JP6922864B2 - Pig iron manufacturing equipment and pig iron manufacturing method using it - Google Patents
Pig iron manufacturing equipment and pig iron manufacturing method using it Download PDFInfo
- Publication number
- JP6922864B2 JP6922864B2 JP2018145985A JP2018145985A JP6922864B2 JP 6922864 B2 JP6922864 B2 JP 6922864B2 JP 2018145985 A JP2018145985 A JP 2018145985A JP 2018145985 A JP2018145985 A JP 2018145985A JP 6922864 B2 JP6922864 B2 JP 6922864B2
- Authority
- JP
- Japan
- Prior art keywords
- blast furnace
- oxygen
- gas
- tuyere
- hot air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 47
- 229910000805 Pig iron Inorganic materials 0.000 title claims description 41
- 239000007789 gas Substances 0.000 claims description 152
- 229910052760 oxygen Inorganic materials 0.000 claims description 131
- 239000001301 oxygen Substances 0.000 claims description 131
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 130
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 76
- 238000002485 combustion reaction Methods 0.000 claims description 49
- 229910052757 nitrogen Inorganic materials 0.000 claims description 38
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 35
- 239000000112 cooling gas Substances 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 6
- 229910001882 dioxygen Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- NJFMNPFATSYWHB-UHFFFAOYSA-N ac1l9hgr Chemical compound [Fe].[Fe] NJFMNPFATSYWHB-UHFFFAOYSA-N 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 description 22
- 238000007664 blowing Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 239000003245 coal Substances 0.000 description 12
- 238000000926 separation method Methods 0.000 description 12
- 239000000571 coke Substances 0.000 description 8
- 239000002826 coolant Substances 0.000 description 6
- 238000005979 thermal decomposition reaction Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000000197 pyrolysis Methods 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000002801 charged material Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/122—Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
Landscapes
- Manufacture Of Iron (AREA)
- Blast Furnaces (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Description
本発明は、酸素高炉と熱風高炉とを使用する銑鉄製造設備およびそれを用いた銑鉄製造方法に関する。 The present invention relates to a pig iron production facility using an oxygen blast furnace and a hot air blast furnace, and a pig iron production method using the same.
近年の製鉄所は、地球環境問題や化石燃料枯渇問題を背景として、省エネが強く求められている。これを受け、最近の高炉操業は、低還元材比(低RAR)操業が強力に推進されるようになってきた。 In recent years, steelworks are strongly required to save energy against the background of global environmental problems and fossil fuel depletion problems. In response to this, recent blast furnace operations have been strongly promoted with low reducing agent ratio (low RAR) operations.
一般的な高炉は、羽口においてコークスや微粉炭と熱風(1200℃程度に加熱した空気)中の酸素が反応し、COおよびH2ガス(還元ガス)を生成させて、これらの還元ガスにより炉内の鉄鉱石等の還元を行っている。以前は、内容積100m3程度の小型高炉による操業が行われてきたが、生産性の要求と技術の発達に伴い、高炉は年々大容量化し、近年では5000m3級の大型高炉が主流となっている。しかし、高炉の大型化は、高炉に装入するコークスや焼結鉱の強度を高くする必要が生じ、そのために原料の塊成化が発達してきた。一方で、近年は原料の劣質化が進んでおり、従来のように高強度の原料を得ることが困難となっている。このことから、低強度の原料でも操業できる小型高炉への技術開発が求められている。また、近年の安全要求の厳格化により、高炉のみならずその周辺設備も可能な限り小型化し、保守性を高めることが求められている。 Typical blast furnace, oxygen coke and pulverized coal and hot air (air is heated to about 1200 ° C.) is reacted in a tuyere, thereby generating a CO and H 2 gas (reducing gas), these reducing gases It is reducing iron ore in the furnace. Previously, small blast furnaces with an internal volume of about 100 m 3 were operated, but with the demand for productivity and the development of technology, the capacity of blast furnaces has increased year by year, and in recent years, large blast furnaces of 5000 m 3 class have become mainstream. ing. However, as the size of the blast furnace increases, it becomes necessary to increase the strength of coke and sinter charged into the blast furnace, and as a result, agglomeration of raw materials has developed. On the other hand, in recent years, the quality of raw materials has been deteriorating, and it has become difficult to obtain high-strength raw materials as in the past. For this reason, technological development for a small blast furnace that can operate even with low-strength raw materials is required. In addition, due to the stricter safety requirements in recent years, it is required to reduce the size of not only the blast furnace but also its peripheral equipment as much as possible to improve maintainability.
高炉小型化技術の1つとして、酸素高炉の研究がある。通常高炉では熱風(1200℃程度の高温に加熱した空気)を羽口から吹込むのに対し、酸素高炉は純酸素を羽口から吹込む炉である。この酸素高炉は、通常高炉と比べると高炉内部を流れる還元ガスの体積を半減できるので、生産量を維持しつつ高炉サイズを大幅に小型化できるメリットがある。また、熱風炉が不要となるため、周辺設備の大幅な小型化も可能となる。 As one of the blast furnace miniaturization technologies, there is research on oxygen blast furnaces. In a normal blast furnace, hot air (air heated to a high temperature of about 1200 ° C.) is blown from the tuyere, whereas in an oxygen blast furnace, pure oxygen is blown from the tuyere. Since this oxygen blast furnace can reduce the volume of reducing gas flowing inside the blast furnace by half as compared with a normal blast furnace, there is an advantage that the size of the blast furnace can be significantly reduced while maintaining the production amount. In addition, since a hot air furnace is not required, peripheral equipment can be significantly reduced in size.
ただし、酸素高炉では羽口から純酸素を吹込むため、羽口部にて純酸素による燃焼が起こり、火炎温度が極めて高温になるという問題がある。このように、火炎温度が高すぎると、羽口や炉壁の損傷や、スラグ成分の揮発による高炉内の荷下がり不調などのトラブルが起こる。従って、酸素高炉では、羽口から純酸素とともに羽口冷却材を吹き込み、火炎温度を適正温度(2000−2600℃)に制御する技術の採用が必須となる。 However, in an oxygen blast furnace, since pure oxygen is blown from the tuyere, there is a problem that combustion by pure oxygen occurs at the tuyere and the flame temperature becomes extremely high. As described above, if the flame temperature is too high, troubles such as damage to the tuyere and the furnace wall and malfunction of loading in the blast furnace due to volatilization of the slag component occur. Therefore, in an oxygen blast furnace, it is essential to adopt a technique of blowing a tuyere coolant together with pure oxygen from the tuyere to control the flame temperature to an appropriate temperature (2000-2600 ° C.).
ところで、特許文献1は、酸素高炉において、羽口からCO2もしくはH2O(水蒸気)を羽口冷却材として吹き込み、これらの吸熱熱分解反応を用いて羽口先の火炎温度を低下させ、適正な温度に制御する技術が開示されている。
By the way, in
また、特許文献2には、酸素高炉の羽口から純酸素、微粉炭とともに羽口冷却材として高炉炉頂ガスを吹込む方法が開示されている。この既知の方法は、炉頂ガスに含まれるCO2が羽口先にて吸熱熱分解を起こすので、火炎温度を低下させ適正温度に制御できるようになることが知られている。
Further,
ところで、前記特許文献1に開示の技術は、酸素高炉の羽口から酸素とともに水蒸気もしくはCO2ガスを吹込む方法であるが、高炉羽口は一般に銅製かつ水冷仕様となっているため、羽口表面は数十℃程度にまで冷却されている。従って、羽口から水蒸気を吹込むと、その水蒸気の一部が羽口にて冷やされてドレーン化し、水として流出してしまい、水蒸気の全量を吸熱反応に用いることができない。従って、この場合、水蒸気吹込みでは、火炎温度を目標値に制御することが困難である。また、CO2ガスの場合はドレーン化の問題は起こらないが、一方で純CO2ガスは自然界に存在せず、例えばCO2ガスを50vol%程度含む酸素高炉の炉頂ガスから、PSA法(圧力変動分離法)によるCO2分離設備を用いて、CO2ガスのみを分離する必要がある。しかし、酸素高炉は羽口からCO2ガスを吹込む場合、1高炉あたり30000Nm3/hもの多量のCO2ガスが必要となる。そのため、酸素高炉の場合、羽口から吹込むのみ必要な多量のCO2ガスをガス分離設備によって生成させようとすると、巨大なガス分離設備が必要となり、設備が逆に大型化してしまうという問題が起こる。
By the way, the technique disclosed in
また、特許文献2の方法は、酸素高炉自体の炉頂ガスを羽口に再循環して吹込む方法であるから、ガス分離設備のような大型付帯設備は不要となる。しかし、酸素高炉の炉頂ガスは約半分がCO、残りの約半分がCO2であるため、吹込んだガスのうち半分しか吸熱熱分解反応に寄与しない。従って、羽口先の火炎温度を適正温度にまで下げるためには、羽口あたり10000m3/hもの多量の炉頂ガスを吹込む必要がある。しかし、酸素高炉というのは、通常の高炉よりも小型化することが目的であることを鑑みると、設備レイアウトの都合から羽口から吹込むガス流量は可能な限り少なくすることが望ましく、多量の羽口冷却ガスを吹込む炉頂ガス循環は好ましくない。
Further, since the method of
本発明の目的は、酸素高炉への冷却ガスの流量を少なくでき、付帯設備の必要もなく、効率よく酸素高炉の羽口先温度を冷却することができる、酸素高炉を使用する銑鉄製造設備およびそれを用いた銑鉄製造方法を提案することにある。 An object of the present invention is a pig iron production facility using an oxygen blast furnace, which can reduce the flow rate of cooling gas to the oxygen blast furnace, can efficiently cool the tuyere temperature of the oxygen blast furnace without the need for ancillary equipment, and the pig iron production facility thereof. The purpose is to propose a method for producing pig iron using the above.
従来技術が抱えている前述の課題を解決し、前記の目的を実現するために鋭意研究した結果、発明者らは、以下に述べる新規な銑鉄製造設備およびそれを用いた銑鉄製造方法を開発するに至った。 As a result of diligent research to solve the above-mentioned problems of the prior art and to realize the above-mentioned object, the inventors develop a new pig iron manufacturing facility described below and a pig iron manufacturing method using the same. It came to.
即ち、本発明の銑鉄製造設備は、酸素高炉と熱風高炉とを使用する銑鉄製造設備であって、羽口から純酸素及び還元材、羽口用冷却ガスを吹込み、炉頂からは実質的に窒素を含まない酸素高炉ガスを発生する酸素高炉と、該酸素高炉ガスと実質的に窒素を含まない酸素含有ガスとを燃焼して熱風炉燃焼排ガスを生成する際に発生する熱により空気を昇熱し、前記熱風高炉へ供給する熱風炉とからなり、該熱風炉燃焼排ガスの一部が、前記酸素高炉の羽口用冷却ガスとなるように構成したことを特徴とする銑鉄製造設備である。 That is, the pig iron production facility of the present invention is a pig iron production facility that uses an oxygen blast furnace and a hot air blast furnace, in which pure oxygen, a reducing material, and a cooling gas for the tuyere are blown from the tuyere, and substantially from the top of the furnace. Air is generated by the heat generated when an oxygen blast furnace that generates nitrogen-free oxygen blast furnace gas and the oxygen blast furnace gas and an oxygen-containing gas that does not substantially contain nitrogen are burned to generate hot air furnace combustion exhaust gas. It is a pig iron production facility including a hot air furnace that heats up and supplies it to the hot air blast furnace, and is configured so that a part of the combustion exhaust gas of the hot air furnace becomes a cooling gas for a tuyere of the oxygen blast furnace. ..
なお、前記のように構成される本発明に係る銑鉄製造設備においては、
(1)前記実質的に窒素を含まない酸素含有ガスとして、純酸素ガスを用いること、
(2)前記実質的に窒素を含まない酸素含有ガスとして、純酸素に前記熱風炉燃焼排ガスを混合したガスを用いること、
(3)前記実質的に窒素を含まない酸素含有ガスとして、純酸素に水蒸気を混合したガスを用いること、
がより好ましい解決手段となるものと考えられる。
In the pig iron manufacturing equipment according to the present invention configured as described above,
(1) Using pure oxygen gas as the oxygen-containing gas that does not substantially contain nitrogen.
(2) As the oxygen-containing gas containing substantially no nitrogen, a gas obtained by mixing the hot air furnace combustion exhaust gas with pure oxygen is used.
(3) As the oxygen-containing gas containing substantially no nitrogen, a gas obtained by mixing water vapor with pure oxygen is used.
Is considered to be a more preferable solution.
また、本発明の銑鉄製造方法は、銑鉄製造設備を用いた銑鉄製造方法において、前記熱風炉で発生する実質的に窒素を含まない熱風炉燃焼排ガスの一部を、前記酸素高炉の羽口用冷却ガスとして用いることを特徴とする銑鉄製造方法である。 Further, in the pig iron production method of the present invention, in the pig iron production method using the pig iron production equipment, a part of the hot air furnace combustion exhaust gas generated in the hot air furnace and substantially free of nitrogen is used for the tuyere of the oxygen blast furnace. It is a pig iron production method characterized by being used as a cooling gas.
本発明に係る銑鉄製造設備および銑鉄製造方法によれば、純酸素を用いる酸素高炉から排出される実質的に窒素を含まない酸素高炉ガスを用い、かつ、熱風炉においても空気を用いずに窒素を含まない酸素含有ガスを用いて酸素高炉ガスを燃焼させて熱風を生成することができるので、実質的に窒素を含まずほぼCO2のみで構成される熱風炉燃焼排ガスを生成させることができるようになる。 According to the iron iron production facility and the iron iron production method according to the present invention, oxygen blast furnace gas that is substantially free of nitrogen discharged from an oxygen blast furnace that uses pure oxygen is used, and nitrogen is also used in a hot air furnace without using air. Since it is possible to generate hot air by burning oxygen blast furnace gas using an oxygen-containing gas that does not contain oxygen, it is possible to generate hot air furnace combustion exhaust gas that is substantially free of nitrogen and is composed of almost only CO 2. Will be.
そして、この熱風炉燃焼排ガスの一部を羽口用冷却ガスとして酸素高炉の羽口から吹きこむようにしたので、PSA等の大規模なCO2分離設備を用いることなく多量のCO2ガスを羽口に吹き込めるようになり、かつ、上記熱風炉燃焼排ガスはほぼCO2のみとなるため、高炉炉頂ガスを再循環させて羽口に吹込む場合と比べて少量の羽口冷却ガスで羽口先温度を適正に制御できるようになる。その結果、CO2分離等の余剰な設備を追加することなく、かつ少量の羽口冷却ガスを吹き込めるだけの吹込み設備を設ければよいので、酸素高炉及び周辺設備の小型化が可能となる。 Then, since a part of the combustion exhaust gas from the hot air furnace is blown from the tuyere of the oxygen blast furnace as cooling gas for the tuyere, a large amount of CO 2 gas is blown without using a large-scale CO 2 separation facility such as PSA. Since it can be blown into the mouth and the combustion exhaust gas from the hot air furnace is almost only CO 2 , the feathers can be blown with a small amount of tuyere cooling gas compared to the case where the blast furnace top gas is recirculated and blown into the tuyere. You will be able to properly control the mouth temperature. As a result, it is possible to reduce the size of the oxygen blast furnace and peripheral equipment because it is sufficient to provide a blowing equipment that can blow a small amount of tuyere cooling gas without adding extra equipment such as CO 2 separation. Become.
また、本発明の好適例では、熱風炉設備において、空気を用いずに熱風炉燃焼排ガスの一部を再循環して純酸素と混合して、実質的に窒素を含まない酸素含有ガスとしたうえで、酸素高炉ガスと燃焼させるようにした。さらに、本発明の別の好適例では、水蒸気を純酸素と混合して、実質的に窒素を含まない酸素含有ガスとしたうえで、酸素高炉ガスと燃焼させるようにした。 Further, in a preferred example of the present invention, in a hot blast furnace facility, a part of the hot blast furnace combustion exhaust gas is recirculated without using air and mixed with pure oxygen to obtain an oxygen-containing gas substantially free of nitrogen. After that, it was made to burn with oxygen blast furnace gas. Further, in another preferred example of the present invention, steam is mixed with pure oxygen to obtain an oxygen-containing gas that is substantially free of nitrogen, and then burned with oxygen blast furnace gas.
これにより、少量の熱風炉燃焼排ガスを羽口に吹込むだけで羽口先温度を適正値に制御できるようになった。さらに、熱風炉において、純酸素単体を用いず熱風炉燃焼排ガスの一部または水蒸気を混合させて希釈しているが、これにより、窒素レスの条件を保ったまま、純酸素燃焼にて生じる異常高温化した燃焼火炎の発生を抑止することが可能となり、熱風炉燃焼排ガスの羽口先冷却効果を保ちつつ、熱風炉内の耐火物損傷も抑止することが可能となる。さらには、本発明を用いれば、熱風炉燃焼排ガスのうち再循環されなかった分は系外に排出されることとなるが、実質的に窒素を含まずほぼCO2のみで構成される熱風炉燃焼排ガスが生成されるので、CCS(Carbon dioxide Capture and Storage、CO2の回収・貯留)やCCU(Carbon capture and utilization、CO2利用)に適用でき、CO2排出削減にも寄与することが可能である。 As a result, the tuyere tip temperature can be controlled to an appropriate value simply by blowing a small amount of hot air furnace combustion exhaust gas into the tuyere. Furthermore, in the hot air furnace, a part of the hot air furnace combustion exhaust gas or steam is mixed and diluted without using pure oxygen alone, but this causes an abnormality that occurs in pure oxygen combustion while maintaining the nitrogen-less condition. It is possible to suppress the generation of high-temperature combustion flames, and it is possible to suppress damage to the fire-resistant material in the hot-air furnace while maintaining the effect of cooling the tuyere of the hot-air furnace combustion exhaust gas. Furthermore, according to the present invention, the portion of the combustion exhaust gas from the hot air furnace that has not been recirculated is discharged to the outside of the system, but the hot air furnace is substantially free of nitrogen and is composed of almost only CO 2. Since combustion exhaust gas is generated, it can be applied to CCS (Carbon digest Capture and Storage, CO 2 capture and storage) and CCU (Carbon capture and storage, CO 2 utilization), and can also contribute to CO 2 emission reduction. Is.
図1は、本発明の銑鉄製造設備の一例の構成を示す図である。この図に示す構成において、1は酸素高炉、1’は熱風高炉、2は酸素高炉1の炉頂から発生する酸素高炉ガス(OBガス)と酸素含有ガス(ここでは酸素)とを用いて、併設された熱風高炉1’に吹き込むための熱風を生成する熱風炉、3は上記酸素高炉ガスを部分燃焼させて生成した予熱ガスを炉内に吹込むためのバーナー、4は酸素高炉1内に酸素などを吹込むために使用する羽口、4’は熱風高炉の羽口である。上述した構成の酸素高炉1の操業では、炉頂部から鉱石やコークスなどが装入されるとともに、酸素高炉下部の羽口4から酸素とともに微粉炭などが吹込まれる。なお熱風高炉からは熱風高炉ガス(Bガス)が発生する。図には記載を省略しているが、熱風高炉のBガスは通常の製鉄所と同様に製鉄所内で発電燃料などとして利用される。
FIG. 1 is a diagram showing a configuration of an example of a pig iron manufacturing facility of the present invention. In the configuration shown in this figure, 1 is an oxygen blast furnace, 1'is a hot air blast furnace, and 2 is an oxygen blast furnace gas (OB gas) and an oxygen-containing gas (oxygen in this case) generated from the top of the
図2は、本発明の銑鉄製造設備の他の例の構成を示す図である。図2に示す構成において、図1に示す例と同一の部材には同一の符号を付し、その説明を省略する。この図に示す構成において、図1に示す構成に加えて、熱風炉2から発生する熱風炉燃焼排ガスの一部を、熱風炉2に供給する純酸素と混合する熱風炉燃焼排ガス再循環路5が設けられている。これにより、純酸素を希釈(例えば、酸素を20vol%程度)することが可能となる。
FIG. 2 is a diagram showing the configuration of another example of the pig iron manufacturing facility of the present invention. In the configuration shown in FIG. 2, the same members as those in the example shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. In the configuration shown in this figure, in addition to the configuration shown in FIG. 1, a hot air furnace combustion exhaust gas recirculation path 5 that mixes a part of the hot air furnace combustion exhaust gas generated from the
本発明の特徴は、図1および図2に示す銑鉄製造設備において、熱風炉2から発生する実質的に窒素を含まない熱風炉燃焼排ガスの一部を、酸素高炉1の羽口4から吹込まれる冷却ガスとして用いる点の構成にある。以下、本発明の銑鉄製造設備について、具体的に説明する。
The feature of the present invention is that in the pig iron production facility shown in FIGS. 1 and 2, a part of the hot air furnace combustion exhaust gas generated from the
一般的な高炉では、羽口にブローパイプと微粉炭等の吹込みランスが取り付けられるが、酸素高炉1は羽口4から熱風の代わりに純酸素を吹込むため、微粉炭の着火性が悪いという問題を抱えている。そこで、酸素高炉1では、微粉炭の着火を促進するために羽口4に酸素高炉羽口用バーナーが取り付けられる。
In a general blast furnace, a blow pipe and a blowing lance such as pulverized coal are attached to the tuyere, but in the
図3は、銑鉄製造設備の酸素高炉に用いる羽口を酸素高炉羽口用バーナーとともに示す概略図である。この図に示す構成において、11は羽口4に取付けられた酸素高炉羽口用バーナーである。酸素高炉羽口用バーナー11は、外部にガス漏れしないように、羽口4に押し付けて設置される。ここで、酸素高炉羽口用バーナー11は、中心管12−1、内環状管12−2および外環状管12−3からなる同軸多重管から構成されている。一例として、中心管12−1から冷却ガスを吹込み、内環状管12−2と中心管12−1との間の環状管路から微粉炭を吹込むとともに、外環状管12−3と内環状管12−2との間の環状管路から純酸素を吹込む。そして、羽口4の先の酸素高炉炉内に、純酸素と微粉炭とが反応するレースウェイ6を形成している。
FIG. 3 is a schematic view showing a tuyere used in an oxygen blast furnace of a pig iron production facility together with a burner for an oxygen blast furnace tuyere. In the configuration shown in this figure,
上述した構成の酸素高炉羽口用バーナー11によりこれらガスや微粉炭が羽口4内にて強混合され、羽口4から出た直後に急速着火・急速燃焼させることが可能となる。また、酸素高炉では炉内ガス量が少なくなるので、炉上部における装入物の昇温が不十分となる問題がある。これを回避するために、酸素高炉1においては、酸素高炉ガス(OBガス)を1000℃程度となるようにバーナー3により部分燃焼させてから、高炉シャフト部に吹込む予熱ガス吹込みを用いている。
The oxygen blast
酸素高炉1では羽口4から空気を吹込まず酸素を吹込むようにしたので、炉内では窒素がほとんど発生しない。従って、酸素高炉1から排出される酸素高炉ガス(OBガス)は窒素レスとなる。すなわち、通常の熱風高炉の炉頂ガス組成は、窒素が50%、CO+H2が25%、CO2+H2Oが25%程度であるのに対し、酸素高炉1ではCO+H2が50%、CO2+H2Oが50%程度の組成である。よって、図1に示す溶銑製造設備のように、酸素高炉1の酸素高炉ガスを純酸素で燃焼させて、併設されている熱風高炉1’用の熱風炉2の運転に用いるようにすれば、熱風炉燃焼排ガスもまた窒素レスとなる。また、熱風炉燃焼排ガスを常温まで冷却すれば水蒸気は自然に分離できるので、結果として熱風炉2から排出される熱風炉燃焼排ガスは、CO2のみ、もしくは、熱風炉を酸素過剰にて運転した場合であれば、CO2と酸素のみ、を含み窒素を含まない熱風炉燃焼排ガスとなる。
In the
なお、熱風炉においては、耐火物の耐熱制約があるため1100℃〜1500℃程度の温度にしなければならない。一方で、純酸素と酸素高炉から発生する酸素高炉ガスとを燃焼させると、3000℃を超える極めて高温の燃焼ガスが発生する場合があり、そのまま熱風炉に流し込むことができない場合がある。そこで、純酸素に他のガスを混合希釈して、火炎温度を下げる方法を用いることが好ましい。しかし、下記に示すように希釈ガス中に窒素が含まれることは好ましくない。そのため、図2に示す本発明の好適例では、窒素を含まない希釈ガスとして、熱風炉2自体の熱風炉燃焼排ガスを再循環して用いている。
In the hot air furnace, the temperature must be set to about 1100 ° C. to 1500 ° C. due to the heat resistance restriction of the refractory. On the other hand, when pure oxygen and oxygen blast furnace gas generated from an oxygen blast furnace are burned, combustion gas having an extremely high temperature exceeding 3000 ° C. may be generated, and it may not be possible to pour it into a hot air furnace as it is. Therefore, it is preferable to use a method of lowering the flame temperature by mixing and diluting pure oxygen with another gas. However, it is not preferable that nitrogen is contained in the diluting gas as shown below. Therefore, in the preferred example of the present invention shown in FIG. 2, the hot air furnace combustion exhaust gas of the
ここで、酸素高炉ガスと窒素レスの酸素含有ガスを用いる熱風炉2から発生する熱風炉燃焼排ガスもまた窒素を含まないものになるため、この方法を用いた場合でも窒素はほとんど含まれず、実質的にCO2のみで構成される熱風炉燃焼排ガスを生成させることができる。なお、ここで純酸素に熱風炉燃焼排ガスを混合する際、図2に示すように、熱風炉2の燃焼器前に純酸素と熱風炉燃焼排ガスを混合してもよいし、また、熱風炉燃焼排ガス自体は燃焼反応に寄与しないので、燃焼器にて酸素高炉ガスと純酸素を燃焼させたのちに熱風炉燃焼排ガスと混合してもよい。また、両者を併用してもよい。
Here, since the hot air furnace combustion exhaust gas generated from the
また、酸素高炉1の羽口4に吹き込む羽口冷却材としては、高温の羽口先にて熱分解反応を起こす物質が好ましい。羽口先にはコークスが充填されており、たとえばCO2、H2Oはコークスと反応して下記のような吸熱熱分解反応をおこすので、大きな冷却効果をも持つ。
C(coke)+CO2=2CO−172.42kJ/mol
C(coke)+H2O=CO+H2−131.27kJ/mol
しかしながら、CO、H2、N2ガスは熱分解反応を起こさないので、羽口に吹き込んでも顕熱相当の小さな冷却効果しかない。よって、羽口に吹き込む羽口冷却材は、可能な限り熱分解をおこす物質、すなわちCO2やH2Oの濃度が高いものが好ましい。上記に示す熱風炉燃焼排ガスは、窒素をほとんど含まずほぼCO2のみで構成されているので、羽口冷却ガスとして適している。
Further, as the tuyere coolant to be blown into the
C (coke) + CO 2 = 2CO-172.42kJ / mol
C (coke) + H 2 O = CO + H 2 -131.27kJ / mol
However, CO, since H 2, N 2 gas does not cause thermal decomposition reaction, there is only a small effect of cooling the corresponding sensible be blown into the tuyere. Therefore, the tuyere coolant blown into the tuyere is preferably a substance that causes thermal decomposition as much as possible, that is, a substance having a high concentration of CO 2 and H 2 O. The hot air furnace combustion exhaust gas shown above contains almost no nitrogen and is composed of almost only CO 2 , so it is suitable as a tuyere cooling gas.
なお、本発明において実質的に窒素を含まない酸素高炉ガス、実質的に窒素を含まない酸素含有ガス、実質的に窒素を含まない熱風炉燃焼排ガスとあるが、これらは羽口先に吹き込んだ際に羽口先の吸熱熱分解反応を妨げない程度に窒素を少なくしておけばよく、必ずしも窒素ゼロである必要はない。例えば、それぞれ窒素濃度10vol%以下、好ましくは3vol%以下となるように窒素濃度を制御しておけば、羽口から吹き込んだ熱風炉燃焼排ガスによって十分な羽口先の吸熱熱分解反応が起こり、本発明が成り立つ。 In the present invention, there are oxygen blast furnace gas substantially free of nitrogen, oxygen-containing gas substantially free of nitrogen, and hot air furnace combustion exhaust gas substantially free of nitrogen, but these are when blown into the tuyere tip. In addition, the amount of nitrogen may be reduced to such an extent that it does not interfere with the heat absorption and thermal decomposition reaction at the tip of the tuyere, and it is not always necessary that the amount of nitrogen is zero. For example, if the nitrogen concentration is controlled so that the nitrogen concentration is 10 vol% or less, preferably 3 vol% or less, a sufficient endothermic pyrolysis reaction occurs at the tip of the tuyere due to the hot air furnace combustion exhaust gas blown from the tuyere. The invention holds.
以下に示すように実施例1〜2および比較例1〜4を準備し、実施例1〜2と比較例1〜4とを比較した。なお、図2および図4に実施例1〜2、図5〜図8に比較例1〜4のそれぞれの銑鉄製造設備の構成を示したが、図4〜図8に示す例において、図1に示す例と同じ部材には同じ符号を付して、その説明を省略する。 Examples 1 and 2 and Comparative Examples 1 and 4 were prepared as shown below, and Examples 1 and 2 and Comparative Examples 1 and 4 were compared. 2 and 4 show the configurations of the pig iron manufacturing facilities of Examples 1 and 2, and FIGS. 5 to 8 show the configurations of the pig iron manufacturing facilities of Comparative Examples 1 to 4. However, in the examples shown in FIGS. 4 to 8, FIG. 1 The same members as those shown in the above are designated by the same reference numerals, and the description thereof will be omitted.
<実施例1>
本発明に適合する第1の例としては、羽口4から酸素を吹き込む酸素高炉1において、図2に示すように、酸素高炉1の窒素をほとんど含まない酸素高炉ガスを熱風炉2に流しこむ例を基本とする。また、熱風炉2では、酸素と熱風炉燃焼排ガスを混合させた酸素含有ガスを生成し、熱風炉2内部にて上記酸素高炉ガスと混合して燃焼させる。熱風炉2の熱風炉燃焼排ガスはほぼCO2のみであり、その熱風炉燃焼排ガスを酸素高炉1の羽口4に送ると共に、羽口4からは酸素ガスを微粉炭とともに吹込んだ。
<Example 1>
As a first example conforming to the present invention, in the
<実施例2>
本発明に適合する第2の例としては、酸素高炉1の窒素をほとんど含まない酸素高炉ガスを熱風炉2に流し込み、熱風炉2では、酸素と水蒸気を混合させた酸素含有ガスを生成し、熱風炉2内部にて上記酸素高炉ガスと混合して燃焼させる。熱風炉2に吹き込んだ水蒸気は排ガス冷却の際に自然に液化分離されるので、熱風炉燃焼排ガスはほぼCO2のみであり、その熱風炉燃焼排ガスを酸素高炉1の羽口4に送ると共に、羽口4からは酸素ガスを微粉炭とともに吹込んだ。
<Example 2>
As a second example conforming to the present invention, an oxygen blast furnace gas containing almost no nitrogen in the
<比較例1>
特許文献1に開示のものであり、図5に示すように、酸素高炉ガス(OBガス)からPSAを用いてCO2分離設備21によりCO2分離を行い、分離したCO2を冷却ガスとして羽口4から吹込み、酸素高炉1の操業を行った。
<比較例2>
同じく特許文献1に示されていた例であり、図6に示すように、羽口4から水蒸気を冷却ガスとして吹込み、酸素高炉1の操業を行った。
<比較例3>
特許文献2に示されていた例であり、図7に示すように、羽口4から酸素高炉ガスを循環して冷却ガスとして吹込み、酸素高炉1の操業を行った。
<比較例4>
熱風炉の酸素含有ガスとして、図8に示すように、純酸素ではなく空気を用いる例であり、酸素高炉1の炉頂から発生する酸素高炉ガス(OBガス)と空気とを熱風炉2のボイラーにて燃焼させ、熱風炉2において発生した熱風炉燃焼排ガスを羽口4から冷却ガスとして吹込み、酸素高炉1の操業を行った。
<Comparative example 1>
Patent are those disclosed in
<Comparative example 2>
Similarly, in the example shown in
<Comparative example 3>
This is an example shown in
<Comparative example 4>
As shown in FIG. 8, as the oxygen-containing gas of the hot air furnace, air is used instead of pure oxygen, and the oxygen blast furnace gas (OB gas) and air generated from the top of the
まず、上述した本発明に適合する実施例1〜2と比較例1〜4とを比較するに当たり、酸素高炉の諸元は統一した。すなわち、出銑量10000t/day、羽口数40、コークス比375kg/t、微粉炭比200kg/tとなるようにした。また、予熱ガス吹込みとして、高炉ガスを1000℃となるように純酸素で部分燃焼させ、高炉シャフト部から135000Nm3/hで吹き込むようにした。さらに、各種羽口冷却材(冷却ガス)は、羽口先温度が2400℃となるような量を吹き込むようにした。 First, in comparing Examples 1 and 2 and Comparative Examples 1 to 4 conforming to the present invention described above, the specifications of the oxygen blast furnace were unified. That is, the amount of tapped iron was 10,000 t / day, the number of tuyere was 40, the coke ratio was 375 kg / t, and the pulverized coal ratio was 200 kg / t. In addition, as a preheating gas injection, the blast furnace gas was partially burned with pure oxygen so as to reach 1000 ° C., and the blast furnace gas was blown at 135,000 Nm 3 / h from the blast furnace shaft portion. Further, various tuyere coolants (cooling gas) are blown in an amount such that the tuyere tip temperature becomes 2400 ° C.
実施例1〜2および比較例1〜4を比較した結果を以下の表1に示す。
表1に示す結果からわかるように、実施例1〜2においては、温調ガス(冷却ガス)として熱風炉燃焼排ガス(窒素レス)を各羽口に781Nm3/h吹き込むことで羽口先温度を2400℃に制御でき、また、特段の付帯設備もなく実施できることが確認できた。 As can be seen from the results shown in Table 1, in Examples 1 and 2, the tuyere temperature was adjusted by blowing 781 Nm 3 / h of hot air furnace combustion exhaust gas (nitrogen-less) as the temperature control gas (cooling gas) into each tuyere. It was confirmed that the temperature can be controlled to 2400 ° C and that it can be carried out without any special ancillary equipment.
一方、CO2分離を用いる比較例1においては、温調ガスとしてのCO2ガスの流量は実施例と同一となり、比較的少量の温調ガスで羽口先温度を制御できた。しかし、比較例1では、多量のCO2を酸素高炉ガスから生成しなければならないため、大規模なPSAによるCO2分離設備が必要となるため、付帯設備過大という点で好ましくないことが確認できた。 On the other hand, in Comparative Example 1 using CO 2 separation, the flow rate of CO 2 gas as the temperature control gas was the same as that in Example, and the tuyere temperature could be controlled with a relatively small amount of temperature control gas. However, in Comparative Example 1, since a large amount of CO 2 must be generated from the oxygen blast furnace gas, a large-scale PSA-based CO 2 separation facility is required, and it can be confirmed that this is not preferable in terms of excessive incidental facilities. rice field.
また、羽口から水蒸気を吹き込む比較例2においては、温調ガスとしての水蒸気の流量は906Nm3/hであり若干実施例より増大するが、比較的小流量の水蒸気で済む利点があることが確認できた。しかし、この比較例2では、水蒸気は羽口表面でドレーン化してしまう問題が起こったため、羽口先温度の制御性の観点で問題があることがわかった。 Further, in Comparative Example 2 in which water vapor is blown from the tuyere, the flow rate of water vapor as the temperature control gas is 906 Nm 3 / h, which is slightly higher than that of the example, but there is an advantage that a relatively small flow rate of water vapor is sufficient. It could be confirmed. However, in Comparative Example 2, it was found that there was a problem from the viewpoint of controllability of the tuyere tip temperature because water vapor had a problem of draining on the tuyere surface.
さらに、酸素高炉ガスを再循環して羽口から吹き込む比較例3では、特段の付帯設備もなく実施可能な形態であることが確認できた。しかし、この比較例3では、酸素高炉ガスは約半分がCO、残り半分がCO2となっているため、吸熱熱分解をおこすCO2の濃度が低い。結果として、酸素高炉ガスの吹き込み量が1260Nm3/hにもなってしまうため、羽口周りの吹込み設備が巨大となり、羽口周りのレイアウト上実施困難であることがわかった。 Further, in Comparative Example 3 in which the oxygen blast furnace gas was recirculated and blown from the tuyere, it was confirmed that the embodiment could be implemented without any special ancillary equipment. However, in Comparative Example 3, about half of the oxygen blast furnace gas is CO and the other half is CO 2 , so the concentration of CO 2 that causes endothermic pyrolysis is low. As a result, the amount of oxygen blast furnace gas blown was as high as 1260 Nm 3 / h, so that the blowing equipment around the tuyere became huge and it was found that it was difficult to implement due to the layout around the tuyere.
さらにまた、熱風炉の酸素含有ガスとして、純酸素ではなく空気を用いた場合の比較例4では、熱布炉排ガスの半分以上が窒素となってしまったため、吸熱熱分解をおこすCO2の濃度が低下した。結果として、比較例3と同様に、羽口に吹込む熱風炉燃焼排ガスの流量が巨大になってしまう問題が起こることがわかった。 Furthermore, in Comparative Example 4 when air was used instead of pure oxygen as the oxygen-containing gas of the hot air furnace, more than half of the exhaust gas from the hot cloth furnace became nitrogen, so the concentration of CO 2 causing endothermic thermal decomposition. Has decreased. As a result, it was found that, as in Comparative Example 3, there was a problem that the flow rate of the hot air furnace combustion exhaust gas blown into the tuyere became huge.
以上の結果から、本発明の実施例1〜2の方法は、比較例1〜4の各方法に比べて欠点がなく有意な操業ができることが確認できた。 From the above results, it was confirmed that the methods of Examples 1 and 2 of the present invention have no drawbacks and can perform significant operations as compared with the methods of Comparative Examples 1 to 4.
本発明の銑鉄製造設備によれば、実質的に窒素を含まずほぼCO2のみで構成される熱風炉燃焼排ガスが生成されるので、羽口から純酸素及び還元材、冷却ガスが吹込まれ、炉頂から実質的に窒素を含まない酸素高炉ガスを発生せしめる酸素高炉と、前記酸素高炉の炉頂から発生する酸素高炉ガスと実質的に窒素を含まない酸素含有ガスとを用いて、併設された熱風高炉への熱風を生成する熱風炉とからなる銑鉄製造設備だけでなく、併設された熱風高炉への熱風を生成する熱風炉とからなる銑鉄製造設備だけでなく、を用いて運転される炉とからなる銑鉄製造設備だけでなく、CCS(Carbon dioxide Capture and Storage、CO2の回収・貯留)やCCU(Carbon capture and utilization、CO2利用)にも適用でき、CO2排出削減にも寄与することが可能である。 According to the pig iron production facility of the present invention, blast furnace combustion exhaust gas, which is substantially free of nitrogen and is composed of almost only CO 2 , is generated, so that pure oxygen, a reducing material, and cooling gas are blown from the tuyere. An oxygen blast furnace that generates an oxygen blast furnace gas that is substantially free of nitrogen from the top of the furnace, an oxygen blast furnace gas that is generated from the top of the oxygen blast furnace, and an oxygen-containing gas that is substantially free of nitrogen are used side by side. It is operated using not only the pig iron production equipment consisting of a hot air furnace that generates hot air to the hot air blast furnace, but also the pig iron production equipment that consists of a hot air furnace that generates hot air to the attached hot air blast furnace. It can be applied not only to pig iron manufacturing equipment consisting of a furnace, but also to CCS (Carbon dioxide Capture and Storage, CO 2 recovery and storage) and CCU (Carbon capture and utilization, CO 2 utilization), and contributes to CO 2 emission reduction. It is possible to do.
1 酸素高炉
1’ 熱風高炉
2 熱風炉
3 バーナー
4 羽口
4’ 熱風高炉の羽口
5 熱風炉燃焼排ガス再循環路
6 レースウェイ
11 高炉羽口用バーナー
12−1 中心管
12−2 内環状管
12−3 外環状管
21 CO2分離設備
1 Oxygen blast furnace 1'hot
Claims (5)
前記熱風炉で発生する窒素濃度10vol%以下の熱風炉燃焼排ガスの一部を、前記酸素高炉の羽口用冷却ガスとして用いることを特徴とする銑鉄製造方法。
In the pig iron manufacturing method using the pig iron manufacturing equipment according to any one of claims 1 to 4.
A method for producing pig iron, which comprises using a part of the combustion exhaust gas of a hot blast furnace having a nitrogen concentration of 10 vol% or less generated in the hot blast furnace as a cooling gas for a tuyere of the oxygen blast furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018145985A JP6922864B2 (en) | 2018-08-02 | 2018-08-02 | Pig iron manufacturing equipment and pig iron manufacturing method using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018145985A JP6922864B2 (en) | 2018-08-02 | 2018-08-02 | Pig iron manufacturing equipment and pig iron manufacturing method using it |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020020012A JP2020020012A (en) | 2020-02-06 |
JP6922864B2 true JP6922864B2 (en) | 2021-08-18 |
Family
ID=69588093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018145985A Active JP6922864B2 (en) | 2018-08-02 | 2018-08-02 | Pig iron manufacturing equipment and pig iron manufacturing method using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6922864B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115466809B (en) * | 2021-06-10 | 2023-10-17 | 宝山钢铁股份有限公司 | Control method for cooling system of blast furnace baking furnace |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5782409A (en) * | 1980-11-11 | 1982-05-22 | Sumitomo Metal Ind Ltd | Operation method of blast furnace |
JP2004309067A (en) * | 2003-04-09 | 2004-11-04 | Nippon Steel Corp | Method of using blast furnace gas |
JP2010261095A (en) * | 2009-05-03 | 2010-11-18 | Npo Seitetsu Carbon Offset Gijutsu Kenkyukai | Blast furnace and operating method therefor |
US9863013B2 (en) * | 2011-02-22 | 2018-01-09 | Linde Aktiengesellschaft | Apparatus and method for heating a blast furnace stove |
JP2014005510A (en) * | 2012-06-26 | 2014-01-16 | Jfe Steel Corp | Blast furnace operation method |
JP2015193927A (en) * | 2014-03-26 | 2015-11-05 | Jfeスチール株式会社 | Oxygen blast furnace operation method |
JP6256710B2 (en) * | 2015-05-28 | 2018-01-10 | Jfeスチール株式会社 | Oxygen blast furnace operation method |
-
2018
- 2018-08-02 JP JP2018145985A patent/JP6922864B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020020012A (en) | 2020-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6229863B2 (en) | Oxygen blast furnace operation method | |
WO2015105107A1 (en) | Method for operating blast furnace | |
JP6256710B2 (en) | Oxygen blast furnace operation method | |
JP6354962B2 (en) | Oxygen blast furnace operation method | |
TW201313908A (en) | Blast furnace operating method | |
JP6777894B2 (en) | Oxygen blast furnace equipment and method of manufacturing pig iron using the oxygen blast furnace equipment | |
JP6922864B2 (en) | Pig iron manufacturing equipment and pig iron manufacturing method using it | |
JP2018104812A (en) | Apparatus and method for producing molten iron | |
JP6919632B2 (en) | Pig iron manufacturing equipment and pig iron manufacturing method using it | |
JP2010275623A (en) | Method for operating blast furnace | |
CN105316011B (en) | Coke dry quenching facility | |
WO2011013848A1 (en) | Process for producing ferro coke | |
JP5652575B1 (en) | Blast furnace operating method and lance | |
TWI758025B (en) | Blast furnace operation method and blast furnace accessory equipment | |
TWI775216B (en) | Blast furnace operation method and blast furnace accessory equipment | |
KR102235205B1 (en) | Metallurgical furnace | |
AU2022294428A1 (en) | Method for operating shaft furnace and method for producing reduced iron | |
JP2006335956A (en) | Method of recovering surplus offgas in coke dry quenching equipment | |
TWI759054B (en) | Blast furnace operation method and blast furnace accessory equipment | |
TWI859232B (en) | Method for operating a metallurgical furnace | |
WO2024209801A1 (en) | Blast furnace operation method, and ancillary equipment | |
JP2004091921A (en) | Method for blowing solid fuel into blast furnace and blown lance | |
TWI765510B (en) | Blast furnace operation method and blast furnace accessory equipment | |
JP2010100926A (en) | Smelting-reduction method | |
JP2015193927A (en) | Oxygen blast furnace operation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210629 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210712 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6922864 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |