Nothing Special   »   [go: up one dir, main page]

JP7048815B2 - Hydraulic pumps and their application devices. - Google Patents

Hydraulic pumps and their application devices. Download PDF

Info

Publication number
JP7048815B2
JP7048815B2 JP2021209387A JP2021209387A JP7048815B2 JP 7048815 B2 JP7048815 B2 JP 7048815B2 JP 2021209387 A JP2021209387 A JP 2021209387A JP 2021209387 A JP2021209387 A JP 2021209387A JP 7048815 B2 JP7048815 B2 JP 7048815B2
Authority
JP
Japan
Prior art keywords
hydraulic
pump
cylindrical member
hydraulic oil
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021209387A
Other languages
Japanese (ja)
Other versions
JP2022037192A (en
Inventor
秋夫 湯田
Original Assignee
秋夫 湯田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018170211A external-priority patent/JP7013095B2/en
Application filed by 秋夫 湯田 filed Critical 秋夫 湯田
Priority to JP2021209387A priority Critical patent/JP7048815B2/en
Publication of JP2022037192A publication Critical patent/JP2022037192A/en
Application granted granted Critical
Publication of JP7048815B2 publication Critical patent/JP7048815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、油圧ポンプに関するものである。 The present invention relates to a hydraulic pump.

油圧ポンプには渦巻きポンプ、ギヤポンプ、ベーンポンプ、ピストンポンプ、ネジポンプ等がある。 Hydraulic pumps include centrifugal pumps, gear pumps, vane pumps, piston pumps, screw pumps and the like.

近年発生する豪雨、豪雪等の自然災害は、地球温暖化の要因の一因と言われている二酸化炭素の排出の多さが原因と言われ、依存する化石燃料の削減が求められ、再生可能なエネルギーへの転換への要望が多くなっている。 Natural disasters such as heavy rain and heavy snow that occur in recent years are said to be caused by a large amount of carbon dioxide emissions, which is said to be one of the causes of global warming. There are increasing demands for conversion to renewable energy.

自然エネルギーを利用した発電では、風力、水力等を動力として発電する事が知られている。 In power generation using natural energy, it is known that power is generated by using wind power, hydraulic power, or the like.

近年、風力発電の設置個所が色々な場所で見かけるようになっている。 In recent years, installation locations for wind power generation have come to be found in various places.

風力発電の多くは、風車の羽根の回転軸を歯車を用い発電機軸に直結したものである。 In most wind power generation, the rotating shaft of the blade of the wind turbine is directly connected to the generator shaft using gears.

この為大きな発電力を得る為に、羽根の大きさが数十メートルものの大きな物が設置されている。 Therefore, in order to obtain a large amount of power generation, a large object with a blade size of several tens of meters is installed.

大きな電力を得る為に羽根を大きくすると低周波騒音などの発生も大きくなる。 If the blades are made larger in order to obtain a large amount of power, the generation of low-frequency noise will also increase.

ビルの屋上に設けている小型風力発電機もある。 There is also a small wind power generator installed on the roof of the building.

又、小規模の河川を活用した水車発電等も一部に有る。 In addition, there are some water turbine power generation utilizing small rivers.

特開2015-140719JP 2015-140719 特開2015-135100JP 2015-135100

今後再生エネルギーをこれ以上に活用する為には、色々な問題が発生すると思われる。 It seems that various problems will occur in order to further utilize renewable energy in the future.

小水力発電、風力発電等再生エネルギーは気象条件で発電量が変わる。 The amount of renewable energy such as small hydropower and wind power varies depending on the weather conditions.

又、電力会社が買い取る電価の変動問題、不安定の気象による発電量の増減による送電線網との関係等の問題点が指摘されている。 In addition, problems such as fluctuations in the electric charge purchased by electric power companies and the relationship with the transmission line network due to changes in the amount of power generation due to unstable weather have been pointed out.

これらの課題を解決する為には、電力の地産地消と言う考え方がベストと思われる。 In order to solve these problems, the idea of local production for local consumption of electric power seems to be the best.

風力、水力発電機を小型化し、発生した電力を今後開発が急速に進むと予想される蓄電池に蓄え、気象により変動する発電を蓄電池を用いる事で解消し、電力会社に依存しない地域産業、家庭、普及が進む個々の電気自動車等への充電等に活用できる家庭用、集落、地域に適した風力水力発電機を開発する。 We will downsize wind and hydroelectric generators, store the generated power in storage batteries that are expected to develop rapidly in the future, eliminate power generation that fluctuates due to the weather by using storage batteries, and local industries and households that do not depend on power companies. Develop wind and hydroelectric generators suitable for homes, villages, and regions that can be used to charge individual electric vehicles that are becoming more widespread.

従来の発電機の発電システムは、風力、水力、火力初め他の動力で発生回転する力を発電機の回転軸に直接伝え軸が回る事で発電する仕組みで、風車、水車等を活用した発電機は一台一台の回転する軸に発電機を取り付けたもので有る。 The power generation system of a conventional generator is a mechanism that generates electricity by directly transmitting the rotating force generated by other powers such as wind power, hydraulic power, and thermal power to the rotating shaft of the generator and rotating the shaft. Each machine has a generator attached to the rotating shaft.

地域に根差した、ローカルの自然エネルギーを活用した発電機として電力を得る為には、従来の小型発電機を複数設け発電機同士を繋いで得る発電では一台一台発電する為に、エネルギーの変換時の損失が大きな課題であった。 In order to obtain power as a generator that utilizes local natural energy rooted in the region, multiple conventional small generators are installed and the generators are connected to each other to generate electricity one by one. Loss during conversion was a major issue.

この課題を解消する為には、複数機の小型の風力、水力等で発生する回転する力を油圧に置き換え、油圧力を効率良く集め一台の発電機を回す油圧ポンプとして開発し発電する新しい発電システムを構築する必要があるが、公知の油圧ポンプを用い直列に連結して活用するには、既存の渦巻きポンプ、ネジポンプ初め、他のほぼ全てのポンプは、中心となる回転軸にネジ溝、渦巻き溝等が設けてあるもので、軸が回転する溝で作動油を押し出しているポンプで、ポンプ中心軸が回る為、直線のシャフト軸に複数機設け連結する事が出来ない渦巻きポンプ、ネジポンプ等である。 In order to solve this problem, a new hydraulic pump that replaces the rotating force generated by multiple small wind power, hydraulic power, etc. with hydraulic pressure, efficiently collects hydraulic pressure, and turns one generator to generate power. It is necessary to construct a power generation system, but in order to connect and utilize it in series using a known hydraulic pump, existing centrifugal pumps, screw pumps, and almost all other pumps have a thread groove on the central rotating shaft. , Centrifugal groove, etc., which is a pump that pushes out hydraulic oil in the groove where the shaft rotates. A screw pump, etc.

本発明では、風力、水力を受けて回る複数機の羽根の回転で得る力を作動油を用い連結し油圧力を集め、この油圧力で一台の油圧モーターを回して発電機を稼働する。 In the present invention, the force obtained by the rotation of a plurality of blades that rotate under wind and hydraulic power is connected by using hydraulic oil to collect oil pressure, and one hydraulic motor is rotated by this oil pressure to operate a generator.

この為には、複数機の回転で発生する力を油圧に置き換え繋ぐ事の出来る油圧ポンプが必要となり、複数機の油圧ポンプを効率良く連結する為には、直線状に油圧ポンプを直列に複数機設け、連結し回転し発生する回転力を作動油を用い各油圧ポンプ同士を繋ぎ高出力にしてから活用する必要がある。 For this purpose, a hydraulic pump that can replace the force generated by the rotation of multiple machines with hydraulic pressure and connect them is required, and in order to efficiently connect multiple hydraulic pumps, multiple hydraulic pumps are linearly connected in series. It is necessary to install a machine, connect and rotate, and use hydraulic oil to connect each hydraulic pump to each other to increase the output.

直線上に直列に複数機のポンプを並べ繋いで油圧を得る為には、直線の固定軸シャフト上で回転して油圧を得る事の出来るポンプとして並べる必要が有る。 In order to obtain hydraulic pressure by arranging and connecting multiple pumps in series on a straight line, it is necessary to arrange them as pumps that can rotate on a straight fixed shaft and obtain hydraulic pressure.

この為には、固定軸シャフトを中心軸として、回転する円筒形部材から構成する油圧ポンプで、円筒形部材内面に溝部又は、コイルバネを接合し作動油輸送用螺旋状溝部として設け、固定軸シャフト内から円筒形部材内に流入する作動油流入口及び作動油流出口を有する部材とした事を特徴とし、固定軸シャフト上で、回転する筒部材表面に風又は、水流を受けて回転する為の羽根を設けた油圧ポンプとする。 For this purpose, a hydraulic pump composed of a rotating cylindrical member with a fixed shaft as the central axis is provided as a groove or a coil spring joined to the inner surface of the cylindrical member to form a spiral groove for transporting hydraulic oil. It is characterized by having a hydraulic oil inlet and a hydraulic oil outlet that flow into the cylindrical member from the inside, and is rotated by receiving wind or water flow on the surface of the rotating tubular member on the fixed shaft. It is a hydraulic pump equipped with the blades of.

又、固定軸シャフト上に複数機の径の異なる大きさの円筒形筒部材である多段式高圧油圧ポンプを並べ、固定軸シャフト内に作動油の流路を設け、小中大の油圧ポンプを作動油を用いて連結し稼働出来る一対の油圧ポンプとして用いる事で、従来のポンプと異なり一本の直線の固定軸シャフト上に回転する円筒形部材をポンプとし設けたもので、固定軸シャフト上に直列に複数機設ける事が出来る円筒形部材であるこの油圧ポンプ同士を繋ぐ事の出来るようにした多段式高油圧ポンプとしたものでもでもある。 In addition, multi-stage high-pressure hydraulic pumps, which are cylindrical tubular members of different sizes, are lined up on the fixed shaft shaft, and a hydraulic oil flow path is provided in the fixed shaft shaft to accommodate small, medium and large hydraulic pumps. By using it as a pair of hydraulic pumps that can be connected and operated using hydraulic oil, unlike conventional pumps, a cylindrical member that rotates on a single straight fixed shaft is provided as a pump on the fixed shaft. It is also a multi-stage high hydraulic pump that can connect these hydraulic pumps, which are cylindrical members that can be installed in series in series.

複数機のポンプを直列に設け、回転し発生する各ポンプ間の圧力を作動油を用い連結するが、従来の軸が回る構造のポンプは軸シャフト上で複数ポンプを繋ぐ事ができず使えず、ポンプの構造が異なる固定軸シャフトの上で回転する油圧ポンプが必要となる技術的課題を克服した本発明の油圧ポンプである。 Multiple pumps are installed in series, and the pressure between each pump generated by rotation is connected using hydraulic oil, but the conventional pump with a rotating shaft structure cannot be used because multiple pumps cannot be connected on the shaft shaft. The hydraulic pump of the present invention overcomes the technical problem of requiring a hydraulic pump that rotates on a fixed shaft shaft having a different pump structure.

本発明の油圧ポンプは、従来の油圧ポンプと異なり固定シャフト上で回転する円筒形部材内に溝を有した渦巻き溝羽根部材、又はコイルバネ状の螺旋溝部材等を設け回転し作動油を輸送用螺旋状溝部材として用い、この円筒形部材表面に風車羽根、水車羽根を設け、風力、水力で回転する円筒形部材を支える固定軸シャフトから構成する油圧ポンプである。 Unlike conventional hydraulic pumps, the hydraulic pump of the present invention is provided with a spiral groove blade member having a groove in a cylindrical member that rotates on a fixed shaft, a spiral groove member in the shape of a coil spring, or the like, and rotates to transport hydraulic oil. It is a hydraulic pump used as a spiral groove member, provided with windmill blades and water wheel blades on the surface of the cylindrical member, and is composed of a fixed shaft shaft that supports the cylindrical member that rotates by wind power and hydraulic power.

風車羽根、水車羽根で回る円筒形部材を支える固定軸シャフトは、連接した各ポンプ間を繋ぐ作動油が通る流路を成しているが、固定軸シャフト上で連設した油圧ポンプの一部のポンプの回転数が異常に速く回り規定量以上の作動油を押し出しポンプ内の作動油が不足し空回りし負油圧に陥り、作動油の供給が追い付かず不足に陥った場合の為に、作動油の逆止弁付きのバイパス補給流路も固定軸シャフト内に設けてある固定軸シャフトである。 The fixed shaft shaft that supports the cylindrical member that rotates with the windmill blades and water wheel blades forms a flow path through which the hydraulic oil that connects the connected pumps passes, but it is a part of the hydraulic pumps that are continuously installed on the fixed shaft shaft. The number of revolutions of the pump turns abnormally fast and pushes out more than the specified amount of hydraulic oil. The hydraulic oil in the pump runs short and runs idle, resulting in negative hydraulic pressure. A bypass supply flow path with an oil check valve is also a fixed shaft shaft provided in the fixed shaft shaft.

円筒形部材内に渦巻き溝羽根、コイルバネの螺旋ネジ溝を有した部材を設けて回転する円筒形部材で、この部材が回ると溝内の作動油が押し出されて固定軸シャフトの通常の流路を通り連設された他のポンプの円筒形部材内に押されて放出される仕組みである。 It is a cylindrical member that rotates by providing a member with a spiral groove blade and a spiral screw groove of a coil spring in the cylindrical member. When this member rotates, the hydraulic oil in the groove is pushed out and the normal flow path of the fixed shaft shaft. It is a mechanism that is pushed and discharged into the cylindrical member of another pump that is connected through the above.

異なる大きさの風車羽根で回る連設された各ポンプは、力を受けて回る溝部材の溝幅、深さ等でポンプからの押し出される作動油の流出量、圧力も異なる多段式油圧ポンプを、直列に配列し設けたポンプを適した順序で並べ、得られる油量、油圧力を徐々に高い圧力が得られるように直列に連結する事で、大な風車、水車と同等の油圧力が得られる一対の油圧ポンプとしたものである。 Each of the series of pumps that rotate with wind turbine blades of different sizes is a multi-stage hydraulic pump with different outflow amount and pressure of hydraulic oil extruded from the pump depending on the groove width, depth, etc. of the groove member that rotates by receiving force. By arranging the pumps arranged in series in an appropriate order and connecting the obtained oil amount and oil pressure in series so that a gradually higher pressure can be obtained, the oil pressure equivalent to that of a large windmill or water wheel can be obtained. It is a pair of obtained hydraulic pumps.

又、円筒形部材内の作動油輸送用螺旋状溝部であるコイルバネ部の作動油流入口部分のみを円筒形部材内内面に点付け固定し、円筒形部材が異常高速回転し円筒形部材内が高油圧に陥った場合、コイルバネが縮み溝部が狭く成り作動油を押し出す油圧量が少なくなる事で、風車が突風等で高速回転になって異常の高油圧になるのを防ぎ油圧ポンプの破損を回避する事の出来るようにしたもので、円筒形部材内が規定以上の油圧を受けて場合伸縮するコイルバネ部材を用いたものである。 Further, only the hydraulic oil inflow port portion of the coil spring portion, which is the spiral groove portion for transporting hydraulic oil in the cylindrical member, is spotted and fixed on the inner surface of the cylindrical member, and the cylindrical member rotates at an abnormally high speed to inside the cylindrical member. When it falls into high hydraulic pressure, the coil spring shrinks and the groove becomes narrower, and the amount of hydraulic pressure that pushes out the hydraulic oil decreases, which prevents the wind turbine from rotating at high speed due to a gust of wind, etc., and prevents the hydraulic pump from becoming abnormally high hydraulic pressure. It is designed so that it can be avoided, and a coil spring member that expands and contracts when the inside of the cylindrical member receives a hydraulic pressure higher than the specified value is used.

又筒部材内に作動油を押し出す溝部材として、渦巻き溝羽根部材を設けた油圧ポンプとして活用としたポンプの場合も、渦巻き溝羽根部材を作動油流入口部近傍のみに円筒形部材内内面に点付け固定し異常な高速回転で高油圧に陥った場合も同様の可変縮む渦巻き溝羽根部材である。 Also, in the case of a pump used as a hydraulic pump provided with a spiral groove blade member as a groove member for pushing out hydraulic oil into the tubular member, the spiral groove blade member is placed on the inner surface of the cylindrical member only in the vicinity of the hydraulic oil inflow port. It is a spiral groove blade member that shrinks variably even when it is fixed by spotting and falls into high hydraulic pressure due to abnormal high-speed rotation.

固定軸シャフトを中心軸として回転する複数の多段式円筒形部材の油圧ポンプで得られた高油圧で、固定軸シャフト後部末尾に設けた円筒形部材を回転させ発電機の回転子部材として用いた本発明の円筒形部材のポンプであり、油圧で回るモーターとも成る油圧ポンプである。 With high hydraulic pressure obtained by hydraulic pumps of multiple multi-stage cylindrical members that rotate around the fixed shaft shaft, the cylindrical member provided at the rear end of the fixed shaft shaft was rotated and used as a rotor member of the generator. It is a pump of a cylindrical member of the present invention, and is a hydraulic pump that also serves as a motor that rotates by hydraulic pressure.

本発明の、油圧ポンプの特徴は一本の固定軸シャフト上に大きさの異なる多段式高圧油圧ポンプの小型油圧渦巻きポンプ、ネジポンプ等を複数機並べ連結して用いることが出来る油圧ポンプで、複数機並べ連結する事で徐々に大きな油圧力を得る事が出来、大型の羽根の風車、水車と異なり設置場所を選ばず何処でも容易に設置でき又、構造が極めて簡単で安価で製作が出来る小型油圧ポンプとしたもので、従来見過ごされていたローカル河川、海岸の風力、水力等の自然エネルギーを活用できる油圧ポンプとしたものである。 The feature of the hydraulic pump of the present invention is a hydraulic pump that can be used by arranging and connecting a plurality of small hydraulic swirl pumps, screw pumps, etc. of multi-stage high-pressure hydraulic pumps of different sizes on one fixed shaft. By connecting the machines side by side, it is possible to gradually obtain a large oil pressure, and unlike large blade windmills and hydraulic pumps, it can be easily installed anywhere, and the structure is extremely simple and can be manufactured at low cost. It is a hydraulic pump that can utilize natural energy such as local rivers, coastal wind power, and hydraulic power, which have been overlooked in the past.

加えて、必要とする電力に対応した複数機の多段式高圧油圧ポンプの連結が容易で、地域用途で異なる必要とする電力量に合ったポンプの台数を固定軸シャフト上に設け連結する事で地域、用途に適した風力水力発電が可能となった。 In addition, it is easy to connect multiple multi-stage high-pressure hydraulic pumps that support the required power, and by installing and connecting the number of pumps that match the required power amount, which differ depending on the regional application, on the fixed shaft shaft. Wind and hydroelectric power generation suitable for the region and application has become possible.

本発明の、油圧ポンプ側面斜視図。A side perspective view of the hydraulic pump of the present invention. 本発明の油圧ポンプの側面断面斜視図。A side sectional perspective view of the hydraulic pump of the present invention. 本発明の油圧ポンプ側面断面図で溝部の幅が広い事を表わした斜視図。The perspective view which showed that the width of the groove portion is wide in the side sectional view of the hydraulic pump of this invention. 本発明の油圧ポンプ側面断面図で溝部の幅が狭い事を表わした斜視図。A perspective view showing that the width of the groove is narrow in the side sectional view of the hydraulic pump of the present invention. 固定軸シャフトに油圧ポンプを連結した事を表わした側面斜視図。A side perspective view showing that a hydraulic pump is connected to a fixed shaft. 固定軸シャフトに油圧ポンプを連結した作動油の流入口、流出口を表わした側面斜視図の断面図。A cross-sectional view of a side perspective view showing an inlet and an outlet of hydraulic oil in which a hydraulic pump is connected to a fixed shaft. 連結した油圧ポンプの溝部の幅の違いを表わした断面斜視図。The cross-sectional perspective view which showed the difference in the width of the groove part of the connected hydraulic pump. 油圧ポンプの大きさの異なるポンプを固定軸シャフトに設けた側面図。A side view in which pumps of different sizes of hydraulic pumps are provided on a fixed shaft. 軸シャフトに並べ連結した油圧ネジポンプ後部に発電機を設けた斜視図。A perspective view in which a generator is provided at the rear of a hydraulic screw pump arranged and connected to a shaft shaft. 大中小の風車羽根を設けた油圧ネジポンプを固定軸シャフトに並べた斜視図。A perspective view of hydraulic screw pumps with large, medium and small wind turbine blades arranged on a fixed shaft. 固定軸シャフトに油圧ポンプを連結した事を表わした側面斜視図。A side perspective view showing that a hydraulic pump is connected to a fixed shaft. 固定軸シャフトに油圧ポンプを連結した事を表わした側面斜視図。A side perspective view showing that a hydraulic pump is connected to a fixed shaft. 本発明の油圧ポンプを活用している水車発電機のポンプ連結状況斜視図。The pump connection situation perspective view of the water turbine generator which utilizes the hydraulic pump of this invention. 本発明の油圧ポンプを風車発電機として用いた設置状況図で、風車羽根ポンプは略図である。In the installation situation diagram using the hydraulic pump of the present invention as a wind turbine generator, the wind turbine blade pump is a schematic diagram. 本発明の油圧ポンプを風車発電機として用いた設置状況図で、風車羽根ポンプは略図である。In the installation situation diagram using the hydraulic pump of the present invention as a wind turbine generator, the wind turbine blade pump is a schematic diagram. 通常稼働するポンプ内のコイルバネの螺旋溝を表した斜視図。A perspective view showing a spiral groove of a coil spring in a pump that normally operates. 風力が強く回転数が高くなり、油圧力が増し負荷が加わり螺旋溝が狭まって回転する溝部を表した斜視図。A perspective view showing a groove portion in which a spiral groove narrows and rotates due to a strong wind force and a high rotation speed, an increase in oil pressure, and a load. 強風、突風等異常に強い風が発生して、高速回転に陥った時の高負荷で異常な高い油圧を受けて縮まった螺旋溝を表した斜視図。A perspective view showing a spiral groove that has shrunk due to an abnormally high hydraulic pressure under a high load when an abnormally strong wind such as a strong wind or a gust is generated and falls into high-speed rotation. 固定シャフト軸が羽根の大きさに併せた太さの軸シャフトを表した断面斜視図。A cross-sectional perspective view showing a shaft with a fixed shaft having a thickness that matches the size of the blade. 固定シャフト内の油圧作動油の通常の流路1と補給作動油流路2を表した図。The figure which showed the normal flow path 1 and the replenishment hydraulic fluid flow path 2 of the hydraulic fluid in a fixed shaft. 渦巻きポンプの側面斜視図。Side perspective view of the centrifugal pump. 渦巻きポンプで、渦巻き部材が円盤材を通して裏表異なる渦巻き部材を用いた渦巻きポンプ側面斜視図。A side perspective view of a centrifugal pump using a centrifugal member in which the spiral member passes through a disk material and has different front and back sides. 円盤状部材の表裏に渦巻き部材を設けた部分拡大斜視図。Partially enlarged perspective view in which spiral members are provided on the front and back of the disk-shaped member. 通常時稼動時の円盤上の渦巻き溝部材で時計方向に回転し溝内の作動油を押し出している状況を表わした部分拡大斜視図。A partially enlarged perspective view showing a situation in which a spiral groove member on a disk during normal operation rotates clockwise and pushes out hydraulic oil in the groove. 異常な高速でポンプが回り高油圧となり円盤上の渦巻き溝部材が油圧力で縮み作動油を押し出している状況を表わした部分拡大斜視図。A partially enlarged perspective view showing a situation in which the pump rotates at an abnormally high speed, becomes high hydraulic pressure, and the spiral groove member on the disk contracts due to hydraulic pressure and pushes out hydraulic oil. 通常稼働時の渦巻きポンプ溝部材の正面図。Front view of the centrifugal pump groove member during normal operation. 渦巻き溝部材が高速で回り、ポンプ内が高油圧となり油圧力で溝部が縮み変形し、回転径が小さくなった渦巻き溝部を表した正面図。The front view showing the spiral groove part where the spiral groove member rotates at high speed, the inside of the pump becomes high hydraulic pressure, the groove part shrinks and deforms due to hydraulic pressure, and the rotation diameter becomes small. コイルバネを円筒部材裏面に点付けした接合部を表わした図。The figure which showed the joint part where the coil spring was spotted on the back surface of a cylindrical member. 筒部材内に固定軸シャフト内の流路から作動油が入る流路口の円筒部材裏面部分にコイルバネを点付けした接合部位置を表わした図。The figure which showed the position of the joint part where the coil spring was spotted on the back surface part of the cylindrical member of the flow path opening where hydraulic oil enters from the flow path in a fixed shaft shaft in a tubular member. 固定軸シャフト内の流路から円筒形筒部材に作動油が入る流入口と溝に押され出て行く流出口を表わした側面図。A side view showing an inflow port where hydraulic oil enters a cylindrical tubular member from a flow path in a fixed shaft and an outflow port pushed out into a groove. 作動油の流れを表わした矢印を用いた断面側面図。Cross-sectional side view using arrows showing the flow of hydraulic oil. 円筒形部材が回転すると作動油が圧力を伴い円筒形部材中央に圧縮しオイルシールに加わる油圧力が低圧となりオイル漏れを防ぐ事を表わした図。The figure which showed that when the cylindrical member rotates, hydraulic oil is compressed to the center of the cylindrical member with pressure, and the oil pressure applied to the oil seal becomes low pressure to prevent oil leakage. 固定軸シャフト内の作動油の流路を表わした図。The figure which showed the flow path of the hydraulic oil in a fixed shaft shaft.

直線の固定軸シャフト上に油圧ポンプを設置した本発明の、油圧ポンプ基本の側面斜視図1、2で軸シャフトは丸形形状のシャフトで、油圧作動油を回転する溝で押し出す溝部材は、このシャフトに巻き付けたコイルバネの一部分を円筒形筒型パイプ内面一点に点付け接合した伸縮するコイルバネ形状の作動油輸送用螺旋状溝が回転し作動油を押し出す溝として用いた油圧ポンプの略図である。 In the side perspective views 1 and 2 of the basic hydraulic pump of the present invention in which the hydraulic pump is installed on a straight fixed shaft, the shaft is a round shaft, and the groove member that pushes out the hydraulic hydraulic oil with a rotating groove is It is a schematic diagram of a hydraulic pump used as a groove for pushing out hydraulic oil by rotating a spiral groove for hydraulic oil transportation in the shape of a coil spring that expands and contracts by spotting and joining a part of a coil spring wound around this shaft to one point on the inner surface of a cylindrical tubular pipe. ..

又、図23、24,25,26,27油圧ポンプを構成する油圧作動油を押し出す作動油輸送用螺旋状溝部材を渦巻き溝羽根部材の溝部材とし、固定軸シャフトと固定軸シャフトを中心軸として回転する円筒形部材から成る油圧ポンプで、円筒形部材内中央に円筒形部材を2室に分離する仕切り板円盤を円筒形部材内面に接合して設け、その円盤は表面には方向の揃った複数の渦巻き溝部の羽根を設け、裏面には表面とは異なる方向に揃えた複数の渦巻き溝部羽根を設けた円盤である作動油輸送用羽根付き円盤を備え、固定軸シャフト両端に複数の作動油流入口及び複数の作動油流出口を設けた油圧ポンプの部分拡大斜視図23、24,25,26,27で渦巻き溝部材羽根は変形する板材を用いたもので、円筒形部材であるポンプが高速回転し高油圧に陥った場合、渦巻き溝部材羽根の先端が変形し曲り油圧を押し出す量が少なくなる特徴を備えた渦巻き溝羽根部材である。 In addition, Fig. 23, 24, 25, 26, 27 The spiral groove member for hydraulic oil transportation that pushes out the hydraulic hydraulic oil constituting the hydraulic pump is used as the groove member of the spiral groove blade member, and the fixed shaft shaft and the fixed shaft shaft are the central shafts. A hydraulic pump consisting of a cylindrical member that rotates as a unit. A partition plate disk that separates the cylindrical member into two chambers is joined to the inner surface of the cylindrical member in the center of the cylindrical member, and the disks are aligned in direction on the surface. A disk with blades for hydraulic oil transport, which is a disk provided with multiple spiral groove blades and a plurality of spiral groove blades aligned in a direction different from the front surface, is provided at both ends of the fixed shaft shaft. Partially enlarged perspective of a hydraulic pump provided with an oil inlet and multiple hydraulic oil outlets In FIGS. 23, 24, 25, 26, 27, the spiral groove member blade uses a deformable plate material, and is a cylindrical member pump. Is a spiral groove blade member having a feature that the tip of the spiral groove member blade is deformed and the amount of bending hydraulic pressure is reduced when the pump rotates at high speed and falls into high hydraulic pressure.

固定軸シャフト上に回転する円筒形部材を設けた図2のようにコイルバネ状の螺旋溝部材を円筒形部内に設けた油圧ポンプの基本構造の側面断面斜視図2、と渦巻き溝羽根部材を設けた各ポンプの基本構造図22、23である。 A side sectional perspective view 2 of the basic structure of a hydraulic pump in which a coil spring-shaped spiral groove member is provided in the cylindrical portion as shown in FIG. 2 in which a rotating cylindrical member is provided on a fixed shaft, and a spiral groove blade member are provided. The basic structural drawings 22 and 23 of each pump are shown.

渦巻き溝羽根部材を用いたポンプ及び、伸縮するコイルバネを用いたポンプである円筒形部材を支える固定軸シャフトは、軸シャフト上に複数連設された各油圧ポンプ間を流れる作動油の流路を設けた軸シャフト符号4で連設された各油圧ポンプ間を流れる作動油の流れを表したものである図20~図27図31。 The fixed shaft that supports the cylindrical member, which is a pump that uses a spiral groove blade member and a pump that uses a coil spring that expands and contracts, has a flow path of hydraulic oil that flows between each of the hydraulic pumps that are connected in series on the shaft. FIGS. 20 to 27 and 31 show the flow of hydraulic oil flowing between the hydraulic pumps serially connected by the provided shaft shaft reference numeral 4.

油圧ポンプ内の溝部材の溝幅は、回転する円筒形筒部材表面に設ける羽根の大きさに比例した大きさのコイルバネの螺旋溝のものを用い、円筒形部材内に設けたもので、コイルバネ状の螺旋溝部材の一端を作動油流入口部近傍に点付け接合したもので図29接合部符号2-7でありコイルバネ溝部一部分を接合固定した事でコイルバネ部材が円筒形部材内で伸縮が出来るもので、図3、図4は異なるポンプのコイルバネの螺旋溝部材の溝幅の図で、一回転で押し出す油量が異なる事を表した基本構造の断面斜視図である。 The groove width of the groove member in the hydraulic pump is a spiral groove of a coil spring having a size proportional to the size of the blade provided on the surface of the rotating cylindrical tubular member, and is provided in the cylindrical member. One end of the spiral groove member is pointed and joined near the hydraulic oil inflow port. Fig. 29 Joint part code 2-7. By joining and fixing a part of the coil spring groove part, the coil spring member expands and contracts inside the cylindrical member. 3 and 4 are views of the groove widths of the spiral groove members of the coil springs of different pumps, and are cross-sectional perspective views of the basic structure showing that the amount of oil extruded in one rotation is different.

本発明の油圧ポンプには、油圧渦巻き型ポンプと、コイルバネを用いたネジ型ポンプとがあるが構成する部材を、実施例を基に以下説明するが大きさ寸法等は実施例に囚われるものではない尚、本発明の油圧渦巻きポンプを先に記載する。 The hydraulic pump of the present invention includes a hydraulic centrifugal pump and a screw type pump using a coil spring. The hydraulic centrifugal pump of the present invention will be described first.

固定軸シャフトを中心軸として回転する円筒形部材から成る油圧ポンプで、円筒形部材内中央に円筒形部材を2室に分離する仕切り板の円盤を円筒形部材内面に接合して設け、その円盤は表面には方向の揃った複数の渦巻き溝羽根を設け、裏面には表面とは異なる方向に揃えた複数の渦巻き羽根を設けた円盤である作動油輸送用渦巻き溝羽根付き円盤を備え、固定軸シャフト両端に作動油流入口及び作動油流出口を有する油圧ポンプでこのポンプ内が一定の以上の高圧油に陥った場合、変形縮む可変する渦巻き形状の溝羽根板材を設けた渦巻きポンプの説明をする図21、22、23、24、25、26,27。 A hydraulic pump consisting of a cylindrical member that rotates around a fixed shaft shaft. A partition plate disk that separates the cylindrical member into two chambers is provided in the center of the cylindrical member by joining it to the inner surface of the cylindrical member. Is equipped with a disk with swirl groove blades for transporting hydraulic oil, which is a disk with a plurality of swirl groove blades aligned in the same direction on the front surface and a plurality of swirl blades aligned in a direction different from the front surface, and is fixed. Explanation of a swirl pump provided with a variable swirl-shaped groove blade plate material that deforms and shrinks when the inside of this pump falls into a certain level of high-pressure oil in a hydraulic pump having a hydraulic oil inlet and a hydraulic oil outlet at both ends of the shaft. Figures 21, 22, 23, 24, 25, 26, 27.

固定軸シャフト上で円筒形部材が風力、水力を羽根で受けて回転する渦巻き油圧ポンプである。 A spiral hydraulic pump in which a cylindrical member rotates on a fixed shaft by receiving wind power and hydraulic power with blades.

ポンプ内で使用される作動油は固定軸シャフト内に設けられた作動油の流路から供給され稼働する油圧渦巻きポンプである。 The hydraulic oil used in the pump is a hydraulic centrifugal pump that is supplied and operated from the flow path of the hydraulic oil provided in the fixed shaft.

渦巻きポンプ円筒形部材内中央に円筒形部材を2室に分離する仕切り板の円盤を設け、円盤部材裏表に渦巻き溝羽根部が異なる形状の溝羽根を設けた図23、24,25。 Fig. 23, 24, 25 in which a disk of a partition plate that separates the cylindrical member into two chambers is provided in the center of the cylindrical member of the centrifugal pump, and groove blades having different shapes of the spiral groove blades are provided on the front and back of the disk member.

密封された円筒形部材符号16で表面に風車羽根、水車羽根を設けて固定軸シャフト上で回転する渦巻きポンプである図21。 FIG. 21 is a centrifugal pump that rotates on a fixed shaft with a wind turbine blade and a water turbine blade provided on the surface with a sealed cylindrical member code 16.

風力、水力等を受け円筒形部材が時計方向に回転し筒内の円盤状部材表面の渦巻き溝羽根内の作動油が遠心力や渦巻き溝羽根に押され、固定軸シャフト内から供給されながら円筒形内裏面に押しだされ流れる矢印符号6図21図22。 The cylindrical member rotates clockwise in response to wind power, hydraulic force, etc., and the hydraulic oil in the spiral groove blade on the surface of the disk-shaped member in the cylinder is pushed by the centrifugal force or the spiral groove blade, and is supplied from the fixed shaft shaft to the cylinder. Arrow sign that is pushed out and flows to the back surface of the shape 6 Fig. 21 Fig. 22.

円筒形部材内の円盤仕切り板符号19の円盤部材の裏面に設けている渦巻き状の溝羽根に導かれ、軸シャフト内の作動油流出口へと圧力を伴い流れる図22、23。 Disk partition plate in the cylindrical member FIGS. 22 and 23, which are guided by a spiral groove blade provided on the back surface of the disk member of reference numeral 19, and flow with pressure to the hydraulic oil outlet in the shaft shaft.

この作動油が、固定軸シャフト上に複数機設けて有る隣接している多段式油圧渦巻きポンプに圧力を伴った作動油とし流れ、ポンプ内渦巻き溝羽根に放出される。 This hydraulic oil flows as hydraulic oil with pressure to the adjacent multi-stage hydraulic centrifugal pumps provided on the fixed shaft shaft, and is discharged to the centrifugal groove blades in the pump.

渦巻きポンプの大きさを徐々に大きなものを固定軸シャフト上に並べ連結し、稼働して得られた高油圧の作動油で、連結され設けられた末尾後部の軸シャフト上の発電機を回して発電するものである図22。 The size of the centrifugal pump is gradually increased by arranging and connecting them on a fixed shaft shaft, and using the high hydraulic oil obtained by operating, the generator on the shaft shaft at the rear end is rotated. Figure 22 that generates electricity.

固定軸シャフト上に連設したポンプを大きくするとポンプに加わる力が大きなものとなり回転稼働時重くなるが、風車羽根、水車羽根幅等を大きくする事で対応する。 If the pumps installed continuously on the fixed shaft are made larger, the force applied to the pumps will be larger and heavier during rotational operation, but this can be dealt with by increasing the width of the wind turbine blades and water turbine blades.

上記した、渦巻きポンプで発生した油圧作動油が軸シャフト内流路を通り各渦巻きポンプを繋ぎ一対の油圧ポンプとして用い発生する油圧で発電機を回し稼働する事を述べたが以下は、補足として円筒形筒部材が突風等で、異常の高回転で回り筒部材内が高油圧となり油圧ポンプである筒部材の破損を避ける為、ポンプ内が既定の圧力より高くなると渦巻き溝羽根部材が変形縮み、作動油を押し出す溝羽根が変形し高速回転に陥った場合は流量が少なく押し出す溝羽根となった事を記載する図24,25,26,27。 As mentioned above, it was stated that the hydraulic hydraulic oil generated by the swirl pump passes through the flow path in the shaft shaft, connects each swirl pump, uses it as a pair of hydraulic pumps, and rotates the generator with the generated hydraulic pressure, but the following is a supplement. When the pressure inside the pump becomes higher than the specified pressure, the spiral groove blade member deforms and shrinks in order to avoid damage to the cylinder member, which is a hydraulic pump, because the inside of the cylinder member becomes highly hydraulic due to abnormally high rotation due to a gust of wind etc. It is described in FIGS. 24, 25, 26, and 27 that when the groove blade that pushes out the hydraulic oil is deformed and falls into high-speed rotation, the flow rate is small and the groove blade is pushed out.

渦巻き溝羽根部材の部分拡大斜視図を図24,25に記載しているが、渦巻き溝羽根部材の接合部分が円筒形部材作動油流入口部近傍のみに点付け固定し設けているものである。 A partially enlarged perspective view of the spiral groove blade member is shown in FIGS. 24 and 25, but the joint portion of the spiral groove blade member is spotted and fixed only in the vicinity of the cylindrical member hydraulic oil inlet portion. ..

図24の渦巻き溝羽根部材の形状は、通常稼働時の油圧の状態での溝羽根部材の形状で、回転し軸シャフトから供給される作動油を押し出して稼働する状態の渦巻き溝羽根部材である。 The shape of the spiral groove blade member in FIG. 24 is the shape of the groove blade member in the hydraulic state during normal operation, and is a spiral groove blade member in a state where it rotates and pushes out hydraulic oil supplied from the shaft shaft to operate. ..

渦巻き溝羽根部材で押し出された作動油は、円盤上裏面に設けられた渦巻き溝羽根部材に導かれ軸シャフト作動油流出口から隣接されている渦巻きポンプ内に放出される。 The hydraulic oil extruded by the spiral groove blade member is guided by the spiral groove blade member provided on the upper and lower surfaces of the disk and discharged from the shaft shaft hydraulic oil outlet into the adjacent spiral pump.

円盤の仕切り板部材裏面に設けている渦巻き溝羽根部材は、表面に設けて有る渦巻き形状の溝羽根部材とは異なり回転し油圧作動油を中心部の軸シャフト作動油流出口に集める渦巻き溝羽根の形状をしている溝羽根部材である。 The spiral groove blade member provided on the back surface of the partition plate member of the disk rotates and collects hydraulic fluid at the shaft shaft hydraulic oil outlet at the center, unlike the spiral groove blade member provided on the front surface. It is a groove blade member having the shape of.

表面の渦巻き部材が回転し作動油を押し出してきた作動油を圧力を伴いながら作動油流出口に導く渦巻き溝羽根部材である。 It is a spiral groove blade member that guides the hydraulic oil that has been pushed out by the spiral member on the surface to the hydraulic oil outlet with pressure.

上記述べた図24の渦巻き溝部材は、通常の風力での回転で得られる作動油の圧力範囲で稼働する渦巻き部材の溝羽根の形状である。 The swirl groove member of FIG. 24 described above is the shape of the groove blade of the swirl member that operates in the pressure range of the hydraulic oil obtained by rotation with normal wind power.

風力を活用した発電では、時に台風、突風等の強風となる場合が有る強風に陥った為、ポンプが高速回転となりポンプ内が既定以上の異常な高油圧に陥り渦巻きポンプ溝羽根部材が高油圧を受け、変形縮み曲がり回転半径が小さくなる図25図27である。 In power generation using wind power, a strong wind such as a typhoon or a gust sometimes occurs, so the pump rotates at high speed and the inside of the pump falls into an abnormally high hydraulic pressure above the specified value, and the centrifugal pump groove blade member becomes high hydraulic pressure. In response to this, Fig. 25 and Fig. 27 show that the deformation, shrinkage, bending, and turning radius become smaller.

ポンプの溝部材が、縮み曲がり部材回転径が小さくなると作動油を押し出す油量が少なくなる図27。 When the groove member of the pump shrinks and the turning diameter of the member becomes smaller, the amount of oil that pushes out the hydraulic oil decreases. Fig. 27.

渦巻きポンプが高速で回転しても押し出す油量が少なく規定以上の高油圧になるのを防ぎポンプの破損を回避できる可変する渦巻き溝羽根部材としたものである図24、25、26、27。 Fig. 24, 25, 26, 27 are variable spiral groove blade members that can prevent the pump from being damaged because the amount of oil pushed out is small even when the centrifugal pump rotates at high speed and the hydraulic pressure exceeds the specified value.

渦巻きポンプの渦巻き溝羽根部材正面図で図26は、通常稼働時の渦巻き溝羽根の形状を表した図である。 In the front view of the spiral groove blade member of the centrifugal pump, FIG. 26 is a diagram showing the shape of the spiral groove blade during normal operation.

油圧ポンプが高速回転に陥って、ポンプ内が異常の高油圧力となり溝部に高負荷が加わり縮まり可変した形状の溝羽根の正面図で、渦巻き溝羽根の回転径が小さくなった渦巻き溝羽根部材を表した図27であり、渦巻き溝羽根形状の根元一端が仕切り板円盤と円筒形部材に点付け接合されていて点付け部以外は一定の規定以上の高油圧を受けると可変する溝羽根部材である。 In the front view of a groove blade with a variable shape due to an abnormally high oil pressure inside the pump due to an abnormally high oil pressure inside the hydraulic pump, a high load is applied to the groove, and the spiral groove blade member has a smaller rotation diameter. FIG. 27 shows a groove blade member in which one end of the base of the spiral groove blade shape is spotted and joined to the partition plate disk and the cylindrical member, and the groove blade member changes when a high hydraulic pressure exceeding a certain specified value is received except for the spotted portion. Is.

渦巻きポンプを固定軸シャフト上で回し油圧を得る渦巻きポンプを説明したが、以下はコイルバネを用いたネジポンプを活用し発電する事を記載し、軸上で複数の油圧ポンプが回り油圧を徐々に高油圧得る油圧ポンプの螺旋溝を有したコイルバネを用いた油圧ネジポンプを基に基本構造図1、図2を用い以下詳しく説明する。 The swirl pump that turns the swirl pump on a fixed shaft to obtain hydraulic pressure has been described, but the following describes that a screw pump using a coil spring is used to generate power, and multiple hydraulic pumps rotate on the shaft to gradually increase the hydraulic pressure. Based on a hydraulic screw pump using a coil spring having a spiral groove of a hydraulic pump that obtains hydraulic pressure, the basic structure will be described in detail below with reference to FIGS. 1 and 2.

図1、2は本発明の油圧ネジポンプの基本構造側面斜視図及び円筒形部材内の螺旋溝を有したコイルバネを表した断面斜視図で、軸シャフト符号4上に設けた油圧ネジポンプの円筒形部材符号1で、この部材内に螺旋溝部材を設け溝内の作動油を押し出す油圧ネジポンプで時計方向矢印符号5のように回転する。 FIGS. 1 and 2 are a side perspective view of the basic structure of the hydraulic screw pump of the present invention and a cross-sectional perspective view showing a coil spring having a spiral groove in the cylindrical member, and the cylindrical member of the hydraulic screw pump provided on the shaft shaft reference numeral 4. At symbol 1, a spiral groove member is provided in this member, and the hydraulic screw pump that pushes out the hydraulic oil in the groove rotates as shown by the clockwise arrow symbol 5.

固定軸シャフト符号4に接する溝部符号2両端に作動油が流入流出する流路が固定シャフト軸内に設けた軸シャフト符号4である。 A shaft shaft code 4 is provided in the fixed shaft shaft with a flow path through which hydraulic oil flows in and out at both ends of the groove code 2 in contact with the fixed shaft shaft code 4.

この軸シャフト作動油流入口流出口間は閉ざされた通常稼働時の作動油流路となっている図2。 The shaft shaft hydraulic oil inlet / outlet is closed to form a hydraulic oil flow path during normal operation. Fig. 2.

図2に示した矢印符号6のように、作動油が右の流路口から溝部符号2に流れ、油圧ネジポンプである符号1の円筒形部材が回転すると溝部内の作動油が押され圧力を伴い、左軸シャフト内の作動油流路口より連設された油圧ネジポンプ図6溝部に流れる。 As shown by the arrow code 6 shown in FIG. 2, when the hydraulic oil flows from the right flow path port to the groove code 2 and the cylindrical member of code 1 which is a hydraulic screw pump rotates, the hydraulic oil in the groove is pushed and pressure is applied. , It flows from the hydraulic oil flow path port in the left shaft shaft to the hydraulic screw pump connected to the groove in Fig. 6.

図6での溝部符号2-1のように溝間隔が広い為、油圧ネジポンプである符号1の円筒形部材が一回転し押し出す流量が大きく圧力を伴って流入してきた作動油をさらに圧力を加え押し出して放出する。 Since the groove spacing is wide as shown in the groove code 2-1 in Fig. 6, the cylindrical member of code 1 which is a hydraulic screw pump makes one rotation and the flow rate to push out is large, and the hydraulic oil that has flowed in with pressure is further applied with pressure. Extrude and release.

このように固定軸シャフト上に複数機の大きさの異なるポンプを並べ徐々に油圧が高く得られるようにポンプを並べ連結した一対の多段式高圧油圧ポンプである。 In this way, it is a pair of multi-stage high-pressure hydraulic pumps in which a plurality of pumps of different sizes are arranged on a fixed shaft shaft and the pumps are arranged and connected so that a gradually high hydraulic pressure can be obtained.

本発明では、風力水力で小型油圧ネジポンプを回し複数機直列に連結して得た油圧力で固定軸シャフト後部末尾に設けた発電機を回すものである図10、19,20。 In the present invention, a small hydraulic screw pump is rotated by wind power, and a generator provided at the rear end of a fixed shaft shaft is rotated by an oil pressure obtained by connecting a plurality of machines in series. FIGS. 10, 19, 20.

この固定軸シャフト上に設けた、風力水力を受けた羽根で回転する円筒形部材の油圧ネジポンプを羽根の大きさに比例し大きなものとして設置し徐々に大きなネジポンプを直列につないだ一対の多段式高圧油圧ポンプとして用いる。 A pair of multi-stage type hydraulic screw pumps, which are cylindrical members that rotate with blades that receive wind and hydraulic power, are installed on this fixed shaft shaft as large ones in proportion to the size of the blades, and gradually large screw pumps are connected in series. Used as a high-pressure hydraulic pump.

又、連設し、連結した油圧ネジポンプの外形が同一の大きさのもの又は大きさの異なる多段式油圧ポンプでもなくても回転数が異なる物でも油圧作動油で連結できる本発明のネジポンプである。 Further, it is a screw pump of the present invention that can be connected with hydraulic fluid even if the external shape of the hydraulic screw pumps that are continuously installed and connected is not the same size or different sizes of multi-stage hydraulic pumps but have different rotation speeds. ..

このように一本の固定軸シャフト上に複数機設け連結し一対の油圧ネジポンプとして用い、小型ながらポンプを複数連結する事で高油圧を得られ、大型の風車水車と同じように高圧の油圧作動油で、発電機を回す事の出来る油圧ネジポンプとしたものである。 In this way, multiple machines are installed on one fixed shaft and connected to each other and used as a pair of hydraulic screw pumps. High hydraulic pressure can be obtained by connecting multiple pumps despite their small size. It is a hydraulic screw pump that can turn a generator with oil.

実施例2では、本発明の油圧ネジポンプをそのまま活用し油圧モーターとして発電機を回す事を述べる。 In the second embodiment, it is described that the hydraulic screw pump of the present invention is used as it is to rotate the generator as a hydraulic motor.

本発明の油圧ネジポンプは、回転する円筒形部材内に作動油輸送用螺旋状溝部材を設けたものです。 The hydraulic screw pump of the present invention is provided with a spiral groove member for transporting hydraulic oil in a rotating cylindrical member.

溝部の深さ幅で、一回転で作動油の押し出す量が異なる。 The amount of hydraulic oil extruded in one rotation differs depending on the depth width of the groove.

固定軸シャフト上に大小異なる大きさのネジポンプを並べ、徐々に大きな風車羽根を設け回る一対の多段式油圧ネジポンプとして図11,12,13高圧の油圧を得、固定軸シャフト末尾端末に設けたネジポンプ内溝部に高油圧となった作動油を放出して回転する円筒形部材を油圧モーターとして用いるものである図19発電機8。 Fig. 11, 12, 13 As a pair of multi-stage hydraulic screw pumps in which screw pumps of different sizes are arranged on a fixed shaft shaft and gradually installed with large wind turbine blades, high-pressure hydraulic pressure is obtained and the screw pump installed at the end of the fixed shaft shaft A cylindrical member that rotates by discharging hydraulic oil with high hydraulic pressure to the inner groove is used as a hydraulic motor. Fig. 19 Generator 8.

一対の油圧ネジポンプの回転で押し出されてくる高圧の作動油が、固定軸シャフト末尾の円筒形部材内の溝部に放出し、この溝が浅く溝間隔が狭いと圧力を受けて高速で回る油圧モーターとなる。 A pair of hydraulic screw The high-pressure hydraulic oil pushed out by the rotation of the pump is discharged into the groove in the cylindrical member at the end of the fixed shaft shaft, and if this groove is shallow and the groove spacing is narrow, it receives pressure and rotates at high speed. Will be.

この回る円筒形部材を、発電機の回転子部材として用いる図19発電機符号8で円筒形筒部材を発電機の回転子部材として回転稼動させた後、高圧の作動油が低圧となり作動油タンクに戻る。 This rotating cylindrical member is used as the rotor member of the generator. Fig. 19 After rotating the cylindrical tubular member as the rotor member of the generator with the generator code 8, the high-pressure hydraulic oil becomes low-pressure and the hydraulic oil tank. Return to.

上記記載したように、油圧ネジポンプを作動油を用い複数連結する事の出来るように発明されたものであるが、高い油圧をネジポンプ溝部に加えると本ネジポンプが油圧モーターともなる物で、直線状の固定軸シャフト上に複数機の油圧ネジポンプを並べ、徐々に高油圧になるようにし得た高油圧の作動油で後部軸シャフト末尾端末に設けた円筒形部材内の溝部に放出し発電機の回転子として用いる事で、小型ながら極めて効率の高い発電機が出来る発電システムである。 As described above, it was invented so that multiple hydraulic screw pumps can be connected using hydraulic oil, but when high hydraulic pressure is applied to the screw pump groove, this screw pump also becomes a hydraulic motor, and it is linear. Multiple hydraulic screw pumps are lined up on a fixed shaft shaft, and the hydraulic oil with high hydraulic pressure that can be gradually increased to high hydraulic pressure is discharged into the groove in the cylindrical member provided at the end of the rear shaft shaft to rotate the generator. By using it as a child, it is a power generation system that can produce a small but extremely efficient generator.

実施例3では、本発明の油圧ネジポンプを構成する各部材をより詳しく述べるが、ここでは風車羽根を用いた油圧ネジポンプについて記載する。 In Example 3, each member constituting the hydraulic screw pump of the present invention will be described in more detail, but here, a hydraulic screw pump using a wind turbine blade will be described.

図面1、2,3回転する円筒形部材符号1内面に螺旋ネジ溝を有したコイルバネ状の螺旋溝部材符号2-1、符号2-2を設けた溝部材符号2、図面3、4、7この円筒形部材表面周囲に風車羽根を設け、円筒部材内にコイルバネ状の螺旋ネジ溝を有し溝部材、固定軸シャフト部材符号4から構成する油圧ネジポンプ、以下符号の数字のみ記載します。 FIGS. 1, 2, 3 Rotating cylindrical member code 1 Coil spring-shaped spiral groove member code 2-1 having a spiral thread groove on the inner surface, groove member code 2 provided with code 2-2, drawings 3, 4, 7 A windmill blade is provided around the surface of this cylindrical member, a coil spring-shaped spiral screw groove is provided in the cylindrical member, a groove member, a hydraulic screw pump consisting of a fixed shaft shaft member code 4, and only the numbers with the following codes are described.

油圧ポンプとなる円筒形部材1は風を受けて回る羽根の大きさに耐える鋼材の筒型円筒形パイプ等を用いる。 For the cylindrical member 1 to be a hydraulic pump, a cylindrical cylindrical pipe made of steel that can withstand the size of the blades that rotate in response to the wind is used.

円筒形部材の内にネジ溝を有したコイル状の部材2-1、2-2を設けた作動油を押し出す輸送溝部材2とする。 It is a transport groove member 2 that pushes out hydraulic oil provided with coil-shaped members 2-1 and 2-2 having screw grooves in the cylindrical member.

記載した図のように、ネジ溝幅が狭く、また広くこの幅の大きさ広さで溝内の作動油の量が異なり一回転での作動油輸送量が異なる。 As shown in the figure described, the screw groove width is narrow, and the amount of hydraulic oil in the groove is different depending on the size and width of this width, and the amount of hydraulic oil transported in one rotation is different.

又、コイルバネの巻き数が多くても、溝幅が狭ければ溝内の作動油の押し出され排出される作動油の量も少なくなる。 Further, even if the number of turns of the coil spring is large, if the groove width is narrow, the amount of hydraulic oil extruded and discharged in the groove is also small.

図3、4、7に記載したように、溝間の幅、又溝の深さ等で一回転した時の油圧ネジポンプの作動油を押し出される油量が変わる。 As shown in FIGS. 3, 4, and 7, the amount of oil pushed out by the hydraulic oil of the hydraulic screw pump when one rotation is made changes depending on the width between the grooves, the depth of the grooves, and the like.

この為、本発明では固定軸シャフト上に複数機設けた油圧ネジポンプは、回転数が同じでも、並べた順番に押し出す油量が多くなるように溝部の幅、深さを調整加工したコイルバネの油圧ネジポンプとしている。 Therefore, in the present invention, the hydraulic screw pumps provided on a plurality of fixed shafts have the hydraulic pressure of the coil spring whose groove width and depth are adjusted so that the amount of oil to be extruded increases in the order of arrangement even if the rotation speed is the same. It is a screw pump.

押し出す油量が順番に多くなるようにポンプを固定シャフト上に並べると油圧が徐々に高くなるが、円筒形部材に加わる負荷が大きくなり羽根の回転が重くなる。 If the pumps are arranged on the fixed shaft so that the amount of oil to be pushed out increases in order, the hydraulic pressure gradually increases, but the load applied to the cylindrical member increases and the rotation of the blades becomes heavy.

この加負荷を解消する為に、風車羽根を大きくして対応する図10,11,12。 In order to eliminate this load, the wind turbine blades are enlarged to correspond to Fig. 10,11,12.

本発明の油圧ネジポンプは、固定軸シャフト上に数機のポンプを並べて稼働するもので各ポンプを、作動油を用い繋ぎ、各ポンプが押し出す油量が異なり徐々に多く押し出す油量の多いポンプを並べ繋ぐ為、当然風車羽根も押し出す油量にあった大きな風車羽根となる。 The hydraulic screw pump of the present invention operates several pumps side by side on a fixed shaft, and connects each pump using hydraulic oil. Since they are connected side by side, the wind turbine blades naturally become large wind turbine blades that match the amount of oil to be pushed out.

本発明では、ネジ溝を有したコイルバネ状の螺旋溝部材としているが、円筒形部材の内面にネジ溝を直接加工し設けた円筒形部材としても良い。 In the present invention, a coil spring-shaped spiral groove member having a screw groove is used, but a cylindrical member may be provided by directly processing a screw groove on the inner surface of the cylindrical member.

風車羽根で回転する円筒形部材を支える固定軸シャフト4は、回転時発生する力に耐える強度、太さのものを用いた丸形の鋼材軸のシャフトである。 The fixed shaft shaft 4 that supports the cylindrical member that is rotated by the wind turbine blades is a shaft of a round steel shaft that is strong and thick enough to withstand the force generated during rotation.

この固定軸シャフト4に直列に連結する油圧ネジポンプを並べ稼働しても耐える強度太さの材質の固定軸シャフトである。 It is a fixed shaft shaft made of a material with a strength that can withstand the operation of hydraulic screw pumps connected in series with the fixed shaft shaft 4.

固定軸シャフト上に並べ連結し隣接する油圧ネジポンプからの油圧作動油がネジポンプ内を流れる図2の矢印符号6で作動油の通る流路口を固定軸シャフト内に設けた図2である。 FIG. 2 shows a flow path port through which the hydraulic fluid passes by arrow symbol 6 in FIG. 2, which is connected side by side on a fixed shaft and in which hydraulic fluid from an adjacent hydraulic screw pump flows in the screw pump.

本発明の油圧ネジポンプは固定軸シャフト上に複数機の油圧ネジポンプを設けた固定軸シャフト末尾端末に、このネジポンプから押し出されてくる高油圧となった作動油で回る円筒形部材を油圧モーターとして活用し、発電しているが必ずしも軸上シャフト端末に設けなくとも、油圧ホースを用い離れた外部で既存の油圧モーターを用い発電しても良い。 The hydraulic screw pump of the present invention utilizes as a hydraulic motor a cylindrical member that is rotated by hydraulic oil with high hydraulic pressure extruded from this screw pump at the end terminal of the fixed shaft shaft provided with multiple hydraulic screw pumps on the fixed shaft. However, although power is being generated, it is not always necessary to provide it on the shaft terminal on the shaft, and a hydraulic hose may be used to generate power using an existing hydraulic motor at a remote location.

又、発電する為のモーターは、本発明の油圧ネジポンプを活用した油圧モーターでなくとも、市販の油圧モーター等を用いても良い。 Further, as the motor for generating power, a commercially available hydraulic motor or the like may be used instead of the hydraulic motor utilizing the hydraulic screw pump of the present invention.

記述し記載した図面の油圧ネジポンプ、油圧渦巻きポンプを回す風車羽根は、記載した図のような風車の形状の羽根でなくとも、他のプロペラ、ファン等複数の羽の有る物を用いたものでも良い。 The blades of the wind turbine that rotate the hydraulic screw pump and the hydraulic centrifugal pump in the drawings described and described are not the blades in the shape of the wind turbine as shown in the above figure, but may be those using other propellers, fans, etc. with multiple blades. good.

上記では風力を活用した発電を述べ、高圧の油圧作動油を得る為に風車羽根の大きさを徐々に羽根の直径を大きくして対応していたが、中小河川に本発明の油圧ネジポンプを活用した水力発電機のネジポンプとして用いる場合は、固定軸シャフトに並べた水車羽根は回転する水車羽根の直径の大きさは同じで有るが、水車羽根が受ける水量が異なる幅の物を用いて油圧量を調整対応して水力を活用した発電機としている。 In the above, power generation using wind power was described, and in order to obtain high-pressure hydraulic hydraulic oil, the size of the wind turbine blades was gradually increased to increase the diameter of the blades, but the hydraulic screw pump of the present invention was used for small and medium-sized rivers. When used as a screw pump for a hydroelectric generator, the turbine blades lined up on the fixed shaft have the same diameter of the rotating turbine blades, but the amount of water received by the turbine blades is different. It is a generator that utilizes hydraulic power by adjusting the above.

実施例4では本発明の油圧ネジポンプを水力発電機に用いる実施例を記載する
一般中小河川に本発明の油圧ネジポンプを用いた水車発電機の実施例図13である。
Example 4 is FIG. 13 of an embodiment of a water turbine generator using the hydraulic screw pump of the present invention for a general small and medium-sized river, which describes an embodiment of using the hydraulic screw pump of the present invention for a hydroelectric generator.

中小河川堤防間にワイヤーロープ12で水車発電機を吊し河川に水車を浮かべ水車を回して発電する実施図13である。 Figure 13 shows the implementation of power generation by suspending a water turbine generator with a wire rope 12 between small and medium-sized river embankments, floating the water turbine in the river, and turning the water turbine.

水車を支える軸部材は前記記載した本発明の油圧ネジポンプの固定軸シャフトである。 The shaft member that supports the water turbine is the fixed shaft of the hydraulic screw pump of the present invention described above.

水車の径の大きさは同一の大きさのものを使用しているが、水車幅が各事なる幅で有る。 The diameter of the turbine is the same, but the width of the turbine is different.

水車幅に合わせ、油圧ネジポンプの大きさも同じように大きなものを用い連結されている。 According to the width of the turbine, the size of the hydraulic screw pump is also large and connected.

水車幅の大な水車になる程水量を受ける面が大きくなり、油圧ネジポンプに加わる回転力が大きなものになる、この回転力に合った油圧ポンプを用い徐々に高圧の油圧を得られるように水車を大きくし取り付けする事で油圧ネジポンプも大きくしたものを用い連結し一対の油圧ネジポンプとした本発明の水車を活用した油圧ネジポンプである。 The larger the width of the water wheel, the larger the surface that receives the amount of water, and the larger the rotational force applied to the hydraulic screw pump. This is a hydraulic screw pump that utilizes the water wheel of the present invention to form a pair of hydraulic screw pumps by connecting them using a hydraulic screw pump that is also enlarged by enlarging and installing.

水車両側に設けている浮力材14で有り水流を導くガイドの機能を有した浮力部材である。 It is a buoyancy material 14 provided on the water vehicle side and is a buoyancy member having a function of a guide for guiding a water flow.

河川の変動する水位の高さに対応する為に浮力材を設けたもので、豪雨等で河川の水量が増しても浮力材が一定の水車埋没を維持管理出来る機能を有した浮力導水材である。 A buoyancy material is provided to cope with the fluctuating water level of the river. be.

ワイヤーロープ12を堤防間に張り、水車を吊り下げ設ける事で、河川の水位の変動にかかわらず一定の水力を活用とした水車発電機が出来る。 By stretching the wire rope 12 between the embankments and suspending the water turbine, a water turbine generator that utilizes constant hydraulic power regardless of fluctuations in the water level of the river can be created.

ワイヤーロープ12を堤防間に張るだけで設置が出来、河川が狭い川、用水路、排水路等では鋼管パイプを用い水車を吊り下げ設置が出来、設置施工費の安価な中小河川を利用した安定した発電が可能となる。 It can be installed simply by stretching the wire rope 12 between the embankments, and in rivers with narrow rivers, irrigation canals, drainage canals, etc., water turbines can be hung and installed using steel pipes, and it is stable using small and medium-sized rivers with low installation costs. Power can be generated.

実施例5では、本発明の油圧ネジポンプの応用設置状況を図14,15に記載する。 In Example 5, the application installation status of the hydraulic screw pump of the present invention is shown in FIGS. 14 and 15.

図14,15の油圧ネジポンプ風車羽根の図は略図を用いて描いたものである。 The figures of the hydraulic screw pump wind turbine blades in FIGS. 14 and 15 are drawn using a schematic diagram.

地面に立てた支柱15間に固定軸シャフトを設け固定する為に、ロープで控え支えた図15である。 FIG. 15 is a drawing 15 in which a fixed shaft is provided and supported by a rope in order to be fixed between the columns 15 standing on the ground.

この柱間に本発明の油圧ネジポンプを設けたもので、風車羽根の大きさは直径約60cm~2m程の大きさの風車を用いるものである。 The hydraulic screw pump of the present invention is provided between the pillars, and a wind turbine blade having a diameter of about 60 cm to 2 m is used.

必ずしも油圧ネジポンプを水平に設置するだけではなく図14のように設置して用いても良い。 The hydraulic screw pump may not always be installed horizontally but may be installed and used as shown in FIG.

実施例6では、油圧モーターに関して、本発明の油圧ネジポンプを活用した油圧モーターと従来の油圧モーターの違いを述べる。 In Example 6, regarding the hydraulic motor, the difference between the hydraulic motor utilizing the hydraulic screw pump of the present invention and the conventional hydraulic motor will be described.

従来の油圧モーターは、油圧力の有る作動油でギヤの歯車、又はネジ溝に油圧を加え、ギヤ歯車軸、ネジ軸を回している軸回転する油圧モーターで有る。 The conventional hydraulic motor is a hydraulic motor that rotates a gear shaft and a screw shaft by applying hydraulic pressure to a gear gear or a screw groove with hydraulic oil having hydraulic pressure.

本発明では、油圧ネジポンプとして用いているポンプを、円筒形部材内に設けて有るネジ溝に、油圧を加えネジ溝に加わる油圧力で固定軸シャフトを中心軸として軸上で円筒形部材を回転させた油圧モーターとしたもので固定軸シャフトから高圧の作動油を放出し回転させる油圧モーターである。 In the present invention, the pump used as a hydraulic screw pump rotates a cylindrical member on a fixed shaft shaft as a central axis by applying hydraulic pressure to a screw groove provided in the cylindrical member and applying hydraulic pressure to the screw groove. It is a hydraulic motor that is made to rotate by discharging high-pressure hydraulic oil from a fixed shaft.

固定軸シャフト内から高油圧の作動油が円筒形部材内溝に放出され、油圧力で円筒部材を回す事もできる事を特徴としたネジポンプで、油圧モーターとしても活用出来るものとしたものである。 Highly hydraulic hydraulic oil is discharged from the fixed shaft to the inner groove of the cylindrical member, and the cylindrical member can be rotated by hydraulic pressure. It is a screw pump that can also be used as a hydraulic motor. ..

上記したネジポンプを、固定軸シャフト上に複数機設け連結された一対の油圧ネジポンプで発生した高油圧作動油で固定軸シャフト後部の油圧力で回転する円筒形部材として用いたもので、この回転する円筒形部材表面にマグネットを設けた発電機の回転子としたものである図19の発電機8。 The above-mentioned screw pump is used as a cylindrical member that rotates by the hydraulic pressure at the rear of the fixed shaft shaft with high hydraulic hydraulic oil generated by a pair of hydraulic screw pumps that are provided and connected on a fixed shaft. The generator 8 in FIG. 19, which is a rotor of a generator provided with a magnet on the surface of a cylindrical member.

実施例7では、油圧ネジポンプの作動油を押し出す作動油輸送用螺旋状溝部について述べる。 In the seventh embodiment, the spiral groove portion for transporting the hydraulic oil that pushes out the hydraulic oil of the hydraulic screw pump will be described.

上記記載している、円筒形部材内面に作動油を押し出す螺旋の溝を直に加工した筒部材として用いても良い。 As described above, the cylindrical member may be used as a cylindrical member in which a spiral groove for pushing out hydraulic oil is directly machined on the inner surface of the cylindrical member.

一回転する螺旋溝の深さ、溝の幅等で作動油の押し出す量が変わる。 The amount of hydraulic oil extruded varies depending on the depth of the spiral groove that makes one rotation, the width of the groove, and so on.

この作動油を押し出す溝をコイル形状の螺旋溝部材として、円筒形部材内に組み込み設けて用いても良い。 The groove for pushing out the hydraulic oil may be used as a coil-shaped spiral groove member by incorporating it into the cylindrical member.

この作動油を押し出す螺旋の溝部材を一定以上の油圧圧力が加わると伸縮するコイルバネ部材を用いる。 A coil spring member that expands and contracts when a hydraulic pressure exceeding a certain level is applied to the spiral groove member that pushes out the hydraulic oil is used.

圧力を受けて伸縮するコイルバネ状の螺旋部材を用いると、円筒形部材内が既定の油圧以上になると油圧を押し出す螺旋のバネの溝部の幅が縮み狭くなり回転し押し出す作動油の量を減らして押し出す為に、円筒形部材が強風、突風等を受けて、高速回転に陥っても円筒形部材内の油圧が異常の高油圧力となるのを抑えて回転する事で円筒形部材を高圧力による破損から回避できる。 When a coil spring-like spiral member that expands and contracts under pressure is used, the width of the groove of the spiral spring that pushes out the hydraulic pressure shrinks and narrows when the inside of the cylindrical member exceeds the specified hydraulic pressure, and the amount of hydraulic oil that rotates and pushes out is reduced. In order to push out, even if the cylindrical member receives strong wind, gust of wind, etc. and falls into high-speed rotation, the hydraulic pressure inside the cylindrical member is suppressed from becoming abnormally high oil pressure and the cylindrical member is rotated to high pressure. It can be avoided from damage caused by.

強風を受け円筒形部材が規定の回転以上に高速に回り、円筒形部材内の作動油を押し出す圧力が極めて高くなり、破損を避ける為に一定の油圧力を受けると伸縮するコイルバネ部材を用い押し出す溝部として用いたものでコイルバネ、作動油流入口部付近円筒形部材内面一点に点付け固定された伸縮が容易な螺旋状のコイルバネである。 In response to strong wind, the cylindrical member rotates at a higher speed than the specified rotation, and the pressure to push out the hydraulic oil in the cylindrical member becomes extremely high. A coil spring used as a groove, and a spiral coil spring that can be easily expanded and contracted by being spotted and fixed at one point on the inner surface of a cylindrical member near the hydraulic oil inlet.

又、風力発電に油圧ポンプとして用いた場合、風力で異なる回転時の圧力をコイルバネの螺旋溝幅が伸縮する事で一定の油圧力を保てる為、強風で羽根が高速回転しても一定の油圧力を保て発電機の回転が安定に保て風力の変動で起きる過剰発電を避ける事も出来る。 Also, when used as a hydraulic pump for wind power generation, constant oil pressure can be maintained by expanding and contracting the spiral groove width of the coil spring due to the pressure at different rotations due to wind power, so constant oil even if the blades rotate at high speed due to strong wind. It is also possible to maintain the pressure and keep the rotation of the generator stable to avoid excessive power generation caused by fluctuations in wind power.

上記したように、風の強弱で変わる油圧の変化を、一定の油圧調整機能を併せ持つ螺旋コイルバネ部材を用いた油圧ネジポンプで又、油圧で回る発電機の回転子部材としても用いるものである。 As described above, the change in hydraulic pressure that changes depending on the strength of the wind is used in a hydraulic screw pump using a spiral coil spring member having a constant hydraulic pressure adjusting function, and also as a rotor member of a generator that rotates hydraulically.

実施例8では、各油圧ネジポンプ得られた作動油の流れと異常な高油圧に陥った各ポンプの対応を記載する。 In Example 8, each hydraulic screw pump describes the flow of the obtained hydraulic oil and the correspondence of each pump that has fallen into an abnormally high hydraulic pressure.

直列に配列し設けたポンプを徐々に大きな形をなし適した大きさで順序に並べ、得られる油圧力を徐々に効率良く高い圧力が得られるように、伸縮する螺旋コイルバネ溝部材を用いたものでも有る。 Pumps arranged in series are gradually formed into a large shape and arranged in order with an appropriate size, and a spiral coil spring groove member that expands and contracts is used so that the obtained oil pressure can be gradually and efficiently obtained at a high pressure. But there is.

本発明の基本構造図1の回転を表した矢印5ようにコイルバネ状の螺旋溝部材は、図2の軸シャフト上で回転する。 Basic structure of the present invention As shown by the arrow 5 indicating the rotation of FIG. 1, the coil spring-shaped spiral groove member rotates on the shaft of FIG. 2.

螺旋溝内に有る作動油がコイルバネ状の螺旋溝部材で押し出され図2作動油の流れを表した矢印符号6のように隣接連結されたネジポンプへ流れ円筒形部材内に放出する。 The hydraulic oil in the spiral groove is pushed out by the coil spring-shaped spiral groove member, and flows into the screw pumps connected adjacently as shown by the arrow symbol 6 indicating the flow of the hydraulic oil in Fig. 2 and is discharged into the cylindrical member.

伸縮するバネ機能を有するコイル状の螺旋溝部材は、負荷となる発電機の回転子を回す事が出来る油圧力に耐える強さの伸縮するバネ部材で、通常発電稼働時のポンプ内の油圧力では伸縮しないバネの材質の螺旋溝部材である。 The coil-shaped spiral groove member having a spring function that expands and contracts is a spring member that expands and contracts with a strength that can withstand the oil pressure that can rotate the rotor of the generator that is the load, and the oil pressure in the pump during normal power generation operation. Is a spiral groove member made of a spring material that does not expand and contract.

時には、天気が急変し一時的に突風となる場合が有る。 Occasionally, the weather may change suddenly, resulting in a temporary gust of wind.

このような時は風車羽根の回転が高速回転に陥る。 In such a case, the rotation of the wind turbine blade falls into high-speed rotation.

羽根の回転の速に比例して突風時、大きな油圧力がポンプ内に発生し円筒形部材内に加わる。 During a gust in proportion to the speed of rotation of the blades, a large hydraulic pressure is generated in the pump and applied to the cylindrical member.

通常は、天気で多少変わる風車の回転でも対応出来る円筒形部材内のコイルバネ状の螺旋溝部材であるが、時に突風となり風車の回転が高速回転となる現象が有る為、油圧ポンプを守る工夫が必要としていた。 Normally, it is a coil spring-like spiral groove member in a cylindrical member that can cope with the rotation of the wind turbine that changes slightly depending on the weather, but sometimes there is a phenomenon that a gust of wind causes the rotation of the wind turbine to rotate at high speed, so a device to protect the hydraulic pump is devised. I needed it.

強風時、既存の大型風力発電等では、風車羽根に当たる風の量を風車羽根のピッチの角度を変えて一部の風を逃がして対応しているが、本発明でのネジポンプは、上記記載したように、風車が高速回転した為にポンプ内が高圧となって油圧ポンプの破損を避ける為に、一定の規定量の油圧力を受けると縮むバネ伸縮機能を備えたコイル状の螺旋溝部材を用いたもので、円筒形部材が高速回転に陥った場合、螺旋コイル溝が円筒形内の高油圧力の負荷を受けて縮み溝幅が狭くなる事で、作動油を押し出す量を減らし円筒形部材のポンプの破損を回避するものである。 In strong winds, existing large-scale wind power generators, etc. handle the amount of wind that hits the wind turbine blades by changing the pitch angle of the wind turbine blades to allow some wind to escape. However, the screw pump in the present invention is described above. In order to avoid damage to the hydraulic pump due to the high pressure inside the pump due to the high-speed rotation of the wind turbine, a coil-shaped spiral groove member with a spring expansion / contraction function that contracts when a certain specified amount of oil pressure is applied is used. When the cylindrical member falls into high-speed rotation, the spiral coil groove shrinks under the load of high oil pressure in the cylinder and the groove width narrows, reducing the amount of hydraulic oil pushed out and forming a cylindrical shape. This is to avoid damage to the pump of the member.

又、この伸縮するコイルバネの螺旋溝部材は、連結された各ポンプ間から流出してくる異なる油圧を徐々に高め押し出す油圧調整機能も併せ持っている。 Further, the spiral groove member of the telescopic coil spring also has a hydraulic pressure adjusting function of gradually increasing and pushing out different hydraulic pressures flowing out from between the connected pumps.

実施例8までは、本発明の油圧ネジポンプを固定軸シャフト上に複数設け一対に油圧ネジポンプとして、一定の太さの固定軸シャフト上に設けたものを記載したが、固定軸シャフトの径の大きさが各油圧ネジポンプにそった太さにした実施例を図19を基に述べる。 Up to Example 8, a plurality of hydraulic screw pumps of the present invention are provided on a fixed shaft shaft as a pair of hydraulic screw pumps provided on a fixed shaft shaft having a certain thickness, but the diameter of the fixed shaft shaft is large. An example in which the thickness is adjusted according to each hydraulic screw pump will be described with reference to FIG.

図19に記載した図は、小、中、大と異なる油圧ポンプを直列に連結し一対の油圧ネジポンプとした多段式高圧油圧ポンプ基本構造の図19で、固定軸シャフト末尾の後部に発電機8を設けた側面の断面一部略図である。 The figure shown in FIG. 19 is FIG. 19 of the basic structure of a multi-stage high-pressure hydraulic pump in which small, medium, and large hydraulic pumps are connected in series to form a pair of hydraulic screw pumps. It is a schematic cross-sectional view of a part of the side surface provided with.

油圧ネジポンプを小、中、大と連結し風力水力を受けて各ポンプが回るが、回転が同一又は異なりながらも作動油を押し高圧の油圧作動油を得る事が出来る、多段式高圧油圧ポンプの図19である。 A multi-stage high-pressure hydraulic pump that connects small, medium, and large hydraulic screw pumps and receives wind and hydraulic power to rotate each pump, but can press hydraulic fluid to obtain high-pressure hydraulic fluid even though the rotation is the same or different. FIG. 19.

風車羽根の径が大きくなるにつれ固定軸シャフトに回転力以外にねじれの力が加わる。 As the diameter of the wind turbine blades increases, a twisting force is applied to the fixed shaft shaft in addition to the rotational force.

このねじれの力がネジポンプのコイルバネの螺旋溝部材に大きな負荷となって加わる。 This twisting force is applied as a large load to the spiral groove member of the coil spring of the screw pump.

この加わるねじれ現象の為に発生する負荷を軽減する為には、コイルバネ螺旋溝部材の径を大きし負荷を分散する事で対応する事になる。 In order to reduce the load generated due to this twisting phenomenon, the diameter of the coil spring spiral groove member should be increased to disperse the load.

このねじれ力に対応する為に、図19に描き記載したように、固定軸シャフトを風車羽根の大きさに対応出来る軸径の太さ、大きさにしたものである。 In order to cope with this torsional force, as shown in FIG. 19, the fixed shaft shaft has a diameter and size that can correspond to the size of the wind turbine blade.

固定軸シャフトに複数の油圧ネジポンプを設けるが、風車羽根の大きさに併せた油圧ネジポンプとし、固定軸シャフトも各ポンプに合った太さの軸径シャフトとしたものである。 A plurality of hydraulic screw pumps are provided on the fixed shaft shaft, but the hydraulic screw pump is used according to the size of the wind turbine blades, and the fixed shaft shaft is also a shaft diameter shaft having a thickness suitable for each pump.

実施例10では、固定軸シャフト内に設けてある、油圧作動油と補給供給作動油の流路に関する事を記載する図20。 In the tenth embodiment, FIG. 20 describes the flow path of the hydraulic fluid and the supply / supply hydraulic fluid provided in the fixed shaft.

図20の固定軸シャフトは、風を受けて回る羽根を徐々に大きな羽根として連結する固定軸シャフトを羽根の大きさに併せ、軸径を太く大きくして用いている固定軸シャフトで部材側面上部の断面略図である。 The fixed shaft shaft shown in FIG. 20 is a fixed shaft shaft that connects the blades that rotate in response to the wind as large blades gradually according to the size of the blades, and the shaft diameter is made thicker and larger. It is a cross-sectional schematic diagram of.

図20のように大小の風車羽根を連結して徐々に高圧の油圧を得る風車油圧ネジポンプとして並べたものであるが、羽根に当たる風が均等ではなく、各風車羽根の位置又、その時の風向きなどで各ポンプの羽根に当たる風量が変わり、各油圧ポンプの回転が異なる場合が有る。 As shown in Fig. 20, the large and small wind turbine blades are connected and arranged as a wind turbine hydraulic screw pump that gradually obtains high pressure hydraulic pressure. The amount of air that hits the blades of each pump changes, and the rotation of each hydraulic pump may differ.

この為、各ポンプの回転速度の異なりが、連結されている風車羽根のネジポンプ内の圧力が連設並べた前後のネジポンプ内より回転が速く回る場合が有る、この為油圧作動油の供給が追い付かず空回りし油泡が発生し作動油の劣化が進みポンプ内の油圧の不安定化となりポンプ内が負圧となる場合が生じる。 For this reason, the difference in the rotation speed of each pump may cause the pressure in the screw pumps of the connected wind turbine blades to rotate faster than in the screw pumps before and after the continuous arrangement, so the supply of hydraulic fluid may catch up. It runs idle and oil bubbles are generated, the deterioration of the hydraulic fluid progresses, the hydraulic pressure in the pump becomes unstable, and the pressure inside the pump may become negative.

並べたネジポンプの油圧が徐々に高圧の油圧を得るようにしたものであるが、上記したように各風車の回転むらによる作動油の供給が追い付かなく負圧になるのを防ぎ、負圧なった場合、ポンプ内に作動油の補給供給流路6-1から吸引され戻り防止弁6-2を介して流れ込む流路を固定軸シャフト内に設けたものである図20図30、図31。 The hydraulic pressure of the screw pumps lined up gradually gained high pressure, but as mentioned above, the supply of hydraulic oil due to uneven rotation of each wind turbine was prevented from catching up and becoming negative pressure, resulting in negative pressure. In this case, a flow path that is sucked from the hydraulic oil supply supply flow path 6-1 and flows into the pump via the return prevention valve 6-2 is provided in the fixed shaft shaft. FIGS. 20, 30 and 31.

この固定軸シャフト内に設けた各油圧ネジポンプ内に作動油を補給供給する流路6-1、7-8であるが、各供給流路に油圧戻り防止弁6-2が設けて有る。 The flow paths 6-1 and 7-8 for supplying and supplying hydraulic oil to each hydraulic screw pump provided in the fixed shaft, are provided with hydraulic return prevention valves 6-2 in each supply flow path.

戻り防止弁6-2は、ポンプ内の油圧作動油流路からの作動油の供給が追い付かず、空回りしポンプ内が負圧の状態に陥った場合、負圧で開く弁部材6-2で、吸引補給供給される作動油の流路の弁で、通常時の稼働でポンプ内が規定範囲内の油圧力で回る場合は弁が閉じて作動油が供給路6-1、7-8に戻らない働きをする弁部材6-2である。 The return prevention valve 6-2 is a valve member 6-2 that opens with negative pressure when the supply of hydraulic fluid from the hydraulic fluid flow path in the pump cannot catch up and runs idle and the inside of the pump falls into a negative pressure state. , The valve of the flow path of the hydraulic oil to be supplied by suction replenishment. It is a valve member 6-2 that does not return.

固定軸シャフト内に、作動油の補給供給路6-1、7-8戻り防止弁部材6-2を設ける事で、各ポンプの回転が異なり、発生し得る油圧力が異なっても、ムラの無い作動油の流れを確保でき油圧力が得られるようにしたものである。 By providing the hydraulic oil supply supply path 6-1 and 7-8 return prevention valve member 6-2 in the fixed shaft, the rotation of each pump will be different, and even if the oil pressure that can occur is different, unevenness will occur. The oil pressure can be obtained by ensuring the flow of hydraulic oil that does not exist.

上記した軸シャフトの構造、作動油の戻り防止弁部材等を設けた事で、小型風車発電の欠点である、風の変化でおおきく変わる発電のムラを緩和出来るようにしたものである。 By providing the above-mentioned shaft shaft structure, hydraulic oil return prevention valve member, etc., it is possible to alleviate the unevenness of power generation that changes greatly due to changes in the wind, which is a drawback of small wind turbine power generation.

本発明の一対の油圧ネジポンプ後部に油圧で回る、弾み車を設けた実施例を記載する。 An embodiment in which a bouncing wheel that rotates hydraulically is provided at the rear of a pair of hydraulic screw pumps of the present invention will be described.

弾み車フライホイールは、慣性モーメントの大きい重い円盤の回転を原理としており、回転速度の急激な変動を抑制したり、回転エネルギーを保存し必要に応じて吸収、放出するエネルギー 保存装置として活用できる。 The flywheel flywheel is based on the principle of rotation of a heavy disk with a large moment of inertia, and can be used as an energy storage device that suppresses sudden fluctuations in the rotation speed, stores rotational energy, and absorbs and releases it as needed.

風力を活用した発電の短所は、風の強弱で風車回転が一定とならない為、羽根に加わる力の変動が特に小型風車では大きく、発電機の電圧の極端な変化に繋がる。 The disadvantage of power generation using wind power is that the rotation of the wind turbine is not constant due to the strength of the wind, so the fluctuation of the force applied to the blades is particularly large in a small wind turbine, which leads to an extreme change in the voltage of the generator.

羽根径の大きな大型風力発電の場合は、風の強弱でもそれなりに羽根径が大きい分、慣性力が大きく働き回転速度の変動が少なくスムーズに回る事が出来る。 In the case of a large-scale wind power generation with a large blade diameter, even if the wind is strong or weak, the blade diameter is large as it is, so the inertial force works and the rotation speed does not fluctuate and can rotate smoothly.

小型風力発電では、羽根径が小さく、風の強弱で、回転速度の変動が大きい欠点が有る。 Small wind power generation has the disadvantages that the blade diameter is small, the strength of the wind is strong and weak, and the rotation speed fluctuates greatly.

この欠点を補う為に、各油圧ネジポンプで得られた油圧で弾み車を回して、風の強弱で異なる風羽根の回転速度に左右される事無く、慣性力で変動の少ない一定の安定して回る油圧ポンプを油圧モータとして、発電機の回転子に用いる事で、変化の少ない定電圧の発電が得られるようにしたものである。 In order to make up for this shortcoming, the hydraulic pressure obtained from each hydraulic screw pump is used to rotate the bouncing wheel, and it rotates stably with little fluctuation due to inertial force without being affected by the rotation speed of different wind blades depending on the strength of the wind. By using a hydraulic pump as a hydraulic motor for the rotor of a generator, it is possible to obtain constant voltage power generation with little change.

小型風車の欠点である風の強弱で回転数が極端に変わって油圧力が変化しても油圧作動油で弾み車を回す為に、弾み車を回す他の動力伝達部材であるギヤ、ベルト等より伝達動力の損失が少なく、小型風車の欠点を補う事が出来る油圧作動油で回る弾み車で有る。 Even if the rotation speed changes drastically due to the strength of the wind, which is a drawback of small wind turbines, and the hydraulic pressure changes, in order to rotate the bouncing wheel with hydraulic fluid, it is transmitted from other power transmission members that rotate the bouncing wheel, such as gears and belts. It is a bouncing vehicle that rotates with hydraulic fluid that has little power loss and can make up for the shortcomings of small wind turbines.

本発明の弾み車を用いた油圧ネジポンプでは、弾み車を設けて回転する発電機の回転子として活用しているが、必ずしも発電機内に設けなくとも、各油圧ネジポンプの羽根根元に設けて、風の強弱による回転の変化の少ない風車として活用しても良い。 In the hydraulic screw pump using the bouncing wheel of the present invention, the bouncing wheel is provided and used as a rotor of a rotating generator. It may be used as a wind turbine with little change in rotation due to.

円筒形部材内面に作動油輸送用螺旋状溝部を構成し油圧ポンプ内の作動油輸送用螺旋溝部材が相対する異なる螺旋溝部材が円筒形部材のポンプ内に対称に存在する螺旋溝に関する旨を記載する図32図33。 A spiral groove portion for hydraulic oil transportation is formed on the inner surface of the cylindrical member, and different spiral groove members facing the hydraulic oil transport spiral groove member in the hydraulic pump are symmetrically present in the pump of the cylindrical member. Figure 32 Figure 33 to be described.

実施例12では、本発明の固定軸シャフトを中心軸として回転する円筒形部材から成る油圧ポンプ内の円筒形部材内面に作動油輸送用螺旋状溝部の形状が相対する溝部が異なる溝部として対称に設け、円筒形部材が回転すると円筒形両端の固定シャフト作動油流路口から作動油が流入し、螺旋状溝部に押され円筒形部材中央に圧力を伴い、円筒形部材中心部固定シャフト流出口より連接されている油圧ポンプに作動油が流れる。 In Example 12, the shape of the spiral groove for hydraulic oil transport is symmetrical with respect to the inner surface of the cylindrical member in the hydraulic pump composed of the cylindrical member rotating around the fixed shaft of the present invention. When the cylindrical member rotates, hydraulic oil flows in from the hydraulic oil flow path openings at both ends of the cylinder, is pushed by the spiral groove, and pressure is applied to the center of the cylindrical member, from the outlet of the fixed shaft at the center of the cylindrical member. Hydraulic oil flows through the connected hydraulic pump.

円筒形部材内の作動油輸送用螺旋状溝部の油圧ポンプの場合、回転する円筒形部材一方ら作動油輸送用螺旋状溝部で押され輸送された作動油が圧力を伴い円筒形部材他方に押され円筒形内の作動油オイルシールに大きな油圧力が加わりながら固定シャフト流出口より他の連結している油圧ポンプに流れるが、突風等で急速に規定以上の速さで油圧ポンプが回り高油圧の作動油となりこの時、円筒形部材のオイル漏れ止めオイルシールから作動油が漏れる場合があった。 In the case of a hydraulic pump in a spiral groove for hydraulic oil transportation in a cylindrical member, one of the rotating cylindrical members is pushed by the spiral groove for hydraulic oil transportation and the hydraulic oil transported is pushed to the other of the cylindrical members with pressure. A large oil pressure is applied to the hydraulic oil seal in the cylindrical shape, and the oil flows from the fixed shaft outlet to the other connected hydraulic pumps. At this time, the hydraulic oil may leak from the oil leak prevention oil seal of the cylindrical member.

円筒形部材が回転すると、円筒形部材内偏りに作動油が溝で輸送され高油圧となりオイルシールに負荷が加わりながら連接されている油圧ポンプに作動油が流れていたため規定以上の回転が発生するとオイル漏れの一因となってもいる円筒形部材内の作動油輸送用螺旋状溝部が相対する異なる溝部として対称に設け、円筒形部材が回転すると輸送螺旋溝が作動油を中央に押し出す輸送溝として設けたもので、円筒形部材が回転すると円筒形部材内両端から作動油が圧力を伴い円筒形内中央で高油圧となって押し合い円筒形部材中央の固定シャフト流出口から押し出され排出する。 When the cylindrical member rotates, the hydraulic oil is transported in the groove to the bias inside the cylindrical member, resulting in high hydraulic pressure. The hydraulic groove for transporting hydraulic oil in the cylindrical member, which is also one of the causes of oil leakage, is provided symmetrically as different grooves facing each other, and when the cylindrical member rotates, the transport spiral groove pushes the hydraulic oil to the center. When the cylindrical member rotates, hydraulic oil is pressed from both ends of the cylindrical member to become highly hydraulic at the center of the cylindrical member, and is pushed out from the fixed shaft outlet at the center of the cylindrical member to be discharged.

上記したように、円筒形部材内面に左右異なる螺旋状溝部材を対称に設け円筒形部材両端から中央に作動油を押し出す構造とする事で、回転で得られた高油圧作動油が中央に高油圧となって存在し、高油圧による円筒形部材両端に設けてあるオイル漏れシールに加わる圧力が低減し作動油のオイル漏れを防ぐ事が出来る構造としている。 As described above, the hydraulic fluid obtained by rotation is high in the center by providing symmetrically different spiral groove members on the inner surface of the cylindrical member and extruding the hydraulic oil from both ends of the cylindrical member to the center. It exists as hydraulic pressure and has a structure that can prevent oil leakage of hydraulic fluid by reducing the pressure applied to the oil leakage seals provided at both ends of the cylindrical member due to high hydraulic pressure.

突風などで高速回転の為、円筒形部材が規定以上の回転に陥り、実施例1~12まででの油圧ポンプの場合は、円筒形部材内一方から他の方に回転で得られた油圧が高圧となって流れ流出口から他の連結しているポンプに放出されていた。 Due to high-speed rotation due to a gust of wind, the cylindrical member will rotate more than specified, and in the case of the hydraulic pumps in Examples 1 to 12, the hydraulic pressure obtained by rotation from one side of the cylindrical member to the other side will be applied. It became high pressure and was discharged from the flow outlet to other connected pumps.

この為、円筒形部材の一方のみのオイルシールに高油圧の作動油の圧力が加わる。 Therefore, the pressure of the hydraulic oil of high hydraulic pressure is applied to the oil seal of only one of the cylindrical members.

この時、規定以上に油圧ポンプが回転した場合作動油が高圧となりオイル漏れ止めオイルシールから作動油が漏れ出す場合があった。 At this time, if the hydraulic pump rotates more than specified, the hydraulic oil may become high pressure and the hydraulic oil may leak from the oil leak prevention oil seal.

実施例12では、この円筒形部材一方のみに異常回転の為、高圧の油圧に陥りオイル漏れの欠点が有ったのを解消する為に、作動油輸送螺旋溝が相対する異なる溝部材を対称に円筒形部材内に設ける事で円筒形部材が回転すると、円筒形部材両端の螺旋溝部材から作動油が押され中央に高油圧となって発生する仕組みの油圧ポンプとし、円筒形部材両端に設けてあるオイルシールに作動油の加わる油圧力を少なくするようにしたものである。 In the twelfth embodiment, in order to eliminate the drawback of oil leakage due to high-pressure hydraulic pressure due to abnormal rotation of only one of the cylindrical members, the hydraulic oil transport spiral grooves are symmetrical to each other. When the cylindrical member rotates by being installed in the cylindrical member, hydraulic oil is pushed from the spiral groove members at both ends of the cylindrical member to generate a high hydraulic pressure in the center, and the hydraulic pump is generated at both ends of the cylindrical member. The oil pressure applied to the hydraulic oil is reduced in the provided oil seal.

図32での矢印28は、油圧ポンプである円筒形部材両端から作動油が入り油圧ポンプが回転すると作動油が油圧を伴い中央に押され、固定軸シャフト流出口より圧力を伴い、連接された油圧ポンプ内両端に放出される作動油の流れを表わした図32.33である。 The arrow 28 in FIG. 32 indicates that when hydraulic oil enters from both ends of a cylindrical member that is a hydraulic pump and the hydraulic pump rotates, the hydraulic oil is pushed to the center with hydraulic pressure, and is connected with pressure from the outlet of the fixed shaft shaft. Figure 32.33 shows the flow of hydraulic oil discharged to both ends of the hydraulic pump.

リサイクルの可能な自然エネルギーの開発が試みて開発されているが、身近に有る発生している自然エネルギーが小さい為、大規模の太陽光発電、大きな風車等を用いた発電となって開発が進んでいる。 The development of recyclable natural energy has been attempted and developed, but due to the small amount of natural energy that is generated around us, the development is proceeding with large-scale solar power generation and power generation using large wind turbines. I'm out.

この為、大型の発電施設となり設置する場所が限定されたものとなっている、このような状況の大型開発の発電では、国が提唱する将来の二酸化炭素削減目
標には無理が生じる可能性が有る。
For this reason, it is a large-scale power generation facility and the place to install it is limited. In such a situation, large-scale development power generation may make it impossible for the future carbon dioxide reduction target proposed by the government. There is.

このような状況を変える為には、身の回りにある、小規模の自然エネルギーの活用なしには二酸化炭素の削減がなしえないと思われる。 In order to change this situation, it seems that carbon dioxide cannot be reduced without utilizing the small-scale natural energy around us.

今後、ガソリン自動車から電気自動車に替わり、家庭での充電等で電力への依存が進み電力の消費が多くなる。 In the future, gasoline-powered vehicles will be replaced by electric vehicles, and the dependence on electric power will increase due to charging at home, etc., and the consumption of electric power will increase.

発電する為の化石燃料への依存を減らして電気自動車に換えて行くには、再生可能な自然エネルギーの活用が不可欠で、この様な状況に対応するには、長期に亘って身近にあるローカルの小さな自然エネルギーを集め利用する事が求められてくる。 Utilization of renewable natural energy is indispensable to reduce the dependence on fossil fuels for power generation and switch to electric vehicles, and to cope with such a situation, locals who have been around for a long time It is required to collect and utilize small natural energy of.

個人住宅の太陽光発電、小規模の風力発電、今だ、活用されず有る、中小規模の一般河川の活用、地域の用水路、排水路等を活用しこれらの個々の発電した
電力を集約し地域、又は集落、個人等で身近な電力として用いる。
Utilizing solar power generation in private houses, small-scale wind power generation, utilization of small and medium-sized general rivers that are not yet utilized, regional irrigation canals, drainage canals, etc. Or, it is used as a familiar power source for villages, individuals, etc.

小型風力、水車の油圧ポンプとして用い発電機に活用でき、従来の風車発電機、水車発電機等より小型ながら発電量が大きな発電機を回す油圧ポンプとして用
いられる。
It can be used as a hydraulic pump for small wind power and water turbines, and can be used as a generator. It is used as a hydraulic pump for turning a generator that is smaller than conventional wind turbine generators and water turbine generators but has a large amount of power generation.

本発明の油圧ポンプを活用し、地域に無限臓に存在するローカルの小さな自然エネルギーを集め利用する事の出来る発電する為の油圧システムである。 It is a hydraulic system for power generation that can collect and utilize small local natural energy that exists infinitely in the area by utilizing the hydraulic pump of the present invention.

将来の二酸化炭素削減には、地域、地域に根差した小規模の発電を可能にして、発電した電力を地域で消費する事が一番理に沿ったものとなる。 For future carbon dioxide reduction, it is most reasonable to enable small-scale power generation rooted in the region and to consume the generated power in the region.

本発明の油圧渦巻きポンプ、油圧ネジポンプは、油圧を加えると油圧モーターともなるもので、一連の固定軸シャフト上に油圧ポンプ油圧モーターが存在し一対の発電機が出来、小型ながら発電効率が高い発電システムの発電機で、従来エネルギーの変換効率が悪く無理と思われた、中小河川の水流を活用した発電機、海岸沿いの各家庭の防風柵、暴風壁又、道路脇に設けている防風柵等を活用し風力発電が得られ、本発明の油圧ポンプを活用すると、あらゆる所に設置ができる発電機となりこの油圧ポンプの活用範囲が広がる。 The hydraulic swirl pump and the hydraulic screw pump of the present invention also become a hydraulic motor when hydraulic pressure is applied. The hydraulic pump hydraulic motor exists on a series of fixed shafts to form a pair of generators, and the power generation is small but has high power generation efficiency. A generator that utilizes the water flow of small and medium-sized rivers, which was previously thought to be impossible due to poor energy conversion efficiency, windbreak fences for each household along the coast, windbreak walls, and windbreak fences installed on the side of the road. Wind power generation can be obtained by utilizing the above, and if the hydraulic pump of the present invention is utilized, it becomes a generator that can be installed everywhere, and the range of utilization of this hydraulic pump is expanded.

従来の大型の発電設備での発電と異なり、エネルギー変換する油圧ポンプの構造が極めて、シンプルで小型化に適し、又設置する技術、費用が極めて安価できるものとなっている。 Unlike conventional large-scale power generation equipment, the structure of the hydraulic pump that converts energy is extremely simple and suitable for miniaturization, and the technology and cost for installation are extremely low.

今後急速に普及すると思われる電気自動車への充電及び、この車の蓄電池を家庭の蓄電源として活用し、又今後技術が進み効率良く回る電気自動車のモーター部を発電機として活用し、本発明の油圧ネジポンプをこの発電機を回す油圧モーターとして用いて発電する。 The present invention is to charge an electric vehicle that is expected to spread rapidly in the future, utilize the storage battery of this vehicle as a storage power source for homes, and utilize the motor part of an electric vehicle that rotates efficiently in the future as a generator. A hydraulic screw pump is used as a hydraulic motor to turn this generator to generate electricity.

太陽光発電、風力発電、水力発電を、地域、集落、個々の家庭で設置し活用し集約し地域で使用可能となる小型発電機で、電力会社に頼る事無く地産地消の電気が出来る。 It is a small generator that can be used in the area by installing, utilizing and consolidating solar power generation, wind power generation, and hydroelectric power generation in the area, village, and individual households, and can generate electricity for local production and consumption without relying on an electric power company.

地方地域の人口減少が進み、過疎化に居たっている地域が多いが、都会と異なり個々で風車発電、太陽光発電、地域の用水排水路等を活用する発電が容易で
都会では不可能な自給自足の電力が得られ、地域活性化に役立てられるものである。
The population of rural areas is declining, and many areas are depopulated, but unlike urban areas, it is easy to generate electricity by using wind power generation, solar power generation, local water and drainage channels, etc., and self-sufficiency is impossible in urban areas. Self-sufficient power can be obtained, which is useful for regional revitalization.

1円筒形部材
1-1円筒形部材小
1-2円筒形部材中
1-3円筒形部材大
2コイルバネ状の作動油輸送用螺旋状溝部材
2-1コイルバネの螺旋溝幅が広い部材
2-2コイルバネ部材の螺旋溝幅が狭い部材
2-3通常時のコイルバネの螺旋状溝部材
2-4過剰の油圧が加わり縮んだコイルバネの状螺旋溝部材
2-5過剰の油圧が加わりさらに縮んだコイルバネの状螺旋溝部材
2-6-1コイルバネの状螺旋溝部材小
2-6-2コイルバネの状螺旋溝部材中
2-6-3コイルバネの状螺旋溝部材大
2-7コイルバネを円筒部材裏面に点付けした接合部
2-7-1作動油流入口
2-7-3作動油流出口
3風車羽根
4固定軸シャフト
4-2風車羽の大きさに合わせた軸シャフト径
4-3風車羽の大きさに合わせた軸シャフト径
4-4固定軸シャフト内を流れる作動油の流路
5油圧ポンプの筒部材の回転を表わした矢印
6作動油の流れを表わした矢印
6-1固定軸シャフト径の異なるシャフト内を流れる作動油の補給供給流路
6-2ポンプへの補給作動油の戻り防止弁
7コイルバネを用いた螺旋溝ポンプ内に流れる固定シャフト内の作動油流路
7-1筒部材内に固定軸シャフト内の流路から作動油が入る流入口
7-2筒部材内の作動油が溝部材に押され固定軸シャフト内流路に出て行く流路口
7-3作動油流路口
7-8コイルバネを用いた螺旋溝ポンプ内への作動油補給流路
7-9コイルバネポンプ作動油の流れを表わした矢印
8発電機
8-1発電機の回転子
9 発電コイル
10磁石
12ワイヤーロープ
13水車
14 浮力材フロート
15支柱
16渦巻きポンプの円筒形部材符号
17 渦巻き溝羽根部材表と裏で渦巻き方向が異なる溝羽根
17-1裏面渦巻き溝が表面渦巻き溝と異なる渦巻き状の溝部材
18弾み車
19円筒形部材内を2室に分離する円盤の仕切り板
21 高速回転し油圧力を受けて縮、変形した渦巻き溝羽根部材
21-1裏面に設けた渦巻き溝羽根部材
22渦巻きポンプ作動油の流出口
23左右対象の異なる螺旋状溝部材の溝
23-1時計方向に螺旋溝が加工されたコイルバネ
23-2反時計方向に螺旋溝が加工されたコイルバネ
24作動油オイル漏れ止めオイルシール
25円筒形部材内の固定シャフトの作動油流路口
26円筒形部材中央の固定シャフトの作動油排出口
27円筒形部材の回転方向を示す矢印
28螺旋溝に押され圧力を伴いシャフト中央の流出口に流れる作動油を表わした矢印
29螺旋溝に押され圧力を伴い高油圧となった作動油が流れ込む作動油流出口
1 Cylindrical member
1-1 Small cylindrical member
1-2 In a cylindrical member
1-3 Large cylindrical member
2 Coil spring-shaped spiral groove member for transporting hydraulic oil
2-1 Member with wide spiral groove width of coil spring
2-2 Spiral groove width of coil spring member is narrow
2-3 Spiral groove member of coil spring at normal time
2-4 Coil spring-shaped spiral groove member that has shrunk due to excessive hydraulic pressure
2-5 Coil spring-shaped spiral groove member that has shrunk further due to excessive hydraulic pressure
2-6-1 Coil spring shape Spiral groove member Small
2-6-2 In the spiral groove member of the coil spring
2-6-3 Coil spring shape Spiral groove member large
2-7 Joint with coil spring spotted on the back of the cylindrical member
2-7-1 Hydraulic oil inlet
2-7-3 Hydraulic oil outlet
3 windmill blades
4 Fixed shaft shaft
4-2 Shaft shaft diameter according to the size of the wind turbine blade
4-3 Shaft shaft diameter according to the size of the wind turbine blade
4-4 Fixed shaft Flow of hydraulic oil flowing in the shaft
5 Arrow indicating the rotation of the cylinder member of the hydraulic pump
6 Arrow showing the flow of hydraulic oil
6-1 Fixed shaft Supply and supply flow path of hydraulic oil flowing in shafts with different shaft diameters
6-2 Replenishment hydraulic oil return prevention valve to pump
7 Spiral groove using coil spring Hydraulic oil flow path in the fixed shaft flowing in the pump
7-1 Inflow port where hydraulic oil enters from the flow path in the fixed shaft shaft into the tubular member
7-2 Flow path port where hydraulic oil in the cylinder member is pushed by the groove member and goes out to the flow path in the fixed shaft shaft.
7-3 Hydraulic oil flow path port
7-8 Spiral groove using coil springs Hydraulic oil supply flow path into the pump
7-9 Coil spring pump Arrow showing the flow of hydraulic oil
8 generator
8-1 Generator rotor
9 Power generation coil
10 magnets
12 wire rope
13 water wheel
14 Buoyancy material float
15 columns
16 Cylindrical member code for centrifugal pump
17 Spiral groove blade member Groove blade with different spiral directions on the front and back
17-1 Spiral groove member whose back surface spiral groove is different from the front surface spiral groove
18 momentum car
19 Disc partition plate that separates the inside of the cylindrical member into two chambers
21 Swirl groove blade member that rotates at high speed and contracts and deforms under oil pressure
21-1 Spiral groove blade member provided on the back surface
22 Centrifugal pump hydraulic oil outlet
23 Grooves of different spiral groove members on the left and right
23-1 Coil spring with a spiral groove in the clockwise direction
23-2 Coil spring with spiral groove machined counterclockwise
24 Hydraulic oil Oil leak prevention oil seal
25 Hydraulic oil flow path of fixed shaft in cylindrical member
26 Hydraulic oil discharge port of the fixed shaft in the center of the cylindrical member
27 Arrow indicating the direction of rotation of the cylindrical member
28 An arrow indicating the hydraulic oil that is pushed by the spiral groove and flows to the outlet in the center of the shaft with pressure.
29 The hydraulic oil outlet into which the hydraulic oil that has become highly hydraulic pressure due to being pushed by the spiral groove flows in.

Claims (3)

固定軸シャフトを中心軸として回転する円筒形部材から成る油圧ポンプであって、前記円筒形部材内面に設けたコイルバネ一端を点付けした接合部として作動油輸送用伸縮可能なネジ部溝を構成し、前記固定軸シャフト内の流路から前記円筒形部材内へと作動油が流入する作動油流入口及び前記円筒形部材内から前記固定軸シャフト内の流路へと作動油が流出する作動油流出口を有する前記固定軸シャフトから成り、前記作動油輸送用伸縮可能なネジ部溝の油圧ポンプ。 A hydraulic pump composed of a cylindrical member that rotates around a fixed shaft as a central axis, and constitutes a stretchable threaded groove for hydraulic oil transport as a joint portion with one end of a coil spring provided on the inner surface of the cylindrical member. , The hydraulic oil inflow into the cylindrical member from the flow path in the fixed shaft shaft, and the hydraulic oil flowing out from the inside of the cylindrical member into the flow path in the fixed shaft. A hydraulic pump having a fixed shaft having an outlet and having a stretchable threaded groove for transporting hydraulic oil. 前記固定軸シャフトを中心軸として回転する前記円筒形部材から成る前記油圧ポンプであって、前記円筒形部材内面に相対する異なる螺旋状溝の作動油輸送用溝部コイルバネを、対称に設け前記コイルバネ一端を点付けした接合部として、円筒形部材が回転する事で前記円筒形部材両端から中央に作動油を輸送出来る螺旋状溝部材とし、作動油輸送用伸縮可能なネジ部溝である事を特徴とする請求項1の油圧ポンプ。 A hydraulic pump composed of the cylindrical member that rotates about the fixed shaft shaft as a central axis, and a groove coil spring for transporting hydraulic oil having a different spiral groove facing the inner surface of the cylindrical member is symmetrically provided at one end of the coil spring. As a joint with dots, it is a spiral groove member that can transport hydraulic oil from both ends of the cylindrical member to the center by rotating the cylindrical member, and is characterized by a stretchable threaded groove for transporting hydraulic oil. The hydraulic pump according to claim 1. 前記円筒形部材内面に点付けし接合部とした前記溝部コイルバネは、作動油流入口部近傍のみの前記円筒形部材内面にネジ部溝一端を点付けし、接合し固定した作動油輸送用伸縮可能なネジ部溝である事を特徴とする請求項1又は2の油圧ポンプ。 The grooved coil spring, which is formed by spotting on the inner surface of the cylindrical member to form a joint, expands and contracts for hydraulic oil transportation by spotting one end of a threaded groove on the inner surface of the cylindrical member only in the vicinity of the hydraulic oil inflow port and joining and fixing the groove. The hydraulic pump according to claim 1 or 2, characterized in that it is a possible threaded groove.
JP2021209387A 2018-09-12 2021-12-23 Hydraulic pumps and their application devices. Active JP7048815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021209387A JP7048815B2 (en) 2018-09-12 2021-12-23 Hydraulic pumps and their application devices.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018170211A JP7013095B2 (en) 2018-09-12 2018-09-12 Hydraulic pumps and their application devices.
JP2021209387A JP7048815B2 (en) 2018-09-12 2021-12-23 Hydraulic pumps and their application devices.

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018170211A Division JP7013095B2 (en) 2018-09-12 2018-09-12 Hydraulic pumps and their application devices.

Publications (2)

Publication Number Publication Date
JP2022037192A JP2022037192A (en) 2022-03-08
JP7048815B2 true JP7048815B2 (en) 2022-04-05

Family

ID=87798749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021209387A Active JP7048815B2 (en) 2018-09-12 2021-12-23 Hydraulic pumps and their application devices.

Country Status (1)

Country Link
JP (1) JP7048815B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193680A (en) 1999-11-19 2001-07-17 Capstone Turbine Corp Rotary machine
JP2008025461A (en) 2006-07-21 2008-02-07 Hitachi Industrial Equipment Systems Co Ltd Electric axial flow pump
WO2017127101A1 (en) 2016-01-22 2017-07-27 Fmc Technologies, Inc. Integrated modular, multi-stage motor-pump/compressor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146296A (en) * 1979-04-27 1980-11-14 Kawasaki Heavy Ind Ltd Screw pump
DE3820483A1 (en) * 1988-06-16 1989-12-21 Stihl Maschf Andreas PUMP FOR VISCOSE LIQUIDS, ESPECIALLY LUBRICATING OIL PUMP
JPH0281997A (en) * 1988-09-20 1990-03-22 Mayekawa Mfg Co Ltd Fluid pressure generating device and operating method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193680A (en) 1999-11-19 2001-07-17 Capstone Turbine Corp Rotary machine
JP2008025461A (en) 2006-07-21 2008-02-07 Hitachi Industrial Equipment Systems Co Ltd Electric axial flow pump
WO2017127101A1 (en) 2016-01-22 2017-07-27 Fmc Technologies, Inc. Integrated modular, multi-stage motor-pump/compressor device

Also Published As

Publication number Publication date
JP2022037192A (en) 2022-03-08

Similar Documents

Publication Publication Date Title
JP6709225B2 (en) Hydraulic-pneumatic energy storage system
US8643206B2 (en) Renewable energy system
US6051892A (en) Hydroelectric power system
US20090152871A1 (en) Multiple energy inputs hydropower system
WO2002101233A1 (en) Wind pumping power generation device
US20150204301A1 (en) Systems and methods for hydroelectric systems
US8231327B2 (en) River high pressure energy conversion machine
US9657708B2 (en) Pumped-storage system
CN104595094B (en) hydraulic turbine generator
Tamrakar et al. Hydro power opportunity in the sewage waste water
Müller et al. Old watermills—Britain's new source of energy?
JP7048815B2 (en) Hydraulic pumps and their application devices.
JP7013095B2 (en) Hydraulic pumps and their application devices.
US20130028729A1 (en) Power generation systems and methods
EP1869316A1 (en) Re-circulating water in close-looped hydropower system
JP2015140802A (en) Hydraulic generating equipment
NL1040829C2 (en) Wind and wave energy conversion.
Al Khudhiri et al. Design of hydro-power plant for energy generation for a mid-size farm with insufficient water distribution networks
JP6421366B1 (en) Unit type small hydroelectric generator.
KR20100095687A (en) Horizontal hydroelectric power system
Saket et al. Reliability evaluation of micro hydro-photo-voltaic hybrid power generation using municipal waste water
Alami et al. Recent innovations and applications of mechanical energy storage technologies
KR101338950B1 (en) A hybrid power plant utilizing the sunlight and rainwater
AU2016201909A1 (en) Atmo-Hydro-Electrical system (AHE) - producing hydroelectricity from atmospheric pressure.
Bear et al. Development and experience with a vertical-axis hydrokinetic power generation system

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

R150 Certificate of patent or registration of utility model

Ref document number: 7048815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150