JP6935900B2 - Deodorization and nitrogen removal method - Google Patents
Deodorization and nitrogen removal method Download PDFInfo
- Publication number
- JP6935900B2 JP6935900B2 JP2017028218A JP2017028218A JP6935900B2 JP 6935900 B2 JP6935900 B2 JP 6935900B2 JP 2017028218 A JP2017028218 A JP 2017028218A JP 2017028218 A JP2017028218 A JP 2017028218A JP 6935900 B2 JP6935900 B2 JP 6935900B2
- Authority
- JP
- Japan
- Prior art keywords
- sulfur
- deodorizing
- ammonia
- thiosulfate
- nitrite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 46
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims description 35
- 229910052757 nitrogen Inorganic materials 0.000 title claims description 16
- 238000004332 deodorization Methods 0.000 title description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 78
- 230000001877 deodorizing effect Effects 0.000 claims description 68
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 64
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 46
- 239000011593 sulfur Substances 0.000 claims description 44
- 229910052717 sulfur Inorganic materials 0.000 claims description 44
- 239000010802 sludge Substances 0.000 claims description 41
- 241000894006 Bacteria Species 0.000 claims description 36
- 238000006243 chemical reaction Methods 0.000 claims description 33
- 229910021529 ammonia Inorganic materials 0.000 claims description 30
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 claims description 28
- 235000019345 sodium thiosulphate Nutrition 0.000 claims description 28
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 23
- 239000004575 stone Substances 0.000 claims description 22
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 19
- 229910017604 nitric acid Inorganic materials 0.000 claims description 19
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 16
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 10
- 244000144972 livestock Species 0.000 claims description 9
- 230000001546 nitrifying effect Effects 0.000 claims description 9
- 230000003647 oxidation Effects 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 claims description 7
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000000463 material Substances 0.000 description 30
- 239000011490 mineral wool Substances 0.000 description 11
- 241001453382 Nitrosomonadales Species 0.000 description 10
- 244000005700 microbiome Species 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000002351 wastewater Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000004065 wastewater treatment Methods 0.000 description 5
- 241000282898 Sus scrofa Species 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 101100490994 Aeromonas hydrophila amoA gene Proteins 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- 241000605121 Nitrosomonas europaea Species 0.000 description 3
- 101100490996 Nitrosomonas europaea (strain ATCC 19718 / CIP 103999 / KCTC 2705 / NBRC 14298) amoA2 gene Proteins 0.000 description 3
- 241001509286 Thiobacillus denitrificans Species 0.000 description 3
- 241000128979 Thiobacillus thiophilus Species 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 235000013339 cereals Nutrition 0.000 description 3
- 239000002781 deodorant agent Substances 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000010815 organic waste Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 241000605122 Nitrosomonas Species 0.000 description 2
- 241000192121 Nitrospira <genus> Species 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 241000605118 Thiobacillus Species 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 2
- 101150083634 amoA gene Proteins 0.000 description 2
- 230000001651 autotrophic effect Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000009264 composting Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000009313 farming Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000004255 ion exchange chromatography Methods 0.000 description 2
- 239000010871 livestock manure Substances 0.000 description 2
- 230000007483 microbial process Effects 0.000 description 2
- -1 nitrate ions Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000003911 water pollution Methods 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 108020004465 16S ribosomal RNA Proteins 0.000 description 1
- 108010061397 Ammonia monooxygenase Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 241001518671 Multiformis Species 0.000 description 1
- 108090000913 Nitrate Reductases Proteins 0.000 description 1
- 241001212101 Nitrosomonadaceae Species 0.000 description 1
- 241001495394 Nitrosospira Species 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 241000605268 Thiobacillus thioparus Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003505 heat denaturation Methods 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000011880 melting curve analysis Methods 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229940005654 nitrite ion Drugs 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 238000009304 pastoral farming Methods 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229910021654 trace metal Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Treating Waste Gases (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
本発明は、例えば家畜排泄物処理過程から生じるアンモニアを主体とした臭気を除去し、且つ窒素を除去するための方法及び当該方法に利用する脱臭及び窒素除去装置に関する。 The present invention relates to, for example, a method for removing an odor mainly composed of ammonia generated from a process of treating livestock excrement and removing nitrogen, and a deodorizing and nitrogen removing device used in the method.
従来において、家畜糞の堆肥化処理では、アンモニアを主体とする臭気が生じるため、微生物を利用して生物学的に処理する生物脱臭法が利用されることが多い。生物脱臭システムでは、アンモニアガスは水への溶解により気相から除去された後、微生物による硝化反応により亜硝酸又は硝酸に変換される。また、一般に脱臭用微生物の活性を維持するために、水を散水しており、アンモニアと硝酸、亜硝酸を含む脱臭廃水が生じる。水を循環利用する際(循環散水方式)には、窒素が蓄積していくため、長期的には微生物の活性低下が起こる。
このため、生物脱臭廃水の窒素を効率的に除去する技術が求められている。
Conventionally, in the composting treatment of livestock manure, an odor mainly composed of ammonia is generated, so that a biological deodorizing method in which biological treatment is performed using microorganisms is often used. In a biological deodorization system, ammonia gas is removed from the gas phase by dissolution in water and then converted to nitrite or nitric acid by a nitrification reaction by microorganisms. In addition, water is generally sprinkled in order to maintain the activity of deodorizing microorganisms, and deodorized wastewater containing ammonia, nitric acid, and nitrite is generated. When water is recycled (circular watering method), nitrogen accumulates, resulting in a decrease in microbial activity in the long term.
Therefore, there is a demand for a technique for efficiently removing nitrogen from biological deodorized wastewater.
循環散水方式の生物脱臭装置の微生物活性の低下を抑制する方法としては、散水用水のイオン濃度を希釈により適正濃度まで下げる方法(特許文献1)が知られている。当該方法では、イオン濃度の上限を、亜硝酸、硝酸イオン濃度を10,000ppm以下、硫酸イオン濃度で5,000ppm以下、電気伝導度では100mS/m以下を目安としている。 As a method of suppressing a decrease in microbial activity of a circulating watering type biological deodorizing device, a method of reducing the ion concentration of watering water to an appropriate concentration by dilution (Patent Document 1) is known. In this method, the upper limit of the ion concentration is set to 10,000 ppm or less for nitrite and nitrate ion concentration, 5,000 ppm or less for sulfate ion concentration, and 100 mS / m or less for electrical conductivity.
一方、脱窒を利用した生物脱臭方法も開発されている(特許文献2〜6及び非特許文献1等)。特許文献2は、多孔質木質系ろ材に硝化菌と脱窒菌を生息させ、臭気を吸収した水をろ材上面に散水するシステムを開示する。特許文献3は、廃鋳物砂を脱臭材として用い、堆肥化の結露水や脱臭廃水を脱臭槽で処理するシステムを開示する。脱窒には臭気発生源となる有機性廃棄物由来の有機物を利用している。特許文献4等では、脱窒作用を有する微生物の養分として有機物を供給する装置を別途備えたシステムが提案されている。また、特許文献5及び6は、アンモニアの吸収による除去後の硝化反応において、硝酸化を抑制し、亜硝酸化液を得てアナモックス細菌により脱窒するシステムを開示する。これらの亜硝酸化方法として、アンモニウムイオン濃度、亜硝酸濃度、pHの制御範囲等が示されている。また、非特許文献1は、生物脱臭槽にアンモニア酸化細菌及びアナモックス細菌から成るグラニュールを添加し、脱臭槽内で亜硝酸化と脱窒を同時に行うことができることを報告する。亜硝酸化は、主にイオン濃度により制御している。即ち、特許文献5及び6と非特許文献1の亜硝酸化の制御方法は、亜硝酸化と硝酸化を行う細菌の遊離アンモニア又は遊離亜硝酸濃度への耐性の違いを利用したものであると考えられる。
On the other hand, a biological deodorizing method using denitrification has also been developed (
しかしながら、上述のように、単に希釈でイオン濃度を下げる方法では、大量の水を補給する必要があり、また脱臭廃水量も増えてしまうため、廃水処理費と水代によりランニングコストが高くなる。生物脱臭装置と別に脱窒装置を設ける場合には、設備コストが高くなる。脱窒のための電子供与体として、多孔質有機性のろ材を使用したり、臭気発生源となる有機性廃棄物由来の有機物を供給するシステムでは、物質収支が不明確で、流入負荷変動に対する脱窒反応の制御が困難である。 However, as described above, in the method of simply lowering the ion concentration by dilution, it is necessary to replenish a large amount of water and the amount of deodorized wastewater also increases, so that the running cost increases due to the wastewater treatment cost and the water cost. If a denitrifying device is provided separately from the biological deodorizing device, the equipment cost will be high. In a system that uses a porous organic filter medium as an electron donor for denitrification or supplies organic matter derived from organic waste that is a source of odor, the mass balance is unclear and the inflow load fluctuates. It is difficult to control the denitrification reaction.
また、電子供与体として有機物を添加又は利用するシステムでは、残存有機物の処理が必要となる場合も出てくるため、さらにシステムが複雑化する。 Further, in a system in which an organic substance is added or used as an electron donor, it may be necessary to treat the residual organic substance, which further complicates the system.
アナモックス細菌を利用した方法では、アナモックス細菌の増殖速度が遅く、現状ではアナモックス汚泥、又はアンモニア酸化細菌及びアナモックス細菌から成るグラニュールを入手することが困難である。また、生物脱臭槽内では比較的硝酸化が進行しやすく、安定的に亜硝酸化を維持することが困難である。アナモックス反応では若干の硝酸が生成し、後段に硝酸の脱窒工程が必要になる場合も生ずる。 With the method using anammox bacteria, the growth rate of anammox bacteria is slow, and it is currently difficult to obtain anammox sludge or granules composed of ammonia-oxidizing bacteria and anammox bacteria. In addition, nitrate formation is relatively easy to proceed in the biological deodorization tank, and it is difficult to stably maintain nitrite formation. In the anammox reaction, some nitric acid is generated, and a denitrification step of nitric acid may be required in the subsequent stage.
このように、家畜排泄物処理過程等から生じるアンモニアを主体とした臭気を除去し、且つ同時に窒素を除去する技術が未だに求められている。 As described above, there is still a demand for a technique for removing an odor mainly composed of ammonia generated from a process of treating livestock excrement and at the same time removing nitrogen.
ところで、特許文献7は、消臭方法において臭気の吸着に大谷石を使用することを開示する。 By the way, Patent Document 7 discloses that Oya stone is used for adsorbing an odor in a deodorizing method.
また、特許文献8は、汚濁水の浄化処理法において硝化菌とゼオライトとを担体に担持させることを開示する。
Further,
さらに、特許文献9は、大気中の窒素酸化物の除去方法において、脱窒菌が硝酸イオンや亜硝酸イオンを嫌気条件下で脱窒するときの電子供与体としてチオ硫酸ナトリウムが利用されることを開示する。
Further,
そこで、本発明は、上述した実情に鑑み、家畜排泄物処理過程等から生じるアンモニアを主体とした臭気を除去し、且つ同時に窒素を除去する方法を提供することを目的とする。 Therefore, in view of the above-mentioned circumstances, it is an object of the present invention to provide a method for removing an odor mainly composed of ammonia generated from a process of treating livestock excrement and the like, and at the same time removing nitrogen.
上記課題を解決するため鋭意研究を行った結果、循環散水方式の生物脱臭装置(リアクター)において、硝化反応を行う脱臭槽内で、チオ硫酸を電子供与体に用いた脱窒を同時に行うことで、効率的にアンモニアを主体とした臭気を除去し、且つ同時に窒素を除去できることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, in a circulating watering type biological deodorizer (reactor), denitrification using thiosulfuric acid as an electron donor is performed at the same time in a deodorizing tank that performs a nitrification reaction. It has been found that the odor mainly composed of ammonia can be efficiently removed and nitrogen can be removed at the same time, and the present invention has been completed.
本発明は以下を包含する。
(1)アンモニアガスを硝化反応及び硫黄脱窒反応に供する、活性汚泥を接種した脱臭資材を充填した脱臭槽と、前記脱臭槽にチオ硫酸ナトリウムを含有する水を供給する給水槽とを備える、脱臭及び脱窒処理装置。
(2)アンモニアガスが家畜排泄物処理過程から生じるものである、(1)記載の装置。
(3)脱臭資材が大谷石又はロックウールである、(1)又は(2)記載の装置。
(4)水が硫黄脱窒汚泥をさらに含有する、(1)〜(3)のいずれか1記載の装置。
(5)水のpHが7.0〜8.8である、(1)〜(4)のいずれか1記載の装置。
(6)アンモニアガスを、活性汚泥を接種した脱臭資材及びチオ硫酸ナトリウムの存在下で硝化反応及び硫黄脱窒反応に供する工程を含む、脱臭及び脱窒処理方法。
(7)アンモニアガスが家畜排泄物処理過程から生じるものである、(6)記載の方法。
(8)脱臭資材が大谷石又はロックウールである、(6)又は(7)記載の方法。
(9)反応がさらに硫黄脱窒汚泥の存在下で行われる、(6)〜(8)のいずれか1記載の方法。
(10)反応がpH7.0〜8.8下で行われる、(6)〜(9)のいずれか1記載の方法。
The present invention includes the following.
(1) A deodorizing tank filled with a deodorizing material inoculated with activated sludge for subjecting ammonia gas to a nitrification reaction and a sulfur denitrification reaction, and a water supply tank for supplying water containing sodium thiosulfate to the deodorizing tank. Deodorizing and denitrifying treatment equipment.
(2) The apparatus according to (1), wherein ammonia gas is generated from the process of treating livestock excrement.
(3) The device according to (1) or (2), wherein the deodorizing material is Oya stone or rock wool.
(4) The apparatus according to any one of (1) to (3), wherein the water further contains sulfur denitrifying sludge.
(5) The device according to any one of (1) to (4), wherein the pH of water is 7.0 to 8.8.
(6) A deodorizing and denitrifying treatment method comprising a step of subjecting ammonia gas to a nitrification reaction and a sulfur denitrification reaction in the presence of a deodorizing material inoculated with activated sludge and sodium thiosulfate.
(7) The method according to (6), wherein the ammonia gas is generated from the process of treating livestock excrement.
(8) The method according to (6) or (7), wherein the deodorizing material is Oya stone or rock wool.
(9) The method according to any one of (6) to (8), wherein the reaction is further carried out in the presence of sulfur denitrifying sludge.
(10) The method according to any one of (6) to (9), wherein the reaction is carried out at pH 7.0 to 8.8.
本発明によれば、家畜排泄物処理過程等から生じるアンモニアを主体とした臭気を除去し、且つ同時に窒素を除去することができる。 According to the present invention, it is possible to remove an odor mainly composed of ammonia generated from a process of treating livestock excrement and the like, and at the same time remove nitrogen.
本発明に係る脱臭及び脱窒処理装置(以下、「本装置」と称する)は、臭気であるアンモニアガスを硝化反応及び硫黄脱窒反応に供する、活性汚泥を接種した脱臭資材を充填した脱臭槽と、該脱臭槽にチオ硫酸ナトリウムを含有する水を供給する給水槽とを備えるものである。また、本発明に係る脱臭及び脱窒処理方法は、本装置を用いて、アンモニアガスを、活性汚泥を接種した脱臭資材及びチオ硫酸ナトリウムの存在下で硝化反応及び硫黄脱窒反応に供する工程を含むものである。 The deodorizing and denitrifying treatment apparatus according to the present invention (hereinafter referred to as “the apparatus”) is a deodorizing tank filled with a deodorizing material inoculated with activated sludge, which subject ammonia gas, which is an odor, to a nitrification reaction and a sulfur denitrification reaction. And a water supply tank for supplying water containing sodium thiosulfate to the deodorizing tank. Further, the deodorizing and denitrifying treatment method according to the present invention is a step of subjecting ammonia gas to a nitrification reaction and a sulfur denitrification reaction in the presence of a deodorizing material inoculated with activated sludge and sodium thiosulfate using this apparatus. It includes.
本発明においては、循環散水方式の生物脱臭装置(本装置)において、硝化反応を行う脱臭槽内で、チオ硫酸を電子供与体に用いた脱窒を同時に行わせる。そのための手段として、既存の循環水槽(給水槽)にチオ硫酸ナトリウムを適宜添加し、必要に応じて、脱臭槽にチオ硫酸ナトリウムと硝酸で集積した硫黄脱窒汚泥を適宜添加する。 In the present invention, in a circulating watering type biological deodorizing device (this device), denitrification using thiosulfuric acid as an electron donor is simultaneously performed in a deodorizing tank that performs a nitrification reaction. As a means for that purpose, sodium thiosulfate is appropriately added to the existing circulating water tank (water supply tank), and if necessary, sulfur denitrified sludge accumulated with sodium thiosulfate and nitric acid is appropriately added to the deodorizing tank.
具体的に、リアクター(本装置)において、脱臭槽に活性汚泥を接種した脱臭資材を充填し、悪臭成分のアンモニアガスを通す一方で、給水槽内の循環水にチオ硫酸ナトリウムを添加する。反応として、アンモニアが、脱臭資材に吸着された状態で、脱臭資材の表面で増殖した活性汚泥中の微生物(硝化菌)により硝化され、亜硝酸、硝酸に変換され、一方で、硫黄源としてチオ硫酸ナトリウムを添加したことで、活性汚泥中の硫黄酸化細菌により硫黄脱窒反応が起き、チオ硫酸と、亜硝酸及び硝酸が反応し、チオ硫酸の酸化により硫酸が生成し、窒素を窒素ガスとして除去する。このようにして、当該リアクターでアンモニアが除去され、且つ、循環水中の硝酸が減少することとなる。 Specifically, in the reactor (this device), the deodorizing tank is filled with a deodorizing material inoculated with activated sludge, and ammonia gas, which is a malodorous component, is passed through, while sodium thiosulfate is added to the circulating water in the water supply tank. As a reaction, ammonia is nitrified by microorganisms (nitrifying bacteria) in the active sludge that has grown on the surface of the deodorizing material while being adsorbed on the deodorizing material, and converted to nitrite and nitric acid, while thio as a sulfur source. By adding sodium sulfate, sulfur denitrification reaction occurs due to sulfur-oxidizing bacteria in active sludge, thiosulfate reacts with nitrite and nitric acid, and sulfuric acid is generated by oxidation of thiosulfate, and nitrogen is used as nitrogen gas. Remove. In this way, ammonia is removed in the reactor and nitric acid in the circulating water is reduced.
ここで、アンモニアガスとしては、例えば家畜糞の堆肥化処理過程等の家畜排泄物処理過程から生じるもの等が挙げられる。さらには、畜産農業のみならず、肥料製造工場、ゴミ処理場、下水処理場、食品加工工場等のアンモニアを主体とする悪臭の発生事業場におけるアンモニアガスを本発明において処理することができる。 Here, examples of the ammonia gas include those generated from a livestock excrement treatment process such as a composting process of livestock manure. Further, the present invention can treat ammonia gas not only in livestock farming but also in fertilizer manufacturing factories, waste treatment plants, sewage treatment plants, food processing plants and other workplaces that generate malodor mainly containing ammonia.
脱臭資材としては、大谷石、ロックウール、軽石等が挙げられ、大谷石又はロックウールが好ましい。本発明において使用する大谷石としては、例えば栃木県産大谷石粒等の市販の大谷石粉(2〜約10mm径)が挙げられる。また、本発明において使用するロックウールとは、例えば玄武岩等の天然岩石や高炉スラグを高温で溶融し、繊維化することにより生成された人造鉱物繊維であり、例えばロックウール脱臭材等の市販のものを使用することができる。 Examples of the deodorizing material include Oya stone, rock wool, pumice stone and the like, and Oya stone or rock wool is preferable. Examples of the Oya stone used in the present invention include commercially available Oya stone powder (2 to about 10 mm diameter) such as Oya stone grains produced in Tochigi Prefecture. Further, the rock wool used in the present invention is an artificial mineral fiber produced by melting natural rock such as basalt or blast furnace slag at a high temperature and fiberizing it, for example, a commercially available rock wool deodorant or the like. You can use things.
また、本装置の脱臭槽に充填される脱臭資材に接種する活性汚泥としては、例えば養豚排水処理施設において活性汚泥法により処理された養豚排水由来の活性汚泥が挙げられる。例えば、養豚排水処理施設の活性汚泥を硝化菌培地(Juhler S., Revsbech N.P., Schramm A., Herrmann M., Ottosen L.D.M. and Nielsen L.P. (2009) Distribution and rate of microbial processes in an ammonia-loaded air filter biofilm. Appl. Environ. Microbiol. 75:3705-3713. あるいはKruemmel and Heinz (1982) Effect of organic matter on growth and cell yield of ammonia-oxidizing bacteria. Arch. Microbiol. 133:50-54など)において15〜30℃(好ましくは28℃)で、数週間好気的に培養し、得られた培養物を活性汚泥として使用することができる。また、本装置の運転前に、当該培養を本装置の脱臭槽において脱臭資材存在下で行うこともできる。 In addition, examples of the activated sludge to be inoculated into the deodorizing material filled in the deodorizing tank of this apparatus include activated sludge derived from pig farming wastewater treated by the activated sludge method in a pig farming wastewater treatment facility. For example, activated sludge from a pig farm wastewater treatment facility is filtered with nitrifying bacteria medium (Juhler S., Revsbech NP, Schramm A., Herrmann M., Ottosen LDM and Nielsen LP (2009) Distribution and rate of microbial processes in an ammonia-loaded air filter. biofilm. Appl. Environ. Microbiol. 75: 3705-3713. Or in Kruemmel and Heinz (1982) Effect of organic matter on growth and cell yield of ammonia-oxidizing bacteria. Arch. Microbiol. 133: 50-54, etc.) 15 ~ It can be aerobically cultivated at 30 ° C. (preferably 28 ° C.) for several weeks, and the obtained culture can be used as activated sludge. Further, before the operation of the apparatus, the culture can be carried out in the deodorizing tank of the apparatus in the presence of a deodorizing material.
活性汚泥は、遠心分離により硝化菌培地あるいは蒸留水で洗った後、脱臭資材に対して例えば10〜30%(v/v)の割合で接種する。 Activated sludge is washed with nitrifying bacteria medium or distilled water by centrifugation, and then inoculated at a ratio of, for example, 10 to 30% (v / v) to the deodorizing material.
さらに、給水槽から供給されるチオ硫酸ナトリウムを含有する水(循環水)に、硫黄脱窒反応を行う硫黄酸化細菌を主として含む硫黄脱窒汚泥を添加してもよい。硫黄脱窒培地(橋本奨、古川憲治、塩山昌彦 (1989) 硫黄脱窒菌の集積と単体硫黄への順養.水質汚濁研究、12, 431-440)と活性汚泥とが例えば9:1(vol/vol)の比となるように混合し、20〜35℃下で一週間程度、嫌気的に培養する。培養後、遠心分離等により回収した培養物(活性汚泥)を本発明における硫黄脱窒汚泥として使用することができる。硫黄脱窒汚泥は、給水槽1L当たり例えば2〜3 g(湿重)添加する。脱臭資材に接種する活性汚泥及び硫黄脱窒汚泥は、硝化反応を行う硝化菌(例えば、アンモニア酸化細菌であるニトロソモナス科(Nitrosomonadaceae)に属する微生物、亜硝酸酸化細菌であるニトロスピラ属(Nitrospira)に属する微生物)及び硫黄脱窒反応を行う硫黄脱窒菌(例えば、チオバチルス・チオフィルス(T. thiophilus)やチオバチルス・チオパルス(T. thioparus)等のチオバチルス属(Thiobacillus)に属する微生物)を含有する。 Further, sulfur denitrifying sludge containing mainly sulfur-oxidizing bacteria that undergoes a sulfur denitrification reaction may be added to water containing sodium thiosulfate (circulating water) supplied from the water tank. Sulfur denitrification medium (Sho Hashimoto, Kenji Furukawa, Masahiko Shioyama (1989) Accumulation of sulfur denitrifying bacteria and adaptation to elemental sulfur. Water pollution research, 12, 431-440) and activated sludge are, for example, 9: 1 (vol). Mix to a ratio of / vol) and anaerobically cultivate at 20-35 ° C for about a week. After culturing, the culture (activated sludge) recovered by centrifugation or the like can be used as the sulfur denitrifying sludge in the present invention. Sulfur denitrification sludge is added, for example, 2 to 3 g (wet weight) per 1 L of water tank. Activated sludge and sulfur denitrifying sludge to be inoculated into deodorant materials belong to nitrifying bacteria (for example, Nitrosomonadaceae, which is an ammonia-oxidizing bacterium, and Nitrospira, which is a nitrite-oxidizing bacterium). It contains (belonging to microorganisms) and sulfur denitrifying bacteria (for example, microorganisms belonging to the genus Thiobacillus such as T. thiophilus and T. thioparus) that perform a sulfur denitrification reaction.
また、給水槽から供給される循環水中のチオ硫酸ナトリウム含有量としては、例えば200〜6,000 mg/L(好ましくは、500〜3,000 mg/L)が挙げられる。 The sodium thiosulfate content in the circulating water supplied from the water supply tank is, for example, 200 to 6,000 mg / L (preferably 500 to 3,000 mg / L).
さらに、pHの低下は、アンモニア酸化細菌が利用できる形態である非イオン態のアンモニア濃度の低下を引き起こすため、アンモニア酸化が阻害されると考えられている(Suzuki I., Dular U. and Kwok S.C. (1974) Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts. J. Bacteriol. 120:556-558)。そこで、給水槽から供給されるチオ硫酸ナトリウムを含有する水(循環水)のpHは、弱アルカリ側(例えばpH7.0〜8.8、好ましくはpH7.5前後)に制御されることが好ましい。 In addition, lower pH is thought to inhibit ammonia oxidation because it causes a lower concentration of non-ionic ammonia, a form available to ammonia-oxidizing bacteria (Suzuki I., Dular U. and Kwok SC). (1974) Ammonia or ammonia as substrate for oxidation by Nitrosomonas europaea cells and extracts. J. Bacteriol. 120: 556-558). Therefore, the pH of the water containing sodium thiosulfate (circulating water) supplied from the water supply tank is preferably controlled to the weak alkaline side (for example, pH 7.0 to 8.8, preferably around pH 7.5).
図1は、本装置の一例を示す模式図である。図1に示すように、本装置1は、脱臭槽2と該脱臭槽にチオ硫酸ナトリウムを含有する水を供給する給水槽3とを備える。また、本装置1においては、脱臭槽と給水槽との間に貯留槽4を備えていてもよい。
FIG. 1 is a schematic view showing an example of this device. As shown in FIG. 1, the apparatus 1 includes a
脱臭槽2には、活性汚泥を接種した脱臭資材が充填される。活性汚泥を接種した脱臭資材は、例えば加水前のロックウール脱臭材の場合は約0.4 kg/L、大谷石粒の場合は約0.9 kg/Lで脱臭槽2に充填する。
The
脱臭槽2の下部からアンモニアガス5を、例えばアンモニア容積負荷:35〜65 NH3/m3/日で通気する。本装置1は、アンモニアガス通気量を制御する手段(例えば、ガス混合器、ガス流量調整器等)を備えていてもよい。
一方、給水槽3からポンプ6を介して貯留槽4へ、次いでポンプ7を介して脱臭槽2の上部から循環水としてチオ硫酸ナトリウム(及び硫黄脱窒汚泥)を含有する水を供給する。循環水は、例えば脱臭槽容積の約3%を1日から数日(好ましくは1〜2日、乾燥する場合は1日)おきに1回散水する。また、循環水は、脱臭槽2の下部から貯留槽4へと返送される。
処理ガス8は、脱臭槽2の上部から系外に排出することができる。
On the other hand, water containing sodium thiosulfate (and sulfur denitrified sludge) is supplied as circulating water from the water supply tank 3 to the storage tank 4 via the pump 6 and then from the upper part of the
The
以上に説明する本発明は、従来技術と比較して以下の利点を有する:
水で希釈する方法と異なり、必要な供給水量が増加することはなく、廃水量は増加しない;
脱窒槽を別に設けるわけではないので、設備コストは上がらない。チオ硫酸ナトリウム供給槽としては、既存の給水槽を利用することで、設備コストを抑えることが可能となる;
担体由来、又は臭気発生源となる有機性廃棄物由来の有機物を利用する場合と異なり、添加する電子供与体の量を正確に把握することが可能となるため、脱窒反応の制御をより正確に行うことが可能となる;
チオ硫酸ナトリウムが必要量以上に添加されても別途廃水処理は必要とならないため、脱窒の後処理が不要である;
硫黄脱窒菌は環境中に普遍的に存在しており、硫黄脱窒菌の増殖速度は、例えばThiobacillus thiophilusで0.051/hであり(Kellermann and Griebler, 2009. International Journal of Systematic and Evolutionary Microbiology.59:583-588.)、菌体の補充が必要となった場合でも比較的容易に準備することができる;
脱臭槽内で硝酸化を阻害する必要がなく、イオン濃度の制御が容易になる。
The present invention described above has the following advantages over the prior art:
Unlike the method of diluting with water, the amount of water supply required does not increase and the amount of wastewater does not increase;
Since the denitrification tank is not provided separately, the equipment cost does not increase. By using the existing water tank as the sodium thiosulfate supply tank, it is possible to reduce the equipment cost;
Unlike the case of using an organic substance derived from a carrier or an organic waste that is a source of odor, it is possible to accurately grasp the amount of electron donor to be added, so that the control of the denitrification reaction is more accurate. Can be done;
Even if sodium thiosulfate is added in excess of the required amount, no separate wastewater treatment is required, so post-treatment after denitrification is not required;
Sulfur denitrifying bacteria are ubiquitous in the environment, and the growth rate of sulfur denitrifying bacteria is 0.051 / h in Thiobacillus thiophilus, for example (Kellermann and Griebler, 2009. International Journal of Systematic and Evolutionary Microbiology. 59: 583. -588.), It is relatively easy to prepare even if the bacterial cells need to be replenished;
It is not necessary to inhibit nitrate in the deodorizing tank, and the ion concentration can be easily controlled.
以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。
1.材料及び方法
1−1.リアクターの運転条件及びアンモニア除去性能評価
図2にリアクターの概要を示す。直径7.5 cm、高さ30 cmのポリカーボネート製円筒リアクターに、脱臭資材を0.8Lずつ充填した。脱臭資材としてロックウール(ロックウール脱臭システムに使用される充填材(パナソニック環境エンジニアリング製);籾殻、ゼオライト、ウレタンチップを含む。以下、「RW」と称する)と大谷石粉(大谷石粒(大谷石材共同組合);2〜約10mm径、以下、「O」と称する)を用いた。処理区はRWとOそれぞれについて硫黄資材の添加有りと添加無しの計4区を設けた。脱臭資材は充填時の水分になるように予め滅菌蒸留水を添加した上で、回分式活性汚泥法による養豚排水処理施設の活性汚泥を硝化菌培地(Juhler et al. 2009)に再懸濁し、12%(v/v)混合した。20℃の恒温室内で、純アンモニアガスをエアコンプレッサーで約100 ppmに希釈し、下部から約0.4L/分で通気した。上部から循環水(120mL)を一日から数日おきに一回当たり約24 mL散水した。散水前に循環水の減少分を補充するため、所定量まで滅菌蒸留水を加えた。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the technical scope of the present invention is not limited to these Examples.
1. 1. Materials and methods 1-1. Reactor operating conditions and ammonia removal performance evaluation Fig. 2 shows the outline of the reactor. A polycarbonate cylindrical reactor with a diameter of 7.5 cm and a height of 30 cm was filled with 0.8 L of deodorizing material. Rock wool (filler used in rock wool deodorization system (manufactured by Panasonic Environmental Systems &Engineering); including rice husks, zeolite, urethane chips; hereinafter referred to as "RW") and Otani stone powder (Otani stone grain (Otani stone material)) as deodorizing materials Cooperative); 2 to about 10 mm diameter, hereinafter referred to as "O") was used. For each of RW and O, a total of 4 treatment zones were set up with and without the addition of sulfur materials. As for the deodorizing material, sterilized distilled water was added in advance so that the water content at the time of filling was obtained, and then the activated sludge of the pig wastewater treatment facility by the batch type activated sludge method was resuspended in the nitrifying bacterium medium (Juhler et al. 2009). 12% (v / v) mixed. In a constant temperature room at 20 ° C, pure ammonia gas was diluted to about 100 ppm with an air compressor and aerated at about 0.4 L / min from the bottom. Circulating water (120 mL) was sprinkled from the top every few days to about 24 mL each time. Sterile distilled water was added up to a predetermined amount to replenish the reduced amount of circulating water before watering.
装置立ち上げ2週間後に、硫黄資材添加区の循環水に、チオ硫酸脱窒条件で集積した汚泥を添加した。チオ硫酸脱窒集積汚泥は、硫黄脱窒培地(橋本ら1989)と上記の活性汚泥が9:1(vol/vol)になるように密閉容器に入れ、28℃で6日間培養後、遠心分離により回収した。培養中に硝酸とチオ硫酸の消失を確認し、培養液を各区に10mLずつ使用した。同時にチオ硫酸ナトリウムとtrace metal element(橋本ら1989)を添加した(図3及び4並びに表2において、「+S」はチオ硫酸ナトリウム及びチオ硫酸脱窒集積汚泥の添加を意味する)。チオ硫酸ナトリウムの添加量は、運転開始1週間後の硝酸濃度に対して、以下に示した硫黄脱窒の理論反応式(Bisogni and Driscoll, 1977)に基づき必要なS/N比となるように設定した。 Two weeks after the equipment was started up, sludge accumulated under thiosulfate denitrification conditions was added to the circulating water in the sulfur material addition section. Thiosulfuric acid denitrification accumulated sludge is placed in a closed container so that the sulfur denitrification medium (Hashimoto et al. 1989) and the above activated sludge are 9: 1 (vol / vol), cultured at 28 ° C for 6 days, and then centrifuged. Recovered by. The disappearance of nitric acid and thiosulfate was confirmed during the culture, and 10 mL of the culture solution was used for each group. At the same time, sodium thiosulfate and trace metal element (Hashimoto et al. 1989) were added (in FIGS. 3 and 4 and Table 2, "+ S" means the addition of sodium thiosulfate and thiosulfate denitrified accumulated sludge). The amount of sodium thiosulfate added should be the required S / N ratio based on the following theoretical reaction formula for sulfur denitrification (Bisogni and Driscoll, 1977) with respect to the nitric acid concentration one week after the start of operation. I set it.
0.844 S2O3 2- + NO3 -+ 0.347 CO2 + 0.0865 HCO3 - + 0.0865 NH4 ++ 0.434 H2O → 0.0865 C5H7O2N + 0.5 N2 + 1.689 SO4 2- + 0.697 H+
その後4回追加した。
0.844 S 2 O 3 2- + NO 3 - + 0.347
Then added 4 times.
アンモニア除去性能を評価するため、各処理区のガス流路の最終段に3mol/L硫酸トラップをつけ、流出アンモニアを回収した。流入量把握のために資材を充填しないリアクターを別途運転した。 In order to evaluate the ammonia removal performance, a 3 mol / L sulfuric acid trap was attached to the final stage of the gas flow path in each treatment group to recover the effluent ammonia. A reactor that was not filled with materials was operated separately to grasp the inflow.
1−2.循環水の成分分析
散水前に循環水を0.1mL採取し、pHをガラス電極法(LAQUA twin pHメーター、HORIBA)で、NH4 +、NO2 -、 NO3 -、S2O3 2-、SO4 2-濃度をイオンクロマトグラフ(HIC-NS、Shimadzu)で測定した。アンモニアをトラップした硫酸溶液は希釈しイオンクロマトグラフによりアンモニウム濃度を測定した。
1-2. The circulating water before component analysis sprinkling of the circulating water to 0.1mL collected, glass electrode method pH (LAQUA twin pH meter, HORIBA) with, NH 4 +, NO 2 - , NO 3 -, S 2 O 3 2-, The SO 4 2- concentration was measured by ion chromatography (HIC-NS, Shimadzu). The sulfuric acid solution trapped with ammonia was diluted and the ammonium concentration was measured by ion chromatography.
1−3.脱臭資材の微生物解析
試験終了時の52日目に担体を採取し、DNA抽出キット(FastDNA SPIN Kit for Soil、MO Bio)を用いて全DNAを抽出した。QIAEX II Gel Extraction Kit (Qiagen)を用いて精製した後、Fluorescent DNA Quantitation Kit (Bio-rad)によりDNA濃度を測定した。アンモニア酸化細菌に特異的なプライマーであるamoA-1F/amoA-2R(Rotthauwe et al. 1997)を用いて以下の条件でリアルタイムPCRを行った。CFX96リアルタイムシステム(Bio-rad)を使用し、2×SsoAdvanced universal SYBR Green supermixを10μL、プライマーを各0.5μM、鋳型DNAを2.7〜3.9 ng含む計20μLの反応系で行った。増幅条件は、98℃3分熱変性後、98℃15秒、60℃1分を40サイクルで行い、その後融解曲線解析を65℃から95℃の範囲で行った。検量線は既知量のNitrosospira multiformis(NCIMB 11849)とNitrosomonas europaea(NBRC 14298)のamoA遺伝子を用い作成した。既知濃度のamoA遺伝子をサンプルに添加し、PCR阻害率を求め、サンプルのamoAコピー数を補正した。
1-3. Microbial analysis of deodorant material On the 52nd day at the end of the test, the carrier was collected and the total DNA was extracted using the Fast DNA SPIN Kit for Soil (MO Bio). After purification using the QIAEX II Gel Extraction Kit (Qiagen), the DNA concentration was measured with the Fluorescent DNA Quantitation Kit (Bio-rad). Real-time PCR was performed under the following conditions using amoA-1F / amoA-2R (Rotthauwe et al. 1997), which is a primer specific to ammonia-oxidizing bacteria. Using a CFX96 real-time system (Bio-rad), a total of 20 μL reaction system containing 10 μL of 2 × SsoAdvanced universal SYBR Green supermix, 0.5 μM of primer, and 2.7 to 3.9 ng of template DNA was performed. As for the amplification conditions, after heat denaturation at 98 ° C. for 3 minutes, 98 ° C. for 15 seconds and 60 ° C. for 1 minute were performed in 40 cycles, and then melting curve analysis was performed in the range of 65 ° C. to 95 ° C. Calibration curves were prepared using known quantities of the amoA genes of Nitrosomonas multiformis (NCIMB 11849) and Nitrosomonas europaea (NBRC 14298). A known concentration of the amoA gene was added to the sample, the PCR inhibition rate was determined, and the number of amoA copies of the sample was corrected.
また、一般細菌の16S rRNA遺伝子をターゲットとした次世代シークエンス解析をSutoら(2017)と同様の方法により行い、硫黄脱窒菌の存在を確認した。 In addition, next-generation sequence analysis targeting the 16S rRNA gene of general bacteria was performed by the same method as Suto et al. (2017), and the presence of sulfur denitrifying bacteria was confirmed.
2.結果及び考察
2−1.アンモニア除去性能と循環水成分の変化
使用前と充填時の脱臭資材の水分はRWとOでそれぞれ56%と60%、16%と20%であり、O区では脱臭資材中の水分保持量が少なかった。
2. Results and discussion 2-1. Ammonia removal performance and changes in circulating water components The water content of the deodorizing material before use and during filling is 56% and 60%, 16% and 20% for RW and O, respectively. There were few.
アンモニア態窒素は一日当たり約25.7mg流入していたが、いずれの処理区においても99%以上除去された(図3)。チオ硫酸ナトリウムの添加後数日で、O区では循環水中の亜硝酸・硝酸濃度の減少が見られた(図4a、4b)。O区で、硝酸の減少は硫酸生成を伴っており(図4e)、硫黄脱窒が起きていることが示唆された。このときのO区のpHは、チオ硫酸無添加より若干低くなる傾向を示し、特に試験期間後半で顕著に低下した(図4d)。一方、RW区ではチオ硫酸ナトリウム添加を開始した18日後に漸く硝酸生成速度の低下がみられた(図4a)。27日目に亜硝酸の低下が見られ(図4b)、硫酸の生成が確認された(図4e)。52日目の循環水中の無機態窒素濃度についてチオ硫酸ナトリウムの添加ありと添加なしの区を比較すると、チオ硫酸ナトリウムの添加によりRW区とO区でそれぞれ28%と44%低減された(表1)。 Approximately 25.7 mg of ammonia nitrogen flowed in per day, but 99% or more was removed in all treatment groups (Fig. 3). A few days after the addition of sodium thiosulfate, a decrease in the concentration of nitrite and nitric acid in the circulating water was observed in Group O (Figs. 4a and 4b). In plot O, the decrease in nitric acid was accompanied by sulfuric acid production (Fig. 4e), suggesting that sulfur denitrification was occurring. At this time, the pH of the O group tended to be slightly lower than that without the addition of thiosulfate, and was significantly reduced especially in the latter half of the test period (Fig. 4d). On the other hand, in the RW group, the nitric acid production rate gradually decreased 18 days after the start of sodium thiosulfate addition (Fig. 4a). On the 27th day, a decrease in nitrite was observed (Fig. 4b), and the production of sulfuric acid was confirmed (Fig. 4e). Comparing the groups with and without sodium thiosulfate added to the inorganic nitrogen concentration in the circulating water on day 52, the addition of sodium thiosulfate reduced the concentrations of RW and O by 28% and 44%, respectively (Table). 1).
RW区で硝酸・亜硝酸の低下が、チオ硫酸添加後日数が経過した後に見られた理由として、以下のことが考えられる。硫黄脱窒菌であるThiobacillus denitrificansの硝酸還元酵素系は亜硝酸によって阻害されることが示されており(Baalsrud and Baalsrud、1954)、その阻害濃度として200mg/L(Claus and Kutzner, 1985)又は150mg/L(Oh et al. 2000)との報告がある。RW区ではチオ硫酸ナトリウムを添加した1週間後には亜硝酸濃度が200mg/Lを超えており、その後も700mg/L前後まで蓄積していたため、硫黄脱窒反応が阻害された可能性が考えられた。一方、硝酸濃度の低下が始まった時点ではまだ亜硝酸濃度が600mg/L以上残存していたので、亜硝酸の阻害以外の要因も考えられる。 The following are possible reasons why the decrease in nitric acid and nitrite in the RW group was observed after the number of days after the addition of thiosulfate had passed. The nitrate reductase system of Thiobacillus denitrificans, a sulfur denitrifying bacterium, has been shown to be inhibited by nitrite (Baalsrud and Baalsrud, 1954), with an inhibitory concentration of 200 mg / L (Claus and Kutzner, 1985) or 150 mg /. There is a report of L (Oh et al. 2000). In the RW group, the nitrite concentration exceeded 200 mg / L one week after the addition of sodium thiosulfate, and continued to accumulate up to around 700 mg / L, suggesting that the sulfur denitrification reaction may have been inhibited. rice field. On the other hand, when the decrease in nitric acid concentration began, the nitrite concentration still remained at 600 mg / L or more, so factors other than inhibition of nitrite can be considered.
2−2.微生物解析
脱臭素材のアンモニア酸化細菌に由来するamoA遺伝子コピー数は、RW区とO区とも、ng DNA当たり104オーダーであったが、硫黄添加によりRW区で27%、O区で31%減少していた。
2-2. AmoA gene copy number derived from ammonia oxidizing bacteria microbes analysis deodorizing material, both RW Zone and O-ku, although ng was DNA per 10 4 orders, 27% RW Ward by sulfur addition, 31% in O-ku reduced Was.
循環水中のアンモニウム濃度の推移をみると、特にO区の硫黄添加区で、試験期間後半でアンモニウム濃度が高めに推移しており、上述したようにpHの低下が認められた(図4c、4d)。pHの低下は、アンモニア酸化細菌が利用できる形態である非イオン態のアンモニア濃度の低下を引き起こすため、アンモニア酸化が阻害されると考えられている(Suzuki et al. 1974)。別の試験により、大谷石を充填したリアクターで、pHを弱アルカリ側に保つことで、硝化を阻害せずに窒素除去ができる可能性を示唆するデータを得た(表2)。 Looking at the changes in the ammonium concentration in the circulating water, the ammonium concentration remained high in the latter half of the test period, especially in the sulfur-added group in Group O, and a decrease in pH was observed as described above (Figs. 4c and 4d). ). A decrease in pH is thought to inhibit ammonia oxidation because it causes a decrease in the concentration of non-ionic ammonia, which is a form available to ammonia-oxidizing bacteria (Suzuki et al. 1974). Another test provided data suggesting the possibility of nitrogen removal without inhibiting nitrification by keeping the pH on the weakly alkaline side in a reactor filled with Oya stone (Table 2).
脱臭資材の微生物解析の結果、RW区、O区ともに、チオ硫酸ナトリウム添加区でのみ硫黄脱窒菌を含むThiobacillus属が検出された。本試験では上述したように、チオ硫酸ナトリウムで集積した汚泥を接種したため、接種した菌が脱臭試験リアクター内で硫黄脱窒反応に関与していたことを裏付ける結果であると判断された。 As a result of microbial analysis of the deodorizing material, the genus Thiobacillus containing sulfur denitrifying bacteria was detected only in the sodium thiosulfate-added group in both the RW group and the O group. In this test, as described above, sludge accumulated with sodium thiosulfate was inoculated, and it was judged that the inoculated bacteria were involved in the sulfur denitrification reaction in the deodorization test reactor.
アンモニア酸化細菌であるNitrosomonas属とNitrosospira属を含むNitrosomonadaceae科の各区における存在割合は、amoA遺伝子コピー数と同様の傾向を示していた。また、亜硝酸酸化細菌であるNitrospira属の存在割合はO区でRW区より高いことが示唆された。 The abundance ratio in each section of the Nitrosomonadale family, including the genus Nitrosomonas and the genus Nitrosospira, which are ammonia-oxidizing bacteria, showed a tendency similar to the number of copies of the amoA gene. In addition, it was suggested that the abundance ratio of the genus Nitrospira, which is a nitrite-oxidizing bacterium, was higher in the O group than in the RW group.
3.まとめ
循環散水方式の生物脱臭装置において、硫黄脱窒と硝化を組み合わせて、アンモニア除去に加え、循環水中の無機態窒素の蓄積を抑制できることが明らかとなった。ロックウール、大谷石いずれにおいても硫黄脱窒反応は生じるものの、本実施例の運転条件においては、大谷石とチオ硫酸ナトリウムの組み合わせで、ロックウールを使用した場合より循環水中の無機態窒素除去率をより高められることが示唆された。
3. 3. Summary It has been clarified that in a circulating watering type biological deodorizing device, sulfur denitrification and nitrification can be combined to remove ammonia and suppress the accumulation of inorganic nitrogen in circulating water. Although sulfur denitrification reaction occurs in both rock wool and Oya stone, under the operating conditions of this example, the removal rate of inorganic nitrogen in circulating water is higher than that in the case of using rock wool with the combination of Oya stone and sodium thiosulfate. It was suggested that it could be further enhanced.
4.参考文献
Baalsrud K. and Baalsrud K.S. (1954) Studies on Thiobacillus denitrificans. Arch. Mikrobiol. 20:34-62.
Bisogni J.J.Jr. and Driscoll C.T.Jr. (1977) Denitrification using Thiosulfate and Sulfide, Proc. of Am. Soc. Civ. Eng., J. Env. Eng. Div. 103:593-604.
Claus G. and Kutzner H.J. (1985) Physiology and kinetics of autotrophic denitrification by Thiobacillus denitrificans. Appl. Microbiol. Biotechnol. 22:283-288.
Juhler S., Revsbech N.P., Schramm A., Herrmann M., Ottosen L.D.M. and Nielsen L.P. (2009) Distribution and rate of microbial processes in an ammonia-loaded air filter biofilm. Appl. Environ. Microbiol. 75:3705-3713.
Kellermann C. and Griebler C. (2009) Thiobacillus thiophilus sp. nov., a chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments. Int. J. System. Evol. Microbiol. 59:583-588.
Kruemmel and Heinz (1982) Effect of organic matter on growth and cell yield of ammonia-oxidizing bacteria. Arch. Microbiol. 133:50-54.
Oh S.E., Kim K.S., Choi H.C., Cho J. and Kim I.S. (2000) Kinetics and physiological characteristics of autotrophic denitrification by denitrifying sulfur bacteria. Water Sci. Technol. 42:59-68.
Rotthauwe J.H., Witzel K.P. and Liesack W. (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63:4704-4712.
Suto R., Ishimoto C., Chikyu M., Aihara Y., matsumoto T., Uenishi H., Yasuda T., Fukumoto Y. and Waki M. (2017) Anammox biofilm in activated sludge swine wastewater treatment plants. Chemosphere. 167:300-307.
Suzuki I., Dular U. and Kwok S.C. (1974) Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts. J. Bacteriol. 120:556-558.
橋本奨、古川憲治、塩山昌彦 (1989) 硫黄脱窒菌の集積と単体硫黄への順養.水質汚濁研究、12, 431-440.
4. References
Baalsrud K. and Baalsrud KS (1954) Studies on Thiobacillus denitrificans. Arch. Mikrobiol. 20: 34-62.
Bisogni JJJr. And Driscoll CTJr. (1977) Denitrification using Thiosulfate and Sulfide, Proc. Of Am. Soc. Civ. Eng., J. Env. Eng. Div. 103: 593-604.
Claus G. and Kutzner HJ (1985) Physiology and kinetics of autotrophic denitrification by Thiobacillus denitrificans. Appl. Microbiol. Biotechnol. 22: 283-288.
Juhler S., Revsbech NP, Schramm A., Herrmann M., Ottosen LDM and Nielsen LP (2009) Distribution and rate of microbial processes in an ammonia-loaded air filter biofilm. Appl. Environ. Microbiol. 75: 3705-3713.
Kellermann C. and Griebler C. (2009) Thiobacillus thiophilus sp. Nov., A chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments. Int. J. System. Evol. Microbiol. 59: 583-588.
Kruemmel and Heinz (1982) Effect of organic matter on growth and cell yield of ammonia-oxidizing bacteria. Arch. Microbiol. 133: 50-54.
Oh SE, Kim KS, Choi HC, Cho J. and Kim IS (2000) Kinetics and physiological characteristics of autotrophic denitrification by denitrifying sulfur bacteria. Water Sci. Technol. 42: 59-68.
Rotthauwe JH, Witzel KP and Liesack W. (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63: 4704-4712.
Suto R., Ishimoto C., Chikyu M., Aihara Y., matsumoto T., Uenishi H., Yasuda T., Fukumoto Y. and Waki M. (2017) Anammox biofilm in activated sludge swine wastewater treatment plants. Chemosphere. 167: 300-307.
Suzuki I., Dular U. and Kwok SC (1974) Ammonia or ammonium as substrate for oxidation by Nitrosomonas europaea cells and extracts. J. Bacteriol. 120: 556-558.
Shou Hashimoto, Kenji Furukawa, Masahiko Shioyama (1989) Accumulation of sulfur denitrifying bacteria and adaptation to elemental sulfur. Water pollution research, 12, 431-440.
1:本発明に係る脱臭及び脱窒処理装置
2:脱臭槽
3:給水槽
4:貯留槽
5:アンモニアガス
6:ポンプ
7:ポンプ
8:処理ガス
1: Deodorizing and denitrifying treatment device according to the present invention 2: Deodorizing tank 3: Water supply tank 4: Storage tank 5: Ammonia gas 6: Pump 7: Pump 8: Processing gas
Claims (8)
前記脱臭槽にチオ硫酸ナトリウムを含有する水を供給する給水槽と、
を備える、脱臭及び脱窒処理装置であって、
前記脱臭槽において、アンモニアが、大谷石に吸着された状態で、大谷石の表面で増殖した活性汚泥中の硝化菌により硝化され、亜硝酸、硝酸に変換され、一方で、硫黄源としてチオ硫酸ナトリウムを添加することで、活性汚泥中の硫黄酸化細菌により硫黄脱窒反応が起き、チオ硫酸と、亜硝酸及び硝酸が反応し、チオ硫酸の酸化により硫酸が生成し、窒素を窒素ガスとして除去する、
前記装置。 A deodorizing tank filled with Oya stone inoculated with activated sludge, which uses ammonia gas for nitrification and sulfur denitrification reactions.
A water supply tank that supplies water containing sodium thiosulfate to the deodorizing tank, and
A deodorizing and denitrifying treatment device equipped with
In the deodorizing tank, ammonia is nitrified by nitrifying bacteria in the active sludge grown on the surface of Otani stone in a state of being adsorbed on Otani stone, and converted to nitrite and nitric acid, while thiosulfate as a sulfur source. By adding sodium, a sulfur denitrification reaction occurs due to sulfur-oxidizing bacteria in active sludge, thiosulfate reacts with nitrite and nitric acid, and oxidation of thiosulfate produces sulfuric acid, which removes nitrogen as nitrogen gas. do,
The device .
前記工程において、アンモニアが、大谷石に吸着された状態で、大谷石の表面で増殖した活性汚泥中の硝化菌により硝化され、亜硝酸、硝酸に変換され、一方で、硫黄源としてチオ硫酸ナトリウムを添加することで、活性汚泥中の硫黄酸化細菌により硫黄脱窒反応が起き、チオ硫酸と、亜硝酸及び硝酸が反応し、チオ硫酸の酸化により硫酸が生成し、窒素を窒素ガスとして除去する、
前記方法。 A deodorizing and denitrifying treatment method comprising a step of subjecting ammonia gas to a nitrification reaction and a sulfur denitrification reaction in the presence of activated sludge-inoculated Otani stone and sodium thiosulfate .
In the above step, ammonia is nitrified by nitrifying bacteria in the active sludge grown on the surface of Otani stone in a state of being adsorbed on Otani stone and converted to nitrite and nitric acid, while sodium thiosulfate as a sulfur source. Is added to cause a sulfur denitrification reaction by sulfur-oxidizing bacteria in active sludge, thiosulfate reacts with nitrite and nitric acid, and oxidation of thiosulfate produces sulfuric acid, which removes nitrogen as nitrogen gas. ,
The method .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017028218A JP6935900B2 (en) | 2017-02-17 | 2017-02-17 | Deodorization and nitrogen removal method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017028218A JP6935900B2 (en) | 2017-02-17 | 2017-02-17 | Deodorization and nitrogen removal method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018130705A JP2018130705A (en) | 2018-08-23 |
JP6935900B2 true JP6935900B2 (en) | 2021-09-15 |
Family
ID=63247842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017028218A Active JP6935900B2 (en) | 2017-02-17 | 2017-02-17 | Deodorization and nitrogen removal method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6935900B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110194531A (en) * | 2019-06-04 | 2019-09-03 | 郑州大学 | Sulphur ammonia removes and Sulphur ressource chemical industry skill simultaneously in a kind of waste water |
TW202116402A (en) | 2019-09-13 | 2021-05-01 | 日商Jfr股份有限公司 | Nitrogen recovery method, nitrogen recovery device, and product obtained by same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08243346A (en) * | 1995-03-14 | 1996-09-24 | Mitsubishi Heavy Ind Ltd | Treatment of malodorous gas |
JPH11169650A (en) * | 1997-12-08 | 1999-06-29 | Japan Steel Works Ltd:The | Nitrogen ion treatment apparatus by microorganisms and microbial deodorization apparatus |
JPH11262790A (en) * | 1998-03-17 | 1999-09-28 | Japan Vilene Co Ltd | Purifying treatment method purifying treatment material and regeneration of purifying treatment material |
JP3845683B2 (en) * | 1998-04-28 | 2006-11-15 | 独立行政法人農業・食品産業技術総合研究機構 | Deodorizing device |
JP2006081953A (en) * | 2004-09-14 | 2006-03-30 | Gunma Prefecture | Deodorization apparatus |
CN102002408A (en) * | 2010-12-16 | 2011-04-06 | 哈尔滨工业大学 | Marsh gas biological desulphurization energy-saving method |
JP5901147B2 (en) * | 2011-05-30 | 2016-04-06 | 三菱重工環境・化学エンジニアリング株式会社 | Biological deodorization system |
CN102614774A (en) * | 2012-04-06 | 2012-08-01 | 哈尔滨工业大学 | Biological treatment system of sludge odor and method for treating sludge odor by utilizing same |
-
2017
- 2017-02-17 JP JP2017028218A patent/JP6935900B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018130705A (en) | 2018-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cáceres et al. | Nitrification within composting: A review | |
Jia et al. | Fe-modified biochar enhances microbial nitrogen removal capability of constructed wetland | |
Ho et al. | Biofiltration of trimethylamine, dimethylamine, and methylamine by immobilized Paracoccus sp. CP2 and Arthrobacter sp. CP1 | |
CA2693822A1 (en) | A method for removing the contamination of c, n utilizing heterotrophic ammonia-oxidizing bacteria | |
Xie et al. | Petrochemical wastewater odor treatment by biofiltration | |
Lee et al. | Simultaneous removal of H2S and NH3 in biofilter inoculated with Acidithiobacillus thiooxidans TAS | |
Tang et al. | Mixotrophic denitrification processes based on composite filler for low carbon/nitrogen wastewater treatment | |
Ghafari et al. | Improvement of autohydrogenotrophic nitrite reduction rate through optimization of pH and sodium bicarbonate dose in batch experiments | |
EP2767585A1 (en) | Microbiological method of H2S removal from biogas | |
JP6935900B2 (en) | Deodorization and nitrogen removal method | |
Witthayaphirom et al. | Long-term removals of organic micro-pollutants in reactive media of horizontal subsurface flow constructed wetland treating landfill leachate | |
Larsen et al. | Quantification of biofilms in a sub-surface flow wetland and their role in nutrient removal | |
JP2638721B2 (en) | Biological deodorization method | |
US20220323901A1 (en) | Nitrogen recovery method, nitrogen recovery device, and product obtained by same | |
Usman et al. | Nitrogen pollution originating from wastewater and agriculture: advances in treatment and management | |
Retnaningrum et al. | Removal of sulphate and manganese on synthetic wastewater in sulphate reducing bioreactor using Indonesian natural zeolite | |
JP2005211832A (en) | Method for removing ammonia nitrogen from waste water | |
JP4288198B2 (en) | Purification method for contaminated soil | |
KR20080008336A (en) | Process for removing ammonia, odours and dust from ventilation air and apparatus for use in such a process | |
Zhang et al. | Enhanced ammonia removal in tidal flow constructed wetland by incorporating steel slag: Performance, microbial community, and heavy metal release | |
Yamashita et al. | Nitrate-removal activity of a biofilm attached to a perlite carrier under continuous aeration conditions | |
Baek et al. | Behavior of nitrogen and sulfur compounds in the rice husk pellet bioscrubber and its circulation water | |
JP2006211908A (en) | New microorganism and method for nitration-treating ammonia-containing water by utilizing the same | |
Zhang et al. | Temporal variation of microbial population in a thermophilic biofilter for SO2 removal | |
KR101479679B1 (en) | Novel Acidithiobacillus thiooxidans SOB5VT1, apparatus and method for removing bad smells using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200728 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200923 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210810 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210819 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6935900 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |