithium nickel-cobalt-aluminum-based composite oxides, and lithium iron-nickel-manganese-based composite oxides.

なお、本明細書において「リチウムニッケルコバルトマンガン系複合酸化物」とは、Li、Ni、Co、Mn、Oを構成元素とする酸化物の他に、それら以外の1種または2種以上の添加的な元素を含んだ酸化物をも包含する用語である。かかる添加的な元素の例としては、Mg、Ca、Al、Ti、V、Cr、Si、Y、Zr、Nb、Mo、Hf、Ta、W、Na、Fe、Zn、Sn等の遷移金属元素や典型金属元素等が挙げられる。また、添加的な元素は、B、C、Si、P等の半金属元素や、S、F、Cl、Br、I等の非金属元素であってもよい。このことは、上記したリチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、リチウムニッケルマンガン系複合酸化物、リチウムニッケルコバルトアルミニウム系複合酸化物、リチウム鉄ニッケルマンガン系複合酸化物等についても同様である。 In the present specification, the "lithium-nickel-cobalt-manganese-based composite oxide" is an oxide containing Li, Ni, Co, Mn, and O as constituent elements, and one or more of the other oxides. It is a term that also includes oxides containing typical elements. Examples of such additive elements include transition metal elements such as Mg, Ca, Al, Ti, V, Cr, Si, Y, Zr, Nb, Mo, Hf, Ta, W, Na, Fe, Zn and Sn. And typical metal elements. Further, the additive element may be a metalloid element such as B, C, Si, P or a non-metal element such as S, F, Cl, Br, I. This means that the above-mentioned lithium nickel-based composite oxide, lithium cobalt-based composite oxide, lithium manganese-based composite oxide, lithium nickel-manganese-based composite oxide, lithium nickel-cobalt-aluminum-based composite oxide, and lithium iron-nickel-manganese-based composite The same applies to oxides and the like.

リチウムニッケルコバルトマンガン系複合酸化物としては、下式(I)で表される組成を有するものが好ましい。
Li1+xNiCoMn(1-y-z)α2-ββ (I)
式(I)中、x、y、z、α、およびβは、0≦x≦0.7、0.1<y<0.9、0.1<z<0.4、0≦α≦0.1、0≦β≦0.5を満たす。Mは、Zr、Mo、W、Mg、Ca、Na、Fe、Cr、Zn、Si、Sn、およびAlからなる群より選ばれる少なくとも1種の元素である。Qは、F、ClおよびBrからなる群より選ばれる少なくとも1種の元素である。エネルギー密度および熱安定性の観点から、yおよびzはそれぞれ、0.3≦y≦0.5、0.20≦z<0.4を満たすことが好ましい。
The lithium nickel cobalt manganese-based composite oxide preferably has a composition represented by the following formula (I).
Li 1 + x Ni y Co z Mn (1-yz) M α O 2-β Q β (I)
In formula (I), x, y, z, α, and β are 0 ≦ x ≦ 0.7, 0.1 <y <0.9, 0.1 <z <0.4, 0 ≦ α ≦. Satisfy 0.1, 0 ≦ β ≦ 0.5. M is at least one element selected from the group consisting of Zr, Mo, W, Mg, Ca, Na, Fe, Cr, Zn, Si, Sn, and Al. Q is at least one element selected from the group consisting of F, Cl and Br. From the viewpoint of energy density and thermal stability, it is preferable that y and z satisfy 0.3 ≦ y ≦ 0.5 and 0.20 ≦ z <0.4, respectively.

リチウム遷移金属リン酸化合物としては、例えば、リン酸鉄リチウム(LiFePO)、リン酸マンガンリチウム(LiMnPO)、リン酸マンガン鉄リチウム等が挙げられる。 Examples of the lithium transition metal phosphoric acid compound include lithium iron phosphate (LiFePO 4 ), lithium manganese phosphate (LiMnPO 4 ), lithium manganese iron phosphate, and the like.

正極活物質粒子の形状は、特に限定されず、球状、板状、針状、不定形状等であってよい。また、正極活物質粒子は、一次粒子が凝集した二次粒子の形態であってもよく、中空粒子の形態であってもよい。 The shape of the positive electrode active material particles is not particularly limited, and may be spherical, plate-shaped, needle-shaped, indefinite-shaped, or the like. Further, the positive electrode active material particles may be in the form of secondary particles in which primary particles are aggregated, or may be in the form of hollow particles.

正極活物質粒子の平均粒子径(D50)は、特に制限はないが、例えば、0.05μm以上20μm以下であり、好ましくは0.5μm以上15μm以下であり、より好ましくは3μm以上15μm以下である。
なお、正極活物質粒子の平均粒子径(D50)は、例えば、レーザー回折散乱法等により求めることができる。
The average particle size (D50) of the positive electrode active material particles is not particularly limited, but is, for example, 0.05 μm or more and 20 μm or less, preferably 0.5 μm or more and 15 μm or less, and more preferably 3 μm or more and 15 μm or less. ..
The average particle size (D50) of the positive electrode active material particles can be obtained, for example, by a laser diffraction / scattering method or the like.

本実施形態に係る正極材料は、正極活物質粒子の表面に、LiBOおよびLiB(OH)の2種のホウ素含有リチウム化合物を有する。
本実施形態に係る正極材料においては、典型的には、LiBOの被覆(特に、LiBOの結晶)およびLiB(OH)の被覆(特に、LiB(OH)の結晶)がそれぞれ、正極活物質粒子の表面に点在している。すなわち、本実施形態に係る正極材料の表面においては、LiBOの被覆およびLiB(OH)の被覆がそれぞれ、島状に存在している。
本実施形態に係る正極材料においては、LiBOおよびLiB(OH)は、これらが共存する一つの層を形成し、当該層が正極活物質を完全に被覆していてもよい。しかしながら、電池特性の観点から、LiBOおよびLiB(OH)は、上記のように、正極活物質粒子の表面に点在して、LiBOとLiB(OH)が正極活物質粒子を部分的に被覆していることが好ましい。
The positive electrode material according to the present embodiment has two types of boron-containing lithium compounds, Li 3 BO 3 and Li B (OH) 4 , on the surface of the positive electrode active material particles.
The positive electrode material according to this embodiment typically has a Li 3 BO 3 coating (particularly a Li 3 BO 3 crystal) and a LiB (OH) 4 coating (particularly a LiB (OH) 4 crystal). Are scattered on the surface of the positive electrode active material particles, respectively. That is, on the surface of the positive electrode material according to the present embodiment, the coating of Li 3 BO 3 and the coating of Li B (OH) 4 each exist in an island shape.
In the positive electrode material according to the present embodiment, Li 3 BO 3 and LiB (OH) 4 may form one layer in which they coexist, and the layer may completely cover the positive electrode active material. However, from the viewpoint of battery characteristics, Li 3 BO 3 and LiB (OH) 4 are scattered on the surface of the positive electrode active material particles as described above, and Li 3 BO 3 and LiB (OH) 4 are positive electrode active. It is preferred that the material particles are partially covered.

本実施形態に係る正極材料の一例を、図1に示す。図1は、当該例に係る正極材料10の模式断面図である。図示されるように、正極活物質粒子12の表面上に、LiBO 14と、LiB(OH) 16とが点在している。したがって、LiBO 14とLiB(OH) 16とが、正極活物質粒子12の表面を部分的に被覆している。一部のLiBO 14と一部のLiB(OH) 16とは、接触している。 An example of the positive electrode material according to this embodiment is shown in FIG. FIG. 1 is a schematic cross-sectional view of the positive electrode material 10 according to the example. As shown, Li 3 BO 3 14 and LiB (OH) 4 16 are interspersed on the surface of the positive electrode active material particles 12. Therefore, the Li 3 BO 3 14 and the LiB (OH) 4 16 partially cover the surface of the positive electrode active material particles 12. Some Li 3 BO 3 14 and some LiB (OH) 4 16 are in contact.

正極活物質粒子の表面に、LiBOおよびLiB(OH)の2種のホウ素含有リチウム化合物が存在することにより、本実施形態に係る正極材料を用いたリチウム二次電池の抵抗が低減される。加えて、当該リチウム二次電池の高温サイクル特性(特に、高温下での繰り返し充放電に対する容量劣化耐性)が向上する。さらに、本実施形態に係る正極材料の耐湿性が向上する。この理由は、次のように推察される。 The presence of two types of boron-containing lithium compounds, Li 3 BO 3 and Li B (OH) 4 , on the surface of the positive electrode active material particles reduces the resistance of the lithium secondary battery using the positive electrode material according to the present embodiment. Will be done. In addition, the high temperature cycle characteristics of the lithium secondary battery (particularly, capacity deterioration resistance to repeated charging and discharging at high temperatures) are improved. Further, the moisture resistance of the positive electrode material according to the present embodiment is improved. The reason for this is inferred as follows.

本発明者らの検討によれば、本実施形態においては、Liイオンの溶媒和エネルギーが小さくなっていることが確認できた。このことから、LiBOとLiB(OH)との間に存在する溶媒和Liイオンの構造が特異的に変化し、その結果、正極活物質表面に存在するLiキャリア数が増加するものと考えられる。よって、これにより電池抵抗が小さくなるものと考えられる。
また、LiBOとLiB(OH)との間に存在する溶媒和Liイオンの構造が特異的に変化し、その結果、正極活物質表面にLiイオンが優先的に配列したバリア層が形成されるものと考えられる。したがって、Liイオンが正極活物質近傍に優先的に存在することになるので、副反応の原因となる溶媒またはアニオン種の正極活物質への接近を抑制することができ、これにより副反応が抑制されて高温サイクル特性が向上するものと考えられる。
さらに、一般的に大気環境化で正極活物質を放置すると、正極活物質と空気中の水分が反応することで正極活物質からLiが脱離して、これが電池容量の減少の原因となる。しかしながら、本実施形態においては、正極活物質表面に存在する、LiBOとLiB(OH)が、それらの静電斥力によって空気中の水分を反発するものと考えられる。その結果、正極活物質と空気中の水分の接触頻度が減少して、電池容量の減少を抑制することができるものと考えられる。
According to the studies by the present inventors, it was confirmed that the solvation energy of Li ions is small in the present embodiment. From this, the structure of the solvated Li ion present between Li 3 BO 3 and LiB (OH) 4 is specifically changed, resulting in an increase in the number of Li carriers present on the surface of the positive electrode active material. it is conceivable that. Therefore, it is considered that the battery resistance is reduced by this.
In addition, the structure of the solvated Li ions present between Li 3 BO 3 and LiB (OH) 4 changes specifically, resulting in a barrier layer in which Li ions are preferentially arranged on the surface of the positive electrode active material. It is thought to be formed. Therefore, since Li ions are preferentially present in the vicinity of the positive electrode active material, it is possible to suppress the approach of the solvent or anionic species that causes the side reaction to the positive electrode active material, thereby suppressing the side reaction. It is considered that the high temperature cycle characteristics are improved.
Further, in general, when the positive electrode active material is left unattended in an atmospheric environment, Li is desorbed from the positive electrode active material due to the reaction between the positive electrode active material and the moisture in the air, which causes a decrease in battery capacity. However, in this embodiment, it is considered that the Li 3 BO 3 and LiB (OH) 4 present on the surface of the positive electrode active material repel the moisture in the air due to their electrostatic repulsive force. As a result, it is considered that the frequency of contact between the positive electrode active material and the moisture in the air is reduced, and the decrease in battery capacity can be suppressed.

本実施形態においては、正極活物質表面に存在する、LiBOとLiB(OH)とが接触していることが好ましい。このとき、電池抵抗低減効果、高温サイクル特性向上効果、および耐湿性向上効果がさらに高くなる。電池低減効果のさらなる向上に関しては、LiBOとLiB(OH)とが互いに接触することで、これらの界面においてLiイオンがリッチになり、この部分においてLiイオンの伝導性が向上して、正極活物質へのLiイオンの供給が促進されるためと考えられる。
LiBOとLiB(OH)とは、少なくとも一部が接触していればよい。
なお、LiBOとLiB(OH)とが接触していることは、正極材料の断面を走査型透過電子顕微鏡(STEM)を用いて観察することにより確認することができる。
In the present embodiment, it is preferable that the Li 3 BO 3 and the Li B (OH) 4 present on the surface of the positive electrode active material are in contact with each other. At this time, the battery resistance reducing effect, the high temperature cycle characteristic improving effect, and the moisture resistance improving effect are further enhanced. Regarding further improvement of the battery reduction effect, when Li 3 BO 3 and Li B (OH) 4 come into contact with each other, Li ions become rich at these interfaces, and the conductivity of Li ions is improved in this portion. It is considered that this is because the supply of Li ions to the positive electrode active material is promoted.
It suffices that at least a part of Li 3 BO 3 and Li B (OH) 4 are in contact with each other.
The contact between Li 3 BO 3 and LiB (OH) 4 can be confirmed by observing the cross section of the positive electrode material with a scanning transmission electron microscope (STEM).

正極活物質表面に存在するLiBOの量には特に制限はない。電池抵抗低減効果、高温サイクル特性向上効果、および耐湿性向上効果が特に高いことから、LiBOの量は、正極活物質粒子に対して、好ましくは0.01質量%以上10質量%以下であり、より好ましくは0.01質量%以上5質量%以下である。 There is no particular limitation on the amount of Li 3 BO 3 present on the surface of the positive electrode active material. Since the effect of reducing battery resistance, the effect of improving high temperature cycle characteristics, and the effect of improving moisture resistance are particularly high, the amount of Li 3 BO 3 is preferably 0.01% by mass or more and 10% by mass or less with respect to the positive electrode active material particles. It is more preferably 0.01% by mass or more and 5% by mass or less.

正極活物質表面に存在するLiB(OH)の量には特に制限はない。電池抵抗低減効果、高温サイクル特性向上効果、および耐湿性向上効果が特に高いことから、LiB(OH)の量は、正極活物質粒子に対して、好ましくは0.001質量%以上2質量%以下であり、より好ましくは0.01質量%以上2質量%以下である。 The amount of LiB (OH) 4 present on the surface of the positive electrode active material is not particularly limited. Since the effect of reducing battery resistance, the effect of improving high temperature cycle characteristics, and the effect of improving moisture resistance are particularly high, the amount of LiB (OH) 4 is preferably 0.001% by mass or more and 2% by mass with respect to the positive electrode active material particles. It is more preferably 0.01% by mass or more and 2% by mass or less.

本実施形態に係る正極材料は、例えば、公知のメカノケミカル装置を用いて、正極活物質粒子、LiBO、およびLiB(OH)の混合物に対してメカノケミカル処理を施すことにより製造することができる。このとき、印加する機械的エネルギーを高くすることで、正極活物質粒子の表面上でLiBOとLiB(OH)とを接触させることができる。 The positive electrode material according to the present embodiment is produced by subjecting a mixture of positive electrode active material particles, Li 3 BO 3 , and LiB (OH) 4 to a mechanochemical treatment using, for example, a known mechanochemical device. be able to. At this time, by increasing the applied mechanical energy, the Li 3 BO 3 and the Li B (OH) 4 can be brought into contact with each other on the surface of the positive electrode active material particles.

本実施形態に係る正極材料は、リチウム二次電池用であり、公知方法に従って、本実施形態に係る正極材料を用いてリチウム二次電池を構築することができる。そこで、以下、本実施形態に係る正極材料を備えるリチウム二次電池の具体的な構成例を、図面を参照しながら説明する。なお、当該リチウム二次電池は、以下説明する例に限定されない。以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。 The positive electrode material according to the present embodiment is for a lithium secondary battery, and a lithium secondary battery can be constructed using the positive electrode material according to the present embodiment according to a known method. Therefore, a specific configuration example of the lithium secondary battery provided with the positive electrode material according to the present embodiment will be described below with reference to the drawings. The lithium secondary battery is not limited to the examples described below. In the following drawings, members / parts having the same function are described with the same reference numerals. Further, the dimensional relations (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relations.

図2に示すリチウム二次電池100は、扁平形状の捲回電極体20と非水電解質(図示せず)とが扁平な角形の電池ケース(即ち外装容器)30に収容されることにより構築される密閉型電池である。電池ケース30には、外部接続用の正極端子42および負極端子44と、電池ケース30の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁36とが設けられている。正負極端子42,44はそれぞれ正負極集電板42a,44aと電気的に接続されている。電池ケース30の材質には、例えば、アルミニウム等の軽量で熱伝導性の良い金属材料が用いられる。 The lithium secondary battery 100 shown in FIG. 2 is constructed by housing a flat wound electrode body 20 and a non-aqueous electrolyte (not shown) in a flat square battery case (that is, an outer container) 30. It is a sealed battery. The battery case 30 is provided with a positive electrode terminal 42 and a negative electrode terminal 44 for external connection, and a thin-walled safety valve 36 set to release the internal pressure when the internal pressure of the battery case 30 rises above a predetermined level. Has been done. The positive and negative electrodes 42 and 44 are electrically connected to the positive and negative current collector plates 42a and 44a, respectively. As the material of the battery case 30, for example, a lightweight metal material having good thermal conductivity such as aluminum is used.

捲回電極体20は、図2および図3に示すように、長尺状の正極集電体52の片面または両面(ここでは両面)に長手方向に沿って正極活物質層54が形成された正極シート50と、長尺状の負極集電体62の片面または両面(ここでは両面)に長手方向に沿って負極活物質層64が形成された負極シート60とが、2枚の長尺状のセパレータシート70を介して重ね合わされて長手方向に捲回されている。なお、捲回電極体20の捲回軸方向(上記長手方向に直交するシート幅方向をいう。)の両端から外方にはみ出すように形成された正極活物質層非形成部分52a(即ち、正極活物質層54が形成されずに正極集電体52が露出した部分)と負極活物質層非形成部分62a(即ち、負極活物質層64が形成されずに負極集電体62が露出した部分)には、それぞれ正極集電板42aおよび負極集電板44aが接合されている。 As shown in FIGS. 2 and 3, in the wound electrode body 20, the positive electrode active material layer 54 is formed along the longitudinal direction on one side or both sides (here, both sides) of the long positive electrode current collector 52. The positive electrode sheet 50 and the negative electrode sheet 60 in which the negative electrode active material layer 64 is formed along the longitudinal direction on one side or both sides (here, both sides) of the long negative electrode current collector 62 are two long sheets. It is overlapped with each other via the separator sheet 70 and wound in the longitudinal direction. The positive electrode active material layer non-formed portion 52a (that is, the positive electrode) formed so as to protrude outward from both ends of the winding electrode body 20 in the winding axis direction (meaning the sheet width direction orthogonal to the longitudinal direction). A portion where the positive electrode current collector 52 is exposed without forming the active material layer 54) and a portion 62a where the negative electrode active material layer is not formed (that is, a portion where the negative electrode current collector 62 is exposed without forming the negative electrode active material layer 64). ) Are joined to a positive electrode current collector plate 42a and a negative electrode current collector plate 44a, respectively.

正極シート50を構成する正極集電体52としては、例えばアルミニウム箔等が挙げられる。正極活物質層54は、正極活物質を含む材料である上述の本実施形態に係る正極材料を含む。また正極活物質層54は、導電材、バインダ等をさらに含み得る。導電材としては、例えばアセチレンブラック(AB)等のカーボンブラックやその他(グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、例えばポリフッ化ビニリデン(PVDF)等を使用し得る。 Examples of the positive electrode current collector 52 constituting the positive electrode sheet 50 include aluminum foil and the like. The positive electrode active material layer 54 contains the positive electrode material according to the above-described embodiment, which is a material containing the positive electrode active material. Further, the positive electrode active material layer 54 may further contain a conductive material, a binder and the like. As the conductive material, for example, carbon black such as acetylene black (AB) or other carbon material (graphite or the like) can be preferably used. As the binder, for example, polyvinylidene fluoride (PVDF) or the like can be used.

負極シート60を構成する負極集電体62としては、例えば銅箔等が挙げられる。負極活物質層64は、負極活物質を含む。負極活物質としては、例えば黒鉛、ハードカーボン、ソフトカーボン等の炭素材料を使用し得る。負極活物質層64は、バインダ、増粘剤等をさらに含み得る。バインダとしては、例えばスチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。 Examples of the negative electrode current collector 62 constituting the negative electrode sheet 60 include copper foil and the like. The negative electrode active material layer 64 contains a negative electrode active material. As the negative electrode active material, a carbon material such as graphite, hard carbon, or soft carbon can be used. The negative electrode active material layer 64 may further contain a binder, a thickener and the like. As the binder, for example, styrene butadiene rubber (SBR) or the like can be used. As the thickener, for example, carboxymethyl cellulose (CMC) or the like can be used.

セパレータ70としては、従来からリチウム二次電池に用いられるものと同様の各種多孔質シートを用いることができ、その例としては、ポリエチレン(PE)、ポリプロピレン(PP)等の樹脂から成る多孔質樹脂シートが挙げられる。かかる多孔質樹脂シートは、単層構造であってもよく、二層以上の複層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。セパレータ70は、耐熱層(HRL)を備えていてもよい。 As the separator 70, various porous sheets similar to those conventionally used for lithium secondary batteries can be used, and examples thereof are porous resins made of resins such as polyethylene (PE) and polypropylene (PP). The sheet is mentioned. The porous resin sheet may have a single-layer structure or a multi-layer structure having two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer). The separator 70 may include a heat resistant layer (HRL).

非水電解質は従来のリチウム二次電池と同様のものを使用可能であり、典型的には有機溶媒(非水溶媒)中に、支持塩を含有させたものを用いることができる。非水溶媒としては、カーボネート類、エステル類、エーテル類等の非プロトン性溶媒を用いることができる。なかでも、カーボネート類、例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等を好適に採用し得る。或いは、モノフルオロエチレンカーボネート(MFEC)、ジフルオロエチレンカーボネート(DFEC)、モノフルオロメチルジフルオロメチルカーボネート(F-DMC)、トリフルオロジメチルカーボネート(TFDMC)のようなフッ素化カーボネート等のフッ素系溶媒を好ましく用いることができる。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。支持塩としては、例えば、LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)等のリチウム塩を好適に用いることができる。支持塩の濃度は、0.7mol/L以上1.3mol/L以下が好ましい。
なお、上記非水電解質は、本発明の効果を著しく損なわない限りにおいて、上述した非水溶媒および支持塩以外の成分、例えば、ガス発生剤、被膜形成剤、分散剤、増粘剤等の各種添加剤を含み得る。
As the non-aqueous electrolyte, the same as the conventional lithium secondary battery can be used, and typically, an organic solvent (non-aqueous solvent) containing a supporting salt can be used. As the non-aqueous solvent, aprotic solvents such as carbonates, esters and ethers can be used. Among them, carbonates such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like can be preferably adopted. Alternatively, a fluorinated solvent such as a fluorinated carbonate such as monofluoroethylene carbonate (MFEC), difluoroethylene carbonate (DFEC), monofluoromethyldifluoromethyl carbonate (F-DMC) and trifluorodimethylcarbonate (TFDMC) is preferably used. be able to. As such a non-aqueous solvent, one kind may be used alone, or two or more kinds may be used in combination as appropriate. As the supporting salt, for example, a lithium salt such as LiPF 6 , LiBF 4 , or lithium bis (fluorosulfonyl) imide (LiFSI) can be preferably used. The concentration of the supporting salt is preferably 0.7 mol / L or more and 1.3 mol / L or less.
The non-aqueous electrolyte contains various components other than the above-mentioned non-aqueous solvent and supporting salt, such as a gas generator, a film-forming agent, a dispersant, and a thickener, as long as the effects of the present invention are not significantly impaired. May contain additives.

リチウム二次電池100は、各種用途に利用可能である。好適な用途としては、プラグインハイブリッド自動車(PHV)、ハイブリッド自動車(HV)、電気自動車(EV)等の車両に搭載される駆動用電源が挙げられる。リチウム二次電池100は、複数個が電気的に接続された組電池の形態で使用することもできる。 The lithium secondary battery 100 can be used for various purposes. Suitable applications include drive power supplies mounted on vehicles such as plug-in hybrid vehicles (PHVs), hybrid vehicles (HVs), and electric vehicles (EVs). The lithium secondary battery 100 can also be used in the form of an assembled battery in which a plurality of lithium secondary batteries 100 are electrically connected.

以上、例として扁平形状の捲回電極体を備える角型のリチウム二次電池について説明した。しかしながら、本実施形態に係る正極材料は、公知方法に従い、他の種類のリチウム二次電池にも使用可能である。例えば、本実施形態に係る正極材料を用いて、積層型電極体を備えるリチウム二次電池を構築することもできる。また、本実施形態に係る正極材料を用いて、円筒型リチウム二次電池、ラミネート型リチウム二次電池等を構築することもできる。また、本実施形態に係る正極材料を用いて、全固体リチウム二次電池を構築することもできる。 As described above, a square lithium secondary battery provided with a flat wound electrode body has been described as an example. However, the positive electrode material according to the present embodiment can be used for other types of lithium secondary batteries according to a known method. For example, a lithium secondary battery including a laminated electrode body can be constructed by using the positive electrode material according to the present embodiment. Further, a cylindrical lithium secondary battery, a laminated lithium secondary battery, or the like can also be constructed by using the positive electrode material according to the present embodiment. Further, an all-solid-state lithium secondary battery can also be constructed by using the positive electrode material according to the present embodiment.

以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。 Hereinafter, examples relating to the present invention will be described, but the present invention is not intended to be limited to those shown in such examples.

<正極材料の作製1>
〔実施例1〕
まず、正極活物質粒子として層状構造を有するLiNi1/3Co1/3Mn1/3粒子を、常法に従い作製した。
具体的には、Ni、Co、およびMnの硫酸塩をそれぞれ、NiとCoとMnのモル比が1:1:1になるように水に溶解させた。そこへNaOHを添加して中和することにより、正極活物質の前駆体である、Ni、Co、およびMnを含む複合水酸化物を析出させた。得られた複合水酸化物と炭酸リチウムとを、これらのモル比が1:1となるように混合した。混合物を800℃で15時間焼成して、層状構造を有するLiNi1/3Co1/3Mn1/3粒子を得た。レーザー回折散乱法により、このLiNi1/3Co1/3Mn1/3粒子の平均粒子径(D50)を測定したところ、10μmであった。
次に、層状構造を有するLiNi1/3Co1/3Mn1/3粒子を、LiBO粉末およびLiB(OH)粉末と共にメカノケミカル装置に投入した。このとき、LiBO粉末の量は、LiNi1/3Co1/3Mn1/3粒子に対して1質量%とし、LiB(OH)粉末の量も、LiNi1/3Co1/3Mn1/3粒子に対して1質量%とした。これらを、6000rpmで30分間、メカノケミカル処理することにより、実施例1の正極材料を得た。
<Preparation of positive electrode material 1>
[Example 1]
First, LiNi 1/3 Co 1/3 Mn 1/3 O2 particles having a layered structure as positive electrode active material particles were prepared according to a conventional method.
Specifically, sulfates of Ni, Co, and Mn were each dissolved in water so that the molar ratio of Ni, Co, and Mn was 1: 1: 1. By adding NaOH to neutralize it, a composite hydroxide containing Ni, Co, and Mn, which are precursors of the positive electrode active material, was precipitated. The obtained composite hydroxide and lithium carbonate were mixed so that their molar ratio was 1: 1. The mixture was calcined at 800 ° C. for 15 hours to give LiNi 1/3 Co 1/3 Mn 1/3 O2 particles having a layered structure. The average particle size (D50) of the LiNi 1/3 Co 1/3 Mn 1/3 O2 particles was measured by the laser diffraction / scattering method and found to be 10 μm.
Next, the LiNi 1/3 Co 1/3 Mn 1/3 O 2 particles having a layered structure were charged into the mechanochemical apparatus together with the Li 3 BO 3 powder and the LiB (OH) 4 powder. At this time, the amount of Li 3 BO 3 powder is 1% by mass with respect to the LiNi 1/3 Co 1/3 Mn 1/3 O 2 particles, and the amount of LiB (OH) 4 powder is also LiNi 1/3 Co. It was set to 1% by mass with respect to 1/3 Mn 1/3 O2 particles. These were treated with mechanochemicals at 6000 rpm for 30 minutes to obtain the positive electrode material of Example 1.

〔比較例1〕
実施例1で作製した層状構造を有するLiNi1/3Co1/3Mn1/3粒子をそのまま、比較例1の正極材料として用いた。
[Comparative Example 1]
The LiNi 1/3 Co 1/3 Mn 1/3 O2 particles having a layered structure produced in Example 1 were used as they were as the positive electrode material of Comparative Example 1.

〔比較例2〕
LiNi1/3Co1/3Mn1/3粒子を、LiBO粉末のみとメカノケミカル処理した以外は、実施例1と同様の方法により、比較例2の正極材料を得た。
[Comparative Example 2]
The positive electrode material of Comparative Example 2 was obtained by the same method as in Example 1 except that the LiNi 1/3 Co 1/3 Mn 1/3 O 2 particles were treated with Li 3 BO 3 powder only and mechanochemically.

〔比較例3〕
LiNi1/3Co1/3Mn1/3粒子を、LiB(OH)粉末のみとメカノケミカル処理した以外は、実施例1と同様の方法により、比較例3の正極材料を得た。
[Comparative Example 3]
The positive electrode material of Comparative Example 3 was obtained by the same method as in Example 1 except that LiNi 1/3 Co 1/3 Mn 1/3 O 2 particles were treated with LiB (OH) 4 powder only and mechanochemically. ..

〔実施例2〕
メカノケミカル処理を、8000rpmで30分間行った以外は、実施例1と同様の方法により、実施例2の正極材料を得た。
[Example 2]
The positive electrode material of Example 2 was obtained by the same method as in Example 1 except that the mechanochemical treatment was carried out at 8000 rpm for 30 minutes.

〔実施例3~14〕
LiNi1/3Co1/3Mn1/3粒子に対するLiBO粉末の量、およびLiNi1/3Co1/3Mn1/3粒子に対するLiB(OH)粉末の量をそれぞれ表1に示す値とし、メカノケミカル処理を、8000rpmで30分間行った以外は、実施例1と同様の方法により、実施例3~14の正極材料を得た。
[Examples 3 to 14]
The amount of Li 3 BO 3 powder for LiNi 1/3 Co 1/3 Mn 1/3 O 2 particles and the amount of LiB (OH) 4 powder for LiNi 1/3 Co 1/3 Mn 1/3 O 2 particles. The positive electrode materials of Examples 3 to 14 were obtained by the same method as in Example 1 except that the values shown in Table 1 were used and the mechanochemical treatment was performed at 8000 rpm for 30 minutes.

<被覆状態の観察>
各実施例の正極材料の断面をSTEMで観察した。その結果LiNi1/3Co1/3Mn1/3粒子の表面に、LiBOの被覆およびLiB(OH)の被覆が点在していることが確認された。また、実施例1の正極材料では、LiBOの被覆とLiB(OH)の被覆とは接触しておらず、実施例2~14の正極材料では、LiBOの被覆とLiB(OH)の被覆は、接触していることが確認された。
<Observation of covering condition>
The cross section of the positive electrode material of each example was observed by STEM. As a result, it was confirmed that the surface of the LiNi 1/3 Co 1/3 Mn 1/3 O 2 particles was interspersed with the Li 3 BO 3 coating and the LiB (OH) 4 coating. Further, in the positive electrode material of Example 1, the coating of Li 3 BO 3 and the coating of LiB (OH) 4 are not in contact with each other, and in the positive electrode materials of Examples 2 to 14, the coating of Li 3 BO 3 and LiB are not in contact with each other. It was confirmed that the coatings of (OH) 4 were in contact.

<評価用リチウム二次電池の作製>
上記作製した正極材料と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVDF)とを、正極材料:AB:PVDF=80:8:2の質量比でN-メチルピロリドン(NMP)中でプラネタリミキサを用いて混合し、固形分濃度56質量%の正極活物質層形成用スラリーを調製した。このスラリーを、ダイコータを用いてアルミニウム箔の両面に塗布し、乾燥した後、プレスすることにより正極シートを作製した。
また、負極活物質としての天然黒鉛(C)と、バインダとしてのスチレンブタジエンラバー(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、C:SBR:CMC=98:1:1の質量比でイオン交換水中で混合して、負極活物質層形成用スラリーを調製した。このスラリーを、銅箔の両面に塗布し、乾燥した後、プレスすることにより負極シートを作製した。
また、2枚のセパレータシート(多孔性ポリオレフィンシート)を用意した。
作製した正極シートと負極シートと用意した2枚のセパレータシートとを重ね合わせ、捲回して捲回電極体を作製した。作製した捲回電極体の正極シートと負極シートにそれぞれ電極端子を溶接により取り付け、これを、注液口を有する電池ケースに収容した。
続いて、電池ケースの注液口から非水電解液を注入し、当該注液口を気密に封止した。なお、非水電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを1:1:1の体積比で含む混合溶媒に、支持塩としてのLiPFを1.0mol/Lの濃度で溶解させたものを用いた。
<Manufacturing of lithium secondary battery for evaluation>
The positive electrode material produced above, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVDF) as a binder are mixed with N-methylpyrrolidone in a mass ratio of positive electrode material: AB: PVDF = 80: 8: 2. A slurry for forming a positive electrode active material layer having a solid content concentration of 56% by mass was prepared by mixing in (NMP) using a planetary mixer. This slurry was applied to both sides of the aluminum foil using a die coater, dried, and then pressed to prepare a positive electrode sheet.
Further, natural graphite (C) as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener are used in C: SBR: CMC = 98: 1: 1. A slurry for forming a negative electrode active material layer was prepared by mixing in ion-exchanged water by mass ratio. This slurry was applied to both sides of the copper foil, dried, and then pressed to prepare a negative electrode sheet.
In addition, two separator sheets (porous polyolefin sheets) were prepared.
The prepared positive electrode sheet, the negative electrode sheet, and the two prepared separator sheets were superposed and wound to prepare a wound electrode body. Electrode terminals were attached to the positive electrode sheet and the negative electrode sheet of the manufactured wound electrode body by welding, respectively, and these were housed in a battery case having a liquid injection port.
Subsequently, a non-aqueous electrolytic solution was injected from the injection port of the battery case, and the injection port was hermetically sealed. The non-aqueous electrolytic solution contains LiPF 6 as a supporting salt in a mixed solvent containing ethylene carbonate (EC), ethylmethyl carbonate (EMC) and dimethyl carbonate (DMC) in a volume ratio of 1: 1: 1. The one dissolved at a concentration of 1.0 mol / L was used.

<活性化および初期容量測定>
上記作製した各評価リチウム二次電池を25℃の環境下に置いた。活性化(初回充電)は、定電流-定電圧方式とし、各評価用リチウム二次電池を1/3Cの電流値で4.2Vまで定電流充電を行った後、電流値が1/50Cになるまで定電圧充電を行い、満充電状態にした。その後、各評価用リチウム二次電池を1/3Cの電流値で3.0Vまで定電流放電した。そして、このときの放電容量を測定して初期容量を求めた。
<Activation and initial volume measurement>
Each evaluation lithium secondary battery produced above was placed in an environment of 25 ° C. The activation (initial charge) is a constant current-constant voltage method, and after constant current charging of each evaluation lithium secondary battery to 4.2V with a current value of 1 / 3C, the current value becomes 1 / 50C. It was charged at a constant voltage until it became fully charged. Then, each evaluation lithium secondary battery was constantly discharged to 3.0 V at a current value of 1 / 3C. Then, the discharge capacity at this time was measured to obtain the initial capacity.

<電池抵抗測定>
活性化した各評価用リチウム二次電池を、3.70Vの電圧(開放電圧)に調製した後、-5℃の環境下に置いた。この各評価用リチウム二次電池に対し、20Cの電流値で8秒間の放電を行った。このときの電圧降下量ΔVを取得し、電流値とΔVを用いて電池抵抗を算出した。比較例1の正極材料を用いた評価用リチウム二次電池の抵抗を1.00とした場合の、他の比較例および実施例の正極材料を用いた評価用リチウム二次電池の抵抗の比を求めた。結果を表1に示す。
<Battery resistance measurement>
Each activated lithium secondary battery for evaluation was prepared to a voltage of 3.70 V (open circuit voltage) and then placed in an environment of −5 ° C. Each of the evaluation lithium secondary batteries was discharged at a current value of 20 C for 8 seconds. The voltage drop amount ΔV at this time was acquired, and the battery resistance was calculated using the current value and ΔV. When the resistance of the evaluation lithium secondary battery using the positive electrode material of Comparative Example 1 is 1.00, the ratio of the resistance of the evaluation lithium secondary battery using the positive electrode material of other Comparative Examples and Examples is I asked. The results are shown in Table 1.

<高温サイクル特性評価>
活性化した各評価用リチウム二次電池を60℃の環境下に置き、10Cで4.2Vまで定電流充電および10Cで3.3Vまで定電流放電を1サイクルとする充放電を200サイクル繰り返した。200サイクル目の放電容量を、初期容量と同様の方法で求めた。高温サイクル特性の指標として、(充放電200サイクル目の放電容量/初期容量)×100より、容量維持率(%)を求めた。結果を表1に示す。
<High temperature cycle characterization>
Each activated lithium secondary battery for evaluation was placed in an environment of 60 ° C., and charging / discharging with constant current charging up to 4.2 V at 10 C and constant current discharge up to 3.3 V at 10 C was repeated for 200 cycles. .. The discharge capacity at the 200th cycle was determined by the same method as the initial capacity. As an index of the high temperature cycle characteristic, the capacity retention rate (%) was obtained from (discharge capacity / initial capacity at the 200th charge / discharge cycle) × 100. The results are shown in Table 1.

<耐湿性評価>
上記と同じ手順で正極シートを作製し、これを25℃、湿度100%の恒温槽に12時間保存した。この正極シートを用いて、上記と同じ方法で評価用リチウム二次電池を作製した。各評価リチウム二次電池を25℃の環境下に置いた。各評価用リチウム二次電池を、1/3Cの電流値で4.2Vまで定電流充電を行った後、電流値が1/50Cになるまで定電圧充電を行い、満充電状態にした。その後、各評価用リチウム二次電池を1/3Cの電流値で3.0Vまで定電流放電した。そして、このときの放電容量を測定した。比較例1の正極材料を用いた評価用リチウム二次電池の放電容量を1.00とした場合の、他の比較例および実施例の正極材料を用いた評価用リチウム二次電池の放電容量の比を求めた。結果を表1に示す。
<Moisture resistance evaluation>
A positive electrode sheet was prepared by the same procedure as above, and the positive electrode sheet was stored in a constant temperature bath at 25 ° C. and 100% humidity for 12 hours. Using this positive electrode sheet, a lithium secondary battery for evaluation was produced by the same method as described above. Each evaluation lithium secondary battery was placed in an environment of 25 ° C. Each evaluation lithium secondary battery was charged with a constant current of 4.2 V at a current value of 1 / 3C, and then charged with a constant voltage until the current value became 1 / 50C to bring it into a fully charged state. Then, each evaluation lithium secondary battery was constantly discharged to 3.0 V at a current value of 1 / 3C. Then, the discharge capacity at this time was measured. When the discharge capacity of the evaluation lithium secondary battery using the positive electrode material of Comparative Example 1 is 1.00, the discharge capacity of the evaluation lithium secondary battery using the positive electrode materials of other Comparative Examples and Examples. The ratio was calculated. The results are shown in Table 1.

Figure 0007074697000001
Figure 0007074697000001

実施例1と比較例1~3の比較より、正極活物質の表面に、LiBOおよびLiB(OH)を共存させることにより、電池抵抗が低減され、また高温サイクル特性および耐湿性が向上していることがわかる。ここで、比較例1と比較例2の比較より、正極活物質の表面にLiBOを存在させることの効果が把握でき、比較例1と比較例3の比較より、正極活物質の表面にLiB(OH)を存在させることの効果が把握できる。LiB(OH)を単独で正極活物質の表面に存在させた比較例3では、電池抵抗が大きくなったのにもかかわらず、実施例1では、比較例1および比較例2よりも抵抗が顕著に小さくなった。また、LiBOおよびLiB(OH)を併用した場合の、高温サイクル特性および耐湿性の向上効果は、LiBOの単独使用により得られる向上効果およびLiB(OH)の単独使用により得られる向上効果の足し合わせよりも大きなものとなった。このことから、正極活物質の表面に、LiBOおよびLiB(OH)を共存させることによって、相乗効果が得られることがわかる。
メカノケミカル処理の条件を変えた実施例2では、LiBOとLiB(OH)とが接触していた。この実施例2では、実施例1と比べてさらなる低抵抗化が達成でき、また、高温サイクル特性および耐湿性がさらに向上した。
実施例2~8の結果より、LiBOの量を変化させても、抵抗低減効果、高温サイクル特性向上効果、および耐湿性向上効果が得られることがわかる。特に効果が高いLiBO量は、0.01質量%以上10質量%以下の範囲であると言える。
実施例2および実施例9~14の結果より、LiB(OH)の量を変化させても、抵抗低減効果、高温サイクル特性向上効果、および耐湿性向上効果が得られることがわかる。特に効果が高いLiB(OH)の量は、0.001質量%以上2質量%以下の範囲であると言える。
From the comparison between Example 1 and Comparative Examples 1 to 3, by allowing Li 3 BO 3 and Li B (OH) 4 to coexist on the surface of the positive electrode active material, the battery resistance is reduced, and the high temperature cycle characteristics and moisture resistance are improved. It can be seen that it is improving. Here, the effect of having Li 3 BO 3 on the surface of the positive electrode active material can be grasped from the comparison between Comparative Example 1 and Comparative Example 2, and the surface of the positive electrode active material can be understood from the comparison between Comparative Example 1 and Comparative Example 3. The effect of having LiB (OH) 4 present on the surface can be grasped. In Comparative Example 3 in which LiB (OH) 4 was present alone on the surface of the positive electrode active material, the resistance was higher in Example 1 than in Comparative Example 1 and Comparative Example 2, although the battery resistance was increased. It has become significantly smaller. In addition, the improvement effect of high temperature cycle characteristics and moisture resistance when Li 3 BO 3 and LiB (OH) 4 are used together is the improvement effect obtained by the single use of Li 3 BO 3 and the single use of LiB (OH) 4 . It is larger than the sum of the improvement effects obtained by. From this, it can be seen that a synergistic effect can be obtained by allowing Li 3 BO 3 and Li B (OH) 4 to coexist on the surface of the positive electrode active material.
In Example 2 in which the conditions of the mechanochemical treatment were changed, the Li 3 BO 3 and the Li B (OH) 4 were in contact with each other. In this Example 2, further low resistance can be achieved as compared with Example 1, and the high temperature cycle characteristics and moisture resistance are further improved.
From the results of Examples 2 to 8, it can be seen that even if the amount of Li 3 BO 3 is changed, the effect of reducing the resistance, the effect of improving the high temperature cycle characteristics, and the effect of improving the moisture resistance can be obtained. It can be said that the amount of Li 3 BO 3 having a particularly high effect is in the range of 0.01% by mass or more and 10% by mass or less.
From the results of Examples 2 and 9 to 14, it can be seen that even if the amount of LiB (OH) 4 is changed, the resistance reducing effect, the high temperature cycle characteristic improving effect, and the moisture resistance improving effect can be obtained. It can be said that the amount of LiB (OH) 4 , which is particularly effective, is in the range of 0.001% by mass or more and 2% by mass or less.

<正極材料の作製2>
〔比較例4~9〕
表2に示す組成の正極活物質を準備し、そのまま比較例4~9の正極材料として用いた。
<Preparation of positive electrode material 2>
[Comparative Examples 4 to 9]
The positive electrode active material having the composition shown in Table 2 was prepared and used as it was as the positive electrode material of Comparative Examples 4 to 9.

〔実施例15~20〕
表2に示す組成の正極活物質を準備し、LiBO粉末およびLiB(OH)粉末と共にメカノケミカル装置に投入した。このとき、LiBO粉末の量は、正極活物質に対して1質量%とし、LiB(OH)粉末の量も、正極活物質に対して1質量%とした。これらを、8000rpmで30分間、メカノケミカル処理することにより、実施例15~20の正極材料を得た。
各実施例15~20の正極材料の断面をSTEMで観察した。その結果、正極活物質粒子の表面に、LiBOの被覆およびLiB(OH)の被覆が点在していることが確認された。また、LiBOの被覆とLiB(OH)の被覆は、接触していることが確認された。
[Examples 15 to 20]
The positive electrode active material having the composition shown in Table 2 was prepared and charged into the mechanochemical apparatus together with the Li 3 BO 3 powder and the LiB (OH) 4 powder. At this time, the amount of the Li 3 BO 3 powder was 1% by mass with respect to the positive electrode active material, and the amount of the LiB (OH) 4 powder was also 1% by mass with respect to the positive electrode active material. These were treated with mechanochemicals at 8000 rpm for 30 minutes to obtain positive electrode materials of Examples 15 to 20.
The cross sections of the positive electrode materials of Examples 15 to 20 were observed by STEM. As a result, it was confirmed that the surface of the positive electrode active material particles was interspersed with the coatings of Li 3 BO 3 and LiB (OH) 4 . Further, it was confirmed that the coating of Li 3 BO 3 and the coating of LiB (OH) 4 were in contact with each other.

<正極材料の評価>
上記作製した各実施例および各比較例の正極材料について、上記と同じ手順にて、電池抵抗測定、高温サイクル特性評価(容量維持率測定)、および耐湿性評価を行った。
電池抵抗については、同じ組成の正極活物質を用いている比較例の正極材料を用いた電池の値を基準(1.00)として、各実施例の抵抗の比を求めた(例えば、実施例15は、比較例4を基準とし、実施例20は、比較例9を基準とした)。
耐湿性評価については、同じ組成の正極活物質を用いている比較例の値を基準(1.00)として、各実施例の放電容量の比を求めた。
これらの結果を表2に示す。
<Evaluation of positive electrode material>
Battery resistance measurement, high temperature cycle characteristic evaluation (capacity retention rate measurement), and moisture resistance evaluation were performed on the positive electrode materials of each of the prepared Examples and Comparative Examples by the same procedure as described above.
Regarding the battery resistance, the resistance ratio of each example was determined based on the value of the battery using the positive electrode material of the comparative example using the positive electrode active material having the same composition (1.00) (for example, Example). 15 was based on Comparative Example 4, and Example 20 was based on Comparative Example 9).
For the evaluation of moisture resistance, the ratio of the discharge capacities of each example was determined based on the value of the comparative example using the positive electrode active material having the same composition (1.00).
These results are shown in Table 2.

Figure 0007074697000002
Figure 0007074697000002

比較例4~9および実施例15~20をそれぞれ比較することにより、正極活物質の組成および結晶構造によらず、抵抗低減効果、高温サイクル特性向上効果、および耐湿性向上効果が得られていることがわかる。 By comparing Comparative Examples 4 to 9 and Examples 15 to 20, respectively, resistance reduction effect, high temperature cycle characteristic improvement effect, and moisture resistance improvement effect are obtained regardless of the composition and crystal structure of the positive electrode active material. You can see that.

以上のことから、本実施形態に係るリチウム二次電池の正極材料によれば、耐湿性を高めることができると共に、リチウム二次電池の抵抗を小さくすることができ、かつリチウム二次電池の高温サイクル特性を向上させることができることがわかる。 From the above, according to the positive electrode material of the lithium secondary battery according to the present embodiment, the moisture resistance can be improved, the resistance of the lithium secondary battery can be reduced, and the high temperature of the lithium secondary battery can be reduced. It can be seen that the cycle characteristics can be improved.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The techniques described in the claims include various modifications and modifications of the specific examples exemplified above.

10 正極材料
12 正極活物質粒子
14 LiBO
16 LiB(OH)
20 捲回電極体
30 電池ケース
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極シート(正極)
52 正極集電体
52a 正極活物質層非形成部分
54 正極活物質層
60 負極シート(負極)
62 負極集電体
62a 負極活物質層非形成部分
64 負極活物質層
70 セパレータシート(セパレータ)
100 リチウム二次電池
10 Positive electrode material 12 Positive electrode active material particles 14 Li 3 BO 3
16 LiB (OH) 4
20 Winding electrode body 30 Battery case 36 Safety valve 42 Positive electrode terminal 42a Positive electrode current collector plate 44 Negative electrode terminal 44a Negative electrode current collector plate 50 Positive electrode sheet (positive electrode)
52 Positive electrode current collector 52a Positive electrode active material layer non-formed portion 54 Positive electrode active material layer 60 Negative electrode sheet (negative electrode)
62 Negative electrode current collector 62a Negative electrode active material layer non-formed portion 64 Negative electrode active material layer 70 Separator sheet (separator)
100 lithium secondary battery

Claims (4)

正極活物質粒子と、
前記正極活物質粒子の表面にLiBOと、
前記正極活物質粒子の表面にLiB(OH)と、
を含むリチウム二次電池の正極材料。
Positive electrode active material particles and
On the surface of the positive electrode active material particles, Li 3 BO 3 and
On the surface of the positive electrode active material particles, LiB (OH) 4 and
Positive electrode material for lithium secondary batteries, including.
LiBOと、LiB(OH)とが接触している、請求項1に記載のリチウム二次電池の正極材料。 The positive electrode material for a lithium secondary battery according to claim 1, wherein the Li 3 BO 3 and the LiB (OH) 4 are in contact with each other. LiBOの量が、前記正極活物質粒子に対して、0.01質量%以上10質量%以下である、請求項1または2に記載のリチウム二次電池の正極材料。 The positive electrode material for a lithium secondary battery according to claim 1 or 2, wherein the amount of Li 3 BO 3 is 0.01% by mass or more and 10% by mass or less with respect to the positive electrode active material particles. LiB(OH)の量が、前記正極活物質粒子に対して、0.001質量%以上2質量%以下である、請求項1~3のいずれか1項に記載のリチウム二次電池の正極材料。 The positive electrode of the lithium secondary battery according to any one of claims 1 to 3, wherein the amount of LiB (OH) 4 is 0.001% by mass or more and 2% by mass or less with respect to the positive electrode active material particles. material.
JP2019029242A 2019-02-21 2019-02-21 Positive electrode material for lithium secondary batteries Active JP7074697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019029242A JP7074697B2 (en) 2019-02-21 2019-02-21 Positive electrode material for lithium secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019029242A JP7074697B2 (en) 2019-02-21 2019-02-21 Positive electrode material for lithium secondary batteries

Publications (2)

Publication Number Publication Date
JP2020136114A JP2020136114A (en) 2020-08-31
JP7074697B2 true JP7074697B2 (en) 2022-05-24

Family

ID=72263482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019029242A Active JP7074697B2 (en) 2019-02-21 2019-02-21 Positive electrode material for lithium secondary batteries

Country Status (1)

Country Link
JP (1) JP7074697B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024063373A1 (en) * 2022-09-19 2024-03-28 주식회사 에코프로비엠 Positive electrode active material and lithium secondary battery including same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201432A (en) 2014-03-31 2015-11-12 戸田工業株式会社 Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2018533157A (en) 2015-11-30 2018-11-08 エルジー・ケム・リミテッド Positive electrode active material for secondary battery and secondary battery including the same
WO2018221664A1 (en) 2017-05-31 2018-12-06 住友金属鉱山株式会社 Positive electrode active substance for non-aqueous electrolyte secondary battery and method for producing same, positive electrode mixture paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089406A (en) * 2010-10-21 2012-05-10 Toyota Motor Corp Method for manufacturing positive electrode active material part, method for manufacturing solid electrolyte lithium battery, and positive electrode active material part

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201432A (en) 2014-03-31 2015-11-12 戸田工業株式会社 Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2018533157A (en) 2015-11-30 2018-11-08 エルジー・ケム・リミテッド Positive electrode active material for secondary battery and secondary battery including the same
WO2018221664A1 (en) 2017-05-31 2018-12-06 住友金属鉱山株式会社 Positive electrode active substance for non-aqueous electrolyte secondary battery and method for producing same, positive electrode mixture paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2020136114A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
US12244008B2 (en) Positive electrode material of secondary battery, and secondary battery using same
JP2016039114A (en) Nonaqueous electrolyte secondary battery
US20230197944A1 (en) Positive electrode and nonaqueous electrolyte secondary battery using the same
JP2021176123A (en) Positive electrode material for lithium secondary batteries
JP2021044138A (en) Non-aqueous electrolyte secondary battery
KR102133417B1 (en) Nonaqueous electrolyte secondary battery
US11626586B2 (en) Positive electrode material of lithium secondary battery, and lithium secondary battery using same
JP2023034701A (en) Positive electrode active material and nonaqueous electrolyte secondary battery including the same
CN112054163B (en) Positive electrode for secondary battery and secondary battery using the same
JP7096981B2 (en) Lithium ion secondary battery
KR102171587B1 (en) Positive electrode material for lithium secondary batteries
CN112242509B (en) Nonaqueous electrolyte secondary battery
JP2023034700A (en) Positive electrode active material and nonaqueous electrolyte secondary battery including the same
JP7111638B2 (en) Cathode material for lithium secondary batteries
US20230197945A1 (en) Positive electrode active material and nonaqueous electrolyte secondary battery using the same
JP7074697B2 (en) Positive electrode material for lithium secondary batteries
US20230197950A1 (en) Positive electrode active material and nonaqueous electrolyte secondary battery using the same
JP2021018893A (en) Non-aqueous electrolyte secondary battery
JP7290089B2 (en) Non-aqueous electrolyte secondary battery
JP2021044136A (en) Nonaqueous electrolyte secondary battery
US20240136519A1 (en) Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
US20250029995A1 (en) Positive electrode and secondary battery using the same
JP2024135222A (en) Non-aqueous electrolyte secondary battery
KR20220128951A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220512

R151 Written notification of patent or utility model registration

Ref document number: 7074697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250