JP7049754B2 - Motor control device - Google Patents
Motor control device Download PDFInfo
- Publication number
- JP7049754B2 JP7049754B2 JP2015026869A JP2015026869A JP7049754B2 JP 7049754 B2 JP7049754 B2 JP 7049754B2 JP 2015026869 A JP2015026869 A JP 2015026869A JP 2015026869 A JP2015026869 A JP 2015026869A JP 7049754 B2 JP7049754 B2 JP 7049754B2
- Authority
- JP
- Japan
- Prior art keywords
- model
- control
- error
- control system
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Control Of Multiple Motors (AREA)
- Control Of Electric Motors In General (AREA)
Description
本発明は、複数個のモータが共同して一個の可動部を駆動して可動部を高速高精度に位置決めできるモータ制御装置に関する。 The present invention relates to a motor control device in which a plurality of motors jointly drive one movable portion to position the movable portion at high speed and with high accuracy.
マウンタ装置などの部品実装機では、可動部をモータにより高速に駆動して高精度に位置決めすることにより単位時間当たりの部品実装数を増やすことができる。これにより、部品実装作業による製造コストを低減することができる。
そして、たとえば多数のプリント基板を同時に実装することができる大きな可動部を使用する大型のマウンタ装置では、該1個の可動部を複数個のモータで高速に駆動することが考えられる。
In a component mounting machine such as a mounter device, the number of component mountings per unit time can be increased by driving a moving part at high speed with a motor and positioning it with high accuracy. As a result, the manufacturing cost due to the component mounting work can be reduced.
Then, for example, in a large mounter device using a large movable portion capable of mounting a large number of printed circuit boards at the same time, it is conceivable to drive the one movable portion with a plurality of motors at high speed.
たとえば特許文献1のモータ制御装置は、1個の可動部を2個のモータで駆動している。2個のモータの各々はそれぞれに対応して設けられたモータ制御モデルおよびサーボコントローラにより制御される。サーボコントローラは、外部位置指令に基づいてモータの動きを実際に制御する。モータ制御モデルは、サーボコントローラの各要素に対応する要素モデルを有し、外部位置指令に基づいてモデルトルク、モデル速度、およびモデル位置を生成する。また、これらのモデル情報とサーボコントローラからフィードバックされる実際の制御での制御トルク、制御速度、制御位置との差分を演算し、その差分を一定の割合でサーボコントローラへ戻している。このようにモータ制御モデルにおいてサーボコントローラの制御誤差を演算し、その制御誤差をサーボコントローラへ戻すことにより、サーボコントローラはモータ制御モデルで生成されるモデルトルク、モデル速度、およびモデル位置に追従してモータの動きを制御し得る。
このように特許文献1のモータ制御装置は、モータ制御モデルとサーボコントローラとの誤差を外乱としてとらえてこれを位相補償することによりモデルとサーボコントローラの制御とのずれを抑えているので、複数個のモータの制御系に同じモデルを用いることで軸間のずれ(同期誤差)を抑えることができると考えられる。
また、特許文献1とは異なり1個の可動部を1個のモータで駆動する場合には可動部がモータの駆動方向に対して傾くようにヨーイングすることがあるが、特許文献1のように1個の可動部を2個のモータで駆動することによりこのヨーイングを抑えることも期待し得ると考えられる。
For example, in the motor control device of
As described above, the motor control device of
Further, unlike
しかしながら、実際の機械系では、たとえば複数個のモータに対して可動部を駆動するボールねじ等がねじり振動したり、複数個のモータおよび可動部が取り付けられる機台が振動したりすることにより、可動部が振動することがある。
そして、特許文献1の手法では、これらのねじり振動を抑制したり、機台振動を抑制したりする機能が搭載されていないため、たとえば機械系の剛性が低い場合にはこれらの振動を十分に抑制することができないという問題がある。
また、実際に機台振動やねじり振動が生じ得る場合には、それらの振動が生じないように制御する結果として個々の軸のサーボコントローラの制御応答を十分に高くすることができなくなる。個々の軸のサーボコントローラの制御応答が高くないと、モデルとサーボコントローラ間の誤差抑制が十分に行えなくなる。モデルとサーボコントローラ間の誤差抑制が十分に行えないと、軸間の同期精度を高めることができなくなる。
However, in an actual mechanical system, for example, a ball screw or the like that drives a movable part may vibrate with respect to a plurality of motors, or a machine base to which a plurality of motors and the movable part may be attached may vibrate. Moving parts may vibrate.
Further, since the method of
Further, when the machine base vibration or the torsional vibration can actually occur, the control response of the servo controller of each axis cannot be sufficiently high as a result of controlling so that the vibration does not occur. If the control response of the servo controller of each axis is not high, the error suppression between the model and the servo controller cannot be sufficiently performed. If the error between the model and the servo controller cannot be sufficiently suppressed, the synchronization accuracy between the axes cannot be improved.
本発明はこのような課題を解消するためになされたものであり、その目的は、1個の可動部を複数個のモータで駆動する機械において、可動部に対する振動の影響を抑制して高い同期精度を実現し、その結果として高速高精度な位置決めを実現できるモータ制御装置を提供することにある。 The present invention has been made to solve such a problem, and an object thereof is to suppress the influence of vibration on a moving part in a machine in which one moving part is driven by a plurality of motors, and to achieve high synchronization. It is an object of the present invention to provide a motor control device capable of achieving accuracy and, as a result, achieving high-speed and high-precision positioning.
本発明のモータ制御装置は、共通の外部位置指令に基づいて駆動されるN個(N:2以上の自然数)のモータにより共同して1個の可動部を可動させるモータ制御装置であって、可動部に対する振動の影響を抑制するように状態をフィードバックするモデル制御系であって外部位置指令からモデル位置指令を含むモデル指令を生成するモデル制御系と、N個のモータと1対1対応で設けられてモデル指令に基づいて各々のモータをフィードバック制御するN個のフィードバック制御系と、を有し、(N-1)個のフィードバック制御系は、各々のモータを制御する際の制御誤差を、残りの1個のフィードバック制御系での制御誤差との差分により補償する。 The motor control device of the present invention is a motor control device that jointly moves one movable part by N (N: 2 or more natural numbers) motors driven based on a common external position command. A model control system that feeds back the state so as to suppress the influence of vibration on moving parts, and generates model commands including model position commands from external position commands, and a one-to-one correspondence with N motors. It is provided with N feedback control systems that feedback control each motor based on a model command, and (N-1) feedback control systems control errors when controlling each motor. , Compensate by the difference from the control error in the remaining one feedback control system.
本発明では、N個のフィードバック制御系の各々は、外部位置指令ではなく、モデル位置を含むモデル指令に基づいて各々のモータをフィードバック制御する。しかも、外部位置指令からモデル位置指令を含むモデル指令を生成するモデル制御系は、可動部に対する振動の影響を抑制するように状態をフィードバックするので、N個のフィードバック制御系はモデルに追従して振動の影響を抑制したフィードバック制御を互いに独立して実行し、N個のモータは外部位置指令に対して同様に追従するように制御され得る。N個のフィードバック制御系は、共通の外部位置指令に基づいてN個のモータを互いに同期させるように制御することができる。たとえば可動部等が取り付けられる機台が振動したりまたはモータに対して可動部が振動したりする結果として可動部が振動の影響を受け得るような場合においてその影響を抑制して、N個のモータを互いに同期させることができる。
しかも、本発明では、(N-1)個のフィードバック制御系は、各々での制御誤差を、残りの1個のフィードバック制御系での制御誤差との差分により補償する。(N-1)個のフィードバック制御系は、各々の制御誤差が1個のフィードバック制御系の制御誤差に対してずれが生じないように同期させながら、各々のフィードバック制御を実行する。すなわち、N個のモータを互いに独立したフィードバック制御系により互いに独立して制御しながらも、1個のフィードバック制御系と(N-1)個のフィードバック制御系との間で生じ得る制御誤差のずれを補償することができる。これらN個のフィードバック制御系の間で生じ得る制御誤差のずれを1個のフィードバック制御系と(N-1)個のフィードバック制御系との間で補償することができる。
このように、本発明では、1個の可動部を共同して可動させる複数個のモータを共通の外部位置指令で、かつ、可動部に対する振動の影響を抑制するように状態をフィードバックする同じモデルでモデル追従制御を行う事により、フィードバック制御系に与えるトルク指令を全軸で同一にする事ができ、これにより、たとえば機台振動が生じたりモータに対して可動部が振動したりするような場合であっても、これらに起因した可動部に対する振動の影響を抑制して指令に対する追従性を向上させて複数個のフィードバック制御系の制御誤差の間でずれが発生し難いように制御を実行しつつ、さらに、それでも他の原因によりN個のフィードバック制御系の間で生じ得る微小な制御誤差のずれをN個のフィードバック制御系の間で補償している。よって、N個のモータの制御系は、可動部に対する振動の影響を抑制して同期ずれが発生し難い制御と同期ずれを抑える制御とが二重化された制御により1個の可動部を複数個のモータで制御する場合での複数のモータの同期精度を高めることができる。その結果として高速高精度な位置決めを実現できる。
In the present invention, each of the N feedback control systems feedback-controls each motor based on the model command including the model position, not the external position command. Moreover, since the model control system that generates the model command including the model position command from the external position command feeds back the state so as to suppress the influence of the vibration on the moving part, the N feedback control systems follow the model. Feedback control that suppresses the influence of vibration is executed independently of each other, and the N motors can be controlled to follow the external position command in the same manner. The N feedback control systems can control the N motors to synchronize with each other based on a common external position command. For example, when the machine base to which the movable part is attached vibrates or the movable part vibrates with respect to the motor and the movable part may be affected by the vibration, the influence is suppressed to N pieces. The motors can be synchronized with each other.
Moreover, in the present invention, each of the (N-1) feedback control systems compensates for the control error by the difference from the control error in the remaining one feedback control system. The (N-1) feedback control systems execute each feedback control while synchronizing each control error with respect to the control error of one feedback control system so as not to cause a deviation. That is, while controlling the N motors independently of each other by the feedback control systems independent of each other, the deviation of the control error that can occur between one feedback control system and the (N-1) feedback control system. Can be compensated. The deviation of the control error that may occur between these N feedback control systems can be compensated between one feedback control system and (N-1) feedback control systems.
As described above, in the present invention, the same model that feeds back the state so as to suppress the influence of vibration on the movable part by using a common external position command for a plurality of motors that jointly move one movable part. By performing model follow-up control with, the torque command given to the feedback control system can be made the same for all axes, which causes, for example, machine base vibration or vibration of moving parts with respect to the motor. Even in this case, the influence of vibration on the moving parts caused by these is suppressed to improve the followability to the command, and the control is executed so that the deviation between the control errors of a plurality of feedback control systems is unlikely to occur. Nevertheless, it still compensates for minute deviations in control error between the N feedback control systems that may occur between the N feedback control systems due to other causes. Therefore, the control system of N motors has a plurality of one movable part by the control in which the control that suppresses the influence of vibration on the movable part and the synchronization deviation is unlikely to occur and the control that suppresses the synchronization deviation are duplicated. It is possible to improve the synchronization accuracy of a plurality of motors when controlled by the motors. As a result, high-speed and high-precision positioning can be realized.
以下、本発明の実施形態を、図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[第1実施形態]
図1は、本発明の第1実施形態に係るモータ制御装置1のブロック図である。
図1のモータ制御装置1は、第1モータ2と第2モータ3との2個のモータが共同して1個の可動部を駆動して可動部を高速高精度に位置決めできるものである。
[First Embodiment]
FIG. 1 is a block diagram of a
In the
図1のモータ制御装置1は、可動部としてのテーブル4の制御位置を示す外部位置指令が入力されて各種の第1モデル指令を生成する第1モデル制御系10と、第1モータ2を含むフィードバックループを有して第1モデル指令に基づいて第1モータ2を実際に制御する第1フィードバック制御系30と、第1モデル制御系10と同じ外部位置指令が入力されて各種の第2モデル指令を供給する第2モデル制御系50と、第2モータ3を含むフィードバックループを有して第2モデル指令に基づいて第2モータ3を実際に制御する第2フィードバック制御系70と、を有する。
そして、本実施形態において、第1モデル指令は、第1モデル位置指令、第1モデル速度指令、第1モデルトルク指令である。また、第2モデル指令は、第2モデル位置指令、第2モデル速度指令、第2モデルトルク指令である。
The
Then, in the present embodiment, the first model command is a first model position command, a first model speed command, and a first model torque command. The second model command is a second model position command, a second model speed command, and a second model torque command.
第1フィードバック制御系30は、第1制御位置誤差生成器31、第1同期位置誤差生成器32、第1位置同期補償器33、第1同期補償位置誤差生成器34、第1位置制御器35、第1検出速度生成器36、第1制御速度誤差生成器37、第1速度制御器38、第1制御トルク生成器39、第1トルク指令ローパスフィルタ40、第1トルク制御器41、を有する。
そして、第1制御位置誤差生成器31、第1同期補償位置誤差生成器34、第1位置制御器35、第1制御速度誤差生成器37、第1速度制御器38、第1制御トルク生成器39、第1トルク指令ローパスフィルタ40、第1トルク制御器41、第1モータ2、および第1センサ42は、第1モータ2を実際に制御するフィードバックループを構成する。
The first
Then, the first control
第1モータ2は、たとえば同期モータである。
第1センサ42は、第1モータ2の回転位置を検出する。第1センサ42は、たとえば第1モータ2の回転子軸に取り付けられたロータリエンコーダである。ロータリエンコーダは、モータの回転子軸の位置に応じたパルス信号を出力する。パルス信号は、第1モータ2の回転位置へ換算できる。
The
The
第1制御位置誤差生成器31は、第1モデル制御系10から供給される第1モデル位置指令と第1センサ42から得られる第1モータ2の第1検出位置とに基づいて、これらの位置誤差を示す第1制御位置誤差を生成する。第1制御位置誤差は、たとえば第1モデル位置指令から第1検出位置を減算したものでよい。
第1同期位置誤差生成器32は、自身の第1制御位置誤差と後述する第2制御位置誤差生成器71により生成される第2制御位置誤差とに基づいて、これらの制御位置誤差の差分(同期誤差)を示す第1同期位置誤差を生成する。第1同期位置誤差は、たとえば自身の第1制御位置誤差から他の第2制御位置誤差を減算したものでよい。この場合、第2フィードバック制御系70に対する第1フィードバック制御系30の同期誤差が得られる。
第1位置同期補償器33は、第1同期位置誤差から、第1位置同期誤差補償量を生成する。本実施形態において第1位置同期補償器33には、たとえば比例制御器または比例積分制御器を用いるとよい。
第1同期補償位置誤差生成器34は、第1フィードバック制御系30での制御位置誤差である第1制御位置誤差と、2個のフィードバック制御系間の同期位置誤差である第1位置同期誤差補償量とに基づいて、同期補償処理後の第1制御位置誤差を生成する。同期補償処理後の第1制御位置誤差は、たとえば第1制御位置誤差と第1位置同期誤差補償量とを加算した合計値でよい。
第1位置制御器35は、同期補償処理後の第1制御位置誤差から、第1制御速度を生成する。第1位置制御器35は、第1フィードバック制御系30での制御位置誤差と、第2フィードバック制御系70を基準とした第1フィードバック制御系30の同期位置誤差とに応じた第1制御速度を生成する。そして、第2フィードバック制御系70の制御位置と比較して第1フィードバック制御系30の制御位置が遅れると、第1制御速度は大きくなる。
The first control
The first synchronous
The first
The first synchronous compensation
The
第1検出速度生成器36は、第1センサ42が検出した回転位置から第1モータ2の第1検出速度を生成する。
第1制御速度誤差生成器37は、第1制御速度、第1検出速度、および第1モデル速度指令に基づいて第1制御速度誤差を生成する。第1制御速度誤差は、たとえば第1制御速度から第1検出速度を減算して得られる制御速度誤差に対して、第1モデル速度指令を加算したものでよい。
第1速度制御器38は、第1制御速度誤差から、第1制御トルクを生成する。第1速度制御器38は、第1フィードバック制御系30での制御速度誤差と、第1モデル速度指令とに応じた第1制御トルクを生成する。そして、制御速度誤差および第1モデル速度指令の少なくとも一方が大きくなると、第1制御トルクは大きくなる。
The first
The first control
The
第1制御トルク生成器39は、第1制御トルクと第1モデルトルク指令とに基づいて第1合計制御トルクを生成する。第1合計制御トルクは、たとえば第1制御トルクと第1モデルトルク指令とを加算したものでよい。
第1トルク指令ローパスフィルタ40は、第1合計制御トルクをローパスフィルタ処理する。このローパスフィルタ処理により、第1合計制御トルクから高周波成分を除くことができる。このような高周波成分としては、たとえば第1センサ42による位置の量子化リップル成分がある。
第1トルク制御器41は、ローパスフィルタ処理後の第1合計制御トルクに基づいて第1モータ2を制御する。
The first
The first torque command low-
The
このような第1フィードバック制御系30でのフィードバック制御により、第1フィードバック制御系30は、第1モデル制御系10から出力される第1モデル位置指令、第1モデル速度指令および第1モデルトルク指令にしたがって第1モータ2を回転駆動する。第1モータ2の回転にしたがってテーブル4は駆動される。
そして、第1フィードバック制御系30において制御位置または制御速度に誤差が生じると、または第2フィードバック制御系70の制御位置に対して第1フィードバック制御系30の制御位置がずれると、これらの誤差およびずれを抑制するように第1モータ2の駆動トルクが増減する。
これにより、第1モータ2は、第1モデルトルク指令および第1モデル速度指令にしたがう動きで第1モデル位置指令の位置まで制御される。
Due to such feedback control in the first
Then, when an error occurs in the control position or the control speed in the first
As a result, the
第1モデル制御系10は、外部位置指令を入力とし、第1フィードバック制御系30に対応するモデルを用いて第1フィードバック制御系30の仮想的な動作を演算し、第1フィードバック制御系30に与える第1モデル指令を生成する。
第1モデル位置指令は、第1モータ2の制御位置を示す指令である。
第1モデル速度指令は、駆動中の第1モータ2の制御速度を示す指令である。
第1モデルトルク指令は、駆動中の第1モータ2の制御トルクを示す指令である。
そして、本実施形態の第1モデル制御系10は、第1フィードバック制御系30の動作を演算するために、第1モデル位置誤差演算器11、第1モデル位置制御器12、第1モデル速度演算器13、第1モデル速度誤差演算器14、第1モデル速度制御器15、第1モデルトルク誤差演算器16、第1モデルトルク指令ローパスフィルタ17、第1可動部モデル18、第1機台モデル19、第1モデル位置加算器20、第1状態帰還量演算器21、を有する。
また、第1状態帰還量演算器21は、第1機台帰還量演算器22、第1フィルタ帰還量演算器23、第1合計帰還量演算器24、を有する。これにより、第1状態帰還量演算器21は、機台の振動に起因して機台上でテーブル4が振動する場合において機台に対するテーブル4の振動を抑制するための合計帰還量を演算する。
そして、第1モデル位置誤差演算器11、第1モデル位置制御器12、第1モデル速度誤差演算器14、第1モデル速度制御器15、第1モデルトルク誤差演算器16、第1モデルトルク指令ローパスフィルタ17、第1可動部モデル18および第1機台モデル19、第1モデル位置加算器20は、第1モデル制御系10のメインフィードバックループを構成する。この第1モデル制御系10のメインフィードバックループは、第1フィードバック制御系30のフィードバックループと対応する。
The first
The first model position command is a command indicating the control position of the
The first model speed command is a command indicating the control speed of the
The first model torque command is a command indicating the control torque of the
Then, in the first
Further, the first state
Then, the first model
第1モデル位置誤差演算器11は、第1制御位置誤差生成器31に対応するモデルにより第1モデル位置誤差を演算する。第1モデル位置誤差演算器11は、外部位置指令から、第1モデル位置加算器20から出力される第1モデル位置を減算して第1モデル位置誤差を演算する。
第1モデル位置制御器12は、第1位置制御器35に対応するモデルにより第1モデル速度を演算する。第1モデル位置制御器12は、第1モデル位置誤差から第1モデル速度を演算する。
第1モデル速度演算器13は、第1検出速度生成器36に対応するモデルにより第1モデル検出速度を演算する。第1モデル速度演算器13は、第1モデル位置から第1モデル検出速度を演算する。第1モデル検出速度は、第1モデル速度指令として第1フィードバック制御系30へ出力される。
第1モデル速度誤差演算器14は、第1制御速度誤差生成器37に対応するモデルにより第1モデル速度誤差を演算する。第1モデル速度誤差演算器14は、第1モデル速度から第1モデル検出速度を減算して第1モデル速度誤差を演算する。
第1モデル速度制御器15は、第1速度制御器38に対応するモデルにより第1モデルトルクを演算する。第1モデル速度制御器15は、第1モデル速度誤差から第1モデルトルクを演算する。
第1モデルトルク誤差演算器16は、第1モデルトルクから、第1状態帰還量演算器21により演算される合計帰還量を減算して状態フィードバック補償後の第1モデルトルクを演算する。状態フィードバック補償後の第1モデルトルクは、第1モデルトルク指令として第1フィードバック制御系30へ出力される。
第1モデルトルク指令ローパスフィルタ17は、第1トルク指令ローパスフィルタ40に対応するモデルによりフィルタ演算を実施する。第1モデルトルク指令ローパスフィルタ17は、状態フィードバック補償後の第1モデルトルクをローパスフィルタ処理する。
第1可動部モデル18は、第1モータ2からテーブル4までの機械系の動きに対応している可動部のモデルにより可動部モデルの位置を演算する。ここでは、第1モータ2、第1ボールネジ5からテーブル4までの機械系に対応する可動部モデルとして、それらの間でずれが生じない剛体モデルを用いる。第1可動部モデル18は、状態フィードバック補償処理およびローパスフィルタ処理後の第1モデルトルクから、第1可動部モデル18の位置を演算する。
第1機台モデル19は、第1モータ2やテーブル4が取り付けられる機台の動きに対応している機台のモデルにより機台モデルの位置を演算する。機台は、たとえばレベリングボルトにより床に載置される。そして、テーブル4を高速に動かした場合に機台が振動し、それにより機台上でのテーブル4の相対的な位置が機台を振動しないとした場合での位置からずれることがある。機台のモデルは、たとえばこの機台の振動をモデリングしたものでよい。第1機台モデル19は、状態フィードバック補償処理およびローパスフィルタ処理後の第1モデルトルクから、第1機台モデル19の位置を演算する。
第1モデル位置加算器20は、第1可動部モデル18の位置と第1機台モデル19の位置とを加算して、第1モデル位置を演算する。第1モデル位置加算器20が演算した第1モデル位置は、第1モデル位置指令として第1フィードバック制御系30へ出力される。
第1機台帰還量演算器22は、振動する位置についての帰還量を演算する。具体的にはたとえば、第1機台帰還量として、第1機台モデル19の位置に、機台位置フィードバックゲインKPBと、機台速度フィードバックゲインKVBSと、機台加速度フィードバックゲインKABS2とを加算した合算ゲイン(KPB+KVBS+KABS2)を乗算したものを演算する。ここで、Sは微分演算子を示す。
第1フィルタ帰還量演算器23は、第1モデルトルク指令ローパスフィルタ17のフィルタ処理についての帰還量を演算する。具体的にはたとえば、フィルタ処理帰還量として、状態フィードバック補償処理およびローパスフィルタ処理後の第1モデルトルクに、フィルタ処理フィードバックゲインKLPを乗算したものを演算する。
第1合計帰還量演算器24は、第1状態帰還量演算器21で演算される各種の帰還量を加算する。ここでは、第1機台帰還量とフィルタ処理帰還量とを加算して合計帰還量を演算する。演算された合計帰還量は、第1モデルトルク誤差演算器16へ出力される。
The first model
The first
The first
The first model
The first
The first model
The first model torque command low-
The first
The first
The first
The first machine unit
The first filter
The first total
このような第1フィードバック制御系30に対応するフィードバック制御により、第1モデル制御系10は、機台とテーブル4との間の振動を抑制し得る第1モデル位置指令、第1モデル速度指令および第1モデルトルク指令を生成する。
また、第1モデル制御系10の各要素には、テーブル4に対する制御が所望の位置決め制御となるように制御パラメータを設定すればよい。
たとえば、第1モデル制御系10の状態方程式に対する特性方程式が5重根を持つようにパラメータを算出して設定する。5重根を持つパラメータを設定することにより、第1モデル制御系10はテーブル4と機台との間に振動を生じないモデル指令を生成できる。そして、テーブル4と機台との間に振動を生じない第1モデル制御系10からのモデル指令により第1フィードバック制御系30を駆動することによって、第1フィードバック制御系30により実際に駆動されるテーブル4も振動を生じずに駆動されることになる。
また、第1フィードバック制御系30の安定性が許容できる範囲内で第1モデル制御系10および第1フィードバック制御系30のゲインを高めることにより、実際に駆動されるテーブル4と機台との間に振動を生じさせずに高速に駆動することができる。
By the feedback control corresponding to the first
Further, control parameters may be set in each element of the first
For example, the parameters are calculated and set so that the characteristic equation for the state equation of the first
Further, by increasing the gains of the first
第2フィードバック制御系70は、第2制御位置誤差生成器71、第2位置制御器75、第2検出速度生成器76、第2制御速度誤差生成器77、第2速度制御器78、第2制御トルク生成器79、第2トルク指令ローパスフィルタ80、第2トルク制御器81、を有する。
そして、第2制御位置誤差生成器71、第2位置制御器75、第2制御速度誤差生成器77、第2速度制御器78、第2制御トルク生成器79、第2トルク指令ローパスフィルタ80、第2トルク制御器81、第2モータ3、および第2センサ82は、第2モータ3を実際に制御するフィードバックループを構成する。
これら第2フィードバック制御系70の各構成要素は、第1フィードバック制御系30において番号が異なる同名の構成要素と同一であり、その詳細な説明を省略する。
ただし、第2位置制御器75は、第2制御位置誤差生成器71が生成した第2制御位置誤差から、第2制御速度を生成する。つまり、第1フィードバック制御系30とは異なり、同期補償処理をしていない第2制御位置誤差に基づいて第2制御速度を生成する。
The second
Then, the second control
Each component of the second
However, the
第2モデル制御系50は、第2フィードバック制御系70の動作を演算するために、第2モデル位置誤差演算器51、第2モデル位置制御器52、第2モデル速度演算器53、第2モデル速度誤差演算器54、第2モデル速度制御器55、第2モデルトルク誤差演算器56、第2モデルトルク指令ローパスフィルタ57、第2可動部モデル58、第2機台モデル59、第2モデル位置加算器60、第2状態帰還量演算器61、を有する。
また、第2状態帰還量演算器61は、第2機台帰還量演算器62、第2フィルタ帰還量演算器63、第2合計帰還量演算器64、を有する。これにより、第2状態帰還量演算器61は、機台の振動に起因して機台上でテーブル4が振動する場合において機台に対するテーブル4の振動を抑制するための合計帰還量を演算する。
そして、第2モデル位置誤差演算器51、第2モデル位置制御器52、第2モデル速度誤差演算器54、第2モデル速度制御器55、第2モデルトルク誤差演算器56、第2モデルトルク指令ローパスフィルタ57、第2可動部モデル58および第2機台モデル59、第2モデル位置加算器60は、第2モデル制御系50のメインフィードバックループを構成する。この第2モデル制御系50のメインフィードバックループは、第2フィードバック制御系70のフィードバックループと対応する。
これら第2モデル制御系50の各構成要素は、第1モデル制御系10において番号が異なる同名の構成要素と同一であり、その詳細な説明を省略する。第2モデル制御系50の各部のパラメータには、第1モデル制御系10と同じ値が設定される。
そして、以下の説明において、第2フィードバック制御系70および第2モデル制御系50での各種の信号名には、対応する第1フィードバック制御系30および第1モデル制御系10での各種の信号名の番号を第1から第2へ変更したものを使用する。
このように軸1の制御系と軸2の制御系とで同じ値のパラメータを使用することにより、第1モデル制御系10および第2モデル制御系50からの指令は各軸同時に同じ値で出力される。これにより、軸間のトルク印加が同時になる。
The second
Further, the second state
Then, the second model
Each component of the second
In the following description, the various signal names in the second
By using the parameters of the same value in the control system of the
なお、図1のモータ制御装置1において、第1センサ42は、第1モータ2と一体に構成されてよい。そして、第1モータ2および第1センサ42以外の第1フィードバック制御系30の構成要素と第1モデル制御系10とは、第1モータ2および第1センサ42と第1ケーブルで接続される第1モータ制御装置中の第1コンピュータ装置に実現されてよい。この場合、第1フィードバック制御系30の各構成要素は演算処理により各々の処理を実行することになり、第1モデル制御系10の各部の演算処理と好適に対応し得る。
同様に、第2センサ82は、第2モータ3と一体に構成されてよい。そして、第2モータ3および第2センサ82以外の第2フィードバック制御系70の構成要素と第2モデル制御系50とは、第2モータ3および第2センサ82と第2ケーブルで接続される第2モータ制御装置中の第2コンピュータ装置に実現されてよい。この場合、第2フィードバック制御系70の各構成要素は演算処理により各々の処理を実行することになり、第2モデル制御系50の各部の演算処理と好適に対応し得る。
また、このように第1モータ制御装置と第2モータ制御装置とを用いる場合、第1モータ制御装置と第2モータ制御装置とは通信ケーブルで連結され、第2モータ制御装置から第1モータ制御装置へ第2制御位置誤差を送信する必要がある。
この他にもたとえば、第1コンピュータ装置と第2コンピュータ装置は、単一のモータ制御装置内に設けられてもよい。
また、図1中の第1モータ2、第1センサ42、第2モータ3および第2センサ82以外の構成要素は、単一のモータ制御装置中の単一のコンピュータ装置に実現されてもよい。この場合、第2制御位置誤差は、たとえばプログラム間通信により送信し得る。
また、第1モデル制御系10と第2モデル制御系50とを1個のモデル制御系とし、この1個のモデル制御系から第1フィードバック制御系30および第2フィードバック制御系70へ共通のモデル指令を供給してもよい。
In the
Similarly, the
Further, when the first motor control device and the second motor control device are used in this way, the first motor control device and the second motor control device are connected by a communication cable, and the second motor control device controls the first motor. It is necessary to transmit the second control position error to the device.
In addition to this, for example, the first computer device and the second computer device may be provided in a single motor control device.
Further, components other than the
Further, the first
次に、図1のモータ制御装置1の動作について説明する。
Next, the operation of the
テーブル4の位置を制御するために、第1モデル制御系10および第2モデル制御系50には、上位のコントローラから共通の外部位置指令が同時に供給される。
In order to control the position of the table 4, a common external position command is simultaneously supplied to the first
外部位置指令が供給された第1モデル制御系10は、外部位置指令から第1モデル位置を減算し、第1モデル位置誤差から第1モデル速度を演算する。また、第1モデル位置から第1モデル検出速度を演算し、第1モデル速度から第1モデル検出速度を減算し、第1モデル速度誤差から第1モデルトルクを演算し、第1モデルトルクから合計帰還量を減算し、状態フィードバック補償後の第1モデルトルクをローパスフィルタ処理する。また、状態フィードバック補償処理およびローパスフィルタ処理後の第1モデルトルクから、第1可動部モデル18の位置と第1機台モデル19の位置とを演算し、これらを加算して第1モデル位置を演算する。また、振動する位置についての帰還量と、フィルタ処理についての帰還量とを演算し、これらを合計して合計帰還量を演算する。
この一連の演算処理により、第1モデル制御系10は、第1モデル指令として第1モデル位置指令、第1モデル速度指令、第1モデルトルク指令を生成して第1フィードバック制御系30へ出力する。
The first
Through this series of arithmetic processing, the first
第1モデル指令が供給された第1フィードバック制御系30は、第1モデル位置指令と第1センサ42から得られる第1検出位置との位置誤差を示す第1制御位置誤差を生成する。
また、第1フィードバック制御系30は、自身の第1制御位置誤差と第2制御位置誤差生成器71により生成される第2制御位置誤差との位置誤差の差分(同期誤差)を示す第1同期位置誤差を生成し、第1位置同期誤差補償量を生成する。また、第1制御位置誤差と第1位置同期誤差補償量とから同期補償処理後の第1制御位置誤差を生成し、第1制御速度を生成する。
また、第1フィードバック制御系30は、第1制御速度、第1検出速度、および第1モデル速度指令から第1制御速度誤差を生成し、第1制御トルクを生成する。
また、第1フィードバック制御系30は、第1制御トルクおよび第1モデルトルク指令から第1合計制御トルクを生成し、ローパスフィルタ処理する。そして、第1トルク制御器41は、ローパスフィルタ処理後の第1合計制御トルクに基づいて第1モータ2を制御する。第1センサ42は、第1モータ2の回転位置を検出する。また、第1検出速度生成器36は、第1センサ42が検出した回転位置から第1検出速度を生成する。
The first
Further, the first
Further, the first
Further, the first
また、第1モデル制御系10と同時に同じ外部位置指令が供給される第2モデル制御系50は、上述した第1モデル制御系10と同じフィードバック制御を実行する。第2モデル制御系50から第2モデル指令が供給される第2フィードバック制御系70も、上述した第1フィードバック制御系30と同じフィードバック制御を実行する。
ただし、第2フィードバック制御系70は、第1フィードバック制御系30の第1同期位置誤差生成器32、第1位置同期補償器33、および第1同期補償位置誤差生成器34に対応する構成要素を備えていないので、第2位置制御器75は、第2制御位置誤差生成器71が生成した第2制御位置誤差から、第2制御速度を生成する。同期補償処理をしていない第2制御位置誤差に基づいて第2制御速度を生成する。
Further, the second
However, the second
そして、本実施形態では、2個のフィードバック制御系の各々は、外部位置指令ではなく、モデル指令に基づいて各々のモータをフィードバック制御する。しかも、外部位置指令からモデル指令を生成する2個のモデル制御系は、2個のモータで駆動される可動部の動きに対応している可動部モデルおよびモータおよび可動部が取り付けられる機台の動きに対応している機台モデルを含むとともに、機台モデルの状態をフィードバックして機台の振動に起因した機台とテーブル4との間の振動を抑制することにより、機台とテーブル4との相対振動を抑制して安定化させる。これにより、2個のフィードバック制御系はモデルに追従して機台とテーブル4との相対振動を生じないように安定したフィードバック制御を互いに独立して実行し、2個のモータは外部位置指令に対して同様に追従するように制御され得る。2個のフィードバック制御系は、同時に入力される共通の外部位置指令に基づいて2個のモータを互いに同期させるように制御することができる。そして、テーブル4が取り付けられる機台が振動するような場合においてもテーブル4の振動を抑制して、2個のモータを互いに同期させることができる。
しかも、本実施形態では、第1フィードバック制御系30は、第2フィードバック制御系70の制御誤差との差分により、自身の制御誤差を補償する。第1フィードバック制御系30は、その制御誤差が第2フィードバック制御系70の制御誤差に対してずれが生じないように同期させながら、自身のフィードバック制御を実行する。すなわち、2個のモータを互いに独立したフィードバック制御系により互いに独立して制御しながらも、第1フィードバック制御系30と第2フィードバック制御系70との間で生じ得る制御誤差のずれを補償することができる。つまり、これら2個のフィードバック制御系の間で生じ得る制御誤差のずれを2個のフィードバック制御系において補償することができる。
このように、本実施形態では、1個の可動部を共同して可動させる2個のモータを共通の外部位置指令で、かつ、機台とテーブル4との間の振動を抑制するように状態をフィードバックする同じモデルでモデル追従制御を行うことにより、2個のフィードバック制御系に与えるトルク指令を全軸で同一にすることができる。これにより、機台振動が生じ得る場合であっても機台とテーブル4との間の振動を抑えて2個のフィードバック制御系の制御誤差の間でずれが発生し難いように制御を実行することができる。
しかも、それでも他の原因により2個のフィードバック制御系の間で生じ得る微小な制御誤差のずれを2個のフィードバック制御系の間で補償している。よって、2個のモータの制御系は、振動に起因する同期ずれが発生し難い制御と同期ずれを抑える制御とが二重化された制御により1個の可動部を2個のモータで制御する場合での2個のモータの同期精度を高めることができる。
その結果、本実施形態では、1個の可動部を2個のモータで駆動する機械において、機台振動が生じ得るような場合であってもこの機台とテーブル4との間の振動を抑制して指令に対する追従性を向上させることができ、さらに2個のモータの間での同期精度を確保でき、その結果として高速高精度な位置決めを実現できる。
Then, in the present embodiment, each of the two feedback control systems feedback-controls each motor based on the model command instead of the external position command. Moreover, the two model control systems that generate model commands from external position commands are the movable part model that corresponds to the movement of the movable part driven by the two motors, and the machine base to which the motor and the movable part are attached. The machine stand and the table 4 include the machine machine model that supports movement, and by feeding back the state of the machine machine model and suppressing the vibration between the machine machine and the table 4 caused by the vibration of the machine table. Suppresses and stabilizes the relative vibration with. As a result, the two feedback control systems follow the model and execute stable feedback control independently of each other so that relative vibration between the machine base and the table 4 does not occur, and the two motors issue external position commands. On the other hand, it can be controlled to follow in the same way. The two feedback control systems can control the two motors to synchronize with each other based on a common external position command input at the same time. Then, even when the machine base on which the table 4 is attached vibrates, the vibration of the table 4 can be suppressed and the two motors can be synchronized with each other.
Moreover, in the present embodiment, the first
As described above, in the present embodiment, the two motors that jointly move one movable portion are in a state of being controlled by a common external position command and suppressing vibration between the machine base and the table 4. By performing model follow-up control with the same model that feeds back, the torque commands given to the two feedback control systems can be made the same for all axes. As a result, even if the machine base vibration may occur, the vibration between the machine base and the table 4 is suppressed and the control is executed so that the deviation between the control errors of the two feedback control systems is unlikely to occur. be able to.
Moreover, even so, a minute deviation in control error that may occur between the two feedback control systems due to other causes is compensated between the two feedback control systems. Therefore, in the control system of two motors, one movable part is controlled by two motors by a dual control of a control that is unlikely to cause a synchronization shift due to vibration and a control that suppresses the synchronization shift. The synchronization accuracy of the two motors can be improved.
As a result, in the present embodiment, in a machine in which one movable part is driven by two motors, vibration between the machine base and the table 4 is suppressed even when the machine base vibration may occur. Therefore, the followability to the command can be improved, and the synchronization accuracy between the two motors can be ensured, and as a result, high-speed and high-precision positioning can be realized.
なお、上記実施形態は、可動部を2個のモータで駆動するために、2組のモデル制御系およびフィードバック制御系を用いる例である。また、同期位置誤差生成器、位置同期補償器、および同期補償位置誤差生成器を、1個目のフィードバック制御系に適用した例である。
この他にも、同期位置誤差生成器、位置同期補償器、および同期補償位置誤差生成器は、2個目のフィードバック制御系に適用してもよい。
さらに他にも、可動部を3個以上のモータで駆動してもよい。この場合、モデル制御系およびフィードバック制御系は、基本的にモータと同数組で設ければよい。また、N(Nは2以上の自然数)個のモータを使用する場合、同期位置誤差生成器、位置同期補償器、および同期補償位置誤差生成器は、(N-1)個のフィードバック制御系に設ければよい。この(N-1)個のフィードバック制御系において(N-1)個の同期位置誤差生成器は、残りの1個のフィードバック制御系の制御位置誤差との間で位置同期誤差を生成すればよい。
The above embodiment is an example in which two sets of model control system and feedback control system are used to drive the movable portion by two motors. Further, it is an example in which the synchronization position error generator, the position synchronization compensation device, and the synchronization compensation position error generator are applied to the first feedback control system.
In addition, the synchronization position error generator, the position synchronization compensation device, and the synchronization compensation position error generator may be applied to the second feedback control system.
Furthermore, the movable portion may be driven by three or more motors. In this case, the model control system and the feedback control system may be provided in basically the same number of sets as the motor. Further, when N (N is a natural number of 2 or more) motors are used, the synchronous position error generator, the position synchronization compensator, and the synchronous compensation position error generator are combined with (N-1) feedback control systems. It may be provided. In this (N-1) feedback control system, the (N-1) synchronization position error generator may generate a position synchronization error with the control position error of the remaining one feedback control system. ..
[第2実施形態]
図2は、本発明の第2実施形態に係るモータ制御装置1のブロック図である。
図2のモータ制御装置1は、図1のものと比べて、第2フィードバック制御系70が第2同期位置誤差生成器72、第2位置同期補償器73、および第2同期補償位置誤差生成器74を有する点で異なる。
第2同期位置誤差生成器72、第2位置同期補償器73、および第2同期補償位置誤差生成器74は、第1同期位置誤差生成器32、第1位置同期補償器33、および第1同期補償位置誤差生成器34と対応する。
第2同期位置誤差生成器72は、自身の第2制御位置誤差と第1制御位置誤差生成器31により生成される第1制御位置誤差とに基づいて、これらの制御位置誤差の差分(同期誤差)を示す第2同期位置誤差を生成する。第2同期位置誤差は、たとえば自身の第2制御位置誤差から他の第1制御位置誤差を減算したものでよい。この場合、第1フィードバック制御系30に対する第2フィードバック制御系70の同期誤差が得られる。
第2位置同期補償器73は、第2同期位置誤差から、第2位置同期誤差補償量を生成する。本実施形態では、第1フィードバック制御系30と第2フィードバック制御系70との間で相互に補償をかけているので、第1位置同期補償器33および第2位置同期補償器73には比例制御器を用いるとよい。
第2同期補償位置誤差生成器74は、第2フィードバック制御系70での制御位置誤差である第2制御位置誤差と、2個のフィードバック制御系間の同期位置誤差である第2位置同期誤差補償量とに基づいて、同期補償処理後の第2制御位置誤差を生成する。同期補償処理後の第2制御位置誤差は、たとえば第2制御位置誤差と第2位置同期誤差補償量とを加算した合計値でよい。
第2位置制御器75は、同期補償処理後の第2制御位置誤差から、第2制御速度を生成する。第2位置制御器75は、第2フィードバック制御系70での制御位置誤差と、第1フィードバック制御系30を基準とした第2フィードバック制御系70の同期位置誤差とに応じた第2制御速度を生成する。そして、第1フィードバック制御系30の制御位置と比較して第2フィードバック制御系70の制御位置が遅れると、第2制御速度は大きくなる。
これ以外の図2のモータ制御装置1の構成および動作は、図1のもの同様であり、説明を省略する。
[Second Embodiment]
FIG. 2 is a block diagram of the
In the
The second synchronization
The second synchronous
The second
The second synchronous compensation
The
Other than this, the configuration and operation of the
そして、本実施形態では、第1フィードバック制御系30および第2フィードバック制御系70は、2軸間の位置誤差をそれらの間で互いに補償できる。その結果、個々のフィードバック制御系の制御応答が高くなくても、軸間の位置誤差を小さくして同期精度を高めることができる。第1実施形態よりも更に高い同期精度を期待し得る。
このため、たとえば第1フィードバック制御系30および第2フィードバック制御系70を同じ振動モデルに追従させることにより同期誤差が発生し難いようにしつつも、さらにそれでも他の原因により発生する軸間の同期誤差を第1実施形態より効果的に抑制することができる。
このように本実施形態では、1個の可動部を複数個(ここでは2個)のモータで駆動する機械において同じモデルを用いて個々のモデル制御系を構成するとともに該モデルに追従させて実際のフィードバック制御系に制御を実行させることにより、機台振動が生じ得るような場合であってもこの機台とテーブル4との間の振動を抑制して2個のモータの間での同期精度を確保でき、その結果として高速高精度な位置決めを実現できる。
Then, in the present embodiment, the first
Therefore, for example, by making the first
As described above, in the present embodiment, an individual model control system is configured by using the same model in a machine in which one moving part is driven by a plurality of (here, two) motors, and the model is actually followed. By letting the feedback control system of the above perform control, even if the machine base vibration may occur, the vibration between the machine machine and the table 4 is suppressed and the synchronization accuracy between the two motors is accurate. As a result, high-speed and high-precision positioning can be realized.
[第3実施形態]
図3は、本発明の第3実施形態に係るモータ制御装置1のブロック図である。
図3のモータ制御装置1は、第1モデル制御系10、第1フィードバック制御系30、第2モデル制御系50、および第2フィードバック制御系70を有し、図1のモータ制御装置1と同様に第1モータ2と第2モータ3との2個のモータが共同して1個の可動部を駆動して可動部を高速高精度に位置決めできるものである。
以下、図1のモータ制御装置1と相違点を中心に説明する。また、図1のモータ制御装置1と同様の構成要素については、図1と同様の符号を付してその説明を省略する。
[Third Embodiment]
FIG. 3 is a block diagram of the
The
Hereinafter, the differences from the
第1フィードバック制御系30は、第1制御位置誤差生成器31、第1同期位置誤差生成器32、第1位置同期補償器33、第1同期補償位置誤差生成器34、第1位置制御器35、第1検出速度生成器36、第1制御速度誤差生成器37、第1速度制御器38、第1制御トルク生成器39、第1トルク制御器41、を有する。
そして、第1制御位置誤差生成器31、第1同期補償位置誤差生成器34、第1位置制御器35、第1制御速度誤差生成器37、第1速度制御器38、第1制御トルク生成器39、第1トルク制御器41、第1モータ2、および第1センサ42は、第1モータ2を実際に制御するフィードバックループを構成する。
第1トルク制御器41は、第1制御トルク生成器39から出力される第1合計制御トルクに基づいて第1モータ2を制御する。
The first
Then, the first control
The
第1モデル制御系10は、外部位置指令を入力とし、第1フィードバック制御系30に対応するモデルを用いて第1フィードバック制御系30の仮想的な動作を演算し、第1フィードバック制御系30に与える第1モデル指令を生成する。
本実施形態の第1モデル制御系10は、第1フィードバック制御系30の動作を演算するために、第1モデル位置誤差演算器11、第1モデル位置制御器12、第1前段状態補償モデル速度誤差演算器91、第1後段状態補償モデル速度誤差演算器92、第1モデル速度制御器15、第1前段状態補償モデルトルク誤差演算器93、第1後段状態補償モデルトルク誤差演算器94、第1二慣性モデル95、第1トルク帰還量演算器106、第1速度帰還量演算器107、を有する。
そして、第1モデル位置誤差演算器11、第1モデル位置制御器12、第1前段状態補償モデル速度誤差演算器91、第1後段状態補償モデル速度誤差演算器92、第1モデル速度制御器15、第1前段状態補償モデルトルク誤差演算器93、第1後段状態補償モデルトルク誤差演算器94、および第1二慣性モデル95は、第1モデル制御系10のメインフィードバックループを構成する。この第1モデル制御系10のメインフィードバックループは、第1フィードバック制御系30のフィードバックループと対応する。
The first
The first
Then, the first model
第1二慣性モデル95は、第1モータ2からテーブル4までの機械系の動作としてテーブル4が振動する動作を演算する。
二慣性モデルは、機械系を、第1モータ2側に相当するモータ側モデルと、テーブル4側に相当する負荷側モデルとの2個のモデルで表わし、それらの間のねじり振動成分を考慮したモデルである。
本実施形態の第1二慣性モデル95は、第1モータ側モデル96、第1前段モータ側積分器97、第1後段モータ側積分器98、第1ねじりトルク演算器99、第1負荷側モデル100、第1前段負荷側積分器101、第1後段負荷側積分器102、第1モデル内加速度誤差演算器103、第1モデル内速度誤差演算器104、第1モデル内位置誤差演算器105、を有する。
第1モータ側モデル96は、第1二慣性モデル95に入力される後述する状態補償後の第1モデルトルクに、モータ側イナーシャを考慮した1/JMのゲインを乗算して第1モータ側モデル加速度を演算する。
第1前段モータ側積分器97は、第1モータ側モデル加速度を積分して第1モータ側モデル速度を演算する。第1モータ側モデル速度は、第1二慣性モデル95が生成するモデル速度として用いることができ、第1モデル速度指令として出力される。
第1後段モータ側積分器98は、第1モータ側モデル速度を積分して第1モータ側モデル位置を演算する。第1モータ側モデル位置は、第1二慣性モデル95が生成するモデル位置として用いることができ、第1モデル位置指令として出力される。
第1負荷側モデル100は、第1ねじりトルク演算器99が演算する第1ねじりトルクに、負荷側イナーシャを考慮した1/JLのゲインを乗算して第1負荷側モデル加速度を演算する。
第1前段負荷側積分器101は、第1負荷側モデル加速度を積分して第1負荷側モデル速度を演算する。
第1後段負荷側積分器102は、第1負荷側モデル速度を積分して第1負荷側モデル位置を演算する。
第1モデル内加速度誤差演算器103は、第1モータ側モデル加速度から第1負荷側モデル加速度を減算して第1モデル内加速度誤差を演算する。
第1モデル内速度誤差演算器104は、第1モータ側モデル速度から第1負荷側モデル速度を減算して第1モデル内速度誤差を演算する。
第1モデル内位置誤差演算器105は、第1モータ側モデル位置から第1負荷側モデル位置を減算して第1モデル内位置誤差を演算する。
第1ねじりトルク演算器99は、第1モデル内位置誤差にねじり剛性に対応するゲインKBを乗算して第1ねじりトルクを生成する。
このような振動モデルにより、二慣性モデルは、モータ側モデルと負荷側モデルとの間でねじり振動を生じる動作を演算することができる。
The first
In the two-inertia model, the mechanical system is represented by two models, a motor-side model corresponding to the
The first
The first
The first front stage
The first rear stage
The first
The first first stage
The first second-stage load-
The first model in-model
The
The
The first
With such a vibration model, the bi-inertia model can calculate the motion that causes torsional vibration between the motor-side model and the load-side model.
第1トルク帰還量演算器106および第1速度帰還量演算器107は、二慣性モデルの状態のフィードバック量である帰還量を演算する。
第1トルク帰還量演算器106は、第1モデル内加速度誤差に帰還ゲインKABを乗算して第1トルク帰還量を演算する。
第1速度帰還量演算器107は、第1モデル内速度誤差に帰還ゲインKVBを乗算して第1速度帰還量を演算する。
The first torque
The first torque
The first speed
第1前段状態補償モデル速度誤差演算器91は、第1モデル位置制御器12が演算した第1モデル速度から第1速度帰還量を減算する。
第1後段状態補償モデル速度誤差演算器92は、第1前段状態補償モデル速度誤差演算器91の演算結果から第1モータ側モデル速度を減算する。
これにより、第1モデル速度と第1モータ側モデル速度との第1モデル速度誤差から、第1二慣性モデル95で演算される速度に関する状態帰還量を減算して補償した状態補償後の第1モデル速度誤差が得られる。第1モデル速度制御器15は、状態補償後の第1モデル速度誤差から第1モデルトルクを演算する。
The first first stage state compensation model
The first rear stage state compensation model
As a result, the first after state compensation is compensated by subtracting the state feedback amount related to the speed calculated by the first
第1前段状態補償モデルトルク誤差演算器93は、第1モデルトルクから第1トルク帰還量を減算する。
第1後段状態補償モデルトルク誤差演算器94は、第1前段状態補償モデルトルク誤差演算器93の演算結果から第1ねじりトルクを減算する。
これにより、第1モデルトルクと第1ねじりトルクとの第1モデルトルク誤差から、第1二慣性モデル95で演算される加速度に関する状態帰還量を減算して補償した状態補償後の第1モデルトルク誤差が得られる。この状態補償後の第1モデルトルク誤差が、第1二慣性モデル95の第1モータ側モデル96へ出力される。また、状態補償後の第1モデルトルク誤差は、第1二慣性モデル95に与えられるモデルトルクであり、第1モデルトルク指令として出力される。
The first first stage state compensation model
The first rear stage state compensation model
As a result, the first model torque after state compensation is compensated by subtracting the state feedback amount related to the acceleration calculated by the first
このような第1フィードバック制御系30に対応するフィードバック制御により、第1モデル制御系10は、第1モデル位置指令、第1モデル速度指令および第1モデルトルク指令を生成する。
また、第1モデル制御系10の各要素には、テーブル4に所望の位置決め制御を可能とするための制御パラメータを設定すればよい。
本実施形態のように二慣性系の機械モデルを用いてモータ側モデルと負荷側モデルとの間での加速度差(モデル内加速度誤差)と速度差(モデル内速度誤差)との状態フィードバックを行う場合、現代制御理論を適用することでテーブル4が振動を生じないように安定するパラメータを算出できる。モデル制御系の状態方程式に対する特性方程式が4重根を持つようにパラメータを算出して設定することにより、テーブル4は振動を生じないように安定する。
By the feedback control corresponding to the first
Further, control parameters for enabling desired positioning control may be set in the table 4 for each element of the first
As in this embodiment, the state feedback of the acceleration difference (acceleration error in the model) and the speed difference (speed error in the model) between the motor side model and the load side model is performed by using the mechanical model of the bi-inertia system. In this case, by applying the modern control theory, it is possible to calculate the parameters that stabilize the table 4 so as not to cause vibration. By calculating and setting the parameters so that the characteristic equation for the equation of state of the model control system has quadruple roots, the table 4 is stabilized so as not to cause vibration.
第2フィードバック制御系70は、第2制御位置誤差生成器71、第2位置制御器75、第2検出速度生成器76、第2制御速度誤差生成器77、第2速度制御器78、第2制御トルク生成器79、第2トルク制御器81、を有する。
そして、第2制御位置誤差生成器71、第2位置制御器75、第2検出速度生成器76、第2制御速度誤差生成器77、第2速度制御器78、第2制御トルク生成器79、第2トルク制御器81、第2モータ3、および第2センサ82は、第2モータ3を実際に制御するフィードバックループを構成する。
これら第2フィードバック制御系70の各構成要素は、第1フィードバック制御系30において番号が異なる同名の構成要素と同一であり、その詳細な説明を省略する。
ただし、第2位置制御器75は、第2制御位置誤差生成器71が生成した第2制御位置誤差から、第2制御速度を生成する。つまり、第1フィードバック制御系30とは異なり、同期補償処理をしていない第2制御位置誤差に基づいて第2制御速度を生成する。
The second
Then, the second control
Each component of the second
However, the
第2モデル制御系50は、第2フィードバック制御系70の動作を演算するために、第2モデル位置誤差演算器51、第2モデル位置制御器52、第2前段状態補償モデル速度誤差演算器111、第2後段状態補償モデル速度誤差演算器112、第2モデル速度制御器55、第2前段状態補償モデルトルク誤差演算器113、第2後段状態補償モデルトルク誤差演算器114、第2二慣性モデル115、第2トルク帰還量演算器126、第2速度帰還量演算器127、を有する。
また、第2二慣性モデル115は、第2モータ側モデル116、第2前段モータ側積分器117、第2後段モータ側積分器118、第2ねじりトルク演算器119、第2負荷側モデル120、第2前段負荷側積分器121、第2後段負荷側積分器122、第2モデル内加速度誤差演算器123、第2モデル内速度誤差演算器124、第2モデル内位置誤差演算器125、を有する。
そして、第2モデル位置誤差演算器51、第2モデル位置制御器52、第2前段状態補償モデル速度誤差演算器111、第2後段状態補償モデル速度誤差演算器112、第2モデル速度制御器55、第2前段状態補償モデルトルク誤差演算器113、第2後段状態補償モデルトルク誤差演算器114、および第2二慣性モデル115は、第2モデル制御系50のメインフィードバックループを構成する。この第2モデル制御系50のメインフィードバックループは、第2フィードバック制御系70のフィードバックループと対応する。
これら第2モデル制御系50の各構成要素は、第1モデル制御系10において番号が異なる同名の構成要素と同一であり、その詳細な説明を省略する。第2モデル制御系50の各部のパラメータには、第1モデル制御系10と同じ値が設定される。
そして、以下の説明において、第2フィードバック制御系70および第2モデル制御系50での各種の信号名には、対応する第1フィードバック制御系30および第1モデル制御系10での各種の信号名の番号を第1から第2へ変更したものを使用する。
また、軸1の制御系と軸2の制御系とで同じ値のパラメータを使用することにより、第1モデル制御系10および第2モデル制御系50からの指令は各軸同時に同じ値で出力される。これにより、軸間のトルク印加が同時になる。
The second
The second
Then, the second model
Each component of the second
In the following description, the various signal names in the second
Further, by using the parameters of the same value in the control system of the
次に、図3のモータ制御装置1の動作について説明する。
Next, the operation of the
テーブル4の位置を制御するために、第1モデル制御系10および第2モデル制御系50には、上位のコントローラから共通の外部位置指令が同時に供給される。
In order to control the position of the table 4, a common external position command is simultaneously supplied to the first
外部位置指令が供給された第1モデル制御系10は、外部位置指令から第1モデル位置を減算し、第1モデル位置誤差から第1モデル速度を演算する。また、第1モデル速度から第1速度帰還量を減算し、さらに第1モータ側モデル速度を減算して、状態補償後の第1モデル速度誤差を演算する。また、状態補償後の第1モデル速度誤差から第1モデルトルクを演算し、第1モデルトルクから第1トルク帰還量を減算し、さらに第1ねじりトルクを減算して、状態補償後の第1モデルトルク誤差を演算する。
第1二慣性モデル95では、まず、状態補償後の第1モデルトルク誤差から第1モータ側モデル加速度を演算し、さらに第1モータ側モデル速度と第1モータ側モデル位置とを演算する。また、第1ねじりトルクから第1負荷側モデル加速度を演算し、さらに第1負荷側モデル速度と第1負荷側モデル位置とを演算する。また、モータ側と負荷側との差分である第1モデル内加速度誤差、第1モデル内速度誤差および第1モデル内位置誤差を演算する。また、第1ねじりトルク、第1トルク帰還量、および第1速度帰還量を演算する。
この一連の演算処理により、第1モデル制御系10は、第1モデル指令としての第1モデル位置指令、第1モデル速度指令、第1モデルトルク指令を生成して第1フィードバック制御系30へ出力する。
The first
In the first
Through this series of arithmetic processing, the first
第1モデル指令が供給された第1フィードバック制御系30は、第1モデル位置指令と第1センサ42から得られる第1検出位置との位置誤差を示す第1制御位置誤差を生成する。
また、第1フィードバック制御系30は、自身の第1制御位置誤差と第2制御位置誤差生成器71により生成される第2制御位置誤差との位置誤差の差分(同期誤差)を示す第1同期位置誤差を生成し、第1位置同期誤差補償量を生成する。また、第1制御位置誤差と第1位置同期誤差補償量とから同期補償処理後の第1制御位置誤差を生成し、第1制御速度を生成する。
また、第1フィードバック制御系30は、第1制御速度、第1検出速度、および第1モデル速度指令から第1制御速度誤差を生成し、第1制御トルクを生成する。
また、第1フィードバック制御系30は、第1制御トルクおよび第1モデルトルク指令から第1合計制御トルクを生成する。そして、第1トルク制御器41は、第1合計制御トルクに基づいて第1モータ2を制御する。第1センサ42は、第1モータ2の回転位置を検出する。また、第1検出速度生成器36は、第1センサ42が検出した回転位置から第1検出速度を生成する。
The first
Further, the first
Further, the first
Further, the first
また、第1モデル制御系10と同時に同じ外部位置指令が供給される第2モデル制御系50は、上述した第1モデル制御系10と同じフィードバック制御を実行する。第2モデル制御系50から第2モデル指令が供給される第2フィードバック制御系70も、上述した第1フィードバック制御系30と同じフィードバック制御を実行する。
Further, the second
そして、本実施形態では、2個のフィードバック制御系の各々は、外部位置指令ではなく、モデル指令に基づいて各々のモータをフィードバック制御する。しかも、外部位置指令からモデル指令を生成する2個のモデル制御系は、2個のモータで可動部を駆動する際のモータから可動部までの機械系の動きに対応している二慣性モデルを含むとともに、二慣性モデルの状態をフィードバックしてモータから可動部までの機械系の振動に起因したテーブル4の振動を抑制することにより、テーブル4の振動を抑制して安定化させる。これにより、2個のフィードバック制御系はモデルに追従してテーブル4の振動を生じないように安定化させたフィードバック制御を互いに独立して実行し、2個のモータは外部位置指令に対して同様に追従するように制御され得る。2個のフィードバック制御系は、同時に入力される共通の外部位置指令に基づいて2個のモータを互いに同期させるように制御することができる。そして、モータから可動部までの機械系において振動を生ずるような場合においてもテーブル4の振動を抑制して、2個のモータを互いに同期させることができる。
しかも、本実施形態では、第1フィードバック制御系30は、第2フィードバック制御系70の制御誤差との差分により、自身の制御誤差を補償する。第1フィードバック制御系30は、その制御誤差が第2フィードバック制御系70の制御誤差に対してずれが生じないように同期させながら、自身のフィードバック制御を実行する。すなわち、2個のモータを互いに独立したフィードバック制御系により互いに独立して制御しながらも、第1フィードバック制御系30と第2フィードバック制御系70との間で生じ得る制御誤差のずれを補償することができる。これら2個のフィードバック制御系の間で生じ得る制御誤差のずれを2個のフィードバック制御系の間で補償することができる。
このように、本実施形態では、1個の可動部を共同して可動させる2個のモータを共通の外部位置指令で、かつ、モータからテーブル4までの機械系の振動を補償するように状態をフィードバックする同じ二慣性モデルでモデル追従制御を行うことにより、2個のフィードバック制御系に与えるトルク指令を全軸で同一にする事ができる。これにより、モータからテーブル4までの機械系に振動が生ずる場合であってもテーブル4の振動を抑えて2個のフィードバック制御系の制御誤差の間でずれが発生し難いように制御を実行することができる。
しかも、それでも他の原因により2個のフィードバック制御系の間で生じ得る微小な制御誤差のずれを2個のフィードバック制御系の間で補償している。よって、2個のモータの制御系は、振動に起因する同期ずれが発生し難い制御と同期ずれを抑える制御とが二重化された制御により1個の可動部を2個のモータで制御する場合での2個のモータの同期精度を高めることができる。
その結果、本実施形態では、1個の可動部を2個のモータで駆動する機械において、モータとテーブル4との間で振動が生じ得るような場合であっても、テーブル4の振動を抑制して指令に対する追従性を向上させることができ、さらに2個のモータの間での同期精度を確保でき、その結果として高速高精度な位置決めを実現できる。
Then, in the present embodiment, each of the two feedback control systems feedback-controls each motor based on the model command instead of the external position command. Moreover, the two model control systems that generate model commands from external position commands are bi-inertia models that correspond to the movement of the mechanical system from the motor to the movable part when the movable part is driven by the two motors. In addition, by feeding back the state of the bi-inertia model and suppressing the vibration of the table 4 caused by the vibration of the mechanical system from the motor to the moving part, the vibration of the table 4 is suppressed and stabilized. As a result, the two feedback control systems follow the model and execute feedback control stabilized so as not to cause vibration of the table 4, independently of each other, and the two motors similarly perform the same for the external position command. Can be controlled to follow. The two feedback control systems can control the two motors to synchronize with each other based on a common external position command input at the same time. Further, even when vibration is generated in the mechanical system from the motor to the movable portion, the vibration of the table 4 can be suppressed and the two motors can be synchronized with each other.
Moreover, in the present embodiment, the first
As described above, in the present embodiment, the two motors that jointly move one movable portion are in a state of compensating for the vibration of the mechanical system from the motor to the table 4 by a common external position command. By performing model follow-up control with the same two-inertia model that feeds back, the torque commands given to the two feedback control systems can be made the same for all axes. As a result, even if vibration occurs in the mechanical system from the motor to the table 4, the vibration of the table 4 is suppressed and the control is executed so that the deviation between the control errors of the two feedback control systems is unlikely to occur. be able to.
Moreover, even so, a minute deviation in control error that may occur between the two feedback control systems due to other causes is compensated between the two feedback control systems. Therefore, in the control system of two motors, one movable part is controlled by two motors by a dual control of a control that is unlikely to cause a synchronization shift due to vibration and a control that suppresses the synchronization shift. The synchronization accuracy of the two motors can be improved.
As a result, in the present embodiment, in a machine in which one moving portion is driven by two motors, vibration of the table 4 is suppressed even when vibration may occur between the motor and the table 4. Therefore, the followability to the command can be improved, and the synchronization accuracy between the two motors can be ensured, and as a result, high-speed and high-precision positioning can be realized.
なお、上記実施形態は、可動部を2個のモータで駆動するために、2組のモデル制御系およびフィードバック制御系を用いる例である。また、同期位置誤差生成器、位置同期補償器、および同期補償位置誤差生成器を、1個目のフィードバック制御系に適用した例である。
この他にも、同期位置誤差生成器、位置同期補償器、および同期補償位置誤差生成器は、2個目のフィードバック制御系に適用してもよい。
さらに他にも、可動部を3個以上のモータで駆動してもよい。この場合、モデル制御系およびフィードバック制御系は、基本的にモータと同数組で設ければよい。また、N(Nは2以上の自然数)個のモータを使用する場合、同期位置誤差生成器、位置同期補償器、および同期補償位置誤差生成器は、(N-1)個のフィードバック制御系に設ければよい。この(N-1)個のフィードバック制御系において(N-1)個の同期位置誤差生成器は、残りの1個のフィードバック制御系の制御位置誤差との間で位置同期誤差を生成すればよい。
The above embodiment is an example in which two sets of model control system and feedback control system are used to drive the movable portion by two motors. Further, it is an example in which the synchronization position error generator, the position synchronization compensation device, and the synchronization compensation position error generator are applied to the first feedback control system.
In addition, the synchronization position error generator, the position synchronization compensation device, and the synchronization compensation position error generator may be applied to the second feedback control system.
Furthermore, the movable portion may be driven by three or more motors. In this case, the model control system and the feedback control system may be provided in basically the same number of sets as the motor. Further, when N (N is a natural number of 2 or more) motors are used, the synchronous position error generator, the position synchronization compensator, and the synchronous compensation position error generator are combined with (N-1) feedback control systems. It may be provided. In this (N-1) feedback control system, the (N-1) synchronization position error generator may generate a position synchronization error with the control position error of the remaining one feedback control system. ..
[第4実施形態]
図4は、本発明の第4施形態に係るモータ制御装置1のブロック図である。
図4のモータ制御装置1は、図3のものと比べて、第2フィードバック制御系70が第2同期位置誤差生成器72、第2位置同期補償器73、および第2同期補償位置誤差生成器74を有する点で異なる。
第2同期位置誤差生成器72、第2位置同期補償器73、および第2同期補償位置誤差生成器74は、第1同期位置誤差生成器32、第1位置同期補償器33、および第1同期補償位置誤差生成器34と対応する。
第2同期位置誤差生成器72は、自身の第2制御位置誤差と第1制御位置誤差生成器31により生成される第1制御位置誤差とに基づいて、これらの制御位置誤差の差分(同期誤差)を示す第2同期位置誤差を生成する。第2同期位置誤差は、たとえば自身の第2制御位置誤差から他の第1制御位置誤差を減算したものでよい。この場合、第1フィードバック制御系30に対する第2フィードバック制御系70の同期誤差が得られる。
第2位置同期補償器73は、第2同期位置誤差から、第2位置同期誤差補償量を生成する。本実施形態では、第1フィードバック制御系30と第2フィードバック制御系70との間で相互に補償をかけているので、第1位置同期補償器33および第2位置同期補償器73には比例制御器を用いるとよい。
第2同期補償位置誤差生成器74は、第2フィードバック制御系70での制御位置誤差である第2制御位置誤差と、2個のフィードバック制御系間の同期位置誤差である第2位置同期誤差補償量とに基づいて、同期補償処理後の第2制御位置誤差を生成する。同期補償処理後の第2制御位置誤差は、たとえば第2制御位置誤差と第2位置同期誤差補償量とを加算した合計値でよい。
第2位置制御器75は、同期補償処理後の第2制御位置誤差から、第2制御速度を生成する。第2位置制御器75は、第2フィードバック制御系70での制御位置誤差と、第1フィードバック制御系30を基準とした第2フィードバック制御系70の同期位置誤差とに応じた第2制御速度を生成する。そして、第1フィードバック制御系30の制御位置と比較して第2フィードバック制御系70の制御位置が遅れると、第2制御速度は大きくなる。
これ以外の図4のモータ制御装置1の構成および動作は、図3のもの同様であり、説明を省略する。
[Fourth Embodiment]
FIG. 4 is a block diagram of the
In the
The second synchronization
The second synchronous
The second
The second synchronous compensation
The
Other than this, the configuration and operation of the
そして、本実施形態では、第1フィードバック制御系30および第2フィードバック制御系70は、2軸間の位置誤差をそれらの間で互いに補償できる。その結果、個々のフィードバック制御系の制御応答が高くなくても、軸間の位置誤差を小さくして同期精度を高めることができる。第3実施形態よりも更に高い同期精度を期待し得る。
このため、たとえば第1フィードバック制御系30および第2フィードバック制御系70を同じ振動モデルに追従させることにより同期誤差が発生し難いようにしつつも、さらにそれでも他の原因により発生する軸間の同期誤差を第3実施形態より効果的に抑制することができる。
このように本実施形態では、1個の可動部を複数個(ここでは2個)のモータで駆動する機械において同じ二慣性モデルを用いて個々のモデル制御系を構成するとともに該モデルに追従させて実際のフィードバック制御系に制御を実行させることにより、モータとテーブル4との間で振動が生じ得るような場合であってもテーブル4の間の振動を抑制して2個のモータの間での同期精度を確保でき、その結果として高速高精度な位置決めを実現できる。
Then, in the present embodiment, the first
Therefore, for example, by making the first
As described above, in the present embodiment, in a machine in which one moving part is driven by a plurality of (here, two) motors, the same bi-intention model is used to configure each model control system and to follow the model. By having the actual feedback control system execute the control, even if vibration may occur between the motor and the table 4, the vibration between the table 4 is suppressed and the vibration between the two motors is suppressed. The synchronization accuracy can be ensured, and as a result, high-speed and high-precision positioning can be realized.
1 モータ制御装置
2 第1モータ
3 第2モータ
4 テーブル
5 第1ボールネジ
6 第2ボールネジ
10 第1モデル制御系
11 第1モデル位置誤差演算器
12 第1モデル位置制御器
13 第1モデル速度演算器
14 第1モデル速度誤差演算器
15 第1モデル速度制御器
16 第1モデルトルク誤差演算器
17 第1モデルトルク指令ローパスフィルタ(モデルローパスフィルタ)
18 第1可動部モデル
19 第1機台モデル
20 第1モデル位置加算器
21 第1状態帰還量演算器
22 第1機台帰還量演算器
23 第1フィルタ帰還量演算器
24 第1合計帰還量演算器
30 第1フィードバック制御系
31 第1制御位置誤差生成器
32 第1同期位置誤差生成器
33 第1位置同期補償器
34 第1同期補償位置誤差生成器
35 第1位置制御器
36 第1検出速度生成器
37 第1制御速度誤差生成器
38 第1速度制御器
39 第1制御トルク生成器
40 第1トルク指令ローパスフィルタ(制御ローパスフィルタ)
41 第1トルク制御器
42 第1センサ
50 第2モデル制御系
51 第2モデル位置誤差演算器
52 第2モデル位置制御器
53 第2モデル速度演算器
54 第2モデル速度誤差演算器
55 第2モデル速度制御器
56 第2モデルトルク誤差演算器
57 第2モデルトルク指令ローパスフィルタ(モデルローパスフィルタ)
58 第2可動部モデル
59 第2機台モデル
60 第2モデル位置加算器
61 第2状態帰還量演算器
62 第2機台帰還量演算器
63 第2フィルタ帰還量演算器
64 第2合計帰還量演算器
70 第2フィードバック制御系
71 第2制御位置誤差生成器
72 第2同期位置誤差生成器
73 第2位置同期補償器
74 第2同期補償位置誤差生成器
75 第2位置制御器
76 第2検出速度生成器
77 第2制御速度誤差生成器
78 第2速度制御器
79 第2制御トルク生成器
80 第2トルク指令ローパスフィルタ(制御ローパスフィルタ)
81 第2トルク制御器
82 第2センサ
91 第1前段状態補償モデル速度誤差演算器
92 第1後段状態補償モデル速度誤差演算器
93 第1前段状態補償モデルトルク誤差演算器
94 第1後段状態補償モデルトルク誤差演算器
95 第1二慣性モデル(多慣性モデル)
96 第1モータ側モデル
97 第1前段モータ側積分器
98 第1後段モータ側積分器
99 第1ねじりトルク演算器
100 第1負荷側モデル
101 第1前段負荷側積分器
102 第1後段負荷側積分器
103 第1モデル内加速度誤差演算器
104 第1モデル内速度誤差演算器
105 第1モデル内位置誤差演算器
106 第1トルク帰還量演算器
107 第1速度帰還量演算器
111 第2前段状態補償モデル速度誤差演算器
112 第2後段状態補償モデル速度誤差演算器
113 第2前段状態補償モデルトルク誤差演算器
114 第2後段状態補償モデルトルク誤差演算器
115 第2二慣性モデル(多慣性モデル)
116 第2モータ側モデル
117 第2前段モータ側積分器
118 第2後段モータ側積分器
119 第2ねじりトルク演算器
120 第2負荷側モデル
121 第2前段負荷側積分器
122 第2後段負荷側積分器
123 第2モデル内加速度誤差演算器
124 第2モデル内速度誤差演算器
125 第2モデル内位置誤差演算器
126 第2トルク帰還量演算器
127 第2速度帰還量演算器
1
18 1st moving
41
58 2nd moving
81
96 1st
116 2nd
Claims (11)
前記可動部に対する振動の影響を抑制するように状態をフィードバックするモデル制御系であって前記外部位置指令からモデル位置指令を含むモデル指令を生成するモデル制御系と、
N個の前記モータと1対1対応で設けられて前記モデル指令に基づいて各々の前記モータをフィードバック制御するN個のフィードバック制御系と、
を有し、
(N-1)個の前記フィードバック制御系は、各々の前記モータを制御する際の制御位置誤差を、残りの1個の前記フィードバック制御系での制御位置誤差との差分により補償するものにおいて、
前記モデル制御系は、
前記モータで駆動される前記可動部の動きに対応している可動部モデルおよび前記モータおよび前記可動部が取り付けられる機台の動きに対応している機台モデルを含むとともに前記機台モデルの状態をフィードバックして前記機台の振動に起因する前記機台と前記可動部との間の振動を抑制するものであり、
前記可動部モデルの位置と前記機台モデルの位置とを加算した位置を、前記モデル位置指令として出力されるモデル位置として演算するモデル位置加算器を有する、
モータ制御装置。 It is a motor control device that jointly moves one movable part by N (N: 2 or more natural numbers) motors driven based on a common external position command.
A model control system that feeds back the state so as to suppress the influence of vibration on the movable part, and generates a model command including a model position command from the external position command, and a model control system.
N feedback control systems provided in a one-to-one correspondence with the N motors and feedback-controlling each of the motors based on the model command.
Have,
The (N-1) feedback control system compensates for the control position error when controlling each of the motors by the difference from the control position error in the remaining one feedback control system.
The model control system is
The state of the machine base model including the movable part model corresponding to the movement of the movable part driven by the motor and the machine machine model corresponding to the movement of the machine machine to which the motor and the movable part are attached. Is fed back to suppress the vibration between the machine stand and the moving part caused by the vibration of the machine base.
It has a model position adder that calculates a position obtained by adding the position of the movable part model and the position of the machine base model as a model position output as the model position command.
Motor control device.
前記外部位置指令から、前記モデル位置加算器から出力されるモデル位置を減算してモデル位置誤差を演算するモデル位置誤差演算器を有し、
N個の前記フィードバック制御系の各々は、
前記モデル位置指令および各々の前記モータの位置を検出するセンサが検出した位置に基づいてこれらの位置誤差を示す制御位置誤差を生成する制御位置誤差生成器を有する、 請求項1記載のモータ制御装置。 The model control system is
It has a model position error calculator that calculates a model position error by subtracting the model position output from the model position adder from the external position command.
Each of the N feedback control systems
The motor control device according to claim 1, further comprising a control position error generator that generates a control position error indicating these position errors based on the model position command and the position detected by the sensor that detects the position of each of the motors. ..
各々の前記制御位置誤差と残りの1個の前記フィードバック制御系での前記制御位置誤差との差分を生成する同期位置誤差生成器を有し、
各々の前記モータを制御する際の前記制御位置誤差を、残りの1個の前記フィードバック制御系での前記制御位置誤差との差分により補償する、
請求項2記載のモータ制御装置。 Each of the (N-1) feedback control systems
It has a synchronous position error generator that produces a difference between each of the control position errors and the control position error in the remaining one feedback control system.
The control position error in controlling each of the motors is compensated by the difference from the control position error in the remaining one feedback control system.
The motor control device according to claim 2.
前記モデル位置誤差からモデル速度を演算するモデル位置制御器と、
前記モデル位置加算器から出力される前記モデル位置から前記モデル指令の一つであるモデル速度指令としてのモデル検出速度を演算するモデル速度演算器と、
前記モデル速度から前記モデル検出速度を減算してモデル速度誤差を演算するモデル速度誤差演算器と、
前記モデル速度誤差からモデルトルクを演算するモデル速度制御器と、
前記モデルトルクから状態帰還量を減算して前記モデル指令の一つであるモデルトルク指令としての状態補償後のモデルトルクを演算するモデルトルク誤差演算器と、
状態補償後の前記モデルトルクをローパスフィルタ処理して前記可動部モデルおよび前記機台モデルへ出力するモデルローパスフィルタと、
前記機台モデルの状態に応じた前記状態帰還量を演算する状態帰還量演算器と、を有し、
(N-1)個の前記フィードバック制御系の各々は、
補償処理後の前記制御位置誤差から制御速度を生成する位置制御器と
各々の前記モータの位置を検出する前記センサが検出した位置から検出速度を生成する検出速度生成器と、
前記制御速度、前記検出速度、および前記モデル速度指令に基づいて前記制御速度と前記検出速度との速度誤差に対して前記モデル速度指令を加えた制御速度誤差を生成する制御速度誤差生成器と、
前記制御速度誤差から制御トルクを生成する速度制御器と、
前記制御トルクと前記モデルトルク指令とに基づいてこれらの合計を示す合計制御トルクを生成する制御トルク生成器と、
前記合計制御トルクをローパスフィルタ処理する制御ローパスフィルタと、
ローパスフィルタ処理後の前記合計制御トルクに基づいて各々の前記モータを制御するトルク制御器と、を有する、
請求項3記載のモータ制御装置。 The model control system is
A model position controller that calculates the model speed from the model position error,
A model speed calculator that calculates the model detection speed as a model speed command, which is one of the model commands, from the model position output from the model position adder.
A model speed error calculator that calculates the model speed error by subtracting the model detection speed from the model speed, and
A model speed controller that calculates model torque from the model speed error,
A model torque error calculator that calculates the model torque after state compensation as a model torque command, which is one of the model commands, by subtracting the state feedback amount from the model torque.
A model low-pass filter that processes the model torque after state compensation with a low-pass filter and outputs it to the moving part model and the machine base model.
It has a state feedback amount calculator that calculates the state feedback amount according to the state of the machine stand model.
Each of the (N-1) feedback control systems
A position controller that generates a control speed from the control position error after compensation processing, a detection speed generator that generates a detection speed from a position detected by the sensor that detects the position of each of the motors, and a detection speed generator.
A control speed error generator that generates a control speed error by adding the model speed command to the speed error between the control speed and the detection speed based on the control speed, the detection speed, and the model speed command.
A speed controller that generates control torque from the control speed error,
A control torque generator that generates a total control torque indicating the sum of the control torque and the model torque command.
A control low-pass filter that processes the total control torque with a low-pass filter,
It has a torque controller that controls each of the motors based on the total control torque after low-pass filtering.
The motor control device according to claim 3.
前記可動部に対する振動の影響を抑制するように状態をフィードバックするモデル制御系であって前記外部位置指令からモデル位置指令を含むモデル指令を生成するモデル制御系と、
N個の前記モータと1対1対応で設けられて前記モデル指令に基づいて各々の前記モータをフィードバック制御するN個のフィードバック制御系と、
を有し、
(N-1)個の前記フィードバック制御系は、各々の前記モータを制御する際の制御位置誤差を、残りの1個の前記フィードバック制御系での制御位置誤差との差分により補償するものにおいて、
前記モデル制御系は、
前記モータから前記可動部までの機械系の動きに対応している二慣性モデルを含むとともに前記二慣性モデルの状態をフィードバックして前記機械系の振動に起因する前記可動部の振動を抑制するものであり、
前記二慣性モデルは、前記モデル位置指令として出力されるモデル位置を演算する、
モータ制御装置。 It is a motor control device that jointly moves one movable part by N (N: 2 or more natural numbers) motors driven based on a common external position command.
A model control system that feeds back the state so as to suppress the influence of vibration on the movable part, and generates a model command including a model position command from the external position command, and a model control system.
N feedback control systems provided in a one-to-one correspondence with the N motors and feedback-controlling each of the motors based on the model command.
Have,
The (N-1) feedback control system compensates for the control position error when controlling each of the motors by the difference from the control position error in the remaining one feedback control system.
The model control system is
It includes a bi-inertia model corresponding to the movement of the mechanical system from the motor to the movable part, and feeds back the state of the bi-inertia model to suppress the vibration of the movable part caused by the vibration of the mechanical system. And
The bi-inertia model calculates the model position output as the model position command.
Motor control device.
前記外部位置指令から、前記二慣性モデルから出力される前記モデル位置を減算してモデル位置誤差を演算するモデル位置誤差演算器を有し、
N個の前記フィードバック制御系の各々は、
前記モデル位置指令および各々の前記モータの位置を検出するセンサが検出した位置に基づいてこれらの位置誤差を示す制御位置誤差を生成する制御位置誤差生成器を有する、 請求項5記載のモータ制御装置。 The model control system is
It has a model position error calculator that calculates a model position error by subtracting the model position output from the bi-inertia model from the external position command.
Each of the N feedback control systems
The motor control device according to claim 5, further comprising a control position error generator that generates a control position error indicating these position errors based on the model position command and the position detected by the sensor that detects the position of each of the motors. ..
各々の前記制御位置誤差と残りの1個の前記フィードバック制御系での前記制御位置誤差との差分を生成する同期位置誤差生成器を有し、
各々の前記モータを制御する際の前記制御位置誤差を、残りの1個の前記フィードバック制御系での前記制御位置誤差との差分により補償する、
請求項6記載のモータ制御装置。 Each of the (N-1) feedback control systems
It has a synchronous position error generator that produces a difference between each of the control position errors and the control position error in the remaining one feedback control system.
The control position error in controlling each of the motors is compensated by the difference from the control position error in the remaining one feedback control system.
The motor control device according to claim 6.
請求項1から7のいずれか一項記載のモータ制御装置。 The model commands from the respective model control systems to which the common external position commands are simultaneously input are input to the N feedback control systems.
The motor control device according to any one of claims 1 to 7.
N個の前記モデル制御系は、同じフィードバックループの構成により共通の前記外部位置指令から同じ前記モデル指令を生成する、
請求項1から8のいずれか一項記載のモータ制御装置。 The model control system is provided with N pieces corresponding to one-to-one with the N pieces of the feedback control system.
The N model control systems generate the same model command from the common external position command with the same feedback loop configuration.
The motor control device according to any one of claims 1 to 8.
2個の前記フィードバック制御系は、各々での前記モータを制御するための制御位置誤差を、他方の前記フィードバック制御系での制御位置誤差との差分により互いに補償する、
請求項1から9のいずれか一項記載のモータ制御装置。 The feedback control system is two.
The two feedback control systems compensate each other for the control position error for controlling the motor in each by the difference from the control position error in the other feedback control system.
The motor control device according to any one of claims 1 to 9.
請求項1から10のいずれか一項記載のモータ制御装置。 The characteristic equation for the equation of state of the model control system has multiple roots.
The motor control device according to any one of claims 1 to 10.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015026869A JP7049754B2 (en) | 2015-02-13 | 2015-02-13 | Motor control device |
CN201610076504.0A CN105897069B (en) | 2015-02-13 | 2016-02-03 | Motor control device |
TW105104121A TWI683196B (en) | 2015-02-13 | 2016-02-05 | Motor control apparatus |
PH12016000059A PH12016000059A1 (en) | 2015-02-13 | 2016-02-09 | Motor control apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015026869A JP7049754B2 (en) | 2015-02-13 | 2015-02-13 | Motor control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016149918A JP2016149918A (en) | 2016-08-18 |
JP7049754B2 true JP7049754B2 (en) | 2022-04-07 |
Family
ID=56688082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015026869A Active JP7049754B2 (en) | 2015-02-13 | 2015-02-13 | Motor control device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7049754B2 (en) |
CN (1) | CN105897069B (en) |
PH (1) | PH12016000059A1 (en) |
TW (1) | TWI683196B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6880853B2 (en) * | 2017-03-14 | 2021-06-02 | オムロン株式会社 | Processing equipment, parameter adjustment method, and parameter adjustment program |
CN110417305B (en) * | 2019-07-10 | 2021-08-27 | 北京建筑大学 | System and method for multi-motor self-adaptive control synchronization |
CN110703687A (en) * | 2019-09-27 | 2020-01-17 | 上海畲贡自动化科技有限公司 | Error compensation system and method |
CN115514258A (en) * | 2022-09-15 | 2022-12-23 | 上海新纪元机器人有限公司 | Multi-motor synchronous force control method and system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3252704B2 (en) | 1996-05-08 | 2002-02-04 | 日本鋼管株式会社 | Method for producing hot-rolled steel sheet excellent in pickling properties and surface properties |
JP2003345442A (en) | 2002-05-27 | 2003-12-05 | Yaskawa Electric Corp | Synchronization control unit |
WO2004092859A1 (en) | 2003-04-11 | 2004-10-28 | Mitsubishi Denki Kabushiki Kaisha | Servo controller |
JP2007272367A (en) | 2006-03-30 | 2007-10-18 | Mitsubishi Electric Corp | Multiple-shaft synchronization system and control method |
JP4197095B2 (en) | 1999-03-24 | 2008-12-17 | 富士通株式会社 | GUI program creation support apparatus, creation support method, and computer-readable recording medium recording the creation support program |
JP2011172317A (en) | 2010-02-16 | 2011-09-01 | Sanyo Denki Co Ltd | Motor control device |
JP2013121287A (en) | 2011-12-08 | 2013-06-17 | Sanyo Denki Co Ltd | Motor controller |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55153894U (en) * | 1979-04-18 | 1980-11-06 | ||
JPH03252704A (en) * | 1990-03-02 | 1991-11-12 | Mitsubishi Heavy Ind Ltd | Rotational synchronization corrective control system |
JP3125015B2 (en) * | 1990-11-27 | 2001-01-15 | 松下電器産業株式会社 | Drive controller for orthogonal robot |
US5923132A (en) * | 1998-04-23 | 1999-07-13 | Allen-Bradley Company, Llc | Method and apparatus for synchrononous multi-axis servo path planning |
CN1146765C (en) * | 1998-09-28 | 2004-04-21 | 株式会社安川电机 | Position controller |
JP3492583B2 (en) * | 2000-03-27 | 2004-02-03 | ファナック株式会社 | Servo control device |
JP2006011631A (en) * | 2004-06-23 | 2006-01-12 | Yaskawa Electric Corp | Servo control system and servo control method |
JP4361071B2 (en) * | 2005-07-08 | 2009-11-11 | ファナック株式会社 | Servo control device |
CN100539388C (en) * | 2007-12-29 | 2009-09-09 | 浙江工业大学 | Multi-motor coordination control system |
FI121130B (en) * | 2008-02-29 | 2010-07-15 | Vacon Oyj | Connecting the electric motor to the supply network |
JP4540727B2 (en) * | 2008-07-31 | 2010-09-08 | 山洋電気株式会社 | Motor control device |
JP5388605B2 (en) * | 2009-01-29 | 2014-01-15 | 三菱電機株式会社 | Motor synchronous control device |
TWI403871B (en) * | 2010-10-25 | 2013-08-01 | Ind Tech Res Inst | Feedback switching device and method for servo motor driving |
US9054608B2 (en) * | 2011-02-21 | 2015-06-09 | Mitsubishi Electric Corporation | Electric motor control system and communication method |
CN203504458U (en) * | 2013-10-28 | 2014-03-26 | 扬州曙光光电自控有限责任公司 | AC servo driver with anti-backlash control and master-slave control |
-
2015
- 2015-02-13 JP JP2015026869A patent/JP7049754B2/en active Active
-
2016
- 2016-02-03 CN CN201610076504.0A patent/CN105897069B/en active Active
- 2016-02-05 TW TW105104121A patent/TWI683196B/en active
- 2016-02-09 PH PH12016000059A patent/PH12016000059A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3252704B2 (en) | 1996-05-08 | 2002-02-04 | 日本鋼管株式会社 | Method for producing hot-rolled steel sheet excellent in pickling properties and surface properties |
JP4197095B2 (en) | 1999-03-24 | 2008-12-17 | 富士通株式会社 | GUI program creation support apparatus, creation support method, and computer-readable recording medium recording the creation support program |
JP2003345442A (en) | 2002-05-27 | 2003-12-05 | Yaskawa Electric Corp | Synchronization control unit |
WO2004092859A1 (en) | 2003-04-11 | 2004-10-28 | Mitsubishi Denki Kabushiki Kaisha | Servo controller |
JP2007272367A (en) | 2006-03-30 | 2007-10-18 | Mitsubishi Electric Corp | Multiple-shaft synchronization system and control method |
JP2011172317A (en) | 2010-02-16 | 2011-09-01 | Sanyo Denki Co Ltd | Motor control device |
JP2013121287A (en) | 2011-12-08 | 2013-06-17 | Sanyo Denki Co Ltd | Motor controller |
Also Published As
Publication number | Publication date |
---|---|
CN105897069B (en) | 2021-09-14 |
TWI683196B (en) | 2020-01-21 |
PH12016000059B1 (en) | 2017-09-11 |
JP2016149918A (en) | 2016-08-18 |
PH12016000059A1 (en) | 2017-09-11 |
TW201633029A (en) | 2016-09-16 |
CN105897069A (en) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7671553B2 (en) | Servo controller | |
JP4944806B2 (en) | Position control device | |
JP7049754B2 (en) | Motor control device | |
JP5863860B2 (en) | Servo controller that reduces interference between axes during machining | |
EP3118710B1 (en) | Feed shaft control method and numerical control work device | |
JP6653542B2 (en) | Motor control device | |
JPH08118275A (en) | Controller for manipulator | |
WO2013140679A1 (en) | Track control device | |
JP4867105B2 (en) | Numerical controller | |
KR101799544B1 (en) | Motor Control Device | |
JP2005085074A (en) | Position controller | |
KR101347921B1 (en) | Servo control device | |
JP5441944B2 (en) | Motor control device | |
JP2004070790A (en) | Positional controller for machinery and position control system for machinery | |
JP6391489B2 (en) | Motor control device | |
JP6725748B2 (en) | Disturbance decoupling compensation system and positioning machine for positioning controller | |
JP4134599B2 (en) | Synchronous control device | |
JP2004086434A (en) | Speed command type synchronization controller | |
EP3598248A1 (en) | Control system | |
JP2004310261A (en) | Motor-controlling device | |
JP2003345402A (en) | Position control device | |
JP2005269758A (en) | Motor controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20160308 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20160310 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181030 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181031 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190409 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20191008 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20200108 |
|
C116 | Written invitation by the chief administrative judge to file amendments |
Free format text: JAPANESE INTERMEDIATE CODE: C116 Effective date: 20200121 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20200121 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20200519 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20200929 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20201208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210208 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20210421 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20210615 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210730 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20211102 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20211109 |
|
C302 | Record of communication |
Free format text: JAPANESE INTERMEDIATE CODE: C302 Effective date: 20220107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220111 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20220201 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20220308 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20220308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220328 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7049754 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |