JP6906388B2 - Photoelectric conversion element for image sensor - Google Patents
Photoelectric conversion element for image sensor Download PDFInfo
- Publication number
- JP6906388B2 JP6906388B2 JP2017144539A JP2017144539A JP6906388B2 JP 6906388 B2 JP6906388 B2 JP 6906388B2 JP 2017144539 A JP2017144539 A JP 2017144539A JP 2017144539 A JP2017144539 A JP 2017144539A JP 6906388 B2 JP6906388 B2 JP 6906388B2
- Authority
- JP
- Japan
- Prior art keywords
- parts
- photoelectric conversion
- benzothiophene
- bis
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 280
- 150000001875 compounds Chemical class 0.000 claims description 146
- 239000010408 film Substances 0.000 claims description 110
- 230000003746 surface roughness Effects 0.000 claims description 59
- 239000010409 thin film Substances 0.000 claims description 58
- 125000001424 substituent group Chemical group 0.000 claims description 33
- 239000004065 semiconductor Substances 0.000 claims description 27
- 238000003384 imaging method Methods 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 21
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 21
- 230000005525 hole transport Effects 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 265
- 230000015572 biosynthetic process Effects 0.000 description 241
- 238000003786 synthesis reaction Methods 0.000 description 239
- 239000010410 layer Substances 0.000 description 201
- -1 triarylamine compound Chemical class 0.000 description 140
- 239000007787 solid Substances 0.000 description 119
- 239000000243 solution Substances 0.000 description 103
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 90
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 81
- 239000012299 nitrogen atmosphere Substances 0.000 description 73
- 238000011156 evaluation Methods 0.000 description 71
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 70
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 68
- YMWUJEATGCHHMB-UHFFFAOYSA-N dichloromethane Natural products ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 67
- 238000000034 method Methods 0.000 description 59
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 58
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 51
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 50
- 239000000203 mixture Substances 0.000 description 44
- 239000002904 solvent Substances 0.000 description 38
- 238000002360 preparation method Methods 0.000 description 37
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 34
- 235000019798 tripotassium phosphate Nutrition 0.000 description 34
- 238000001816 cooling Methods 0.000 description 32
- 238000010992 reflux Methods 0.000 description 30
- 235000011056 potassium acetate Nutrition 0.000 description 29
- IPWKHHSGDUIRAH-UHFFFAOYSA-N bis(pinacolato)diboron Chemical compound O1C(C)(C)C(C)(C)OB1B1OC(C)(C)C(C)(C)O1 IPWKHHSGDUIRAH-UHFFFAOYSA-N 0.000 description 28
- NXQGGXCHGDYOHB-UHFFFAOYSA-L cyclopenta-1,4-dien-1-yl(diphenyl)phosphane;dichloropalladium;iron(2+) Chemical compound [Fe+2].Cl[Pd]Cl.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 NXQGGXCHGDYOHB-UHFFFAOYSA-L 0.000 description 22
- 125000000217 alkyl group Chemical group 0.000 description 20
- 239000000047 product Substances 0.000 description 17
- 238000010898 silica gel chromatography Methods 0.000 description 17
- 125000003277 amino group Chemical class 0.000 description 15
- 239000000706 filtrate Substances 0.000 description 15
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 230000000903 blocking effect Effects 0.000 description 14
- 239000000741 silica gel Substances 0.000 description 14
- 229910002027 silica gel Inorganic materials 0.000 description 14
- 125000003545 alkoxy group Chemical group 0.000 description 13
- KPTRDYONBVUWPD-UHFFFAOYSA-N naphthalen-2-ylboronic acid Chemical compound C1=CC=CC2=CC(B(O)O)=CC=C21 KPTRDYONBVUWPD-UHFFFAOYSA-N 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- WPULGDZMPLGCFJ-UHFFFAOYSA-N IC=1SC2=C(C1)C=CC=C2I Chemical compound IC=1SC2=C(C1)C=CC=C2I WPULGDZMPLGCFJ-UHFFFAOYSA-N 0.000 description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- UCCUXODGPMAHRL-UHFFFAOYSA-N 1-bromo-4-iodobenzene Chemical compound BrC1=CC=C(I)C=C1 UCCUXODGPMAHRL-UHFFFAOYSA-N 0.000 description 11
- 125000003118 aryl group Chemical group 0.000 description 11
- 238000007740 vapor deposition Methods 0.000 description 11
- 125000004432 carbon atom Chemical group C* 0.000 description 10
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- FIQJVCVZKCFMOI-UHFFFAOYSA-N 2-(4-benzo[g][1]benzothiol-2-ylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane Chemical compound S1C2=C(C=C1C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C)C=CC1=CC=CC=C12 FIQJVCVZKCFMOI-UHFFFAOYSA-N 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000001914 filtration Methods 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- CDDYFENXIMARJE-UHFFFAOYSA-N 2-[6-(1-benzothiophen-2-yl)naphthalen-2-yl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane Chemical compound CC1(C)OB(C(C=CC2=C3)=CC2=CC=C3C2=CC(C=CC=C3)=C3S2)OC1(C)C CDDYFENXIMARJE-UHFFFAOYSA-N 0.000 description 7
- 229910052763 palladium Inorganic materials 0.000 description 7
- YFTHTJAPODJVSL-UHFFFAOYSA-N 2-(1-benzothiophen-5-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane Chemical compound O1C(C)(C)C(C)(C)OB1C1=CC=C(SC=C2)C2=C1 YFTHTJAPODJVSL-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000011259 mixed solution Substances 0.000 description 6
- WJKHJLXJJJATHN-UHFFFAOYSA-N triflic anhydride Chemical compound FC(F)(F)S(=O)(=O)OS(=O)(=O)C(F)(F)F WJKHJLXJJJATHN-UHFFFAOYSA-N 0.000 description 6
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 5
- BHUHWUQADSQDBQ-UHFFFAOYSA-N S1C2=C(C=C1C1=CC(=C(C=C1)B1OC(C(O1)(C)C)(C)C)C)C=CC=C2 Chemical compound S1C2=C(C=C1C1=CC(=C(C=C1)B1OC(C(O1)(C)C)(C)C)C)C=CC=C2 BHUHWUQADSQDBQ-UHFFFAOYSA-N 0.000 description 5
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical class C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 description 5
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000001953 recrystallisation Methods 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- 241000209094 Oryza Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical class N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 4
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 4
- YNCYPMUJDDXIRH-UHFFFAOYSA-N benzo[b]thiophene-2-boronic acid Chemical compound C1=CC=C2SC(B(O)O)=CC2=C1 YNCYPMUJDDXIRH-UHFFFAOYSA-N 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- ATGAWOHQWWULNK-UHFFFAOYSA-I pentapotassium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [K+].[K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O ATGAWOHQWWULNK-UHFFFAOYSA-I 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- AOJFQRQNPXYVLM-UHFFFAOYSA-N pyridin-1-ium;chloride Chemical compound [Cl-].C1=CC=[NH+]C=C1 AOJFQRQNPXYVLM-UHFFFAOYSA-N 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- UWOVTNHEZXJTQG-UHFFFAOYSA-N (6-naphthalen-2-ylnaphthalen-2-yl) trifluoromethanesulfonate Chemical compound C1=CC=CC2=CC(C3=CC4=CC=C(C=C4C=C3)OS(=O)(=O)C(F)(F)F)=CC=C21 UWOVTNHEZXJTQG-UHFFFAOYSA-N 0.000 description 3
- KRYZBERLGGDXGK-UHFFFAOYSA-N 2-(4-bromo-3-methylphenyl)-1-benzothiophene Chemical compound BrC1=C(C=C(C=C1)C1=CC2=C(S1)C=CC=C2)C KRYZBERLGGDXGK-UHFFFAOYSA-N 0.000 description 3
- OKLLCXQQBVCIPA-UHFFFAOYSA-N 2-(4-bromophenyl)-1-benzofuran Chemical compound C1=CC(Br)=CC=C1C1=CC2=CC=CC=C2O1 OKLLCXQQBVCIPA-UHFFFAOYSA-N 0.000 description 3
- IJDKRWVYXSAROY-UHFFFAOYSA-N 2-(4-bromophenyl)-1-benzothiophene Chemical compound C1=CC(Br)=CC=C1C1=CC2=CC=CC=C2S1 IJDKRWVYXSAROY-UHFFFAOYSA-N 0.000 description 3
- YRXOCMJMOANWPJ-UHFFFAOYSA-N 2-(4-bromophenyl)-5-phenyl-1-benzothiophene Chemical compound BrC1=CC=C(C=C1)C1=CC2=C(S1)C=CC(=C2)C1=CC=CC=C1 YRXOCMJMOANWPJ-UHFFFAOYSA-N 0.000 description 3
- KJMUTAIBATVKLF-UHFFFAOYSA-N 2-(4-bromophenyl)-9,9-dimethylfluorene Chemical compound C1=C2C(C)(C)C3=CC=CC=C3C2=CC=C1C1=CC=C(Br)C=C1 KJMUTAIBATVKLF-UHFFFAOYSA-N 0.000 description 3
- NRBLDBFVZATYNZ-UHFFFAOYSA-N 2-(4-bromophenyl)benzo[f][1]benzothiole Chemical compound BrC1=CC=C(C=C1)C1=CC2=C(S1)C=C1C=CC=CC1=C2 NRBLDBFVZATYNZ-UHFFFAOYSA-N 0.000 description 3
- HAWAHHLSLAGNFB-UHFFFAOYSA-N 2-(4-bromophenyl)benzo[g][1]benzothiole Chemical compound BrC1=CC=C(C=C1)C1=CC2=C(S1)C1=CC=CC=C1C=C2 HAWAHHLSLAGNFB-UHFFFAOYSA-N 0.000 description 3
- RYSKKCJLAQQQIQ-UHFFFAOYSA-N 2-(4-bromophenyl)phenanthrene Chemical compound C1=CC(Br)=CC=C1C1=CC=C2C3=CC=CC=C3C=CC2=C1 RYSKKCJLAQQQIQ-UHFFFAOYSA-N 0.000 description 3
- YKWHCBKCNJVUNK-UHFFFAOYSA-N 2-(6-methoxynaphthalen-2-yl)-1-benzothiophene Chemical compound C1=CC=C2SC(C3=CC4=CC=C(C=C4C=C3)OC)=CC2=C1 YKWHCBKCNJVUNK-UHFFFAOYSA-N 0.000 description 3
- KWCQSYNZPAMUOW-UHFFFAOYSA-N 2-[4-(4-bromophenyl)phenyl]naphthalene Chemical compound C1=CC(Br)=CC=C1C1=CC=C(C=2C=C3C=CC=CC3=CC=2)C=C1 KWCQSYNZPAMUOW-UHFFFAOYSA-N 0.000 description 3
- AKRLXSAODHADSF-UHFFFAOYSA-N 2-[4-(4-bromophenyl)phenyl]pyridine Chemical compound C1=CC(Br)=CC=C1C1=CC=C(C=2N=CC=CC=2)C=C1 AKRLXSAODHADSF-UHFFFAOYSA-N 0.000 description 3
- UTOWTOOIQBQHPE-UHFFFAOYSA-N 3-(4-bromophenyl)dibenzothiophene Chemical compound C1=CC(Br)=CC=C1C1=CC=C2C3=CC=CC=C3SC2=C1 UTOWTOOIQBQHPE-UHFFFAOYSA-N 0.000 description 3
- AIDFIDPFMZFHIU-UHFFFAOYSA-N 5-(4-bromophenyl)-1-benzothiophene Chemical compound BrC1=CC=C(C=C1)C1=CC2=C(SC=C2)C=C1 AIDFIDPFMZFHIU-UHFFFAOYSA-N 0.000 description 3
- BJHKTBMMYSYOLJ-UHFFFAOYSA-N 5-phenyl-1-benzothiophene Chemical compound C=1C=C2SC=CC2=CC=1C1=CC=CC=C1 BJHKTBMMYSYOLJ-UHFFFAOYSA-N 0.000 description 3
- FRYRJNHMRVINIZ-UHFFFAOYSA-N B1CCOO1 Chemical compound B1CCOO1 FRYRJNHMRVINIZ-UHFFFAOYSA-N 0.000 description 3
- PWADBGSUEZEHGX-UHFFFAOYSA-N BrC1=CC=C(C=C1)C=1C=CC2=C(OC3=C2C=CC=C3)C=1 Chemical compound BrC1=CC=C(C=C1)C=1C=CC2=C(OC3=C2C=CC=C3)C=1 PWADBGSUEZEHGX-UHFFFAOYSA-N 0.000 description 3
- GTVUNLWMOVRJQI-UHFFFAOYSA-N C1=C(C(C=C2)=CC3=C2OC2=C3C=CC=C2)SC2=C1C=CC=C2C(C=C1)=CC2=C1OC1=C2C=CC=C1 Chemical compound C1=C(C(C=C2)=CC3=C2OC2=C3C=CC=C2)SC2=C1C=CC=C2C(C=C1)=CC2=C1OC1=C2C=CC=C1 GTVUNLWMOVRJQI-UHFFFAOYSA-N 0.000 description 3
- JWKYRTISPMTQOU-UHFFFAOYSA-N C1=C(C(C=C2)=CC=C2C(C=C2)=CC3=C2C2=CC=CC=C2C=C3)SC2=C1C=CC=C2C(C=C1)=CC=C1C(C=C1)=CC2=C1C1=CC=CC=C1C=C2 Chemical compound C1=C(C(C=C2)=CC=C2C(C=C2)=CC3=C2C2=CC=CC=C2C=C3)SC2=C1C=CC=C2C(C=C1)=CC=C1C(C=C1)=CC2=C1C1=CC=CC=C1C=C2 JWKYRTISPMTQOU-UHFFFAOYSA-N 0.000 description 3
- UZJNETISAYYFMN-UHFFFAOYSA-N C1=C(C(C=C2)=CC=C2C(C=C2)=CC=C2C2=NC=CC=C2)SC2=C1C=CC=C2C(C=C1)=CC=C1C(C=C1)=CC=C1C1=NC=CC=C1 Chemical compound C1=C(C(C=C2)=CC=C2C(C=C2)=CC=C2C2=NC=CC=C2)SC2=C1C=CC=C2C(C=C1)=CC=C1C(C=C1)=CC=C1C1=NC=CC=C1 UZJNETISAYYFMN-UHFFFAOYSA-N 0.000 description 3
- SGRVJQPTAJWKBT-UHFFFAOYSA-N C1=C(C(C=C2)=CC=C2C2=CC(C3=CC=CC=C3)=CC(C3=CC=CC=C3)=C2)SC2=C1C=CC=C2C(C=C1)=CC=C1C1=CC(C2=CC=CC=C2)=CC(C2=CC=CC=C2)=C1 Chemical compound C1=C(C(C=C2)=CC=C2C2=CC(C3=CC=CC=C3)=CC(C3=CC=CC=C3)=C2)SC2=C1C=CC=C2C(C=C1)=CC=C1C1=CC(C2=CC=CC=C2)=CC(C2=CC=CC=C2)=C1 SGRVJQPTAJWKBT-UHFFFAOYSA-N 0.000 description 3
- MTCZWXBUAULRSY-UHFFFAOYSA-N C1=C(C(C=CC2=C3)=CC2=CC=C3C2=CC=CC=C2)SC2=C1C=CC=C2C(C=CC1=C2)=CC1=CC=C2C1=CC=CC=C1 Chemical compound C1=C(C(C=CC2=C3)=CC2=CC=C3C2=CC=CC=C2)SC2=C1C=CC=C2C(C=CC1=C2)=CC1=CC=C2C1=CC=CC=C1 MTCZWXBUAULRSY-UHFFFAOYSA-N 0.000 description 3
- JMLISLJQZJWRLX-UHFFFAOYSA-N C1=C(C2=CC=C(C=C(C=C3)C4=CC5=CC=CC=C5C=C4)C3=C2)SC2=C1C=CC=C2C1=CC=C(C=C(C=C2)C3=CC4=CC=CC=C4C=C3)C2=C1 Chemical compound C1=C(C2=CC=C(C=C(C=C3)C4=CC5=CC=CC=C5C=C4)C3=C2)SC2=C1C=CC=C2C1=CC=C(C=C(C=C2)C3=CC4=CC=CC=C4C=C3)C2=C1 JMLISLJQZJWRLX-UHFFFAOYSA-N 0.000 description 3
- VRHIKKLOMIJAMK-UHFFFAOYSA-N CC1(C)C(C=C(C=C2)C(C=C3)=CC=C3C3=CC(C=CC=C4C(C=C5)=CC=C5C(C=C5)=CC6=C5C5=CC=CC=C5C6(C)C)=C4S3)=C2C2=CC=CC=C12 Chemical compound CC1(C)C(C=C(C=C2)C(C=C3)=CC=C3C3=CC(C=CC=C4C(C=C5)=CC=C5C(C=C5)=CC6=C5C5=CC=CC=C5C6(C)C)=C4S3)=C2C2=CC=CC=C12 VRHIKKLOMIJAMK-UHFFFAOYSA-N 0.000 description 3
- SFBVPJIMYBVUCS-UHFFFAOYSA-N CC1(C)C(C=C(C=C2)C3=CC(C=CC=C4C(C=C5)=CC6=C5C5=CC=CC=C5C6(C)C)=C4S3)=C2C2=CC=CC=C12 Chemical compound CC1(C)C(C=C(C=C2)C3=CC(C=CC=C4C(C=C5)=CC6=C5C5=CC=CC=C5C6(C)C)=C4S3)=C2C2=CC=CC=C12 SFBVPJIMYBVUCS-UHFFFAOYSA-N 0.000 description 3
- MTZBOGWFUZPVDA-UHFFFAOYSA-N CC1(C)OB(OC1(C)C)C1=CC=C(C=C1)C1=CC(=CC(=C1)C1=CC=CC=C1)C1=CC=CC=C1 Chemical compound CC1(C)OB(OC1(C)C)C1=CC=C(C=C1)C1=CC(=CC(=C1)C1=CC=CC=C1)C1=CC=CC=C1 MTZBOGWFUZPVDA-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- IZXRDEIPMWVNMI-UHFFFAOYSA-N S1C2=C(C=C1C1=CC=C(C=C1)C=1SC3=C(C1)C=CC=C3C3=CC=C(C=C3)C3=CC1=C(S3)C3=CC=CC=C3C=C1)C=CC1=CC=CC=C12 Chemical compound S1C2=C(C=C1C1=CC=C(C=C1)C=1SC3=C(C1)C=CC=C3C3=CC=C(C=C3)C3=CC1=C(S3)C3=CC=CC=C3C=C1)C=CC1=CC=CC=C12 IZXRDEIPMWVNMI-UHFFFAOYSA-N 0.000 description 3
- KUDFRGGYFXKJLF-UHFFFAOYSA-N S1C2=C(C=C1C1=CC=C(C=C1)C=1SC3=C(C1)C=CC=C3C3=CC=C(C=C3)C3=CC1=C(S3)C=C3C=CC=CC3=C1)C=C1C=CC=CC1=C2 Chemical compound S1C2=C(C=C1C1=CC=C(C=C1)C=1SC3=C(C1)C=CC=C3C3=CC=C(C=C3)C3=CC1=C(S3)C=C3C=CC=CC3=C1)C=C1C=CC=CC1=C2 KUDFRGGYFXKJLF-UHFFFAOYSA-N 0.000 description 3
- 229910007541 Zn O Inorganic materials 0.000 description 3
- RWBMMASKJODNSV-UHFFFAOYSA-N [1]benzothiolo[2,3-g][1]benzothiole Chemical compound C1=CC=C2C3=C(SC=C4)C4=CC=C3SC2=C1 RWBMMASKJODNSV-UHFFFAOYSA-N 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 3
- AGCOMFFHXJMNLN-UHFFFAOYSA-N dichloromethane;dihydrochloride Chemical compound Cl.Cl.ClCCl AGCOMFFHXJMNLN-UHFFFAOYSA-N 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- BWYWXDFYJSIUBE-UHFFFAOYSA-N (3-fluoro-4-phenylphenyl)boronic acid Chemical compound FC1=CC(B(O)O)=CC=C1C1=CC=CC=C1 BWYWXDFYJSIUBE-UHFFFAOYSA-N 0.000 description 2
- RBIRRANDQLWXOS-UHFFFAOYSA-N (6-phenylnaphthalen-2-yl) trifluoromethanesulfonate Chemical compound C1=CC2=CC(OS(=O)(=O)C(F)(F)F)=CC=C2C=C1C1=CC=CC=C1 RBIRRANDQLWXOS-UHFFFAOYSA-N 0.000 description 2
- NCWDBNBNYVVARF-UHFFFAOYSA-N 1,3,2-dioxaborolane Chemical compound B1OCCO1 NCWDBNBNYVVARF-UHFFFAOYSA-N 0.000 description 2
- PKRRNTJIHGOMRC-UHFFFAOYSA-N 1-benzofuran-2-ylboronic acid Chemical compound C1=CC=C2OC(B(O)O)=CC2=C1 PKRRNTJIHGOMRC-UHFFFAOYSA-N 0.000 description 2
- QSQOGKONVJDRNH-UHFFFAOYSA-N 1-bromo-4-iodo-2-methylbenzene Chemical compound CC1=CC(I)=CC=C1Br QSQOGKONVJDRNH-UHFFFAOYSA-N 0.000 description 2
- UIGRYYQDBZKOHR-UHFFFAOYSA-N 2-(4-benzo[f][1]benzothiol-2-ylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane Chemical compound S1C2=C(C=C1C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C)C=C1C=CC=CC1=C2 UIGRYYQDBZKOHR-UHFFFAOYSA-N 0.000 description 2
- TVANYJWPPCDDHA-UHFFFAOYSA-N 2-[4-(1-benzothiophen-5-yl)phenyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane Chemical compound S1C2=C(C=C1)C=C(C=C2)C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C TVANYJWPPCDDHA-UHFFFAOYSA-N 0.000 description 2
- BVKFZJRCMZSHLS-UHFFFAOYSA-N 2-[4-(9,9-dimethylfluoren-2-yl)phenyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane Chemical compound O1C(C)(C)C(C)(C)OB1C1=CC=C(C=2C=C3C(C)(C)C4=CC=CC=C4C3=CC=2)C=C1 BVKFZJRCMZSHLS-UHFFFAOYSA-N 0.000 description 2
- AYFJBMBVXWNYLT-UHFFFAOYSA-N 2-bromo-6-methoxynaphthalene Chemical compound C1=C(Br)C=CC2=CC(OC)=CC=C21 AYFJBMBVXWNYLT-UHFFFAOYSA-N 0.000 description 2
- MBHPOBSZPYEADG-UHFFFAOYSA-N 2-bromo-9,9-dimethylfluorene Chemical compound C1=C(Br)C=C2C(C)(C)C3=CC=CC=C3C2=C1 MBHPOBSZPYEADG-UHFFFAOYSA-N 0.000 description 2
- YSPFHLYWWCCXPV-UHFFFAOYSA-N 2-methoxy-6-naphthalen-2-ylnaphthalene Chemical compound C1=CC=CC2=CC(C3=CC4=CC=C(C=C4C=C3)OC)=CC=C21 YSPFHLYWWCCXPV-UHFFFAOYSA-N 0.000 description 2
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 2
- FCUIOUZQKMKJFU-UHFFFAOYSA-N 4,4,5,5-tetramethyl-2-(5-phenyl-1-benzothiophen-2-yl)-1,3,2-dioxaborolane Chemical compound C1(=CC=CC=C1)C1=CC2=C(SC(=C2)B2OC(C(O2)(C)C)(C)C)C=C1 FCUIOUZQKMKJFU-UHFFFAOYSA-N 0.000 description 2
- BHNDKCYKNCFJGV-UHFFFAOYSA-N 6-(1-benzothiophen-2-yl)naphthalen-2-ol Chemical compound C1=CC=C2SC(C3=CC4=CC=C(C=C4C=C3)O)=CC2=C1 BHNDKCYKNCFJGV-UHFFFAOYSA-N 0.000 description 2
- PZOXFBPKKGTQDZ-UHFFFAOYSA-N 6-phenylnaphthalen-2-ol Chemical compound C1=CC2=CC(O)=CC=C2C=C1C1=CC=CC=C1 PZOXFBPKKGTQDZ-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- PUHYCOWXUUMAEG-UHFFFAOYSA-N C1(=CC=CC2=CC=CC=C12)C=1SC2=C(C1)C=CC=C2C2=CC=CC1=CC=CC=C21 Chemical compound C1(=CC=CC2=CC=CC=C12)C=1SC2=C(C1)C=CC=C2C2=CC=CC1=CC=CC=C21 PUHYCOWXUUMAEG-UHFFFAOYSA-N 0.000 description 2
- HBTWXLRKVNLIMF-UHFFFAOYSA-N C1(=CC=CC=C1)C1=CC2=C(SC(=C2)C2=CC=C(C=C2)C=2SC3=C(C2)C=CC=C3C3=CC=C(C=C3)C3=CC2=C(S3)C=CC(=C2)C2=CC=CC=C2)C=C1 Chemical compound C1(=CC=CC=C1)C1=CC2=C(SC(=C2)C2=CC=C(C=C2)C=2SC3=C(C2)C=CC=C3C3=CC=C(C=C3)C3=CC2=C(S3)C=CC(=C2)C2=CC=CC=C2)C=C1 HBTWXLRKVNLIMF-UHFFFAOYSA-N 0.000 description 2
- YGUAPNJEZJATQX-UHFFFAOYSA-N C1=C(C(C=C2)=CC3=C2SC2=C3C=CC=C2)SC2=C1C=CC=C2C(C=C1)=CC2=C1SC1=C2C=CC=C1 Chemical compound C1=C(C(C=C2)=CC3=C2SC2=C3C=CC=C2)SC2=C1C=CC=C2C(C=C1)=CC2=C1SC1=C2C=CC=C1 YGUAPNJEZJATQX-UHFFFAOYSA-N 0.000 description 2
- UXIVIDJYSISYOM-UHFFFAOYSA-N C1=C(C2=CC=CC(C3=CC=CC=C3)=C2)SC2=C1C=CC=C2C1=CC=CC(C2=CC=CC=C2)=C1 Chemical compound C1=C(C2=CC=CC(C3=CC=CC=C3)=C2)SC2=C1C=CC=C2C1=CC=CC(C2=CC=CC=C2)=C1 UXIVIDJYSISYOM-UHFFFAOYSA-N 0.000 description 2
- SGAYFGQDOVGNOS-UHFFFAOYSA-N C1=CC=CC=2C3=CC=CC=C3C(=CC12)C=1SC2=C(C1)C=CC=C2C=2C1=CC=CC=C1C=1C=CC=CC1C2 Chemical compound C1=CC=CC=2C3=CC=CC=C3C(=CC12)C=1SC2=C(C1)C=CC=C2C=2C1=CC=CC=C1C=1C=CC=CC1C2 SGAYFGQDOVGNOS-UHFFFAOYSA-N 0.000 description 2
- QXRRFLGBEGESFZ-UHFFFAOYSA-N C1=CC=CC=2C3=CC=CC=C3N(C12)C=1SC2=C(C1)C=CC=C2N2C1=CC=CC=C1C=1C=CC=CC21 Chemical compound C1=CC=CC=2C3=CC=CC=C3N(C12)C=1SC2=C(C1)C=CC=C2N2C1=CC=CC=C1C=1C=CC=CC21 QXRRFLGBEGESFZ-UHFFFAOYSA-N 0.000 description 2
- NHCQRQXXFCZBMC-UHFFFAOYSA-N C1=CSC(C=C2)=C1C=C2C(C=C1)=CC=C1C1=CC(C=CC=C2C(C=C3)=CC=C3C(C=C3)=CC4=C3SC=C4)=C2S1 Chemical compound C1=CSC(C=C2)=C1C=C2C(C=C1)=CC=C1C1=CC(C=CC=C2C(C=C3)=CC=C3C(C=C3)=CC4=C3SC=C4)=C2S1 NHCQRQXXFCZBMC-UHFFFAOYSA-N 0.000 description 2
- SYUIQASIVWEPTQ-UHFFFAOYSA-N CC1=CC=CC=C1.CC1(C2=CC=CC=C2C=2C=CC(=CC12)B1OC(C(O1)(C)C)(C)C)C Chemical compound CC1=CC=CC=C1.CC1(C2=CC=CC=C2C=2C=CC(=CC12)B1OC(C(O1)(C)C)(C)C)C SYUIQASIVWEPTQ-UHFFFAOYSA-N 0.000 description 2
- GMXVPEPFIDOKQQ-UHFFFAOYSA-N CC1=CC=CC=C1.CC1(C2=CC=CC=C2C=2C=CC(=CC12)C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C)C Chemical compound CC1=CC=CC=C1.CC1(C2=CC=CC=C2C=2C=CC(=CC12)C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C)C GMXVPEPFIDOKQQ-UHFFFAOYSA-N 0.000 description 2
- GHHGNTFBZQBOQR-UHFFFAOYSA-N CC1=CC=CC=C1.S1C2=C(C=C1C1=CC(=C(C=C1)B1OC(C(O1)(C)C)(C)C)C)C=CC=C2 Chemical compound CC1=CC=CC=C1.S1C2=C(C=C1C1=CC(=C(C=C1)B1OC(C(O1)(C)C)(C)C)C)C=CC=C2 GHHGNTFBZQBOQR-UHFFFAOYSA-N 0.000 description 2
- GVLBHZJUHXLIJZ-UHFFFAOYSA-N CC1=CC=CC=C1.S1C2=C(C=C1C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C)C=CC1=CC=CC=C12 Chemical compound CC1=CC=CC=C1.S1C2=C(C=C1C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C)C=CC1=CC=CC=C12 GVLBHZJUHXLIJZ-UHFFFAOYSA-N 0.000 description 2
- CCLJLLWKPUNVHN-UHFFFAOYSA-N CC1=CC=CC=C1.S1C2=C(C=C1C=1C=C3C=CC(=CC3=CC1)B1OC(C(O1)(C)C)(C)C)C=CC=C2 Chemical compound CC1=CC=CC=C1.S1C2=C(C=C1C=1C=C3C=CC(=CC3=CC1)B1OC(C(O1)(C)C)(C)C)C=CC=C2 CCLJLLWKPUNVHN-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ZODNTPKWYZNRPU-UHFFFAOYSA-N FC(C1=CC(C(F)(F)F)=CC(C2=CC(C=CC=C3C4=CC(C(F)(F)F)=CC(C(F)(F)F)=C4)=C3S2)=C1)(F)F Chemical compound FC(C1=CC(C(F)(F)F)=CC(C2=CC(C=CC=C3C4=CC(C(F)(F)F)=CC(C(F)(F)F)=C4)=C3S2)=C1)(F)F ZODNTPKWYZNRPU-UHFFFAOYSA-N 0.000 description 2
- YPHXYXMMKMRHCI-UHFFFAOYSA-N FC(C=C(C=C1)C2=CC(C=CC=C3C(C=C4)=CC(F)=C4C4=CC=CC=C4)=C3S2)=C1C1=CC=CC=C1 Chemical compound FC(C=C(C=C1)C2=CC(C=CC=C3C(C=C4)=CC(F)=C4C4=CC=CC=C4)=C3S2)=C1C1=CC=CC=C1 YPHXYXMMKMRHCI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- NXCSDJOTXUWERI-UHFFFAOYSA-N [1]benzothiolo[3,2-b][1]benzothiole Chemical compound C12=CC=CC=C2SC2=C1SC1=CC=CC=C21 NXCSDJOTXUWERI-UHFFFAOYSA-N 0.000 description 2
- BPTABBGLHGBJQR-UHFFFAOYSA-N [3,5-bis(trifluoromethyl)phenyl]boronic acid Chemical compound OB(O)C1=CC(C(F)(F)F)=CC(C(F)(F)F)=C1 BPTABBGLHGBJQR-UHFFFAOYSA-N 0.000 description 2
- 229940027991 antiseptic and disinfectant quinoline derivative Drugs 0.000 description 2
- 125000005605 benzo group Chemical group 0.000 description 2
- XHYRHAQEXJIVJX-UHFFFAOYSA-N benzo[g][1]benzothiole Chemical compound C1=CC=CC2=C(SC=C3)C3=CC=C21 XHYRHAQEXJIVJX-UHFFFAOYSA-N 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 125000002462 isocyano group Chemical group *[N+]#[C-] 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 2
- IVDFJHOHABJVEH-UHFFFAOYSA-N pinacol Chemical compound CC(C)(O)C(C)(C)O IVDFJHOHABJVEH-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 150000003248 quinolines Chemical class 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- ZRUWPSCSJYMLBP-UHFFFAOYSA-N (1-phenylnaphthalen-2-yl) trifluoromethanesulfonate Chemical compound FC(F)(F)S(=O)(=O)OC1=CC=C2C=CC=CC2=C1C1=CC=CC=C1 ZRUWPSCSJYMLBP-UHFFFAOYSA-N 0.000 description 1
- HYCYKHYFIWHGEX-UHFFFAOYSA-N (2-phenylphenyl)boronic acid Chemical compound OB(O)C1=CC=CC=C1C1=CC=CC=C1 HYCYKHYFIWHGEX-UHFFFAOYSA-N 0.000 description 1
- GOXICVKOZJFRMB-UHFFFAOYSA-N (3-phenylphenyl)boronic acid Chemical compound OB(O)C1=CC=CC(C=2C=CC=CC=2)=C1 GOXICVKOZJFRMB-UHFFFAOYSA-N 0.000 description 1
- ICQAKBYFBIWELX-UHFFFAOYSA-N (4-naphthalen-2-ylphenyl)boronic acid Chemical compound C1=CC(B(O)O)=CC=C1C1=CC=C(C=CC=C2)C2=C1 ICQAKBYFBIWELX-UHFFFAOYSA-N 0.000 description 1
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical class [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- SIAJAYFLPBYCOF-UHFFFAOYSA-N 1-(4-bromophenyl)-3,5-diphenylbenzene Chemical group C1=CC(Br)=CC=C1C1=CC(C=2C=CC=CC=2)=CC(C=2C=CC=CC=2)=C1 SIAJAYFLPBYCOF-UHFFFAOYSA-N 0.000 description 1
- RYJATPLJVSILLB-UHFFFAOYSA-N 1-nitro-2-(2-phenylethenyl)benzene Chemical class [O-][N+](=O)C1=CC=CC=C1C=CC1=CC=CC=C1 RYJATPLJVSILLB-UHFFFAOYSA-N 0.000 description 1
- UHUGPZFPQQZQNW-UHFFFAOYSA-N 2,7-bis[4-(1-benzothiophen-2-yl)-2-methylphenyl]-[1]benzothiolo[3,2-b][1]benzothiole Chemical compound S1C2=C(C=C1C1=CC(=C(C=C1)C1=CC3=C(C=C1)C=1SC4=C(C1S3)C=CC(=C4)C4=C(C=C(C=C4)C4=CC3=C(S4)C=CC=C3)C)C)C=CC=C2 UHUGPZFPQQZQNW-UHFFFAOYSA-N 0.000 description 1
- IOHSJBVZNJOEKN-UHFFFAOYSA-N 2,7-bis[6-(1-benzothiophen-2-yl)naphthalen-2-yl]-[1]benzothiolo[3,2-b][1]benzothiole Chemical compound C1=C(C2=CC=C(C=C(C=C3)C(C=C4)=CC5=C4C(SC4=C6C=CC(C(C=CC7=C8)=CC7=CC=C8C7=CC(C=CC=C8)=C8S7)=C4)=C6S5)C3=C2)SC2=C1C=CC=C2 IOHSJBVZNJOEKN-UHFFFAOYSA-N 0.000 description 1
- FQIRBKKYMJKENC-UHFFFAOYSA-N 2-(4-bromophenyl)-1,3-benzothiazole Chemical compound C1=CC(Br)=CC=C1C1=NC2=CC=CC=C2S1 FQIRBKKYMJKENC-UHFFFAOYSA-N 0.000 description 1
- RBVHJNZMSBQFDK-UHFFFAOYSA-N 2-(4-bromophenyl)-1,3-benzoxazole Chemical compound C1=CC(Br)=CC=C1C1=NC2=CC=CC=C2O1 RBVHJNZMSBQFDK-UHFFFAOYSA-N 0.000 description 1
- FBQFCXDBCPREBP-UHFFFAOYSA-N 2-(4-bromophenyl)pyridine Chemical compound C1=CC(Br)=CC=C1C1=CC=CC=N1 FBQFCXDBCPREBP-UHFFFAOYSA-N 0.000 description 1
- DAZFRJAIIUPRQZ-UHFFFAOYSA-N 2-(9,9-dimethylfluoren-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane Chemical compound O1C(C)(C)C(C)(C)OB1C1=CC=C(C=2C(=CC=CC=2)C2(C)C)C2=C1 DAZFRJAIIUPRQZ-UHFFFAOYSA-N 0.000 description 1
- PTTUGIHCJMGAQJ-UHFFFAOYSA-N 2-[4-(1-benzofuran-2-yl)phenyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane Chemical compound O1C(C)(C)C(C)(C)OB1C1=CC=C(C=2OC3=CC=CC=C3C=2)C=C1 PTTUGIHCJMGAQJ-UHFFFAOYSA-N 0.000 description 1
- UCIRUAUCNLOCSI-UHFFFAOYSA-N 2-[4-(1-benzothiophen-2-yl)phenyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane Chemical compound O1C(C)(C)C(C)(C)OB1C1=CC=C(C=2SC3=CC=CC=C3C=2)C=C1 UCIRUAUCNLOCSI-UHFFFAOYSA-N 0.000 description 1
- CMGIUUPUDMXXLT-UHFFFAOYSA-N 2-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]pyridine Chemical compound O1C(C)(C)C(C)(C)OB1C1=CC=C(C=2N=CC=CC=2)C=C1 CMGIUUPUDMXXLT-UHFFFAOYSA-N 0.000 description 1
- TUKSITZIQCKONP-UHFFFAOYSA-N 2-[4-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]phenyl]pyridine Chemical compound N1=C(C=CC=C1)C1=CC=C(C=C1)C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C TUKSITZIQCKONP-UHFFFAOYSA-N 0.000 description 1
- CRJISNQTZDMKQD-UHFFFAOYSA-N 2-bromodibenzofuran Chemical compound C1=CC=C2C3=CC(Br)=CC=C3OC2=C1 CRJISNQTZDMKQD-UHFFFAOYSA-N 0.000 description 1
- IJICRIUYZZESMW-UHFFFAOYSA-N 2-bromodibenzothiophene Chemical compound C1=CC=C2C3=CC(Br)=CC=C3SC2=C1 IJICRIUYZZESMW-UHFFFAOYSA-N 0.000 description 1
- SQTPFYJEKHTINP-UHFFFAOYSA-N 2-bromophenanthrene Chemical compound C1=CC=C2C3=CC=C(Br)C=C3C=CC2=C1 SQTPFYJEKHTINP-UHFFFAOYSA-N 0.000 description 1
- CNRLBMUETFJRMO-UHFFFAOYSA-N 2-methoxy-6-phenylnaphthalene Chemical compound C1=CC2=CC(OC)=CC=C2C=C1C1=CC=CC=C1 CNRLBMUETFJRMO-UHFFFAOYSA-N 0.000 description 1
- USMRYMUZKSMTRL-UHFFFAOYSA-N 2-methyl-1,3,2-dioxaborolane Chemical compound CB1OCCO1 USMRYMUZKSMTRL-UHFFFAOYSA-N 0.000 description 1
- AZFABGHLDGJASW-UHFFFAOYSA-N 3-bromodibenzofuran Chemical compound C1=CC=C2C3=CC=C(Br)C=C3OC2=C1 AZFABGHLDGJASW-UHFFFAOYSA-N 0.000 description 1
- FDPBPKDNWCZVQR-UHFFFAOYSA-N 3-bromodibenzothiophene Chemical compound C1=CC=C2C3=CC=C(Br)C=C3SC2=C1 FDPBPKDNWCZVQR-UHFFFAOYSA-N 0.000 description 1
- UCFSYHMCKWNKAH-UHFFFAOYSA-N 4,4,5,5-tetramethyl-1,3,2-dioxaborolane Chemical compound CC1(C)OBOC1(C)C UCFSYHMCKWNKAH-UHFFFAOYSA-N 0.000 description 1
- ZYFCOLJZDOJAKX-UHFFFAOYSA-N 4,4,5,5-tetramethyl-2-[4-(5-phenyl-1-benzothiophen-2-yl)phenyl]-1,3,2-dioxaborolane Chemical compound C1(=CC=CC=C1)C1=CC2=C(SC(=C2)C2=CC=C(C=C2)B2OC(C(O2)(C)C)(C)C)C=C1 ZYFCOLJZDOJAKX-UHFFFAOYSA-N 0.000 description 1
- ICESCNGNKLTYAZ-UHFFFAOYSA-N 4,4,5,5-tetramethyl-2-phenanthren-2-yl-1,3,2-dioxaborolane Chemical compound O1C(C)(C)C(C)(C)OB1C1=CC=C2C3=CC=CC=C3C=CC2=C1 ICESCNGNKLTYAZ-UHFFFAOYSA-N 0.000 description 1
- CMSGUKVDXXTJDQ-UHFFFAOYSA-N 4-(2-naphthalen-1-ylethylamino)-4-oxobutanoic acid Chemical compound C1=CC=C2C(CCNC(=O)CCC(=O)O)=CC=CC2=C1 CMSGUKVDXXTJDQ-UHFFFAOYSA-N 0.000 description 1
- 125000004800 4-bromophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Br 0.000 description 1
- RDSIMGKJEYNNLF-UHFFFAOYSA-N 5-bromo-1-benzothiophene Chemical compound BrC1=CC=C2SC=CC2=C1 RDSIMGKJEYNNLF-UHFFFAOYSA-N 0.000 description 1
- QRXYCODAJXSIQT-UHFFFAOYSA-N 6-naphthalen-2-ylnaphthalen-2-ol Chemical compound C1=CC=CC2=CC(C3=CC4=CC=C(C=C4C=C3)O)=CC=C21 QRXYCODAJXSIQT-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- FIPWRIJSWJWJAI-UHFFFAOYSA-N Butyl carbitol 6-propylpiperonyl ether Chemical compound C1=C(CCC)C(COCCOCCOCCCC)=CC2=C1OCO2 FIPWRIJSWJWJAI-UHFFFAOYSA-N 0.000 description 1
- PLEBUSYNSYOHCP-UHFFFAOYSA-N C1=C(C(C=C2)=CC=C2C(C=C2)=CC=C2C2=CC3=CC=CC=C3C=C2)SC2=C1C=CC=C2C(C=C1)=CC=C1C(C=C1)=CC=C1C1=CC2=CC=CC=C2C=C1 Chemical compound C1=C(C(C=C2)=CC=C2C(C=C2)=CC=C2C2=CC3=CC=CC=C3C=C2)SC2=C1C=CC=C2C(C=C1)=CC=C1C(C=C1)=CC=C1C1=CC2=CC=CC=C2C=C1 PLEBUSYNSYOHCP-UHFFFAOYSA-N 0.000 description 1
- ICXRBEBSRJYCJF-UHFFFAOYSA-N C1=C(C(C=C2)=CC=C2C2=CC(C=CC=C3C(C=C4)=CC=C4C4=CC(C=CC=C5)=C5O4)=C3S2)OC2=C1C=CC=C2 Chemical compound C1=C(C(C=C2)=CC=C2C2=CC(C=CC=C3C(C=C4)=CC=C4C4=CC(C=CC=C5)=C5O4)=C3S2)OC2=C1C=CC=C2 ICXRBEBSRJYCJF-UHFFFAOYSA-N 0.000 description 1
- YPSGOCHOBOISJO-UHFFFAOYSA-N C1=C(C(C=C2)=CC=C2C2=NC(C=CC=C3)=C3S2)SC2=C1C=CC=C2C(C=C1)=CC=C1C1=NC(C=CC=C2)=C2S1 Chemical compound C1=C(C(C=C2)=CC=C2C2=NC(C=CC=C3)=C3S2)SC2=C1C=CC=C2C(C=C1)=CC=C1C1=NC(C=CC=C2)=C2S1 YPSGOCHOBOISJO-UHFFFAOYSA-N 0.000 description 1
- RNTYVJSSXLJMJU-UHFFFAOYSA-N C1=C(C2=CC(C3=CC=CC=C3)=CC(C3=CC=CC=C3)=C2)SC2=C1C=CC=C2C1=CC(C2=CC=CC=C2)=CC(C2=CC=CC=C2)=C1 Chemical compound C1=C(C2=CC(C3=CC=CC=C3)=CC(C3=CC=CC=C3)=C2)SC2=C1C=CC=C2C1=CC(C2=CC=CC=C2)=CC(C2=CC=CC=C2)=C1 RNTYVJSSXLJMJU-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- ICGHIUUSOZUFAN-UHFFFAOYSA-N CC1=CC=CC=C1.C1(=CC(=C(C=C1)B1OC(C(O1)(C)C)(C)C)C1=CC=CC=C1)C1=CC=CC=C1 Chemical compound CC1=CC=CC=C1.C1(=CC(=C(C=C1)B1OC(C(O1)(C)C)(C)C)C1=CC=CC=C1)C1=CC=CC=C1 ICGHIUUSOZUFAN-UHFFFAOYSA-N 0.000 description 1
- OZVOGQUPMZPQTK-UHFFFAOYSA-N CC1=CC=CC=C1.C1(=CC=CC=C1)C1=CC2=C(SC(=C2)C2=CC=C(C=C2)B2OC(C(O2)(C)C)(C)C)C=C1 Chemical compound CC1=CC=CC=C1.C1(=CC=CC=C1)C1=CC2=C(SC(=C2)C2=CC=C(C=C2)B2OC(C(O2)(C)C)(C)C)C=C1 OZVOGQUPMZPQTK-UHFFFAOYSA-N 0.000 description 1
- ONKWBZZIXMLAPK-UHFFFAOYSA-N CC1=CC=CC=C1.C1(=CC=CC=C1)C=1C=C2C=CC(=CC2=CC1)B1OC(C(O1)(C)C)(C)C Chemical compound CC1=CC=CC=C1.C1(=CC=CC=C1)C=1C=C2C=CC(=CC2=CC1)B1OC(C(O1)(C)C)(C)C ONKWBZZIXMLAPK-UHFFFAOYSA-N 0.000 description 1
- NBHHUKQSVCFBAJ-UHFFFAOYSA-N CC1=CC=CC=C1.C1=C(C=CC2=CC(=CC=C12)B1OC(C(O1)(C)C)(C)C)C1=CC2=CC=CC=C2C=C1 Chemical compound CC1=CC=CC=C1.C1=C(C=CC2=CC(=CC=C12)B1OC(C(O1)(C)C)(C)C)C1=CC2=CC=CC=C2C=C1 NBHHUKQSVCFBAJ-UHFFFAOYSA-N 0.000 description 1
- LQYULHBSVGWQCA-UHFFFAOYSA-N CC1=CC=CC=C1.C1=C(C=CC2=CC=CC=C12)C1=CC=C(C=C1)C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C Chemical compound CC1=CC=CC=C1.C1=C(C=CC2=CC=CC=C12)C1=CC=C(C=C1)C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C LQYULHBSVGWQCA-UHFFFAOYSA-N 0.000 description 1
- ZDKFUYFZHPFWLB-UHFFFAOYSA-N CC1=CC=CC=C1.C1=C(C=CC=2C3=CC=CC=C3C=CC12)B1OC(C(O1)(C)C)(C)C Chemical compound CC1=CC=CC=C1.C1=C(C=CC=2C3=CC=CC=C3C=CC12)B1OC(C(O1)(C)C)(C)C ZDKFUYFZHPFWLB-UHFFFAOYSA-N 0.000 description 1
- YBVDFMKBFORTPN-UHFFFAOYSA-N CC1=CC=CC=C1.C1=C(C=CC=2C3=CC=CC=C3C=CC12)C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C Chemical compound CC1=CC=CC=C1.C1=C(C=CC=2C3=CC=CC=C3C=CC12)C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C YBVDFMKBFORTPN-UHFFFAOYSA-N 0.000 description 1
- GKVMYZJNZKBCNE-UHFFFAOYSA-N CC1=CC=CC=C1.C1=C(C=CC=2SC3=C(C21)C=CC=C3)B3OC(C(O3)(C)C)(C)C Chemical compound CC1=CC=CC=C1.C1=C(C=CC=2SC3=C(C21)C=CC=C3)B3OC(C(O3)(C)C)(C)C GKVMYZJNZKBCNE-UHFFFAOYSA-N 0.000 description 1
- DQNWNSHCRJLTRQ-UHFFFAOYSA-N CC1=CC=CC=C1.N1=C(C=CC=C1)C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C Chemical compound CC1=CC=CC=C1.N1=C(C=CC=C1)C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C DQNWNSHCRJLTRQ-UHFFFAOYSA-N 0.000 description 1
- MDFFDLCRZHQPMS-UHFFFAOYSA-N CC1=CC=CC=C1.N1=C(C=CC=C1)C1=CC=C(C=C1)C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C Chemical compound CC1=CC=CC=C1.N1=C(C=CC=C1)C1=CC=C(C=C1)C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C MDFFDLCRZHQPMS-UHFFFAOYSA-N 0.000 description 1
- GWYQPHQVUKVYKM-UHFFFAOYSA-N CC1=CC=CC=C1.O1C2=C(C=C1C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C)C=CC=C2 Chemical compound CC1=CC=CC=C1.O1C2=C(C=C1C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C)C=CC=C2 GWYQPHQVUKVYKM-UHFFFAOYSA-N 0.000 description 1
- TXQWJALWNCVZKN-UHFFFAOYSA-N CC1=CC=CC=C1.S1C2=C(C=C1C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C)C=CC=C2 Chemical compound CC1=CC=CC=C1.S1C2=C(C=C1C1=CC=C(C=C1)B1OC(C(O1)(C)C)(C)C)C=CC=C2 TXQWJALWNCVZKN-UHFFFAOYSA-N 0.000 description 1
- XRLQXSMBFPYLHT-UHFFFAOYSA-N CC1=CC=CC=C1.S1C=NC2=C1C=CC=C2 Chemical compound CC1=CC=CC=C1.S1C=NC2=C1C=CC=C2 XRLQXSMBFPYLHT-UHFFFAOYSA-N 0.000 description 1
- VBLGPGQTASZFGE-UHFFFAOYSA-N COC1=CC2=CC=C(C=C2C=C1)C1=CC=CC=C1.OC1=CC2=CC=C(C=C2C=C1)C1=CC=CC=C1 Chemical compound COC1=CC2=CC=C(C=C2C=C1)C1=CC=CC=C1.OC1=CC2=CC=C(C=C2C=C1)C1=CC=CC=C1 VBLGPGQTASZFGE-UHFFFAOYSA-N 0.000 description 1
- LMCWONWBAFFBSS-UHFFFAOYSA-N COC=1C=C2C=CC(=CC2=CC1)C1=CC2=CC=CC=C2C=C1.OC=1C=C2C=CC(=CC2=CC1)C1=CC2=CC=CC=C2C=C1 Chemical compound COC=1C=C2C=CC(=CC2=CC1)C1=CC2=CC=CC=C2C=C1.OC=1C=C2C=CC(=CC2=CC1)C1=CC2=CC=CC=C2C=C1 LMCWONWBAFFBSS-UHFFFAOYSA-N 0.000 description 1
- UJOBWOGCFQCDNV-UHFFFAOYSA-N Carbazole Natural products C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical class C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 1
- FQRDRVMZPKMUNE-UHFFFAOYSA-N O1C(=NC2=C1C=CC=C2)C2=CC=C(C=C2)C=2SC1=C(C2)C=CC=C1C1=CC=C(C=C1)C=1OC2=C(N1)C=CC=C2 Chemical compound O1C(=NC2=C1C=CC=C2)C2=CC=C(C=C2)C=2SC1=C(C2)C=CC=C1C1=CC=C(C=C1)C=1OC2=C(N1)C=CC=C2 FQRDRVMZPKMUNE-UHFFFAOYSA-N 0.000 description 1
- ARFWVTIVDAIYOQ-UHFFFAOYSA-N S1C2=C(C=C1C1=CC=C(C=C1)C=1SC3=C(C1)C=CC=C3C3=CC=C(C=C3)C3=CC1=C(S3)C=CC=C1)C=CC=C2 Chemical compound S1C2=C(C=C1C1=CC=C(C=C1)C=1SC3=C(C1)C=CC=C3C3=CC=C(C=C3)C3=CC1=C(S3)C=CC=C1)C=CC=C2 ARFWVTIVDAIYOQ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- UVCRLTMCDUXFSL-UHFFFAOYSA-N [4-(4-methylphenyl)phenyl]boronic acid Chemical compound C1=CC(C)=CC=C1C1=CC=C(B(O)O)C=C1 UVCRLTMCDUXFSL-UHFFFAOYSA-N 0.000 description 1
- WOCFESDMIYKZBM-UHFFFAOYSA-K [O-]P([O-])(O)=O.[O-]P(O)(O)=O.P.[K+].[K+].[K+] Chemical compound [O-]P([O-])(O)=O.[O-]P(O)(O)=O.P.[K+].[K+].[K+] WOCFESDMIYKZBM-UHFFFAOYSA-K 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- 150000003935 benzaldehydes Chemical class 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical class OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- XZKRXPZXQLARHH-UHFFFAOYSA-N buta-1,3-dienylbenzene Chemical class C=CC=CC1=CC=CC=C1 XZKRXPZXQLARHH-UHFFFAOYSA-N 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 150000001846 chrysenes Chemical class 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- 150000001893 coumarin derivatives Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000002510 isobutoxy group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])O* 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000005921 isopentoxy group Chemical group 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000007644 letterpress printing Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- DZVCFNFOPIZQKX-LTHRDKTGSA-M merocyanine Chemical class [Na+].O=C1N(CCCC)C(=O)N(CCCC)C(=O)C1=C\C=C\C=C/1N(CCCS([O-])(=O)=O)C2=CC=CC=C2O\1 DZVCFNFOPIZQKX-LTHRDKTGSA-M 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000000813 microcontact printing Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000006606 n-butoxy group Chemical group 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000006610 n-decyloxy group Chemical group 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001298 n-hexoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000006609 n-nonyloxy group Chemical group 0.000 description 1
- 125000006608 n-octyloxy group Chemical group 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- HUMMCEUVDBVXTQ-UHFFFAOYSA-N naphthalen-1-ylboronic acid Chemical compound C1=CC=C2C(B(O)O)=CC=CC2=C1 HUMMCEUVDBVXTQ-UHFFFAOYSA-N 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 150000002964 pentacenes Chemical class 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- JCDAUYWOHOLVMH-UHFFFAOYSA-N phenanthren-9-ylboronic acid Chemical compound C1=CC=C2C(B(O)O)=CC3=CC=CC=C3C2=C1 JCDAUYWOHOLVMH-UHFFFAOYSA-N 0.000 description 1
- 150000002987 phenanthrenes Chemical class 0.000 description 1
- 150000005041 phenanthrolines Chemical class 0.000 description 1
- RPGWZZNNEUHDAQ-UHFFFAOYSA-N phenylphosphine Chemical compound PC1=CC=CC=C1 RPGWZZNNEUHDAQ-UHFFFAOYSA-N 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920000768 polyamine Chemical class 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000412 polyarylene Chemical class 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 150000004033 porphyrin derivatives Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- QDLYEPXRLHYMJV-UHFFFAOYSA-N propan-2-yloxyboronic acid Chemical compound CC(C)OB(O)O QDLYEPXRLHYMJV-UHFFFAOYSA-N 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 150000003217 pyrazoles Chemical class 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- 150000003233 pyrroles Chemical class 0.000 description 1
- FYNROBRQIVCIQF-UHFFFAOYSA-N pyrrolo[3,2-b]pyrrole-5,6-dione Chemical class C1=CN=C2C(=O)C(=O)N=C21 FYNROBRQIVCIQF-UHFFFAOYSA-N 0.000 description 1
- 125000002294 quinazolinyl group Chemical class N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 150000004322 quinolinols Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002174 soft lithography Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003518 tetracenes Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000002061 vacuum sublimation Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Light Receiving Elements (AREA)
Description
本発明は撮像素子及び光センサー等に用い得る撮像素子用光電変換素子に関する。 The present invention relates to a photoelectric conversion element for an image sensor that can be used for an image sensor, an optical sensor, or the like.
近年、有機エレクトロニクスデバイスへの関心が高まっている。その特徴としてはフレキシブルな構造をとり、大面積化が可能である事、更にはエレクトロニクスデバイス製造プロセスにおいて安価で高速の印刷方法を可能にすることが挙げられる。代表的なデバイスとしては有機EL素子、有機太陽電池素子、有機光電変換素子、有機トランジスタ素子などが挙げられる。有機EL素子はフラットパネルディスプレイとして次世代ディスプレイ用途のメインターゲットとして期待され、携帯電話のディスプレイやTVなどに応用され、更に高機能化を目指した開発が継続されている。有機太陽電池素子などはフレキシブルで安価なエネルギー源として、有機トランジスタ素子などはフレキシブルなディスプレイや安価なICへと研究開発がなされている。 In recent years, there has been increasing interest in organic electronic devices. Its features are that it has a flexible structure and can increase the area, and that it enables an inexpensive and high-speed printing method in the electronic device manufacturing process. Typical devices include an organic EL element, an organic solar cell element, an organic photoelectric conversion element, an organic transistor element and the like. Organic EL elements are expected to be the main target for next-generation display applications as flat panel displays, and are being applied to mobile phone displays and TVs, and are being developed with the aim of further enhancing functionality. Research and development has been carried out on organic solar cell elements and the like as flexible and inexpensive energy sources, and on organic transistor elements and the like as flexible displays and inexpensive ICs.
有機エレクトロニクスデバイスの開発には、そのデバイスを構成する材料の開発が非常に重要である。そのため各分野において数多くの材料が検討されているが、十分な性能を有しているとは言えず、現在でも各種デバイスに有用な材料の開発が精力的に行われている。その中で、ベンゾチエノベンゾチオフェン等を母骨格とした化合物も有機エレクトロニクス材料として開発されており(特許文献1乃至3)、ベンゾチエノベンゾチオフェンのアルキル誘導体を用いた場合は、印刷プロセスで半導体薄膜を形成するのに十分な溶媒溶解度を有するが、アルキル鎖長に対する縮環数が相対的に少ないことにより低温で相転移を起こしやすく、有機エレクトロニクスデバイスの耐熱性が劣ることが問題であった。
For the development of organic electronics devices, the development of materials that make up the devices is extremely important. Therefore, many materials are being studied in each field, but they cannot be said to have sufficient performance, and materials useful for various devices are still being energetically developed. Among them, compounds having benzothiophenobenzothiophene as a matrix have also been developed as organic electronics materials (
また、近年の有機エレクトロニクスの中で、有機光電変換素子は、次世代の撮像素子への展開が期待されており、いくつかのグループからその報告がなされている。例えば、キナクリドン誘導体、もしくはキナゾリン誘導体を光電変換素子に用いた例(特許文献4)、キナクリドン誘導体を用いた光電変換素子を撮像素子へ応用した例(特許文献5)、ジケトピロロピロール誘導体を用いた例(特許文献6)がある。一般的に、撮像素子は、高コントラスト化、省電力化を目的として、暗電流の低減を目指すことによって、性能は向上すると考えられる。そこで、暗時の光電変換部からのリーク電流を減らす為、光電変換部と電極部間に、正孔ブロック層、もしくは電子ブロック層を挿入する手法が用いられる。また、リーク電流を効果的に減らすためには、各層表面の凸凹は小さいことが必要である(特許文献7)。 Further, among organic electronics in recent years, organic photoelectric conversion elements are expected to be applied to next-generation image pickup elements, and several groups have reported on them. For example, an example in which a quinacridone derivative or a quinazoline derivative is used for a photoelectric conversion element (Patent Document 4), an example in which a photoelectric conversion element using a quinacridone derivative is applied to an imaging device (Patent Document 5), and a diketopyrrolopyrrole derivative are used. There is an example (Patent Document 6). In general, it is considered that the performance of an image sensor is improved by aiming at reducing dark current for the purpose of increasing contrast and power saving. Therefore, in order to reduce the leakage current from the photoelectric conversion unit in the dark, a method of inserting a hole block layer or an electron block layer between the photoelectric conversion unit and the electrode unit is used. Further, in order to effectively reduce the leakage current, it is necessary that the unevenness of the surface of each layer is small (Patent Document 7).
正孔ブロック層、並びに電子ブロック層は、有機エレクトロニクスデバイスの分野では一般に広く用いられており、それぞれ、デバイスの構成膜中において、電極もしくは導電性を有する膜と、それ以外の膜の界面に配置され、正孔もしくは電子の逆移動を制御する機能を有する膜であり、不必要な正孔もしくは電子の漏れを調整するものであり、デバイスの用途により、耐熱性、透過波長、成膜方法等の特性を考慮し、選択して用いるものである。しかしながら、特に光電変換素子用途の材料の要求性能は高く、これまでの正孔ブロック層、もしくは電子ブロック層では、リーク電流防止特性、プロセス温度に対する耐熱性、可視光透明性などの面で、十分な性能を有しているとは言えず、商業的に活用されるに至っていない。 The hole block layer and the electron block layer are generally widely used in the field of organic electronic devices, and are arranged at the interface between an electrode or a conductive film and another film in the constituent film of the device, respectively. It is a film that has the function of controlling the reverse movement of holes or electrons, and adjusts the leakage of unnecessary holes or electrons. Depending on the application of the device, heat resistance, transmission wavelength, film formation method, etc. It is selected and used in consideration of the characteristics of. However, the required performance of materials for photoelectric conversion elements is particularly high, and the conventional hole block layer or electron block layer is sufficient in terms of leakage current prevention characteristics, heat resistance to process temperature, visible light transparency, and the like. It cannot be said that it has excellent performance, and it has not been used commercially.
本発明は、この様な状況に鑑みてなされたものであり、正孔もしくは電子リーク防止特性、正孔もしくは電子輸送特性、プロセス温度に対する耐熱性、可視光透明性等に優れた、光電変換素子を提供することを目的とする。 The present invention has been made in view of such a situation, and is a photoelectric conversion element excellent in hole or electron leakage prevention property, hole or electron transport property, heat resistance to process temperature, visible light transparency, and the like. The purpose is to provide.
本発明者は、上記課題を解決すべく、鋭意努力した結果、撮像素子用光電変換素子の光電変換部に平滑性の高い有機薄膜層を用いることにより前記の諸課題が解決することを見出し、本発明を完成するに至った。
即ち、本発明は、下記の通りである。
(1)(A)第一の電極膜、(B)第二の電極膜及び該第一の電極膜と該第二の電極膜の間に配置された(C)光電変換部を有する光電変換素子であって、該光電変換部が、表面粗さRa及び/又はSaが7.0nm以下の有機薄膜層を一層以上有する撮像素子用光電変換素子、
(2)(C)光電変換部が、表面粗さRa及び/又はSaが1.3nm以上7.0nm以下の有機薄膜層を一層以上有する前項(1)に記載の撮像素子用光電変換素子、
(3)(C)光電変換部の有する表面粗さRa及び/又はSaが7.0nm以下の有機薄膜層が、(c−1)光電変換層及び/又は(c−2)光電変換層以外の有機薄膜層である前項(1)又は(2)に記載の撮像素子用光電変換素子、
(4)(c−1)光電変換層がp型有機半導体材料及びn型有機半導体材料を含む前項(3)に記載の撮像素子用光電変換素子、
(5)(c−2)光電変換層以外の有機薄膜層が電子ブロック層である前項(3)に記載の撮像素子用光電変換素子、
(6)(c−2)光電変換層以外の有機薄膜層が正孔ブロック層である前項(3)に記載の撮像素子用光電変換素子、
(7)(c−2)光電変換層以外の有機薄膜層が電子輸送層である前項(3)に記載の撮像素子用光電変換素子、
(8)(c−2)光電変換層以外の有機薄膜層が正孔輸送層である前項(3)に記載の撮像素子用光電変換素子、
(9)更に、(D)正孔蓄積部を有する薄膜トランジスタ及び(E)該薄膜トランジスタ内に蓄積された電荷に応じた信号を読み取る信号読み取り部を有する前項(1)乃至(8)のいずれか一項に記載の撮像素子用光電変換素子、
(10)(C)光電変換部が有する表面粗さRa及び/又はSaが7.0nm以下の有機薄膜層が下記式(1)
As a result of diligent efforts to solve the above problems, the present inventor has found that the above problems can be solved by using an organic thin film layer having high smoothness in the photoelectric conversion part of the photoelectric conversion element for an imaging element. The present invention has been completed.
That is, the present invention is as follows.
(1) (A) First electrode film, (B) Second electrode film, and (C) Photoelectric conversion having a photoelectric conversion unit arranged between the first electrode film and the second electrode film. A photoelectric conversion element for an imaging device, wherein the photoelectric conversion unit has one or more organic thin film layers having a surface roughness Ra and / or Sa of 7.0 nm or less.
(2) The photoelectric conversion element for an image sensor according to (1) above, wherein the photoelectric conversion unit has one or more organic thin film layers having a surface roughness Ra and / or Sa of 1.3 nm or more and 7.0 nm or less.
(3) The organic thin film layer having a surface roughness Ra and / or Sa of 7.0 nm or less of the (C) photoelectric conversion unit is other than the (c-1) photoelectric conversion layer and / or (c-2) photoelectric conversion layer. The photoelectric conversion element for an imaging element according to the previous item (1) or (2), which is an organic thin film layer of
(4) The photoelectric conversion element for an image sensor according to (3) above, wherein the photoelectric conversion layer contains a p-type organic semiconductor material and an n-type organic semiconductor material.
(5) (c-2) The photoelectric conversion element for an imaging element according to the previous item (3), wherein the organic thin film layer other than the photoelectric conversion layer is an electron block layer.
(6) (c-2) The photoelectric conversion element for an imaging element according to the previous item (3), wherein the organic thin film layer other than the photoelectric conversion layer is a hole block layer.
(7) (c-2) The photoelectric conversion element for an imaging element according to the previous item (3), wherein the organic thin film layer other than the photoelectric conversion layer is an electron transport layer.
(8) (c-2) The photoelectric conversion element for an imaging element according to the previous item (3), wherein the organic thin film layer other than the photoelectric conversion layer is a hole transport layer.
(9) Further, any one of (1) to (8) above, which has (D) a thin film transistor having a hole storage unit and (E) a signal reading unit for reading a signal corresponding to the charge accumulated in the thin film transistor. The photoelectric conversion element for an image sensor according to the section,
(10) (C) The organic thin film layer having a surface roughness Ra and / or Sa of 7.0 nm or less possessed by the photoelectric conversion unit is represented by the following formula (1).
(式(1)中、nは置換基Rの数であり、それぞれ独立に0乃至4の整数を表す。Rはそれぞれ独立に置換基を表し、nが2以上の場合、隣接するR同士が連結して環構造を形成してもよい。)で表される化合物を含む前項(1)乃至(9)のいずれか一項に記載の撮像素子用光電変換素子、
(11)(C)光電変換部が有する表面粗さRa及び/又はSaが7.0nm以下の有機薄膜層が下記式(2)
(In the formula (1), n is the number of substituents R and independently represents an integer of 0 to 4. R each independently represents a substituent, and when n is 2 or more, adjacent Rs are adjacent to each other. The photoelectric conversion element for an image pickup device according to any one of (1) to (9) above, which contains a compound represented by (may be linked to form a ring structure).
(11) (C) The organic thin film layer having a surface roughness Ra and / or Sa of 7.0 nm or less possessed by the photoelectric conversion unit is represented by the following formula (2).
(式(2)中、Rは請求項10に記載の式(1)におけるRと同じ意味を表す。)で表される化合物を含む請前項(10)に記載の撮像素子用光電変換素子、
(12)前項(1)及至(11)のいずれか一項に記載の撮像素子用光電変換素子を複数アレイ状に配置した撮像素子、及び
(13)前項(1)及至(11)のいずれか一項に記載の撮像素子用光電変換素子または前項(12)に記載の撮像素子を含む光センサー。
(In the formula (2), R represents the same meaning as R in the formula (1) according to
(12) An image pickup device in which a plurality of photoelectric conversion elements for an image pickup device according to any one of the above items (1) and (11) are arranged in an array, and (13) any one of the above items (1) and (11). The photoelectric conversion element for an image sensor according to
本発明により、正孔又は電子のリーク防止性や輸送性、さらには耐熱性や可視光透明性等の要求特性に優れた撮像素子用光電変換素子を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a photoelectric conversion element for an image sensor, which is excellent in required characteristics such as hole or electron leakage prevention and transportability, heat resistance and visible light transparency.
本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づくものであるが、本発明はそのような実施態様や具体例に限定されるものではない。 The contents of the present invention will be described in detail. The description of the constituent elements described below is based on typical embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples.
本発明の撮像素子用光電変換素子の第1の特徴は、平滑性の高い有機薄膜層を有することにある。 The first feature of the photoelectric conversion element for an image pickup device of the present invention is that it has an organic thin film layer with high smoothness.
本発明において、有機薄膜層の平滑性の測定法は、接触式及び非接触式の何れでも構わないが、有機薄膜層の表面を傷つけないことから、レーザー顕微鏡、原子間力顕微鏡、電子顕微鏡及び断面TEM等の非接触式の測定法が好ましい。 In the present invention, the method for measuring the smoothness of the organic thin film layer may be either a contact type or a non-contact type, but since the surface of the organic thin film layer is not damaged, a laser microscope, an atomic force microscope, an electron microscope and an electron microscope can be used. A non-contact measurement method such as a cross-sectional TEM is preferable.
平均表面粗さRa及びSaは、前記の測定法で得られた有機薄膜の平滑性の測定結果から算出する。具体的には、有機薄膜層の表面上からランダムに選んだ複数部分の線算術平均粗さRaの平均値、若しくは、有機薄膜層の表面上からランダムに選んだ部分の面算術平均粗さSaが本発明の表面粗さである。線算術平均粗さRaの平均値を用いる場合、測定部分の数は多いほど好ましく、通常2μm以上の長さを5か所以上測定した平均値を用いる。面算術平均粗さSaを用いる場合、測定部分の面積は大きい程好ましく、通常2μm四方以上であり、ランダムに選んだ複数個所の平均値を用いても良い。 The average surface roughness Ra and Sa are calculated from the measurement results of the smoothness of the organic thin film obtained by the above measurement method. Specifically, the average value of the linear arithmetic average roughness Ra of a plurality of portions randomly selected from the surface of the organic thin film layer, or the surface arithmetic average roughness Sa of the portion randomly selected from the surface of the organic thin film layer. Is the surface roughness of the present invention. When the average value of the linear arithmetic average roughness Ra is used, it is preferable that the number of measurement portions is large, and usually, the average value obtained by measuring a length of 2 μm or more at 5 or more locations is used. When the surface arithmetic average roughness Sa is used, the larger the area of the measurement portion is, the more preferable it is, usually 2 μm square or more, and an average value of a plurality of randomly selected locations may be used.
有機薄膜層の表面粗さRa及び/又はSaは、通常7.0nm以下であり、6.0nm以下が好ましく、5.0nm以下がより好ましく、4.5nm以下が更に好ましく、4.1nm以下が特に好ましく、1.3nm以上4.1nm以下が最も好ましい。 The surface roughness Ra and / or Sa of the organic thin film layer is usually 7.0 nm or less, preferably 6.0 nm or less, more preferably 5.0 nm or less, further preferably 4.5 nm or less, and 4.1 nm or less. It is particularly preferable, and most preferably 1.3 nm or more and 4.1 nm or less.
本発明の撮像素子用光電変換素子(以下、単に「光電変換素子」ということもある。)は、対向する(A)第一の電極膜と(B)第二の電極膜との二つの電極膜間に、(C)光電変換部を配置した素子であって、(A)第一の電極膜又は(B)第二の電極膜の上方から光が光電変換部に入射されるものである。(C)光電変換部は前記の入射光量に応じて電子と正孔を発生するものであり、半導体により前記電荷に応じた信号が読み出され、光電変換膜部の吸収波長に応じた入射光量を示す素子である。光が入射しない側の電極膜には読み出しのためのトランジスタが接続される場合もある。光電変換素子は、アレイ状に多数配置されている場合は、入射光量に加え入射位置情報をも示すため、撮像素子となる。また、より光源近くに配置された光電変換素子が、光源側から見てその背後に配置された光電変換素子の吸収波長を遮蔽しない(透過する)場合は、複数の光電変換素子を積層して用いても良い。可視光領域にそれぞれ異なる吸収波長を有する複数の光電変換素子を積層して用いることにより、多色の撮像素子(フルカラーフォトダイオードアレイ)とすることができる。 The photoelectric conversion element for an imaging element of the present invention (hereinafter, may be simply referred to as “photoelectric conversion element”) has two electrodes, (A) a first electrode film and (B) a second electrode film, which face each other. An element in which (C) a photoelectric conversion unit is arranged between the films, and light is incident on the photoelectric conversion unit from above (A) the first electrode film or (B) the second electrode film. .. (C) The photoelectric conversion unit generates electrons and holes according to the amount of incident light, a signal corresponding to the electric charge is read out by the semiconductor, and the amount of incident light corresponding to the absorption wavelength of the photoelectric conversion film unit. It is an element indicating. A transistor for reading may be connected to the electrode film on the side where light is not incident. When a large number of photoelectric conversion elements are arranged in an array, they are image pickup elements because they also show incident position information in addition to the amount of incident light. Further, when the photoelectric conversion element arranged closer to the light source does not shield (transmit) the absorption wavelength of the photoelectric conversion element arranged behind the photoelectric conversion element when viewed from the light source side, a plurality of photoelectric conversion elements are laminated. You may use it. A multi-color image sensor (full-color photodiode array) can be obtained by stacking and using a plurality of photoelectric conversion elements having different absorption wavelengths in the visible light region.
(C)光電変換部は、(c−1)光電変換層と、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層及び層間接触改良層等からなる群より選択される一種又は複数種の(c−2)光電変換層以外の有機薄膜層とからなることが多い。本発明の撮像素子用光電変換素子が有する表面粗さRa及び/又はSaが7.0nm以下の有機薄膜層は、(c−1)光電変換層及び(c−2)光電変換層以外の有機薄膜層のいずれであってもよいが、(c−2)光電変換層以外の有機薄膜層であることが好ましい。 The (C) photoelectric conversion unit consists of a group consisting of (c-1) a photoelectric conversion layer, an electron transport layer, a hole transport layer, an electron block layer, a hole block layer, an anti-crystallization layer, an interlayer contact improvement layer, and the like. It often consists of one or more selected organic thin film layers other than the (c-2) photoelectric conversion layer. The organic thin film layer having a surface roughness Ra and / or Sa of 7.0 nm or less contained in the photoelectric conversion element for an imaging element of the present invention is an organic other than the (c-1) photoelectric conversion layer and the (c-2) photoelectric conversion layer. It may be any thin film layer, but it is preferably an organic thin film layer other than (c-2) photoelectric conversion layer.
本発明の撮像素子用光電変換素子が有する(A)第一の電極膜及び(B)第二の電極膜は、後述する(C)光電変換部に含まれる(c−1)光電変換層が正孔輸送性を有する場合や、(c−2)光電変換層以外の有機薄膜層(以下、光電変換層以外の有機薄膜層を、単に「(c−2))有機薄膜層」とも表記する)が正孔輸送性を有する正孔輸送層である場合は、該(c−1)光電変換層や該(c−2)有機薄膜層から正孔を取り出してこれを捕集する役割を果たし、また(C)光電変換部に含まれる(c−1)光電変換層が電子輸送性を有する場合や、(c−2)有機薄膜層が電子輸送性を有する電子輸送層である場合は、該(c−1)光電変換層や該(c−2)有機薄膜層から電子を取り出してこれを吐出する役割を果たすものである。よって、(A)第一の電極膜及び(B)第二の電極膜として用い得る材料は、ある程度の導電性を有するものであれば特に限定されないが、隣接する(c−1)光電変換層や(c−2)有機薄膜層との密着性や電子親和力、イオン化ポテンシャル、安定性等を考慮して選択することが好ましい。(A)第一の電極膜及び(B)第二の電極膜として用い得る材料としては、例えば、酸化錫(NESA)、酸化インジウム、酸化錫インジウム(ITO)及び酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、白金、クロム、アルミニウム、鉄、コバルト、ニッケル及びタングステン等の金属;ヨウ化銅及び硫化銅等の無機導電性物質;ポリチオフェン、ポリピロール及びポリアニリン等の導電性ポリマー;炭素等が挙げられる。これらの材料は、必要により複数を混合して用いてもよいし、複数を2層以上に積層して用いてもよい。(A)第一の電極膜及び(B)第二の電極膜に用いる材料の導電性も光電変換素子の受光を必要以上に妨げなければ特に限定されないが、光電変換素子の信号強度や、消費電力の観点から出来るだけ高いことが好ましい。例えばシート抵抗値が300Ω/□以下の導電性を有するITO膜であれば(A)第一の電極膜及び(B)第二の電極膜として充分機能するが、数Ω/□程度の導電性を有するITO膜を備えた基板の市販品も入手可能となっていることから、この様な高い導電性を有する基板を使用することが望ましい。ITO膜(電極膜)の厚さは導電性を考慮して任意に選択することができるが、通常5乃至500nm、好ましくは10乃至300nm程度である。ITOなどの膜を形成する方法としては、従来公知の蒸着法、電子線ビーム法、スパッタリング法、化学反応法及び塗布法等が挙げられる。基板上に設けられたITO膜には必要に応じUV−オゾン処理やプラズマ処理等を施してもよい。 The (A) first electrode film and (B) second electrode film included in the photoelectric conversion element for an imaging element of the present invention include the (c-1) photoelectric conversion layer included in the (C) photoelectric conversion unit described later. When it has a hole transporting property, or an organic thin film layer other than the (c-2) photoelectric conversion layer (hereinafter, the organic thin film layer other than the photoelectric conversion layer is also simply referred to as "(c-2)) organic thin film layer". ) Is a hole transporting layer having a hole transporting property, it plays a role of extracting holes from the (c-1) photoelectric conversion layer and the (c-2) organic thin film layer and collecting them. Further, when the (c-1) photoelectric conversion layer included in the (C) photoelectric conversion unit has an electron transporting property, or when the (c-2) organic thin film layer is an electron transporting layer, the (c-2) organic thin film layer has an electron transporting property. It plays a role of extracting electrons from the (c-1) photoelectric conversion layer and the (c-2) organic thin film layer and discharging them. Therefore, the materials that can be used as the (A) first electrode film and (B) second electrode film are not particularly limited as long as they have a certain degree of conductivity, but the adjacent (c-1) photoelectric conversion layer is not particularly limited. And (c-2), it is preferable to select in consideration of adhesion to the organic thin film layer, electron affinity, ionization potential, stability and the like. Examples of the material that can be used as the first electrode film (A) and the second electrode film (B) include tin oxide (NESA), indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO). Conductive metal oxides; metals such as gold, silver, platinum, chromium, aluminum, iron, cobalt, nickel and tungsten; inorganic conductive substances such as copper iodide and copper sulfide; conductive polymers such as polythiophene, polypyrrole and polyaniline ; Carbon and the like can be mentioned. If necessary, a plurality of these materials may be mixed and used, or a plurality of these materials may be laminated in two or more layers. The conductivity of the materials used for (A) the first electrode film and (B) the second electrode film is not particularly limited as long as it does not interfere with the light reception of the photoelectric conversion element more than necessary, but the signal strength and consumption of the photoelectric conversion element are not particularly limited. It is preferable that it is as high as possible from the viewpoint of power consumption. For example, an ITO film having a sheet resistance value of 300 Ω / □ or less functions sufficiently as (A) a first electrode film and (B) a second electrode film, but has a conductivity of about several Ω / □. Since a commercially available product of a substrate having an ITO film having an ITO film is also available, it is desirable to use a substrate having such high conductivity. The thickness of the ITO film (electrode film) can be arbitrarily selected in consideration of conductivity, but is usually about 5 to 500 nm, preferably about 10 to 300 nm. Examples of the method for forming a film such as ITO include a conventionally known vapor deposition method, electron beam method, sputtering method, chemical reaction method, coating method and the like. The ITO film provided on the substrate may be subjected to UV-ozone treatment, plasma treatment, or the like, if necessary.
(A)第一の電極膜及び(B)第二の電極膜のうち、少なくとも光が入射する側の何れか一方に用いられる透明電極膜の材料としては、ITO、IZO、SnO2、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO2、FTO(フッ素ドープ酸化スズ)等が挙げられる。(c−1)光電変換層の吸収ピーク波長における透明電極膜を介して入射した光の透過率は、60%以上であることが好ましく、80%以上であることがより好ましく、95%以上であることが特に好ましい。 Of the first electrode film (A) and the second electrode film (B), as the material of the transparent electrode film used for at least one of the side on which light is incident, ITO, IZO, SnO 2 , ATO ( Antimon-doped tin oxide), ZnO, AZO (Al-doped zinc oxide), GZO (gallium-doped zinc oxide), TiO 2 , FTO (fluorine-doped tin oxide) and the like. (C-1) The transmittance of light incident through the transparent electrode film at the absorption peak wavelength of the photoelectric conversion layer is preferably 60% or more, more preferably 80% or more, and 95% or more. It is particularly preferable to have.
また、検出する波長の異なる光電変換層を複数積層する場合、それぞれの光電変換層の間に用いられる電極膜(これは(A)第一の電極膜及び(B)第二の電極膜以外の電極膜である)は、それぞれの光電変換層が検出する光以外の波長の光を透過させる必要があり、該電極膜には入射光の90%以上を透過する材料を用いることが好ましく、95%以上の光を透過する材料を用いることがより好ましい。 Further, when a plurality of photoelectric conversion layers having different wavelengths to be detected are laminated, an electrode film used between the respective photoelectric conversion layers (this is other than (A) the first electrode film and (B) the second electrode film). The electrode film) needs to transmit light having a wavelength other than the light detected by each photoelectric conversion layer, and it is preferable to use a material that transmits 90% or more of the incident light for the electrode film. It is more preferable to use a material that transmits% or more of light.
電極膜はプラズマフリーで作製することが好ましい。プラズマフリーでこれらの電極膜を作成することにより、電極膜が設けられる基板にプラズマ与える影響が低減され、光電変換素子の光電変換特性を良好にすることができる。ここで、プラズマフリーとは、電極膜の成膜時にプラズマが発生しないか、またはプラズマ発生源から基板までの距離が2cm以上、好ましくは10cm以上、更に好ましくは20cm以上であり、基板に到達するプラズマが減ぜられるような状態を意味する。 The electrode film is preferably plasma-free. By producing these electrode films in a plasma-free manner, the influence of plasma on the substrate on which the electrode film is provided can be reduced, and the photoelectric conversion characteristics of the photoelectric conversion element can be improved. Here, plasma-free means that plasma is not generated when the electrode film is formed, or the distance from the plasma generation source to the substrate is 2 cm or more, preferably 10 cm or more, more preferably 20 cm or more, and reaches the substrate. It means a state in which the plasma is reduced.
電極膜の成膜時にプラズマが発生しない装置としては、例えば、電子線蒸着装置(EB蒸着装置)やパルスレーザー蒸着装置等が挙げられる。以下では、EB蒸着装置を用いて透明電極膜の成膜を行う方法をEB蒸着法と言い、パルスレーザー蒸着装置を用いて透明電極膜の成膜を行う方法をパルスレーザー蒸着法と言う。 Examples of the device that does not generate plasma when the electrode film is formed include an electron beam vapor deposition apparatus (EB vapor deposition apparatus) and a pulse laser vapor deposition apparatus. Hereinafter, the method of forming a transparent electrode film using an EB vapor deposition apparatus is referred to as an EB vapor deposition method, and the method of forming a transparent electrode film using a pulse laser vapor deposition apparatus is referred to as a pulse laser vapor deposition method.
成膜中プラズマを減ずることが出来るような状態を実現できる装置(以下、プラズマフリーである成膜装置という)としては、例えば、対向ターゲット式スパッタ装置やアークプラズマ蒸着装置等が考えられる。 As an apparatus capable of realizing a state in which plasma can be reduced during film formation (hereinafter referred to as a plasma-free film forming apparatus), for example, an opposed target sputtering apparatus, an arc plasma vapor deposition apparatus, or the like can be considered.
透明導電膜を電極膜(例えば第一の導電膜)とした場合、DCショート、あるいはリーク電流の増大が生じる場合がある。この原因の一つは、光電変換層に発生する微細なクラックがTCO(TransparentConductiveOxide)などの緻密な膜によって被覆され、透明導電膜とは反対側の電極膜(第二の導電膜)との間の導通が増すためと考えられる。そのため、Alなど膜質が比較して劣る材料を電極に用いた場合、リーク電流の増大は生じにくい。電極膜の膜厚を、光電変換層の膜厚(クラックの深さ)に応じて制御することにより、リーク電流の増大を抑制することができる。 When the transparent conductive film is an electrode film (for example, the first conductive film), a DC short circuit or an increase in leakage current may occur. One of the causes is that fine cracks generated in the photoelectric conversion layer are covered with a dense film such as TCO (Transient Conductive Oxide), and between the film and the electrode film (second conductive film) on the opposite side of the transparent conductive film. It is thought that this is because the continuity of the Therefore, when a material having a film quality inferior to that of Al, such as Al, is used for the electrode, the leakage current is unlikely to increase. By controlling the film thickness of the electrode film according to the film thickness (crack depth) of the photoelectric conversion layer, an increase in leakage current can be suppressed.
通常、導電膜を所定の値より薄くすると、急激な抵抗値の増加が起こる。本実施形態の撮像素子用光電変換素子における導電膜のシート抵抗は、通常100乃至10000Ω/□であり、膜厚の自由度が大きい。また、透明導電膜が薄いほど吸収する光の量が少なくなり、一般に光透過率が高くなる。光透過率が高くなると、光電変換層で吸収される光が増加して光電変換能が向上するため非常に好ましい。 Usually, when the conductive film is made thinner than a predetermined value, a rapid increase in resistance value occurs. The sheet resistance of the conductive film in the photoelectric conversion element for an image sensor of the present embodiment is usually 100 to 10000 Ω / □, and the degree of freedom in film thickness is large. Further, the thinner the transparent conductive film, the smaller the amount of light absorbed, and generally the higher the light transmittance. When the light transmittance is high, the amount of light absorbed by the photoelectric conversion layer is increased and the photoelectric conversion ability is improved, which is very preferable.
本発明の撮像素子用光電変換素子が有する(C)光電変換部は、少なくとも(c−1)光電変換層及び(c−2)光電変換層以外の有機薄膜層を含む。
(C)光電変換部を構成する(c−1)光電変換層には一般的に有機半導体膜が用いられるが、その有機半導体膜は一層、もしくは複数の層であっても良く、一層の場合は、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)が用いられる。一方、複数の層である場合は、2乃至10層程度であり、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)のいずれかを積層した構造であり、層間にバッファ層が挿入されていても良い。
The (C) photoelectric conversion unit included in the photoelectric conversion element for an imaging element of the present invention includes at least an organic thin film layer other than the (c-1) photoelectric conversion layer and the (c-2) photoelectric conversion layer.
An organic semiconductor film is generally used for the (c-1) photoelectric conversion layer constituting the (C) photoelectric conversion unit, but the organic semiconductor film may be one layer or a plurality of layers, and in the case of one layer. A P-type organic semiconductor film, an N-type organic semiconductor film, or a mixed film thereof (bulk heterostructure) is used. On the other hand, in the case of a plurality of layers, there are about 2 to 10 layers, which is a structure in which any one of a P-type organic semiconductor film, an N-type organic semiconductor film, or a mixed film (bulk heterostructure) thereof is laminated, and is an interlayer. A buffer layer may be inserted in.
(c−1)光電変換層の有機半導体膜には、吸収する波長帯に応じ、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、カルバゾール誘導体、ナフタレン誘導体、アントラセン誘導体、クリセン誘導体、フェナントレン誘導体、ペンタセン誘導体、フェニルブタジエン誘導体、スチリル誘導体、キノリン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体、キナクリドン誘導体、クマリン誘導体、ポルフィリン誘導体、フラーレン誘導体や金属錯体(Ir錯体、Pt錯体、Eu錯体など)等を用いることができる。 (C-1) The organic semiconductor film of the photoelectric conversion layer has a triarylamine compound, a benzidine compound, a pyrazoline compound, a styrylamine compound, a hydrazone compound, a triphenylmethane compound, a carbazole compound, and a polysilane compound, depending on the wavelength band to be absorbed. , Thiophen compounds, phthalocyanine compounds, cyanine compounds, merocyanine compounds, oxonor compounds, polyamine compounds, indol compounds, pyrrole compounds, pyrazole compounds, polyarylene compounds, carbazole derivatives, naphthalene derivatives, anthracene derivatives, chrysene derivatives, phenanthrene derivatives, pentacene derivatives, Use phenylbutadiene derivatives, styryl derivatives, quinoline derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluorantene derivatives, quinacridone derivatives, coumarin derivatives, porphyrin derivatives, fullerene derivatives, metal complexes (Ir complex, Pt complex, Eu complex, etc.), etc. be able to.
本発明の撮像素子用光電変換素子において、(C)光電変換部を構成する(c−2)光電変換層以外の有機薄膜層は、(c−1)光電変換層以外の層、例えば、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層又は層間接触改良層等としても用いられる。特に電子輸送層、正孔輸送層、電子ブロック層及び正孔ブロック層からなる群より選択される一種以上の薄膜層として用いることにより、弱い光エネルギーでも効率よく電気信号に変換する素子が得られるため好ましい。 In the photoelectric conversion element for an imaging element of the present invention, the organic thin film layer other than the (c-2) photoelectric conversion layer constituting the (C) photoelectric conversion unit is a layer other than the (c-1) photoelectric conversion layer, for example, an electron. It is also used as a transport layer, a hole transport layer, an electron block layer, a hole block layer, a crystallization prevention layer, an interlayer contact improvement layer, and the like. In particular, by using it as one or more thin film layers selected from the group consisting of an electron transport layer, a hole transport layer, an electron block layer and a hole block layer, an element that efficiently converts even weak light energy into an electric signal can be obtained. Therefore, it is preferable.
電子輸送層は、(c−1)光電変換層で発生した電子を(A)第一の電極膜又は(B)第二の電極膜へ輸送する役割と、電子輸送先の電極膜から(c−1)光電変換層に正孔が移動するのをブロックする役割とを果たす。
正孔輸送層は、発生した正孔を(c−1)光電変換層から(A)第一の電極膜又は(B)第二の電極膜へ輸送する役割と、正孔輸送先の電極膜から(c−1)光電変換層に電子が移動するのをブロックする役割とを果たす。
電子ブロック層は、(A)第一の電極膜又は(B)第二の電極膜から(c−1)光電変換層への電子の移動を妨げ、(c−1)光電変換層内での再結合を防ぎ、暗電流を低減する役割を果たす。
正孔ブロック層は、(A)第一の電極膜又は(B)第二の電極膜から(c−1)光電変換層への正孔の移動を妨げ、(c−1)光電変換層内での再結合を防ぎ、暗電流を低減する機能を有する。
正孔ブロック層は正孔阻止性物質を単独又は二種類以上を積層する、又は混合することにより形成される。正孔阻止性物質としては、正孔が電極から素子外部に流出するのを阻止することができる化合物であれば限定されない。正孔ブロック層に使用することができる化合物としては、バソフェナントロリン及びバソキュプロイン等のフェナントロリン誘導体、シロール誘導体、キノリノール誘導体金属錯体、オキサジアゾール誘導体、オキサゾール誘導体、キノリン誘導体や、後述する式(1)で表される化合物等が挙げられ、これらのうち、一種又は二種以上を用いることができる。
The electron transport layer has a role of transporting electrons generated in the (c-1) photoelectric conversion layer to (A) the first electrode film or (B) the second electrode film, and (c) from the electron transport destination electrode film. -1) It plays a role of blocking the movement of holes to the photoelectric conversion layer.
The hole transport layer has a role of transporting generated holes from the (c-1) photoelectric conversion layer to (A) the first electrode film or (B) the second electrode film, and the hole transport destination electrode film. (C-1) plays a role of blocking the movement of electrons to the photoelectric conversion layer.
The electron block layer hinders the movement of electrons from (A) the first electrode film or (B) the second electrode film to (c-1) the photoelectric conversion layer, and (c-1) in the photoelectric conversion layer. It plays a role in preventing recombination and reducing dark current.
The hole blocking layer hinders the movement of holes from (A) the first electrode film or (B) the second electrode film to (c-1) the photoelectric conversion layer, and (c-1) in the photoelectric conversion layer. It has the function of preventing recombination and reducing dark current.
The hole block layer is formed by laminating or mixing a hole blocking substance alone or two or more kinds. The hole-blocking substance is not limited as long as it is a compound capable of preventing holes from flowing out from the electrode to the outside of the device. Examples of the compound that can be used for the hole block layer include phenanthroline derivatives such as vasophenantroline and vasocuproin, silol derivatives, quinolinol derivative metal complexes, oxaziazole derivatives, oxazole derivatives, quinoline derivatives, and the formula (1) described later. Examples thereof include the represented compounds, and one or more of these can be used.
リーク電流を防止するという観点からは正孔ブロック層の膜厚は厚い方が良いが、光入射時の信号読み出しの際に充分な電流量を得るという観点からは膜厚はなるべく薄い方が良い。これら相反する特性を両立するために、一般的には(c−1)及び(c−2)を含んでなる(C)光電変換部の膜厚が5乃至500nm程度であることが好ましい。
また、正孔ブロック層及び電子ブロック層は、(c−1)光電変換層の光吸収を妨げないために、光電変換層の吸収波長の透過率が高いことが好ましく、また薄膜で用いることが好ましい。
From the viewpoint of preventing leakage current, the hole block layer should have a thick film thickness, but from the viewpoint of obtaining a sufficient amount of current when reading a signal at the time of light incident, the film thickness should be as thin as possible. .. In order to achieve both of these contradictory characteristics, it is generally preferable that the film thickness of the (C) photoelectric conversion unit containing (c-1) and (c-2) is about 5 to 500 nm.
Further, since the hole block layer and the electron block layer do not interfere with the light absorption of the (c-1) photoelectric conversion layer, the transmittance of the absorption wavelength of the photoelectric conversion layer is preferably high, and the hole block layer and the electron block layer are preferably used as a thin film. preferable.
薄膜トランジスタは、光電変換部により生じた電荷に基づき、信号読み取り部へ信号を出力する。薄膜トランジスタは、ゲート電極、ゲート絶縁膜、活性層、ソース電極、及びドレイン電極を有し、活性層は、シリコン半導体、酸化物半導体又は有機半導体により形成されている。 The thin film transistor outputs a signal to the signal reading unit based on the electric charge generated by the photoelectric conversion unit. The thin film transistor has a gate electrode, a gate insulating film, an active layer, a source electrode, and a drain electrode, and the active layer is formed of a silicon semiconductor, an oxide semiconductor, or an organic semiconductor.
薄膜トランジスタに用いられる活性層を酸化物半導体により形成すれば、アモルファスシリコンの活性層に比べて電荷の移動度がはるかに高く、低電圧で駆動させることができる。また、酸化物半導体を用いれば、通常、シリコンよりも光透過性が高く、可撓性を有する活性層を形成することができる。また、酸化物半導体、特にアモルファス酸化物半導体は、低温(例えば室温)で均一に成膜が可能であるため、プラスチックのような可撓性のある樹脂基板を用いるときに特に有利となる。また、複数の二次受光画素を積層させるため、上段の二次受光画素を形成する際に下段の二次受光画素が影響を受ける。特に光電変換層は熱の影響を受けやすいが、酸化物半導体、特にアモルファス酸化物半導体は低温成膜が可能であるため有利である。 If the active layer used for the thin film transistor is formed of an oxide semiconductor, the mobility of electric charges is much higher than that of the active layer of amorphous silicon, and it can be driven at a low voltage. Further, when an oxide semiconductor is used, it is possible to form an active layer having higher light transmittance and flexibility than silicon. Further, since an oxide semiconductor, particularly an amorphous oxide semiconductor, can be uniformly formed at a low temperature (for example, room temperature), it is particularly advantageous when a flexible resin substrate such as plastic is used. Further, since a plurality of secondary light receiving pixels are laminated, the lower secondary light receiving pixels are affected when the upper secondary light receiving pixels are formed. In particular, the photoelectric conversion layer is easily affected by heat, but oxide semiconductors, particularly amorphous oxide semiconductors, are advantageous because they can be formed at a low temperature.
活性層を形成するための酸化物半導体としては、In、Ga及びZnのうちの少なくとも1つを含む酸化物(例えばIn−O系)が好ましく、In、Ga及びZnのうちの少なくとも2つを含む酸化物(例えばIn−Zn−O系、In−Ga−O系、Ga−Zn−O系)がより好ましく、In、Ga及びZnを含む酸化物が更に好ましい。In−Ga−Zn−O系酸化物半導体としては、結晶状態における組成がInGaO3 (ZnO)m (mは6未満の自然数)で表される酸化物半導体が好ましく、特に、InGaZnO4 がより好ましい。この組成のアモルファス酸化物半導体の特徴としては、電気伝導度が増加するにつれ、電子移動度が増加する傾向を示す。 As the oxide semiconductor for forming the active layer, an oxide containing at least one of In, Ga and Zn (for example, In—O system) is preferable, and at least two of In, Ga and Zn are used. Oxides containing (for example, In—Zn—O system, In—Ga—O system, Ga—Zn—O system) are more preferable, and oxides containing In, Ga and Zn are even more preferable. As the In-Ga-Zn-O-based oxide semiconductor, an oxide semiconductor whose composition in the crystalline state is represented by InGaO 3 (ZnO) m (m is a natural number less than 6) is preferable, and InGaZnO 4 is more preferable. .. A characteristic of the amorphous oxide semiconductor having this composition is that the electron mobility tends to increase as the electrical conductivity increases.
信号読み取り部は、光電変換部に生成及び蓄積される電荷または前記電荷に応じた電圧を読み取る。 The signal reading unit reads the electric charge generated and stored in the photoelectric conversion unit or the voltage corresponding to the electric charge.
図1に本発明の撮像素子用光電変換素子の代表的な素子構造を詳細に説明するが、本発明はこれらの構造には限定されるものではない。図1の態様例においては、1が絶縁部、2が一方の電極膜(第一の電極膜又は第二の電極膜)、3が電子ブロック層、4が光電変換層、5が正孔ブロック層、6が他方の電極膜(第二の電極膜又は第一の電極膜)、7が絶縁基材、もしくは積層された光電変換素子をそれぞれ表す。読み出しのトランジスタ(図中には未記載)は、2又は6いずれかの電極膜と接続されていればよく、例えば、光電変換層4が透明であれば、光が入射する側とは反対側の電極膜の外側(電極膜2の上側、又は電極膜6の下側)に成膜されていてもよい。光電変換素子を構成する光電変換層以外の薄膜層(電子ブロック層や正孔ブロック層等)が光電変換層の吸収波長を極度に遮蔽しないものであれば、光が入射する方向は上部(図1における絶縁部1側)または下部(図1における絶縁基板7側)のいずれでもよい。
A typical element structure of the photoelectric conversion element for an image sensor of the present invention will be described in detail in FIG. 1, but the present invention is not limited to these structures. In the example of the embodiment of FIG. 1, 1 is an insulating part, 2 is one electrode film (first electrode film or second electrode film), 3 is an electron block layer, 4 is a photoelectric conversion layer, and 5 is a hole block. The layer, 6 represents the other electrode film (second electrode film or first electrode film), and 7 represents an insulating base material or a laminated photoelectric conversion element. The readout transistor (not shown in the figure) may be connected to either 2 or 6 electrode films. For example, if the photoelectric conversion layer 4 is transparent, the side opposite to the side on which light is incident is opposite. The film may be formed on the outside of the electrode film (upper side of the
本発明の撮像素子用光電変換素子における(c−1)光電変換層及び(c−2)光電変換層以外の有機薄膜層の形成方法には、一般的に、真空プロセスである抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、溶液プロセスであるキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法や、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等、更にはこれらの手法を複数組み合わせた方法を採用しうる。各層の厚みは、それぞれの物質の抵抗値・電荷移動度にもよるので限定することはできないが、通常は7乃至5000nmの範囲であり、好ましくは5乃至1000nmの範囲、より好ましくは3乃至500nmの範囲である。 The method for forming an organic thin film layer other than the (c-1) photoelectric conversion layer and (c-2) photoelectric conversion layer in the photoelectric conversion element for an image pickup device of the present invention generally includes resistance heating vapor deposition, which is a vacuum process. Electron beam deposition, sputtering, molecular lamination method, solution process casting, spin coating, dip coating, blade coating, wire bar coating, spray coating and other coating methods, inkjet printing, screen printing, offset printing, letterpress printing, etc. A soft lithography method such as a printing method or a microcontact printing method, or a method in which a plurality of these methods are combined can be adopted. The thickness of each layer cannot be limited because it depends on the resistance value and charge mobility of each substance, but is usually in the range of 7 to 5000 nm, preferably in the range of 5 to 1000 nm, and more preferably in the range of 3 to 500 nm. Is in the range of.
平滑である有機薄膜を構成する材料は特に限定されないが、下記式(1)で表される化合物を含むことが好ましい。 The material constituting the smooth organic thin film is not particularly limited, but preferably contains a compound represented by the following formula (1).
上記式(1)中、nは置換基Rの数であり、それぞれ独立に0乃至4の整数を表す。Rはそれぞれ独立に置換基を表し、nが2以上の場合隣接する置換基同士が連結して環構造を形成してもよい。 In the above formula (1), n is the number of substituents R, and each independently represents an integer of 0 to 4. Each of R independently represents a substituent, and when n is 2 or more, adjacent substituents may be linked to form a ring structure.
式(1)のRが表す置換基は特に限定されないが、置換又は無置換のアルキル基、置換又は無置換のアルコキシ基、置換又は無置換の芳香族基、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アルキル置換アミノ基、アリール置換アミノ基、非置換アミノ基(NH2基)、アシル基、アルコキシカルボニル基、シアノ基及びイソシアノ基等が挙げられる。 The substituent represented by R in the formula (1) is not particularly limited, but a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aromatic group, a halogen atom, a hydroxyl group, a mercapto group, nitro group, an alkyl-substituted amino group, an aryl-substituted amino group, an unsubstituted amino group (NH 2 group), an acyl group, an alkoxycarbonyl group, a cyano group, and isocyano groups.
ここで、「置換又は無置換のアルキル基」とは、アルキル基上の水素原子が置換基で置換されたアルキル基又はアルキル基上の水素原子が置換基で置換されていないアルキル基を意味する。アルキル基が置換基を有する場合は、少なくとも一種の置換基を有していればよく、置換位置と置換基数も特に制限されない。置換又は無置換のアルコキシ基、置換又は無置換の芳香族基においても同様である。
式(1)のRが表す置換基としてのアルキル基、アルコキシ基及び芳香族基が有する置換基としては、上記した式(1)のRが表す置換基(置換又は無置換のアルキル基、置換又は無置換のアルコキシ基、置換又は無置換の芳香族基、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アルキル置換アミノ基、アリール置換アミノ基、非置換アミノ基(NH2基)、アシル基、アルコキシカルボニル基、シアノ基及びイソシアノ基等)と同じものが挙げられる。
Here, the "substituted or unsubstituted alkyl group" means an alkyl group in which a hydrogen atom on an alkyl group is substituted with a substituent or an alkyl group in which a hydrogen atom on an alkyl group is not substituted with a substituent. .. When the alkyl group has a substituent, it suffices to have at least one kind of substituent, and the substitution position and the number of substituents are not particularly limited. The same applies to a substituted or unsubstituted alkoxy group and a substituted or unsubstituted aromatic group.
As the substituent contained in the alkyl group as the substituent represented by R in the formula (1), the alkoxy group and the aromatic group, the substituent (substituted or unsubstituted alkyl group, substituted) represented by R in the above formula (1) is used. or unsubstituted alkoxy group, a substituted or unsubstituted aromatic group, a halogen atom, a hydroxyl group, a mercapto group, a nitro group, an alkyl-substituted amino group, an aryl-substituted amino group, an unsubstituted amino group (NH 2 group), an acyl group , Alkoxycarbonyl group, cyano group, isocyano group, etc.).
式(1)のRが表す置換基としてのアルキル基は、直鎖状、分岐鎖状及び環状の何れにも限定されず、その炭素数も特に限定されないが、通常は炭素数1乃至4の直鎖状若しくは分岐鎖状のアルキル基であるか、または炭素数5乃至6の環状のアルキル基である。
式(1)のRが表す置換基としてのアルキル基の具体例としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、tert−ブチル基、sec−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、シクロペンチル基及びシクロヘキシル基等が挙げられ、炭素数1乃至4の直鎖又は分岐鎖のアルキル基であることが好ましく、炭素数1又は2の直鎖のアルキル基であることがより好ましい。
The alkyl group as a substituent represented by R in the formula (1) is not limited to any of linear, branched and cyclic, and its carbon number is not particularly limited, but usually has 1 to 4 carbon atoms. It is a linear or branched alkyl group, or a cyclic alkyl group having 5 to 6 carbon atoms.
Specific examples of the alkyl group as the substituent represented by R in the formula (1) include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group and a tert-butyl group. , Se-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, cyclopentyl group, cyclohexyl group and the like, and a linear or branched alkyl group having 1 to 4 carbon atoms is preferable. , A linear alkyl group having 1 or 2 carbon atoms is more preferable.
式(1)のRが表す置換基としてのアルコキシ基の具体例としては,メトキシ基、エトキシ基、プロポキシ基、iso−プロポキシ基、n−ブトキシ基、iso−ブトキシ基、t−ブトキシ基、n−ペンチルオキシ基、iso−ペンチルオキシ基、t−ペンチルオキシ基、sec−ペンチルオキシ基、n−ヘキシルオキシ基、iso−ヘキシルオキシ基、n−ヘプチルオキシ基、sec−ヘプチルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、sec−ノニルオキシ基、n−デシルオキシ基、n−ウンデシルオキシ基、n−ドデシルオキシ基、n−トリデシルオキシ基、n−テトラデシルオキシ基、n−ペンタデシルオキシ基、n−ヘキサデシルオキシ基、n−ヘプタデシルオキシ基、n−オクタデシルオキシ基、n−ノナデシルオキシ基、n−エイコシルオキシ基、ドコシルオキシ基、n−ペンタコシルオキシ基、n−オクタコシルオキシ基、n−トリコンチルオキシ基、5−(n−ペンチル)デシルオキシ基、ヘネイコシルオキシ基、トリコシルオキシ基、テトラコシルオキシ基、ヘキサコシルオキシ基、ヘプタコシルオキシ基、ノナコシルオキシ基、n−トリアコンチルオキシ基、スクアリルオキシ基、ドトリアコンチルオキシ基及びヘキサトリアコンチルオキシ基等の炭素数1乃至36のアルコキシ基が挙げられ、炭素数1乃至24のアルコキシ基であることが好ましく、炭素数1乃至20のアルコキシ基であることがより好ましく、炭素数1乃至12のアルコキシ基であることが更に好ましく、炭素数1乃至6のアルコキシ基であることが特に好ましく、炭素数1乃至4のアルコキシ基であることが最も好ましい。 Specific examples of the alkoxy group as the substituent represented by R in the formula (1) include a methoxy group, an ethoxy group, a propoxy group, an iso-propoxy group, an n-butoxy group, an iso-butoxy group, a t-butoxy group and n. -Pentyloxy group, iso-pentyloxy group, t-pentyloxy group, sec-pentyloxy group, n-hexyloxy group, iso-hexyloxy group, n-heptyloxy group, sec-heptyloxy group, n-octyl Oxy group, n-nonyloxy group, sec-nonyloxy group, n-decyloxy group, n-undecyloxy group, n-dodecyloxy group, n-tridecyloxy group, n-tetradecyloxy group, n-pentadecyloxy Group, n-hexadecyloxy group, n-heptadecyloxy group, n-octadecyloxy group, n-nonadesyloxy group, n-eicosyloxy group, docosyloxy group, n-pentacosyloxy group, n-octacosyl Oxy group, n-tricontyloxy group, 5- (n-pentyl) decyloxy group, heneicosyloxy group, tricosyloxy group, tetracosyloxy group, hexacosyloxy group, heptacosyloxy group, nonacosyloxy Examples thereof include an alkoxy group having 1 to 36 carbon atoms such as a group, an n-triacontyloxy group, a squalyloxy group, a dotriacontyloxy group and a hexatriacontyloxy group, and an alkoxy group having 1 to 24 carbon atoms. It is more preferably an alkoxy group having 1 to 20 carbon atoms, further preferably an alkoxy group having 1 to 12 carbon atoms, and particularly preferably an alkoxy group having 1 to 6 carbon atoms. Most preferably, it is an alkoxy group having 1 to 4 carbon atoms.
式(1)のRが表す置換基としての芳香族基の具体例としては、フェニル基及びナフチル基等の芳香族炭化水素基やヘテロ環縮合芳香族基が挙げられ、芳香族炭化水素基であることが好ましい。
式(1)のRが表す置換基としてのハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
式(1)のRが表す置換基としてのアルキル置換アミノ基は、モノアルキル置換アミノ基及びジアルキル置換アミノ基の何れにも制限されず、これらアルキル置換アミノ基におけるアルキル基としては、式(1)のRが表す置換基としてのアルキル基と同じものが挙げられる。
Specific examples of the aromatic group as the substituent represented by R in the formula (1) include aromatic hydrocarbon groups such as phenyl group and naphthyl group and heterocyclic condensed aromatic groups, which are aromatic hydrocarbon groups. It is preferable to have.
Specific examples of the halogen atom as the substituent represented by R in the formula (1) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
The alkyl-substituted amino group as the substituent represented by R in the formula (1) is not limited to any of the monoalkyl-substituted amino group and the dialkyl-substituted amino group, and the alkyl group in these alkyl-substituted amino groups is the formula (1). ) Is the same as the alkyl group as the substituent represented by R.
式(1)のRが表す置換基としてのアリール置換アミノ基は、モノアリール置換アミノ基及びジアリール置換アミノ基の何れにも制限されず、これらアリール置換アミノ基におけるアリール基としては、式(1)のRが表す置換基の項に記載した芳香族炭化水素基と同じものが挙げられる。
式(1)のRが表す置換基としてのアシル基としては、式(1)のR1及びR2が表す置換基の項に記載した芳香族炭化水素基や、式(1)のRが表す置換基の項に記載したアルキル基がカルボニル基(=CO基)と結合した置換基が挙げられる。
式(1)のRが表す置換基としてのアルコキシカルボニル基としては、式(1)のRが表す置換基としてのアルコキシ基がカルボニル基と結合した置換基が挙げられる。
式(1)のRが表す置換基としては、置換又は無置換のアルキル基、置換又は無置換の芳香族基、ハロゲン原子又はアルコキシル基であることが好ましく、置換又は無置換の芳香族基であることがより好ましい。
The aryl-substituted amino group as the substituent represented by R in the formula (1) is not limited to any of the monoaryl-substituted amino group and the diaryl-substituted amino group, and the aryl group in these aryl-substituted amino groups is the formula (1). ) Is the same as the aromatic hydrocarbon group described in the section of the substituent represented by R.
As the acyl group as the substituent represented by R in the formula (1), the aromatic hydrocarbon group described in the section of the substituent represented by R 1 and R 2 in the formula (1) and R in the formula (1) are used. Examples thereof include a substituent in which the alkyl group described in the section of the substituent represented is bonded to a carbonyl group (= CO group).
Examples of the alkoxycarbonyl group as the substituent represented by R in the formula (1) include a substituent in which the alkoxy group as the substituent represented by R in the formula (1) is bonded to the carbonyl group.
The substituent represented by R in the formula (1) is preferably a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic group, a halogen atom or an alkoxyl group, and is a substituted or unsubstituted aromatic group. More preferably.
上記式(1)におけるRの置換位置は特に制限されないが、式(1)中のBTBT([1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン)構造における2,7位であることが好ましい。即ち、式(1)で表される化合物としては、下記一般式(2)で表される化合物が好ましい。 The substitution position of R in the above formula (1) is not particularly limited, but it is the 2nd and 7th positions in the BTBT ([1] benzothiophene [3,2-b] [1] benzothiophene) structure in the formula (1). Is preferable. That is, as the compound represented by the formula (1), the compound represented by the following general formula (2) is preferable.
式(2)中、Rは式(1)におけるRと同じ意味を表し、好ましいものも式(1)におけるRと同じである。
即ち、式(2)で表される化合物としては、式(2)におけるRが、上記した式(1)におけるRの好ましい〜最も好ましい態様のものが好ましい。
尚、式(1)で表される化合物を含んでなる(c−2)光電変換層以外の有機薄膜は、上記した電子輸送層、正孔輸送層、電子ブロック層及び正孔ブロック層の何れに用いても構わないが、正孔ブロック層に用いることが好ましい。
In the formula (2), R has the same meaning as R in the formula (1), and the preferred one is the same as R in the formula (1).
That is, as the compound represented by the formula (2), the compound in which R in the formula (2) is preferable to the most preferable form of R in the above formula (1) is preferable.
The organic thin film other than the photoelectric conversion layer (c-2) containing the compound represented by the formula (1) is any of the above-mentioned electron transport layer, hole transport layer, electron block layer and hole block layer. However, it is preferable to use it for the hole block layer.
式(1)で表される化合物の具体例を以下に示すが、本発明はこれらの具体例に限定されるものではない。 Specific examples of the compound represented by the formula (1) are shown below, but the present invention is not limited to these specific examples.
式(1)で表される化合物は、特許文献1、特許文献6及び非特許文献1に開示された公知の方法などにより合成することができる。
例えば式(1)のnが1乃至4の化合物の場合は、以下のスキームに記された方法が挙げられる。原料としてニトロスチルベン誘導体(A)を用いて、ベンゾチエノベンゾチオフェン骨格(D)を形成し、これを還元することによりアミノ化物(E)(式(1)におけるRがアミノ基の化合物)が得られる。この化合物(E)をハロゲン化してやればハロゲン化物(F)(式(1)におけるRがハロゲンの化合物、以下のスキームには一例としてRがヨウ素の化合物を記載した)が得られ、この化合物(F)を更にホウ酸誘導体とカップリングをしてやれば式(1)におけるRが芳香族基等の化合物を得ることが可能である。なお、特許文献5の方法によれば、対応するベンズアルデヒド誘導体から式(1)におけるRが芳香族基等の化合物を1ステップで製造できるため、より効果的である。
また、式(1)のnが0の化合物や隣接するR同士が連結して環構造を形成した、置換基を持たない化合物の場合は、ニトロ基を持たないスチルベン誘導体を出発原料としてベンゾチオフェン骨格(D)を形成することにより所望の化合物が得られる。
The compound represented by the formula (1) can be synthesized by a known method disclosed in
For example, in the case of a compound in which n of the formula (1) is 1 to 4, the method described in the following scheme can be mentioned. A benzothienobenzothiophene skeleton (D) is formed using a nitrostilbene derivative (A) as a raw material, and the benzothienobenzothiophene skeleton (D) is reduced to obtain an amination product (E) (a compound in which R is an amino group in the formula (1)). Be done. If this compound (E) is halogenated, a halide (F) (a compound in which R is halogen in the formula (1) and a compound in which R is iodine as an example is described in the following scheme) is obtained, and this compound ( By further coupling F) with a boric acid derivative, it is possible to obtain a compound in which R in the formula (1) is an aromatic group or the like. According to the method of
Further, in the case of a compound of the formula (1) in which n is 0 or a compound having no substituent and having a ring structure formed by connecting adjacent Rs, a stilbene derivative having no nitro group is used as a starting material for benzothiophene. The desired compound is obtained by forming the skeleton (D).
式(1)で表される化合物の精製方法は、特に限定されず、再結晶、カラムクロマトグラフィー、及び真空昇華精製等の公知の方法が採用できる。また必要に応じてこれらの方法を組み合わせることができる。 The method for purifying the compound represented by the formula (1) is not particularly limited, and known methods such as recrystallization, column chromatography, and vacuum sublimation purification can be adopted. Moreover, these methods can be combined as needed.
以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの例に限定されるものではない。
実施例中に記載のブロック層は正孔ブロック層及び電子ブロック層のいずれでも良い。光電変換素子の作製はグローブボックスと一体化した蒸着機で行い、作製した光電変換素子は窒素雰囲気のグローブボックス内で密閉式のボトル型計測チャンバー(エイエルエステクノロジー社製)に光電変換素子を設置し、電流電圧の印加測定を行った。電流電圧の印加測定は、特に指定のない限り、半導体パラメータアナライザ4200−SCS(ケースレーインスツルメンツ社)を用いて行った。入射光の照射は、特に指定のない限り、PVL−3300(朝日分光社製)を用い、照射光波長550nm、照射光半値幅20nmにて行った。また、蒸着膜の表面粗さは、レーザー顕微鏡VK−X250/260(キーエンス社)を用い、150倍レンズ、レーザー光波長408nmにて、測定範囲10μm四方の測定を行った。実施例中の明暗比は光照射を行った場合の電流値を暗所での電流値で割ったものを示す。尚、実施例中の「部」は質量部を、「%」は質量%を意味する。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
The block layer described in the examples may be either a hole block layer or an electron block layer. The photoelectric conversion element is manufactured by a vapor deposition machine integrated with the glove box, and the photoelectric conversion element is installed in a closed bottle-type measuring chamber (manufactured by LS Technology Co., Ltd.) in the glove box with a nitrogen atmosphere. Then, the current and voltage were applied and measured. Unless otherwise specified, the current and voltage application measurements were performed using a semiconductor parameter analyzer 4200-SCS (Keithley Instruments). Unless otherwise specified, the incident light was irradiated using PVL-3300 (manufactured by Asahi Spectroscopy Co., Ltd.) at an irradiation light wavelength of 550 nm and an irradiation light half width of 20 nm. The surface roughness of the thin-film film was measured using a laser microscope VK-X250 / 260 (Keyence) with a 150x lens and a laser light wavelength of 408 nm in a measurement range of 10 μm square. The light-dark ratio in the examples shows the current value when light irradiation is performed divided by the current value in a dark place. In addition, "part" in an Example means mass part, and "%" means mass%.
合成例1(2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
DMF(250部)に、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(3.8部)、一般に入手可能なナフタレン−2−イルボロン酸(3.3部)、リン酸三カリウム(27部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.47部)を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(250部)を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.9で表される化合物(3.1部、収率82%)を得た。
Synthesis Example 1 (2,7-bis (naphthalene-2-yl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
2,7-Diiode [1] benzothiophene [3,2-b] [1] benzothiophene (3.8 parts) synthesized in DMF (250 parts) by the method described in Japanese Patent No. 4945757, which is generally available. Naphthalene-2-ylboronic acid (3.3 parts), tripotassium phosphate (27 parts) and tetrakis (triphenylphosphine) palladium (0.47 parts) were mixed and stirred at 90 ° C. for 6 hours under a nitrogen atmosphere. .. After cooling the obtained reaction solution to room temperature, water (250 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. A compound represented by 9 (3.1 parts, yield 82%) was obtained.
合成例2(2,7−ビス(4’−メチル−[1,1’−ビフェニル]−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
ナフタレン−2−イルボロン酸(3.3部)の代わりに、一般に入手可能な(4’−メチル−[1,1’−ビフェニル]−4−イル)ボロン酸(5.0部)を使用したこと以外は、合成例1に準じて上記具体例のNo.21で表される化合物(2.7部、収率61%)を得た。
Synthesis Example 2 (2,7-bis (4'-methyl- [1,1'-biphenyl] -4-yl) [1] benzothiophene [3,2-b] [1] benzothiophene synthesis)
Instead of naphthalene-2-ylboronic acid (3.3 parts), commonly available (4'-methyl- [1,1'-biphenyl] -4-yl) boronic acid (5.0 parts) was used. Other than that, No. 1 of the above specific example was obtained according to Synthesis Example 1. A compound represented by 21 (2.7 parts, yield 61%) was obtained.
合成例3(2,7−ビス(2−フルオロ−[1,1’−ビフェニル]−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
ナフタレン−2−イルボロン酸(3.3部)の代わりに、一般に入手可能な(2−フルオロ−[1,1’−ビフェニル]−4−イル)ボロン酸(5.0部)を使用したこと以外は、合成例1に準じて上記具体例のNo.23で表される化合物(2.2部、収率50%)を得た。
Synthesis Example 3 (2,7-bis (2-fluoro- [1,1'-biphenyl] -4-yl) [1] benzothiophene [3,2-b] [1] benzothiophene synthesis)
Using commonly available (2-fluoro- [1,1'-biphenyl] -4-yl) boronic acid (5.0 parts) instead of naphthalene-2-ylboronic acid (3.3 parts). Except for the above-mentioned specific example No. The compound represented by 23 (2.2 parts, yield 50%) was obtained.
合成例4(2,7−ビス([1,1’:3,1’’−ターフェニル]−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程1)2−([1,1’:3,1’’−ターフェニル]−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(240部)に、一般に入手可能な4−ブロモ−1,1’:3,1’’−ターフェニル(6.0部)、ビス(ピナコラト)ジボロン(5.6部)、酢酸カリウム(3.5部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.5部)を混合し、窒素雰囲気下、還流温度で4時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル20部を加え、5分間撹拌した。その後、固形分をろ別し、溶媒を減圧除去することにより2−([1,1’:3,1’’−ターフェニル]−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(6.9部、収率99%)を得た。
Synthesis Example 4 (2,7-bis ([1,1': 3,1''-terphenyl] -4-yl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
(Step 1) Synthesis of 2- ([1,1': 3,1''-terphenyl] -4-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene ( 240 parts), commonly available 4-bromo-1,1': 3,1''-terphenyl (6.0 parts), bis (pinacolato) diboron (5.6 parts), potassium acetate (3. 5 parts) and [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.5 parts) were mixed and stirred at reflux temperature for 4 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, 20 parts of silica gel was added, and the mixture was stirred for 5 minutes. Then, the solid content was filtered off and the solvent was removed under reduced pressure to remove 2- ([1,1': 3,1 ″ -terphenyl] -4-yl) -4,4,5,5-tetramethyl. -1,3,2-dioxaborolane (6.9 parts, yield 99%) was obtained.
(工程2)2,7−ビス([1,1’:3,1’’−ターフェニル]−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
ナフタレン−2−イルボロン酸(3.3部)の代わりに、工程1で得られた2−([1,1’:3,1’’−ターフェニル]−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(6.8部)を使用し、反応系に水(8.0部)を添加したこと以外は、合成例1に準じて上記具体例のNo.26で表される化合物(2.6部、収率46%)を得た。
(Step 2) 2,7-Bis ([1,1': 3,1''-terphenyl] -4-yl) [1] Benzothiophene [3,2-b] [1] Synthesis of benzothiophene Naphthalene- 2-([1,1': 3,1''-terphenyl] -4-yl) -4,4,5, obtained in
合成例5(2,7−ビス([1,1’:3’,1’’−ターフェニル]−5’−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
ナフタレン−2−イルボロン酸(3.3部)の代わりに、一般に入手可能な(2−フルオロ−[1,1’−ビフェニル]−4−イル)ボロン酸(5.3部)を使用したこと以外は、合成例1に準じて上記具体例のNo.27で表される化合物(2.0部、収率37%)を得た。
Synthesis Example 5 (2,7-bis ([1,1': 3', 1''-terphenyl] -5'-yl) [1] Synthesis of benzothiophene [3,2-b] [1] benzothiophene )
Using commonly available (2-fluoro- [1,1'-biphenyl] -4-yl) boronic acid (5.3 parts) instead of naphthalene-2-ylboronic acid (3.3 parts). Except for the above, No. 1 of the above specific example according to Synthesis Example 1. A compound represented by 27 (2.0 parts, yield 37%) was obtained.
合成例6(2,7−ビス(ベンゾ[b]フラン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
ナフタレン−2−イルボロン酸(3.3部)の代わりに、一般に入手可能なベンゾ[b]フラン−2−イルボロン酸(1.9部)を使用したこと以外は、合成例1に準じて上記具体例のNo.29で表される化合物(2.6部、収率73%)を得た。
Synthesis Example 6 (2,7-bis (benzo [b] furan-2-yl) [1] benzothioeno [3,2-b] [1] synthesis of benzothiophene)
As described above in Synthesis Example 1, except that the generally available benzo [b] furan-2-ylboronic acid (1.9 parts) was used instead of naphthalene-2-ylboronic acid (3.3 parts). Specific example No. A compound represented by 29 (2.6 parts, yield 73%) was obtained.
合成例7(2,7−ビス(ベンゾ[b]チオフェン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
ナフタレン−2−イルボロン酸(3.3部)の代わりに、一般に入手可能なベンゾ[b]チオフェン−2−イルボロン酸(2.1部)を使用したこと以外は、合成例1に準じて上記具体例のNo.33で表される化合物(2.7部、収率70%)を得た。
Synthesis Example 7 (2,7-bis (benzo [b] thiophen-2-yl) [1] benzothioeno [3,2-b] [1] synthesis of benzothiophene)
As described above in Synthesis Example 1, except that the generally available benzo [b] thiophen-2-ylboronic acid (2.1 parts) was used instead of naphthalene-2-ylboronic acid (3.3 parts). Specific example No. A compound represented by 33 (2.7 parts, yield 70%) was obtained.
合成例8(2,7−ビス(4−(ベンゾ[b]フラン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程3)2−(4−ブロモフェニル)ベンゾ[b]フランの合成
DMF(920部)に、一般に入手可能なベンゾ[b]フラン−2−イルボロン酸(14.8部)、パラ―ブロモヨードベンゼン(25.8部)、リン酸三カリウム(110部)及びテトラキス(トリフェニルホスフィン)パラジウム(2.8部)を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(920部)を加え、固形分をろ過分取した。得られた固形分をメタノールで洗浄し乾燥することにより、2−(4−ブロモフェニル)ベンゾ[b]フラン(6.6部、収率26%)を得た。
Synthesis Example 8 (2,7-bis (4- (benzo [b] furan-2-yl) phenyl) [1] benzothioenoe [3,2-b] [1] synthesis of benzothiophene)
(Step 3) Synthesis of 2- (4-bromophenyl) benzo [b] furan In DMF (920 parts), generally available benzo [b] furan-2-ylboronic acid (14.8 parts), para-bromo Iodobenzene (25.8 parts), tripotassium phosphate (110 parts) and tetrakis (triphenylphosphine) palladium (2.8 parts) were mixed and stirred at 90 ° C. for 6 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (920 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with methanol and dried to obtain 2- (4-bromophenyl) benzo [b] furan (6.6 parts, yield 26%).
(工程4)2−(4−(ベンゾ[b]フラン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(240部)に、工程3で得られた2−(4−ブロモフェニル)ベンゾ[b]フラン(5.0部)、ビス(ピナコラト)ジボロン(5.6部)、酢酸カリウム(3.5部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.5部)を混合し、窒素雰囲気下、還流温度で4時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル20部を加え、5分間撹拌した。その後、固形分をろ別し、溶媒を減圧除去することにより2−(4−(ベンゾ[b]フラン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(5.2部、収率88%)を得た。
(Step 4) Synthesis of 2- (4- (benzo [b] furan-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (240 parts), 2- (4-Bromophenyl) benzo [b] furan (5.0 parts), bis (pinacolato) diboron (5.6 parts), potassium acetate (3.5 parts) and [1, 1'-Bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.5 part) was mixed and stirred at reflux temperature for 4 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, 20 parts of silica gel was added, and the mixture was stirred for 5 minutes. Then, the solid content was filtered off and the solvent was removed under reduced pressure to remove 2- (4- (benzo [b] furan-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3. 2-Dioxaborolane (5.2 parts, 88% yield) was obtained.
(工程5)2,7−ビス(4−(ベンゾ[b]フラン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(200部)に、水(6.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(3.0部)、工程4で得られた2−(4−(ベンゾ[b]フラン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(5.0部)、リン酸三カリウム(20部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.4部)を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(200部)を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.83で表される化合物(2.0部、収率50%)を得た。
(Step 5) Synthesis of 2,7-bis (4- (benzo [b] furan-2-yl) phenyl) [1] benzothioeno [3,2-b] [1] benzothiophene In DMF (200 parts), Water (6.0 parts), 2,7-diiodo [1] benzothiophene [3,2-b] [1] benzothiophene (3.0 parts) synthesized by the method described in Japanese Patent No. 4945757, in step 4. The obtained 2- (4- (benzo [b] furan-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (5.0 parts), triphosphate Potassium (20 parts) and tetrakis (triphenylphosphene) palladium (0.4 parts) were mixed and stirred at 90 ° C. for 6 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (200 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. A compound represented by 83 (2.0 parts, yield 50%) was obtained.
合成例9(2,7−ビス(4−(ベンゾ[b]チオフェン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程6)2−(4−ブロモフェニル)ベンゾ[b]チオフェンの合成
DMF(300部)に、一般に入手可能なベンゾ[b]チオフェン−2−イルボロン酸(5.0部)、パラ−ブロモヨードベンゼン(7.9部)、リン酸三カリウム(34部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.84部)を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(300部)を加え、固形分をろ過分取した。得られた固形分をメタノールで洗浄し乾燥することにより、2−(4−ブロモフェニル)ベンゾ[b]チオフェン(5.7部、収率70%)を得た。
Synthesis Example 9 (2,7-bis (4- (benzo [b] thiophen-2-yl) phenyl) [1] benzothioeno [3,2-b] [1] synthesis of benzothiophene)
(Step 6) Synthesis of 2- (4-bromophenyl) benzo [b] thiophene In DMF (300 parts), generally available benzo [b] thiophene-2-ylboronic acid (5.0 parts), para-bromo Iodobenzene (7.9 parts), tripotassium phosphate (34 parts) and tetrakis (triphenylphosphine) palladium (0.84 parts) were mixed and stirred at 90 ° C. for 6 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (300 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with methanol and dried to obtain 2- (4-bromophenyl) benzo [b] thiophene (5.7 parts, yield 70%).
(工程7)2−(4−(ベンゾ[b]チオフェン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(240部)に、工程6で得られた2−(4−ブロモフェニル)ベンゾ[b]チオフェン(5.3部)、ビス(ピナコラト)ジボロン(5.6部)、酢酸カリウム(3.5部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.5部)を混合し、窒素雰囲気下、還流温度で4時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル20部を加え、5分間撹拌した。その後、固形分をろ別し、溶媒を減圧除去することにより2−(4−(ベンゾ[b]チオフェン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(4.5部、収率73%)を得た。
(Step 7) Synthesis of 2- (4- (benzo [b] thiophen-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (240 parts), 2- (4-Bromophenyl) benzo [b] thiophene (5.3 parts), bis (pinacolato) diboron (5.6 parts), potassium acetate (3.5 parts) and [1, 1'-Bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.5 part) was mixed and stirred at reflux temperature for 4 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, 20 parts of silica gel was added, and the mixture was stirred for 5 minutes. Then, the solid content was filtered off and the solvent was removed under reduced pressure to remove 2- (4- (benzo [b] thiophen-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3. 2-Dioxaborolane (4.5 parts, 73% yield) was obtained.
(工程8)2,7−ビス(4−(ベンゾ[b]チオフェン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(170部)に、水(5.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(2.6部)、工程7で得られた2−(4−(ベンゾ[b]チオフェン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(4.5部)、リン酸三カリウム(18部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.35部)を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(170部)を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.87で表される化合物(1.6部、収率46%)を得た。
(Step 8) 2,7-Bis (4- (benzo [b] thiophen-2-yl) phenyl) [1] Synthesis of benzothiophene [3,2-b] [1] Synthesis of benzothiophene In DMF (170 parts), Water (5.0 parts), 2,7-diiode [1] benzothiophene [3,2-b] [1] benzothiophene (2.6 parts) synthesized by the method described in Japanese Patent No. 4945757, in
合成例10(2,7−ビス([1,1’−ビフェニル]−3−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
ナフタレン−2−イルボロン酸(3.3部)の代わりに、一般に入手可能な3−ビフェニルボロン酸(3.8部)を使用したこと以外は、合成例1に準じて上記具体例のNo.6で表される化合物(2.1部、収率51%)を得た。
Synthesis Example 10 (2,7-bis ([1,1'-biphenyl] -3-yl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
In accordance with Synthesis Example 1, No. 1 of the above specific example was used, except that generally available 3-biphenylboronic acid (3.8 parts) was used instead of naphthalene-2-ylboronic acid (3.3 parts). A compound represented by 6 (2.1 parts, yield 51%) was obtained.
合成例11(2,7−ビス([1,1’−ビフェニル]−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
ナフタレン−2−イルボロン酸(3.3部)の代わりに、一般に入手可能な2−ビフェニルボロン酸(3.8部)を使用したこと以外は、合成例1に準じて上記具体例のNo.7で表される化合物(2.4部、収率57%)を得た。
Synthesis Example 11 (2,7-bis ([1,1'-biphenyl] -2-yl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
In accordance with Synthesis Example 1, No. 1 of the above specific example was used, except that generally available 2-biphenylboronic acid (3.8 parts) was used instead of naphthalene-2-ylboronic acid (3.3 parts). A compound represented by No. 7 (2.4 parts, yield 57%) was obtained.
合成例12(2,7−ビス(ナフタレン−1−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
ナフタレン−2−イルボロン酸(3.3部)の代わりに、一般に入手可能なナフタレン−1−イルボロン酸(3.3部)を使用したこと以外は、合成例1に準じて上記具体例のNo.13で表される化合物(3.0部、収率79%)を得た。
Synthesis Example 12 (2,7-bis (naphthalene-1-yl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
No. of the above specific example according to Synthesis Example 1 except that generally available naphthalene-1-ylboronic acid (3.3 parts) was used instead of naphthalene-2-ylboronic acid (3.3 parts). .. A compound represented by No. 13 (3.0 parts, yield 79%) was obtained.
合成例13(2,7−ビス(フェナントレン−9−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
ナフタレン−2−イルボロン酸(3.3部)の代わりに、一般に入手可能なフェナントレン−9−イルボロン酸(4.3部)を使用したこと以外は、合成例1に準じて上記具体例のNo.15で表される化合物(3.0部、収率65%)を得た。
Synthesis Example 13 (2,7-bis (phenanthrene-9-yl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
No. of the above specific example according to Synthesis Example 1 except that generally available phenanthrene-9-ylboronic acid (4.3 parts) was used instead of naphthalene-2-ylboronic acid (3.3 parts). .. A compound represented by No. 15 (3.0 parts, yield 65%) was obtained.
合成例14(2,7−ビス(3,5−ビス(トリフルオロメチル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
ナフタレン−2−イルボロン酸(3.3部)の代わりに、一般に入手可能な3,5−ビス(トリフルオロメチル)フェニルボロン酸(5.0部)を使用したこと以外は、合成例1に準じて上記具体例のNo.18で表される化合物(3.6部、収率70%)を得た。
Synthesis Example 14 (2,7-bis (3,5-bis (trifluoromethyl) phenyl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
In Synthesis Example 1, except that the commonly available 3,5-bis (trifluoromethyl) phenylboronic acid (5.0 parts) was used instead of naphthalene-2-ylboronic acid (3.3 parts). According to the above specific example, No. The compound represented by 18 (3.6 parts, yield 70%) was obtained.
合成例15(2,7−ビス(9H−カルバゾール−9−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
ナフタレン−2−イルボロン酸(3.3部)の代わりに、一般に入手可能な3,5−ビス(トリフルオロメチル)フェニルボロン酸(5.0部)を使用したこと以外は、合成例1に準じて上記具体例のNo.81で表される化合物(3.6部、収率70%)を得た。
Synthesis Example 15 (2,7-bis (9H-carbazole-9-yl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
In Synthesis Example 1, except that the commonly available 3,5-bis (trifluoromethyl) phenylboronic acid (5.0 parts) was used instead of naphthalene-2-ylboronic acid (3.3 parts). According to the above specific example, No. A compound represented by 81 (3.6 parts, yield 70%) was obtained.
合成例16(2,7−ビス(5’−フェニル−[1,1’:3’,1’’−ターフェニル]−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程9)(5’−フェニル−[1,1’:3’,1’’−ターフェニル]−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(510部)に、一般に入手可能な4−ブロモ−5’−フェニル−1,1’:3’,1’’−ターフェニル(15.0部)、ビス(ピナコラト)ジボロン(12.0部)、酢酸カリウム(7.5部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(1.1部)を混合し、窒素雰囲気下、還流温度で5時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル50部を加え、5分間撹拌した。その後、固形分をろ別し、溶媒を減圧除去することにより(5’−フェニル−[1,1’:3’,1’’−ターフェニル]−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(12.0部、収率71%)を得た。
Synthesis Example 16 (2,7-bis (5'-phenyl- [1,1': 3', 1''-terphenyl] -4-yl) [1] benzothiophene [3,2-b] [1] Synthesis of benzothiophene)
(Step 9) (5'-Phenyl- [1,1': 3', 1''-terphenyl] -4-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Synthesis of Toluene (510 parts), commonly available 4-bromo-5'-phenyl-1,1': 3', 1''-terphenyl (15.0 parts), bis (pinacolato) dichloromethane (12) .0 parts), potassium acetate (7.5 parts) and [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (1.1 parts) were mixed and prepared in a nitrogen atmosphere. The mixture was stirred at reflux temperature for 5 hours. The obtained reaction solution was cooled to room temperature, 50 parts of silica gel was added, and the mixture was stirred for 5 minutes. Then, the solid content was filtered off and the solvent was removed under reduced pressure (5'-phenyl- [1,1': 3', 1''-terphenyl] -4-yl) -4,4,5,5. 5-Tetramethyl-1,3,2-dioxaborolane (12.0 parts, yield 71%) was obtained.
(工程10)2,7−ビス(5’−フェニル−[1,1’:3’,1’’−ターフェニル]−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(300部)に、水(9.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(4.5部)、工程9で得られた(5’−フェニル−[1,1’:3’,1’’−ターフェニル]−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(9.9部)、リン酸三カリウム(30.3部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.6部)を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(300部)を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.28で表される化合物(2.0部、収率26%)を得た。
(Step 10) 2,7-Bis (5'-Phenyl- [1,1': 3', 1''-Terphenyl] -4-yl) [1] Benzothiophene [3,2-b] [1] Synthesis of
合成例17(2,7−ビス(4’−(ピリジン−2−イル)−[1,1’−ビフェニル]−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程11)(4−(ピリジン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(960部)に、一般に入手可能な2−(4−ブロモフェニル)ピリジン(17.1部)、ビス(ピナコラト)ジボロン(22.4部)、酢酸カリウム(14.1部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(2.3部)を混合し、窒素雰囲気下、還流温度で5時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル80部を加え、5分間撹拌した。その後、固形分をろ別し、酢酸エチルにより洗浄した。得られた溶液中の溶媒を減圧除去することにより(4−(ピリジン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(19.0部、収率92%)を得た。
Synthesis Example 17 (2,7-bis (4'-(pyridin-2-yl)-[1,1'-biphenyl] -4-yl) [1] benzothiophene [3,2-b] [1] benzothiophene Synthesis)
(Step 11) Synthesis of (4- (pyridin-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (960 parts) generally available 2- (4-Bromophenyl) Pyridine (17.1 parts), Bis (Pinacolato) diboron (22.4 parts), Potassium Acetate (14.1 parts) and [1,1'-Bis (Diphenylphosphino) Ferrocene] palladium (II) A dichloride dichloromethane adduct (2.3 parts) was mixed, and the mixture was stirred at reflux temperature for 5 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, 80 parts of silica gel was added, and the mixture was stirred for 5 minutes. Then, the solid content was filtered off and washed with ethyl acetate. By removing the solvent in the obtained solution under reduced pressure, (4- (pyridin-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (19.0 parts, Yield 92%) was obtained.
(工程12)2−(4’−ブロモ−[1,1’−ビフェニル]−4−イル)ピリジンの合成
DMF(520部)に、水(18.0部)、工程11で得られた(4−(ピリジン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(14.6部)、一般に入手可能なパラ−ブロモヨードベンゼン(14.6部)、リン酸三カリウム(62.6部)及びテトラキス(トリフェニルホスフィン)パラジウム(1.6部)を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(520部)を加え、固形分をろ過分取した。得られた固形分を水により洗浄し、乾燥させることで2−(4’−ブロモ−[1,1’−ビフェニル]−4−イル)ピリジン(15.0部、収率94%)を得た。
(Step 12) Synthesis of 2- (4'-bromo- [1,1'-biphenyl] -4-yl) pyridine In DMF (520 parts), water (18.0 parts) was obtained in step 11 (step 11). 4- (Pyridine-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (14.6 parts), commonly available para-bromoiodobenzene (14.6) Parts), tripotassium phosphate (62.6 parts) and tetrakis (triphenylphosphine) palladium (1.6 parts) were mixed and stirred at 90 ° C. for 6 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (520 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with water and dried to obtain 2- (4'-bromo- [1,1'-biphenyl] -4-yl) pyridine (15.0 parts, yield 94%). rice field.
(工程13)(4’−(ピリジン−2−イル)−[1,1’−ビフェニル]−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(350部)に、工程12で得られた2−(4’−ブロモ−[1,1’−ビフェニル]−4−イル)ピリジン(8.0部)、ビス(ピナコラト)ジボロン(7.9部)、酢酸カリウム(5.0部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.8部)を混合し、窒素雰囲気下、還流温度で5時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル40部を加え、5分間撹拌した。その後、固形分をろ別し、酢酸エチルにより洗浄した。得られた溶液中の溶媒を減圧除去することにより(4’−(ピリジン−2−イル)−[1,1’−ビフェニル]−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(9.0部、収率97%)を得た。
(Step 13) Synthesis of (4'-(pyridin-2-yl)-[1,1'-biphenyl] -4-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (350 parts), 2- (4'-bromo- [1,1'-biphenyl] -4-yl) pyridine (8.0 parts), bis (pinacolato) diboron (7. 9 parts), potassium acetate (5.0 parts) and [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.8 parts) are mixed and refluxed under a nitrogen atmosphere. The mixture was stirred at temperature for 5 hours. After cooling the obtained reaction solution to room temperature, 40 parts of silica gel was added, and the mixture was stirred for 5 minutes. Then, the solid content was filtered off and washed with ethyl acetate. By removing the solvent in the obtained solution under reduced pressure, (4'-(pyridin-2-yl)-[1,1'-biphenyl] -4-yl) -4,4,5,5-tetramethyl- 1,3,2-Dioxaborolane (9.0 parts, yield 97%) was obtained.
(工程14)2,7−ビス(4’−(ピリジン−2−イル)−[1,1’−ビフェニル]−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
(5’−フェニル−[1,1’:3’,1’’−ターフェニル]−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(9.9部)の代わりに、工程13で得られた(4’−(ピリジン−2−イル)−[1,1’−ビフェニル]−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(8.2部)を使用したこと以外は、工程10に準じて合成を行うことで上記具体例のNo.168で表される化合物(7.2部、42%)を得た。
(Step 14) 2,7-Bis (4'-(pyridin-2-yl)-[1,1'-biphenyl] -4-yl) [1] benzothiophene [3,2-b] [1] benzothiophene Synthesis of (5'-phenyl- [1,1': 3', 1''-terphenyl] -4-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (9) .9 parts) instead of (4'-(pyridin-2-yl)-[1,1'-biphenyl] -4-yl) -4,4,5,5-tetramethyl obtained in step 13. Except for the use of -1,3,2-dioxaborolane (8.2 parts), the synthesis was carried out according to step 10 to obtain No. 1 of the above specific example. The compound represented by 168 (7.2 parts, 42%) was obtained.
合成例18(2,7−ビス(4−(ベンゾ[d]チアゾール−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程15)2−(4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボラン−2−イル)フェニル)ベンゾ[d]チアゾールの合成
トルエン(240部)に、一般に入手可能な2−(4−ブロモフェニル)ベンゾ[d]チアゾール(5.3部)、ビス(ピナコラト)ジボロン(5.6部)、酢酸カリウム(3.5部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.5部)を混合し、窒素雰囲気下、還流温度で4時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル20部を加え、5分間撹拌した。その後、固形分をろ別し、溶媒を減圧除去することにより2−(4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボラン−2−イル)フェニル)ベンゾ[d]チアゾール(4.9部、収率80%)を得た。
Synthesis Example 18 (2,7-bis (4- (benzo [d] thiazole-2-yl) phenyl) [1] benzothioenoe [3,2-b] [1] synthesis of benzothiophene)
(Step 15) Synthesis of 2- (4- (4,4,5,5-tetramethyl-1,3,2-dioxaboran-2-yl) phenyl) benzo [d] thiazole Toluene (240 parts) is generally used. Available 2- (4-bromophenyl) benzo [d] thiazole (5.3 parts), bis (pinacolato) diboron (5.6 parts), potassium acetate (3.5 parts) and [1,1'- Bis (diphenylphosphino) ferrocene] Palladium (II) dichloride dichloromethane adduct (0.5 part) was mixed and stirred at a reflux temperature for 4 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, 20 parts of silica gel was added, and the mixture was stirred for 5 minutes. Then, the solid content was filtered off, and the solvent was removed under reduced pressure to remove 2- (4- (4,5,5-tetramethyl-1,3,2-dioxaboran-2-yl) phenyl) benzo [d. ] Thiazole (4.9 parts, yield 80%) was obtained.
(工程16)2,7−ビス(4−(ベンゾ[d]チアゾール−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(170部)に、水(5.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(2.6部)、工程15で得られた2−(4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボラン−2−イル)フェニル)ベンゾ[d]チアゾール(4.5部)、リン酸三カリウム(18部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.35部)を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(170部)を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.111で表される化合物(1.8部、収率52%)を得た。
(Step 16) 2,7-Bis (4- (benzo [d] thiazole-2-yl) phenyl) [1] Synthesis of benzothiophene [3,2-b] [1] Synthesis of benzothiophene In DMF (170 parts), Water (5.0 parts), 2,7-diiode [1] benzothiophene [3,2-b] [1] benzothiophene (2.6 parts) synthesized by the method described in Japanese Patent No. 4945757, in step 15. The obtained 2- (4- (4,5,5-tetramethyl-1,3,2-dioxaboran-2-yl) phenyl) benzo [d] thiazole (4.5 parts), tripotassium phosphate (18 parts) and tetrakis (triphenylphosphine) palladium (0.35 parts) were mixed and stirred at 90 ° C. for 6 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (170 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. A compound represented by 111 (1.8 parts, yield 52%) was obtained.
合成例19(2,7−ビス(4−(ベンゾ[b]チオフェン−2−イル)−2−メチルフェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程17)2−(4−ブロモ−3−メチルフェニル)ベンゾ[b]チオフェンの合成
DMF(300部)に、一般に入手可能なベンゾ[b]チオフェン−2−イルボロン酸(5.0部)、2−ブロモ−5−ヨードトルエン(8.3部)、リン酸三カリウム(34部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.84部)を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(300部)を加え、固形分をろ過分取した。得られた固形分をメタノールで洗浄し乾燥することにより、2−(4−ブロモ−3−メチルフェニル)ベンゾ[b]チオフェン(5.7部、収率67%)を得た。
Synthesis Example 19 (2,7-bis (4- (benzo [b] thiophen-2-yl) -2-methylphenyl) [1] benzothioeno [3,2-b] [1] synthesis of benzothiophene)
(Step 17) Synthesis of 2- (4-Bromo-3-methylphenyl) benzo [b] thiophene To DMF (300 parts), generally available benzo [b] thiophene-2-ylboronic acid (5.0 parts) , 2-Bromo-5-iodotoluene (8.3 parts), tripotassium phosphate (34 parts) and tetrakis (triphenylphosphene) palladium (0.84 parts) were mixed and 6 at 90 ° C. under a nitrogen atmosphere. Stirred for hours. After cooling the obtained reaction solution to room temperature, water (300 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with methanol and dried to obtain 2- (4-bromo-3-methylphenyl) benzo [b] thiophene (5.7 parts, yield 67%).
(工程18)2−(4−(ベンゾ[b]チオフェン−2−イル)−2−メチルフェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(240部)に、工程17で得られた2−(4−ブロモ−3−メチルフェニル)ベンゾ[b]チオフェン(5.6部)、ビス(ピナコラト)ジボロン(5.6部)、酢酸カリウム(3.5部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.5部)を混合し、窒素雰囲気下、還流温度で4時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル20部を加え、5分間撹拌した。その後、固形分をろ別し、溶媒を減圧除去することにより2−(4−(ベンゾ[b]チオフェン−2−イル)−2−メチルフェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(5.6部、収率87%)を得た。
(Step 18) Synthesis of 2- (4- (benzo [b] thiophen-2-yl) -2-methylphenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (240) Part), 2- (4-bromo-3-methylphenyl) benzo [b] thiophene (5.6 parts), bis (pinacolato) diboron (5.6 parts), potassium acetate (3 parts) obtained in step 17. .5 parts) and [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.5 parts) were mixed and stirred at reflux temperature for 4 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, 20 parts of silica gel was added, and the mixture was stirred for 5 minutes. Then, the solid content was filtered off and the solvent was removed under reduced pressure to remove 2- (4- (benzo [b] thiophen-2-yl) -2-methylphenyl) -4,4,5,5-tetramethyl-. 1,3,2-dioxaborolane (5.6 parts, yield 87%) was obtained.
(工程19)2,7−ビス(4−(ベンゾ[b]チオフェン−2−イル)−2−メチルフェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(170部)に、水(5.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(2.6部)、工程18で得られた2−(4−(ベンゾ[b]チオフェン−2−イル)−2−メチルフェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(4.6部)、リン酸三カリウム(18部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.35部)を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(170部)を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.170で表される化合物(1.2部、収率35%)を得た。
(Step 19) 2,7-Bis (4- (benzo [b] thiophen-2-yl) -2-methylphenyl) [1] benzothieno [3,2-b] [1] synthesis of benzothiophene DMF (170) Parts), water (5.0 parts), 2,7-diiodo [1] benzothiophene [3,2-b] [1] benzothiophene (2.6 parts) synthesized by the method described in Japanese Patent No. 4945757. , 2- (4- (Benzo [b] thiophen-2-yl) -2-methylphenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4) obtained in step 18. .6 parts), tripotassium phosphate (18 parts) and tetrakis (triphenylphosphine) palladium (0.35 parts) were mixed and stirred at 90 ° C. for 6 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (170 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. A compound represented by 170 (1.2 parts, yield 35%) was obtained.
合成例20(2,7−ビス(2−ジベンゾフラニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程20)2−(ジベンゾフラン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(150部)に、2−ブロモジベンゾフラン(5.0部)、ビス(ピナコラト)ジボロン(6.2部)、酢酸カリウム(4.0部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.5部)を混合し、窒素雰囲気下、還流温度で4時間撹拌した。得られた反応液を室温まで冷却し、固形分をろ別し、生成物を含むろ液を得た。次いで、ショートシリカゲルカラムクロマトグラフィー(展開液;トルエン)にて精製し、溶媒を減圧除去することにより、2−(ジベンゾフラン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(3.8部、収率64%)を得た。
Synthesis Example 20 (2,7-bis (2-dibenzofuranyl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
(Step 20) Synthesis of 2- (dibenzofuran-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (150 parts) and 2-bromodibenzofuran (5.0 parts) ), Bis (pinacolato) diboron (6.2 parts), potassium acetate (4.0 parts) and [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.5 parts) ) Was mixed, and the mixture was stirred at reflux temperature for 4 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, and the solid content was filtered off to obtain a filtrate containing a product. Then, the residue was purified by short silica gel column chromatography (developing solution; toluene), and the solvent was removed under reduced pressure to obtain 2- (dibenzofuran-2-yl) -4,4,5,5-tetramethyl-1,3. , 2-Dioxaborolane (3.8 parts, yield 64%) was obtained.
(工程21)2,7−ビス(2−ジベンゾフラニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(250部)に、水(8.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(4.7部)、工程20で得られた2−(ジベンゾフラン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(7.0部)、リン酸三カリウム(8.1部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.6部)を混合し、窒素雰囲気下、90℃で5時間撹拌した。得られた反応液を室温まで冷却した後、水(250部)を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.165で表される化合物(1.5部、収率28%)を得た。
(Step 21) 2,7-Bis (2-dibenzofuranyl) [1] Benzothiophene [3,2-b] [1] Synthesis of benzothiophene DMF (250 parts), water (8.0 parts),
合成例21(2,7−ビス(9,9−ジメチル−9H−フルオレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程22)2−(9,9−ジメチル−9H−フルオレン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(250部)に、2−ブロモ−9,9−ジメチルフルオレン(10.0部)、ビス(ピナコラト)ジボロン(11.2部)、酢酸カリウム(7.2部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.9部)を混合し、窒素雰囲気下、還流温度で3時間撹拌した。得られた反応液を室温まで冷却し、固形分をろ別し、生成物を含むろ液を得た。次いで、ショートシリカゲルカラムクロマトグラフィー(展開液;トルエン)にて精製し、溶媒を減圧除去することにより、2−(9,9−ジメチル−9H−フルオレン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(11.1部、収率95%)を得た。
Synthesis Example 21 (2,7-bis (9,9-dimethyl-9H-fluorene-2-yl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
(Step 22) Synthesis of 2- (9,9-dimethyl-9H-fluorene-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (250 parts), 2 -Bromo-9,9-dimethylfluorene (10.0 parts), bis (pinacolato) diboron (11.2 parts), potassium acetate (7.2 parts) and [1,1'-bis (diphenylphosphino) ferrocene ] Palladium (II) dichlorolide dichloromethane adduct (0.9 parts) was mixed and stirred at reflux temperature for 3 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, and the solid content was filtered off to obtain a filtrate containing a product. Then, the residue was purified by short silica gel column chromatography (developing solution; toluene), and the solvent was removed under reduced pressure to 2- (9,9-dimethyl-9H-fluorene-2-yl) -4,4,5,5. 5-Tetramethyl-1,3,2-dioxaborolane (11.1 parts, yield 95%) was obtained.
(工程23)2,7−ビス(9,9−ジメチル−9H−フルオレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(300部)に、水(10.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(7.1部)、工程22で得られた2−(9,9−ジメチル−9H−フルオレン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(11.1部)、リン酸三カリウム(12.2部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.9部)を混合し、窒素雰囲気下、90℃で4時間撹拌した。得られた反応液を室温まで冷却した後、水(250部)を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.166で表される化合物(6.2部、収率69%)を得た。
(Step 23) 2,7-Bis (9,9-dimethyl-9H-fluorene-2-yl) [1] Benzothiophene [3,2-b] [1] Synthesis of benzothiophene DMF (300 parts) with water. (10.0 parts), 2,7-diiodo [1] benzothiophene [3,2-b] [1] benzothiophene (7.1 parts) synthesized by the method described in Japanese Patent No. 4945757, obtained in step 22. 2- (9,9-dimethyl-9H-fluorene-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11.1 parts), tripotassium phosphate (11.1 parts) 12.2 parts) and tetrakis (triphenylphosphine) palladium (0.9 parts) were mixed and stirred at 90 ° C. for 4 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (250 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. A compound represented by 166 (6.2 parts, yield 69%) was obtained.
合成例22(2,7−ビス(4−(9,9−ジメチル−9H−フルオレン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程24)2−(9,9−ジメチル−9H−フルオレン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(250部)に、2−ブロモ−9,9−ジメチルフルオレン(10.0部)、ビス(ピナコラト)ジボロン(11.2部)、酢酸カリウム(7.2部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.9部)を混合し、窒素雰囲気下、還流温度で3時間撹拌した。得られた反応液を室温まで冷却し、固形分をろ別し、生成物を含むろ液を得た。次いで、ショートシリカゲルカラムクロマトグラフィー(展開液;トルエン)にて精製し、溶媒を減圧除去することにより、2−(9,9−ジメチル−9H−フルオレン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(11.1部、収率95%)を得た。
Synthesis Example 22 (2,7-bis (4- (9,9-dimethyl-9H-fluorene-2-yl) phenyl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
(Step 24) Synthesis of 2- (9,9-dimethyl-9H-fluorene-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (250 parts), 2 -Bromo-9,9-dimethylfluorene (10.0 parts), bis (pinacolato) diboron (11.2 parts), potassium acetate (7.2 parts) and [1,1'-bis (diphenylphosphino) ferrocene ] Palladium (II) dichlorolide dichloromethane adduct (0.9 parts) was mixed and stirred at reflux temperature for 3 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, and the solid content was filtered off to obtain a filtrate containing a product. Then, the residue was purified by short silica gel column chromatography (developing solution; toluene), and the solvent was removed under reduced pressure to 2- (9,9-dimethyl-9H-fluorene-2-yl) -4,4,5,5. 5-Tetramethyl-1,3,2-dioxaborolane (11.1 parts, yield 95%) was obtained.
(工程25)2−(4−ブロモフェニル)−9,9−ジメチル−9H−フルオレンの合成
DMF(400部)及び水(15部)の混合溶液に、工程24で得られた2−(9,9−ジメチル−9H−フルオレン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(25.0部)、1−ブロモ−4−ヨードベンゼン(22.0部)、リン酸三カリウム(33.2部)及びテトラキス(トリフェニルホスフィン)パラジウム(2.7部)を加え、窒素雰囲気下、50℃で2.5時間撹拌した。得られた反応液を室温まで冷却し、水を加え、生成した白色固体をろ取した。再結晶(再結晶溶媒;アセトン)にて精製することにより、2−(4−ブロモフェニル)−9,9−ジメチル−9H−フルオレン(26.7部、収率98%)を得た。
(Step 25) Synthesis of 2- (4-bromophenyl) -9,9-dimethyl-9H-fluorene In a mixed solution of DMF (400 parts) and water (15 parts), 2- (9) obtained in step 24. , 9-Dimethyl-9H-fluorene-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (25.0 parts), 1-bromo-4-iodobenzene (22. 0 part), tripotassium phosphate (33.2 parts) and tetrakis (triphenylphosphine) palladium (2.7 parts) were added, and the mixture was stirred at 50 ° C. for 2.5 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, water was added, and the produced white solid was collected by filtration. Purification with recrystallization (recrystallization solvent; acetone) gave 2- (4-bromophenyl) -9,9-dimethyl-9H-fluorene (26.7 parts, yield 98%).
(工程26)2−(4−(9,9−ジメチル−9H−フルオレン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(200部)に、工程25で得られた2−(4−ブロモフェニル)−9,9−ジメチル−9H−フルオレン(10.0部)、ビス(ピナコラト)ジボロン(8.7部)、酢酸カリウム(5.6部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.7部)を混合し、窒素雰囲気下、還流温度で4時間撹拌した。得られた反応液を室温まで冷却し、固形分をろ別し、生成物を含むろ液を得た。次いで、ショートシリカゲルカラムクロマトグラフィー(展開液;トルエン)にて精製し、溶媒を減圧除去することで白色固体を得た。この固体を再結晶(再結晶溶媒;アセトン/ヘキサン)にてさらに精製することで2−(4−(9,9−ジメチル−9H−フルオレン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(8.3部、収率73%)を得た。
(Step 26) Synthesis of 2- (4- (9,9-dimethyl-9H-fluorene-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (200) 2- (4-Bromophenyl) -9,9-dimethyl-9H-fluorene (10.0 parts), bis (pinacolato) diboron (8.7 parts), potassium acetate (parts) obtained in step 25. 5.6 parts) and [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.7 parts) were mixed and stirred at reflux temperature for 4 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, and the solid content was filtered off to obtain a filtrate containing a product. Then, it was purified by short silica gel column chromatography (developing solution; toluene), and the solvent was removed under reduced pressure to obtain a white solid. By further purifying this solid with recrystallization (recrystallization solvent; acetone / hexane), 2- (4- (9,9-dimethyl-9H-fluorene-2-yl) phenyl) -4,4,5, 5-Tetramethyl-1,3,2-dioxaborolane (8.3 parts, yield 73%) was obtained.
(工程27)2,7−ビス(4−(9,9−ジメチル−9H−フルオレン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(190部)に、水(7.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(3.7部)、工程26で得られた2−(4−(9,9−ジメチル−9H−フルオレン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(7.5部)、リン酸三カリウム(6.4部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.5部)を混合し、窒素雰囲気下、90℃で3時間撹拌した。得られた反応液を室温まで冷却した後、水(200部)を加え、固形分をろ過分取した。得られた固形分をDMF、アセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.167で表される化合物(1.8部、収率31%)を得た。
(Step 27) 2,7-Bis (4- (9,9-dimethyl-9H-fluorene-2-yl) phenyl) [1] Benzothiophene [3,2-b] [1] Synthesis of benzothiophene DMF (190) Parts), water (7.0 parts), 2,7-diiodo [1] benzothiophene [3,2-b] [1] benzothiophene (3.7 parts) synthesized by the method described in Patent No. 4945757. , 2- (4- (9,9-dimethyl-9H-fluorene-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (7) obtained in step 26. .5 parts), tripotassium phosphate (6.4 parts) and tetrakis (triphenylphosphine) palladium (0.5 parts) were mixed and stirred at 90 ° C. for 3 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (200 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with DMF and acetone, dried, and then sublimated and purified. A compound represented by 167 (1.8 parts, yield 31%) was obtained.
合成例23(2,7−ビス(6−フェニルナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程28)2−メトキシ−6−フェニルナフタレンの合成
トルエン(250部)、イソプロピルアルコール(20部)及び水(15部)の混合溶液に2−ブロモ−6−メトキシナフタレン(25部)、フェニルボロン酸(15.4部)、リン酸三カリウム(44.8部)及びテトラキス(トリフェニルホスフィン)パラジウム(3.7部)を加え、窒素雰囲気下、還流温度で4時間撹拌した。得られた反応液を室温まで冷却し、トルエン及び水を加え、分液した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液;トルエン/ヘキサン=1/6(容量比))にて精製し、溶媒を減圧除去することにより、2−メトキシ−6−フェニルナフタレン(16.6部、収率69%)を得た。
Synthesis Example 23 (2,7-bis (6-phenylnaphthalene-2-yl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
(Step 28) Synthesis of 2-methoxy-6-phenylnaphthalene 2-bromo-6-methoxynaphthalene (25 parts) and phenyl in a mixed solution of toluene (250 parts), isopropyl alcohol (20 parts) and water (15 parts). Boronic acid (15.4 parts), tripotassium phosphate (44.8 parts) and tetrakis (triphenylphosphine) palladium (3.7 parts) were added, and the mixture was stirred at reflux temperature for 4 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, toluene and water were added, and the layers were separated. After distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (developing solution; toluene / hexane = 1/6 (volume ratio)), and the solvent was removed under reduced pressure to obtain 2-methoxy-6-phenylnaphthalene (developing solution; toluene / hexane = 1/6 (volume ratio)). 16.6 parts, yield 69%) was obtained.
(工程29)2−ヒドロキシ−6−フェニルナフタレンの合成
工程28で得られた2−メトキシ−6−フェニルナフタレン(14.0部)及びピリジン塩酸塩(86部)を混合し、窒素雰囲気下、190℃で5時間撹拌した。得られた反応液を室温まで冷却し、酢酸エチル及び水を加え、分液した。溶媒を減圧留去することにより、2−ヒドロキシ−6−フェニルナフタレン(13.0部、収率99%)を得た。
(Step 29) Synthesis of 2-Hydroxy-6-Phenylnaphthalene 2-Methoxy-6-phenylnaphthalene (14.0 parts) and pyridine hydrochloride (86 parts) obtained in Step 28 were mixed and subjected to a nitrogen atmosphere. The mixture was stirred at 190 ° C. for 5 hours. The obtained reaction solution was cooled to room temperature, ethyl acetate and water were added, and the solution was separated. The solvent was distilled off under reduced pressure to obtain 2-hydroxy-6-phenylnaphthalene (13.0 parts, yield 99%).
(工程30)6−フェニルナフタレン−2−イル トリフルオロメタンスルホナートの合成
ジクロロメタン(200部)及びトリエチルアミン(12.0部)の混合溶液に工程29で得られた2−ヒドロキシ−6−フェニルナフタレン(13.0部)を加え、0℃に冷却した後に、トリフルオロメタンスルホン酸無水物(20.0部)をゆっくりと滴下した。滴下終了後、25℃まで昇温し、1時間撹拌した。得られた反応液に水を加え、分液し、溶媒を減圧留去することで、褐色固体を得た。この固体をシリカゲルカラムクロマトグラフィー(展開液;トルエン)にて精製し、溶媒を減圧除去することにより、6−フェニルナフタレン−2−イル トリフルオロメタンスルホナート(20.5部、収率99%)を得た。
(Step 30) Synthesis of 6-phenylnaphthalene-2-yl trifluoromethanesulfonate To a mixed solution of dichloromethane (200 parts) and triethylamine (12.0 parts), 2-hydroxy-6-phenylnaphthalene obtained in step 29 (step 30). 13.0 parts) was added, and after cooling to 0 ° C., trifluoromethanesulfonic anhydride (20.0 parts) was slowly added dropwise. After completion of the dropping, the temperature was raised to 25 ° C. and the mixture was stirred for 1 hour. Water was added to the obtained reaction solution, the solution was separated, and the solvent was distilled off under reduced pressure to obtain a brown solid. This solid was purified by silica gel column chromatography (developing solution; toluene), and the solvent was removed under reduced pressure to obtain 6-phenylnaphthalene-2-yl trifluoromethanesulfonate (20.5 parts, yield 99%). Obtained.
(工程31)(6−フェニルナフタレン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(350部)に、工程30で得られた6−フェニルナフタレン−2−イル トリフルオロメタンスルホナート(19.5部)、ビス(ピナコラト)ジボロン(16.9部)、酢酸カリウム(10.9部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(1.4部)を混合し、窒素雰囲気下、還流温度で4時間撹拌した。得られた反応液を室温まで冷却し、固形分をろ別し、生成物を含むろ液を得た。次いで、シリカゲルカラムクロマトグラフィー(展開液;トルエン)にて精製し、溶媒を減圧除去することにより、6−(フェニルナフタレン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(12.1部、収率66%)を得た。
(Step 31) Synthesis of (6-phenylnaphthalene-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (350 parts) was added to 6- obtained in step 30. Phenylnaphthalene-2-yl trifluoromethanesulfonate (19.5 parts), bis (pinacolato) diboron (16.9 parts), potassium acetate (10.9 parts) and [1,1'-bis (diphenylphosphino) Ferrocene] Palladium (II) dichloride dichloromethane adduct (1.4 parts) was mixed and stirred at reflux temperature for 4 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, and the solid content was filtered off to obtain a filtrate containing a product. Then, the residue was purified by silica gel column chromatography (developing solution; toluene), and the solvent was removed under reduced pressure to remove 6- (phenylnaphthalene-2-yl) -4,4,5,5-tetramethyl-1,3. , 2-Dioxaborolane (12.1 parts, yield 66%) was obtained.
(工程32)2,7−ビス(6−フェニルナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(250部)に、水(8.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(4.2部)、工程31で得られた6−(フェニルナフタレン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(7.0部)、リン酸三カリウム(7.2部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.54部)を混合し、窒素雰囲気下、90℃で5時間撹拌した。得られた反応液を室温まで冷却した後、水(250部)を加え、固形分をろ過分取した。得られた固形分をDMF及びアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.10で表される化合物(3.0部、収率56%)を得た。
(Step 32) 2,7-Bis (6-phenylnaphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Synthesis of benzothiophene DMF (250 parts) and water (8.0 parts). ), 2,7-Diiode [1] benzothiophene [3,2-b] [1] benzothiophene (4.2 parts) synthesized by the method described in Japanese Patent No. 4945757, 6- obtained in step 31 (. Phenylnaphthalene-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (7.0 parts), tripotassium phosphate (7.2 parts) and tetrakis (triphenylphosphine) Palladium (0.54 parts) was mixed and stirred at 90 ° C. for 5 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (250 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with DMF and acetone, dried, and then sublimated and purified. A compound represented by 10 (3.0 parts, yield 56%) was obtained.
合成例24(2,7−ビス(2,2’−ビナフタレン−6−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程33)6−メトキシ−2,2’−ビナフタレンの合成
DMF(250部)に、2−ブロモ−6−メトキシナフタレン(11.5部)、2−ナフチルボロン酸(10.0部)、リン酸三カリウム(20.6部)及びテトラキス(トリフェニルホスフィン)パラジウム(1.7部)を加え、窒素雰囲気下、還流温度で5時間撹拌した。得られた反応液を室温まで冷却し、水を加え、生成した固体をろ取した。得られた固体をメタノールで洗浄することで、6−メトキシ−2,2’−ビナフタレン(13.5部、収率98%)を得た。
Synthesis Example 24 (2,7-bis (2,2'-binaphthalene-6-yl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
(Step 33) Synthesis of 6-methoxy-2,2'-binaphthalene In DMF (250 parts), 2-bromo-6-methoxynaphthalene (11.5 parts), 2-naphthylboronic acid (10.0 parts), Tripotassium phosphate (20.6 parts) and tetrakis (triphenylphosphine) palladium (1.7 parts) were added, and the mixture was stirred at a reflux temperature for 5 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, water was added, and the produced solid was collected by filtration. The obtained solid was washed with methanol to obtain 6-methoxy-2,2'-binaphthalene (13.5 parts, yield 98%).
(工程34)6−ヒドロキシ−2,2’−ビナフタレンの合成
工程33で得られた6−メトキシ−2,2’−ビナフタレン(13.0部)及びピリジン塩酸塩(53部)を混合し、窒素雰囲気下、190℃で5時間撹拌した。得られた反応液を室温まで冷却し、酢酸エチル及び水を加え、分液した。溶媒を減圧留去することにより、6−ヒドロキシ−2,2’−ビナフタレン(11.5部、収率94%)を得た。
(Step 34) Synthesis of 6-hydroxy-2,2'-binaphthalene 6-methoxy-2,2'-binaphthalene (13.0 parts) and pyridine hydrochloride (53 parts) obtained in step 33 were mixed and mixed. The mixture was stirred at 190 ° C. for 5 hours in a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, ethyl acetate and water were added, and the solution was separated. By distilling off the solvent under reduced pressure, 6-hydroxy-2,2′-binaphthalene (11.5 parts, yield 94%) was obtained.
(工程35)2,2’−ビナフチル−6−イル トリフルオロメタンスルホナートの合成
ジクロロメタン(150部)及びトリエチルアミン(8.6部)の混合溶液に工程34で得られた6−ヒドロキシ−2,2’−ビナフタレン(11.5部)を加え、0℃に冷却した後に、トリフルオロメタンスルホン酸無水物(14.4部)をゆっくりと滴下した。滴下終了後、25℃まで昇温し、2時間撹拌した。得られた反応液に水とトルエンを加え、分液し、溶媒を減圧留去することで、褐色固体を得た。この固体をメタノール(100部)に懸濁させ、ろ過により白色固体を回収することにより、2,2’−ビナフチル−6−イル トリフルオロメタンスルホナート(15.2部、収率89%)を得た。
(Step 35) Synthesis of 2,2'-binaphthyl-6-yl trifluoromethanesulfonate 6-hydroxy-2,2 obtained in step 34 in a mixed solution of dichloromethane (150 parts) and triethylamine (8.6 parts). '-Vinaphthalene (11.5 parts) was added, cooled to 0 ° C., and then trifluoromethanesulfonic anhydride (14.4 parts) was slowly added dropwise. After completion of the dropping, the temperature was raised to 25 ° C., and the mixture was stirred for 2 hours. Water and toluene were added to the obtained reaction solution, the layers were separated, and the solvent was distilled off under reduced pressure to obtain a brown solid. By suspending this solid in methanol (100 parts) and recovering the white solid by filtration, 2,2'-binaphthyl-6-yltrifluoromethanesulfonate (15.2 parts, yield 89%) was obtained. rice field.
(工程36)(2,2’−ビナフチル−6−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(350部)に、工程35で得られた2,2’−ビナフチル−6−イル トリフルオロメタンスルホナート(14.5部)、ビス(ピナコラト)ジボロン(11.0部)、酢酸カリウム(7.1部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.9部)を混合し、窒素雰囲気下、還流温度で6時間撹拌した。得られた反応液を室温まで冷却し、固形分をろ別し、生成物を含むろ液を得た。次いで、シリカゲルカラムクロマトグラフィー(展開液;トルエン)にて精製し、溶媒を減圧除去することにより、(2,2’−ビナフチル−6−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(13.5部、収率99%)を得た。
(Step 36) Synthesis of (2,2'-binaphthyl-6-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (350 parts) was obtained in step 35. 2,2'-binaphthyl-6-yl trifluoromethanesulfonate (14.5 parts), bis (pinacolato) diboron (11.0 parts), potassium acetate (7.1 parts) and [1,1'-bis (1,1'-bis) Diphenylphosphino) ferrocene] Palladium (II) dichloride dichloromethane adduct (0.9 parts) was mixed and stirred at reflux temperature for 6 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, and the solid content was filtered off to obtain a filtrate containing a product. Then, the residue was purified by silica gel column chromatography (developing solution; toluene), and the solvent was removed under reduced pressure to obtain (2,2'-binaphthyl-6-yl) -4,4,5,5-tetramethyl-1. , 3,2-Dioxaborolane (13.5 parts, yield 99%) was obtained.
(工程37)2,7−ビス(2,2’−ビナフチル−6−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(180部)に、水(8.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(3.3部)、工程36で得られた(2,2’−ビナフチル−6−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(6.6部)、リン酸三カリウム(5.7部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.4部)を混合し、窒素雰囲気下、80℃で5時間撹拌した。得られた反応液を室温まで冷却した後、水(200部)を加え、固形分をろ過分取した。得られた固形分をDMF及びアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.169で表される化合物(1.0部、収率20%)を得た。
(Step 37) 2,7-Bis (2,2'-binaphthyl-6-yl) [1] Benzothiophene [3,2-b] [1] Synthesis of benzothiophene DMF (180 parts) was added to water (8. 0 part), 2,7-diiode [1] benzothiophene [3,2-b] [1] benzothiophene (3.3 parts) synthesized by the method described in Japanese Patent No. 4945757, obtained in step 36 (. 2,2'-binaphthyl-6-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (6.6 parts), tripotassium phosphate (5.7 parts) and tetrakis (6 parts) Triphenylphosphine) palladium (0.4 part) was mixed, and the mixture was stirred at 80 ° C. for 5 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (200 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with DMF and acetone, dried, and then sublimated and purified. A compound represented by 169 (1.0 part, yield 20%) was obtained.
合成例25(2,7−ビス(2−ジベンゾチエニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程38)2−(ジベンゾチオフェン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(250部)に、2−ブロモジベンゾチオフェン(10.0部)、ビス(ピナコラト)ジボロン(11.6部)、酢酸カリウム(7.5部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.9部)を混合し、窒素雰囲気下、還流温度で4時間撹拌した。得られた反応液を室温まで冷却し、固形分をろ別し、生成物を含むろ液を得た。次いで、ショートシリカゲルカラムクロマトグラフィー(展開液;トルエン)にて精製し、溶媒を減圧除去することにより、2−(ジベンゾチエニル−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(11.5部、収率98%)を得た。
Synthesis Example 25 (2,7-bis (2-dibenzothioenyl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
(Step 38) Synthesis of 2- (dibenzothiophen-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (250 parts) and 2-bromodibenzothiophene (10. 0 parts), bis (pinacolato) diboron (11.6 parts), potassium acetate (7.5 parts) and [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0. 9 parts) were mixed and stirred at reflux temperature for 4 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, and the solid content was filtered off to obtain a filtrate containing a product. Then, the residue was purified by short silica gel column chromatography (developing solution; toluene), and the solvent was removed under reduced pressure to obtain 2- (dibenzothienyl-2-yl) -4,4,5,5-tetramethyl-1, 3,2-Dioxaborolane (11.5 parts, yield 98%) was obtained.
(工程39)2,7−ビス(2−ジベンゾチエニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(230部)に、水(7.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(4.5部)、工程38で得られた2−(ジベンゾチエニル−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(7.0部)、リン酸三カリウム(7.7部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.6部)を混合し、窒素雰囲気下、90℃で5時間撹拌した。得られた反応液を室温まで冷却した後、水(250部)を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.164で表される化合物(2.0部、収率37%)を得た。
(Step 39) 2,7-Bis (2-dibenzothienyl) [1] Benzothiophene [3,2-b] [1] Synthesis of benzothiophene DMF (230 parts), water (7.0 parts), patent No. 2,7-Diiode [1] benzothiophene [3,2-b] [1] benzothiophene (4.5 parts) synthesized by the method described in No. 4945757, 2- (dibenzothienyl-2) obtained in step 38. -Il) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (7.0 parts), tripotassium phosphate (7.7 parts) and tetrakis (triphenylphosphine) palladium (0. 6 parts) were mixed and stirred at 90 ° C. for 5 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (250 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. A compound represented by 164 (2.0 parts, yield 37%) was obtained.
合成例26(2,7−ビス(1,1’:4’,1’’:4’’,1’’’−クォーターフェニル−4−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程40)4−ブロモ−1,1’:4’,1’’:4’’,1’’’−クォーターフェニルの合成
DMF100部に、一般に入手可能な1,1’:4’,1’’−ターフェニルボロン酸2.7部、4−ブロモ−1−ヨードベンゼン2.8部、リン酸三カリウム12部、テトラキス(トリフェニルホスフィン)パラジウム0.3部を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水100部を加え、固形分をろ過分取した。得られた固形分をメタノールで洗浄し乾燥することにより、4−ブロモ−1,1’:4’,1’’:4’’,1’’’−クォーターフェニル(3.4部、収率88%)を得た。
Synthesis Example 26 (2,7-bis (1,1': 4', 1'': 4'', 1'''-quarterphenyl-4-yl)-[1] benzothioenoe [3,2-b] [1] Synthesis of benzothiophene)
(Step 40) Synthesis of 4-Bromo-1,1': 4', 1'': 4'', 1'''-
(工程41)2−([1,1’:4’,1’’:4’’,1’’’−クォーターフェニル]−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン100部に、工程40にて合成した4−ブロモ−1,1’:4’,1’’:4’’,1’’’−クォーターフェニル3.0部、ビス(ピナコラト)ジボロン2.4部、酢酸カリウム1.5部及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物0.2部を混合し、窒素雰囲気下、還流温度で7時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル20部を加え、5分間撹拌した。その後、固形分をろ別し、溶媒を減圧除去することにより2−([1,1’:4’,1’’:4’’,1’’’−クォーターフェニル]−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(1.3部、収率38%)を得た。
(Step 41) 2-([1,1': 4', 1'': 4'', 1'''-quarterphenyl] -4-yl) -4,4,5,5-tetramethyl-1 , 3,2-Dioxaborolane Synthesis In 100 parts of toluene, 3.0 parts of 4-bromo-1,1': 4', 1'': 4'', 1'''-quarterphenyl synthesized in step 40 , 2.4 parts of bis (pinacolato) diboron, 1.5 parts of potassium acetate and 0.2 parts of [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane additive are mixed to create a nitrogen atmosphere. Below, the mixture was stirred at reflux temperature for 7 hours. The obtained reaction solution was cooled to room temperature, 20 parts of silica gel was added, and the mixture was stirred for 5 minutes. Then, the solid content was filtered off and the solvent was removed under reduced pressure to remove 2- ([1,1': 4', 1'': 4'', 1'''-quarterphenyl] -4-yl)-. 4,4,5,5-Tetramethyl-1,3,2-dioxaborolane (1.3 parts, yield 38%) was obtained.
(工程42)2,7−ビス(1,1’:4’,1’’:4’’,1’’’−クォーターフェニル−4−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF30部に、工程41で得られた2−([1,1’:4’,1’’:4’’,1’’’−クォーターフェニル]−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン1.0部、2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン0.46部、リン酸三カリウム3.1部、水1.0部及びテトラキス(トリフェニルホスフィン)パラジウム(0)0.055部を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水30部を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.172で表される化合物(0.1部、収率13%)を得た。
(Step 42) 2,7-Bis (1,1': 4', 1'': 4'', 1'''-Quarterphenyl-4-yl)-[1] Benzothiophene [3,2-b] [1] Synthesis of benzothiophene 2- ([1,1': 4', 1'': 4'', 1'''-quarterphenyl] -4-yl) obtained in step 41 in 30 parts of DMF. -4,4,5,5-tetramethyl-1,3,2-dioxaborolane 1.0 part, 2,7-diiodo [1] benzothiophene [3,2-b] [1] benzothiophene 0.46 part, 3.1 parts of tripotassium phosphate, 1.0 part of water and 0.055 part of tetrakis (triphenylphosphine) palladium (0) were mixed, and the mixture was stirred at 90 ° C. for 6 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, 30 parts of water was added, and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. A compound represented by 172 (0.1 part, yield 13%) was obtained.
合成例27(2,7−ビス(6−(ベンゾ[b]チオフェン−2−イル)ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程43)2−(6−メトキシナフタレン−2−イル)ベンゾ[b]チオフェンの合成
DMF(600部)に、2−ブロモ−6−メトキシナフタレン(22.5部)、ベンゾ[b]チオフェン−2−ボロン酸(20.3部)、リン酸三カリウム(40.3部)及びテトラキス(トリフェニルホスフィン)パラジウム(2.3部)を加え、窒素雰囲気下、70℃で6時間撹拌した。得られた反応液を室温まで冷却し、水を加え、生成した固体をろ取した。得られた固体をメタノールで洗浄することで、2−(6−メトキシナフタレン−2−イル)ベンゾ[b]チオフェン(19.7部、収率72%)を得た。
Synthesis Example 27 (2,7-bis (6- (benzo [b] thiophen-2-yl) naphthalene-2-yl) [1] benzothioeno [3,2-b] [1] synthesis of benzothiophene)
(Step 43) Synthesis of 2- (6-methoxynaphthalene-2-yl) benzo [b] thiophene DMF (600 parts), 2-bromo-6-methoxynaphthalene (22.5 parts), benzo [b] thiophene -2-Boronic acid (20.3 parts), tripotassium phosphate (40.3 parts) and tetrakis (triphenylphosphine) palladium (2.3 parts) were added, and the mixture was stirred at 70 ° C. for 6 hours under a nitrogen atmosphere. .. The obtained reaction solution was cooled to room temperature, water was added, and the produced solid was collected by filtration. The obtained solid was washed with methanol to obtain 2- (6-methoxynaphthalen-2-yl) benzo [b] thiophene (19.7 parts, yield 72%).
(工程44)2−(6−ヒドロキシ−2−イル)ベンゾ[b]チオフェンの合成
工程43で得られた2−(6−メトキシナフタレン−2−イル)ベンゾ[b]チオフェン(19.5部)及び塩化メチレン(100部)を混合し、0℃、窒素雰囲気下で撹拌した。この溶液に1mol/L三臭化ホウ素の塩化メチレン溶液をゆっくりと滴下し、滴下終了後に室温で1時間撹拌した。反応液に水を加え、分液した。溶媒を減圧留去し、得られた固体をメタノールに懸濁させ、ろ過により白色固体を回収することにより、2−(6−ヒドロキシナフタレン−2−イル)ベンゾ[b]チオフェン(17.9部、収率97%)を得た。
(Step 44) Synthesis of 2- (6-hydroxy-2-yl) benzo [b] thiophene The 2- (6-methoxynaphthalene-2-yl) benzo [b] thiophene obtained in step 43 (19.5 parts) ) And methylene chloride (100 parts) were mixed and stirred at 0 ° C. in a nitrogen atmosphere. A methylene chloride solution of 1 mol / L boron tribromide was slowly added dropwise to this solution, and the mixture was stirred at room temperature for 1 hour after completion of the addition. Water was added to the reaction solution to separate the solutions. The solvent was distilled off under reduced pressure, the obtained solid was suspended in methanol, and the white solid was recovered by filtration to recover 2- (6-hydroxynaphthalene-2-yl) benzo [b] thiophene (17.9 parts). , Yield 97%) was obtained.
(工程45)6−(ベンゾ[b]チオフェン−2−イル)ナフタレン−2−イル トリフルオロメタンスルホナートの合成
ジクロロメタン(250部)及びトリエチルアミン(14.0部)の混合溶液に工程44で得られた2−(6−ヒドロキシナフタレン−2−イル)ベンゾ[b]チオフェン(19.0部)を加え、0℃に冷却した後に、トリフルオロメタンスルホン酸無水物(29.1部)をゆっくりと滴下した。滴下終了後、25℃まで昇温し、1時間撹拌した。得られた反応液に水を加え、褐色の析出物をろ取した。この析出固体をメタノールで洗浄することで、6−(ベンゾ[b]チオフェン−2−イル)ナフタレン−2−イル トリフルオロメタンスルホナート(27.5部、収率98%)を得た。
(Step 45) Synthesis of 6- (benzo [b] thiophen-2-yl) naphthalene-2-yl trifluoromethanesulfonate Obtained in step 44 in a mixed solution of dichloromethane (250 parts) and triethylamine (14.0 parts). 2- (6-Hydroxynaphthalene-2-yl) benzo [b] thiophene (19.0 parts) was added, cooled to 0 ° C., and then trifluoromethanesulfonic anhydride (29.1 parts) was slowly added dropwise. did. After completion of the dropping, the temperature was raised to 25 ° C. and the mixture was stirred for 1 hour. Water was added to the obtained reaction solution, and the brown precipitate was collected by filtration. The precipitated solid was washed with methanol to give 6- (benzo [b] thiophen-2-yl) naphthalene-2-yl trifluoromethanesulfonate (27.5 parts, yield 98%).
(工程46)2−(6−(ベンゾ[b]チオフェン−2−イル)ナフタレン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(400部)に、工程45で得られた6−(ベンゾ[b]チオフェン−2−イル)ナフタレン−2−イル トリフルオロメタンスルホナート(27.0部)、ビス(ピナコラト)ジボロン(20.1部)、酢酸カリウム(13.0部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(1.6部)を混合し、窒素雰囲気下、還流温度で4時間撹拌した。得られた反応液を室温まで冷却し、固形分をろ別し、生成物を含むろ液を得た。次いで、シリカゲルカラムクロマトグラフィー(展開液;トルエン)にて精製し、溶媒を減圧除去することにより、白色固体を得た。得られた固体をトルエンで再結晶にて精製することで、2−(6−(ベンゾ[b]チオフェン−2−イル)ナフタレン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(18.0部、収率71%)を得た。
(Step 46) Synthesis of 2- (6- (benzo [b] thiophen-2-yl) naphthalene-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (400) Part), 6- (benzo [b] thiophen-2-yl) naphthalene-2-yl trifluoromethanesulfonate (27.0 parts), bis (pinacolato) diboron (20.1 parts) obtained in step 45. , Potassium acetate (13.0 parts) and [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (1.6 parts) were mixed, and 4 at reflux temperature under a nitrogen atmosphere. Stirred for hours. The obtained reaction solution was cooled to room temperature, and the solid content was filtered off to obtain a filtrate containing a product. Then, it was purified by silica gel column chromatography (developing solution; toluene), and the solvent was removed under reduced pressure to obtain a white solid. By recrystallizing the obtained solid with toluene, 2- (6- (6- (benzo [b] thiophen-2-yl) naphthalene-2-yl) -4,4,5,5-tetramethyl- 1,3,2-dioxaborolane (18.0 parts, yield 71%) was obtained.
(工程47)2,7−ビス(6−(ベンゾ[b]チオフェン−2−イル)ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(260部)に、水(30.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(4.0部)、工程46で得られた2−(6−(ベンゾ[b]チオフェン−2−イル)ナフタレン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(7.9部)、リン酸三カリウム(6.9部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.52部)を混合し、窒素雰囲気下、80℃で5時間撹拌した。得られた反応液を室温まで冷却した後、水(300部)を加え、固形分をろ過分取した。得られた固形分をDMF及びアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.179で表される化合物(0.6部、収率10%)を得た。
(Step 47) 2,7-Bis (6- (benzo [b] thiophen-2-yl) naphthalene-2-yl) [1] benzothieno [3,2-b] [1] synthesis of benzothiophene DMF (260) Parts), water (30.0 parts), 2,7-diiodo [1] benzothiophene [3,2-b] [1] benzothiophene (4.0 parts) synthesized by the method described in Japanese Patent No. 4945757. , 2- (6- (benzo [b] thiophen-2-yl) naphthalene-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (7) obtained in step 46. .9 parts), tripotassium phosphate (6.9 parts) and tetrakis (triphenylphosphine) palladium (0.52 parts) were mixed and stirred at 80 ° C. for 5 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (300 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with DMF and acetone, dried, and then sublimated and purified. A compound represented by 179 (0.6 parts, yield 10%) was obtained.
合成例28(2,7−ビス(4−(5−ベンゾ[b]チエニル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程48)2−(ベンゾ[b]チオフェン−5−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(200部)に、5−ブロモベンゾ[b]チオフェン(10.0部)、ビス(ピナコラト)ジボロン(14.3部)、酢酸カリウム(9.2部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(1.1部)を混合し、窒素雰囲気下、還流温度で2時間撹拌した。得られた反応液を室温まで冷却し、固形分をろ別し、生成物を含むろ液を得た。次いで、ショートシリカゲルカラムクロマトグラフィー(展開液;トルエン)にて精製し、溶媒を減圧除去することにより、2−(ベンゾ[b]チオフェン−5−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(11.7部、収率96%)を得た。
Synthesis Example 28 (2,7-bis (4- (5-benzo [b] thienyl) phenyl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
(Step 48) Synthesis of 2- (benzo [b] thiophene-5-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane In toluene (200 parts), 5-bromobenzo [b] ] Thiophene (10.0 parts), bis (pinacolato) diboron (14.3 parts), potassium acetate (9.2 parts) and [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane The adduct (1.1 parts) was mixed and stirred at reflux temperature for 2 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, and the solid content was filtered off to obtain a filtrate containing a product. Then, the residue was purified by short silica gel column chromatography (developing solution; toluene), and the solvent was removed under reduced pressure to obtain 2- (benzo [b] thiophene-5-yl) -4,4,5,5-tetramethyl. -1,3,2-dioxaborolane (11.7 parts, yield 96%) was obtained.
(工程49)5−(4−ブロモフェニル)ベンゾ[b]チオフェンの合成
DMF(230部)に、工程48で得られた2−(ベンゾ[b]チオフェン−5−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(11.5部)、1−ブロモ−4−ヨードベンゼン(12.5部)、リン酸三カリウム(18.7部)及びテトラキス(トリフェニルホスフィン)パラジウム(1.6部)を混合し、窒素雰囲気下、60℃で2時間撹拌した。得られた反応液を室温まで冷却し、水(200部)を加え、固形分をろ過分取した。得られた固形分を水、メタノールの順序で洗浄することで、5−(4−ブロモフェニル)ベンゾ[b]チオフェン(12.0部、収率94%)を得た。
(Step 49) Synthesis of 5- (4-bromophenyl) benzo [b] thiophene To DMF (230 parts), 2- (benzo [b] thiophene-5-yl) -4,4 obtained in step 48 5,5-Tetramethyl-1,3,2-dioxaborolane (11.5 parts), 1-bromo-4-iodobenzene (12.5 parts), tripotassium phosphate (18.7 parts) and tetrakis (tri) Phenylphosphine) palladium (1.6 parts) was mixed and stirred at 60 ° C. for 2 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, water (200 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with water and methanol in this order to obtain 5- (4-bromophenyl) benzo [b] thiophene (12.0 parts, yield 94%).
(工程50)2−(4−(5−ベンゾ[b]チエニル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(200部)に、工程49で得られた5−(4−ブロモフェニル)ベンゾ[b]チオフェン(12.0部)、ビス(ピナコラト)ジボロン(14.5部)、酢酸カリウム(9.3部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(1.2部)を混合し、窒素雰囲気下、還流温度で4時間撹拌した。得られた反応液を室温まで冷却し、固形分をろ別し、生成物を含むろ液を得た。次いで、ショートシリカゲルカラムクロマトグラフィー(展開液;トルエン)にて精製し、溶媒を減圧除去した。得られた淡橙色固体をメタノールで洗浄することで、2−(4−(5−ベンゾ[b]チエニル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(7.4部、収率53%)を得た。
(Step 50) Synthesis of 2- (4- (5-benzo [b] thienyl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (200 parts), step 49. 5- (4-Bromophenyl) benzo [b] thiophene (12.0 parts), bis (pinacolato) diboron (14.5 parts), potassium acetate (9.3 parts) and [1,1' -Bis (diphenylphosphino) ferrocene] Palladium (II) dichloride dichloromethane adduct (1.2 parts) was mixed and stirred at reflux temperature for 4 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, and the solid content was filtered off to obtain a filtrate containing a product. Then, it was purified by short silica gel column chromatography (developing solution; toluene), and the solvent was removed under reduced pressure. By washing the obtained pale orange solid with methanol, 2- (4- (5-benzo [b] thienyl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane ( 7.4 parts, yield 53%) was obtained.
(工程51)2,7−ビス(4−(5−ベンゾ[b]チエニル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(200部)に、水(10.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(3.7部)、工程50で得られた2−(4−(5−ベンゾ[b]チエニル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(6.3部)、リン酸三カリウム(6.4部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.5部)を混合し、窒素雰囲気下、80℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(150部)を加え、固形分をろ過分取した。得られた固形分をアセトン、DMFで洗浄し、乾燥した後、昇華精製を行うことにより、上記具体例のNo.187で表される化合物(2.0部、収率51%)を得た。
(Step 51) 2,7-Bis (4- (5-benzo [b] thienyl) phenyl) [1] Synthesis of benzothiophene [3,2-b] [1] Synthesis of benzothiophene DMF (200 parts) was added to water (200 parts). 10.0 parts), 2,7-diiodo [1] benzothiophene [3,2-b] [1] benzothiophene (3.7 parts) synthesized by the method described in Patent No. 4945757, obtained in step 50. 2- (4- (5-benzo [b] thienyl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (6.3 parts), tripotassium phosphate (6. 4 parts) and tetrakis (triphenylphosphine) palladium (0.5 parts) were mixed and stirred at 80 ° C. for 6 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (150 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with acetone and DMF, dried, and then sublimated and purified. A compound represented by 187 (2.0 parts, yield 51%) was obtained.
合成例29(2,7−ビス(4’−(2−ナフチル)−(1,1’−ビフェニル)−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程52)2−(4’−ブロモ−(1,1’−ビフェニル)−4−イル)ナフタレンの合成
DMF(100部)に4−(2−ナフチル)フェニルボロン酸(5.0部)、p−ヨード−ブロモベンゼン(5.7部)、リン酸三カリウム(8.6部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.7部)を加え、窒素雰囲気下、還流温度で6時間撹拌した。得られた反応液を室温まで冷却し、水を加え、析出固体をろ取した。得られた固体をメタノールで洗浄し、乾燥することにより2−(4’−ブロモ−(1,1’−ビフェニル)−4−イル)ナフタレン(7.0部、収率97%)を得た。
Synthesis Example 29 (2,7-bis (4'-(2-naphthyl)-(1,1'-biphenyl) -4-yl) [1] Synthesis of benzothiophene [3,2-b] [1] benzothiophene )
(Step 52) Synthesis of 2- (4'-bromo- (1,1'-biphenyl) -4-yl) naphthalene DMF (100 parts) to 4- (2-naphthyl) phenylboronic acid (5.0 parts) , P-iodo-bromobenzene (5.7 parts), tripotassium phosphate (8.6 parts) and tetrakis (triphenylphosphine) palladium (0.7 parts) were added, and the reflux temperature was 6 hours under a nitrogen atmosphere. Stirred. The obtained reaction solution was cooled to room temperature, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with methanol and dried to obtain 2- (4'-bromo- (1,1'-biphenyl) -4-yl) naphthalene (7.0 parts, yield 97%). ..
(工程53)2−(4’−(2−ナフチル)−(1,1’−ビフェニル)−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(150部)に、工程52で得られた2−(4’−ブロモ−(1,1’−ビフェニル)−4−イル)ナフタレン(7.0部)、ビス(ピナコラト)ジボロン(6.1部)、酢酸カリウム(3.9部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.5部)を混合し、窒素雰囲気下、還流温度で5時間撹拌した。得られた反応液を室温まで冷却し、固形分をろ別し、生成物を含むろ液を得た。次いで、シリカゲルカラムクロマトグラフィー(展開液;トルエン)にて精製し、溶媒を減圧除去することにより、2−(4’−(2−ナフチル)−(1,1’−ビフェニル)−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(6.6部、収率80%)を得た。
(Step 53) Synthesis of 2- (4'-(2-naphthyl)-(1,1'-biphenyl) -4-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (150 parts), 2- (4'-bromo- (1,1'-biphenyl) -4-yl) naphthalene (7.0 parts), bis (pinacolato) diboron (6. 1 part), potassium acetate (3.9 parts) and [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.5 parts) are mixed and refluxed under a nitrogen atmosphere. The mixture was stirred at temperature for 5 hours. The obtained reaction solution was cooled to room temperature, and the solid content was filtered off to obtain a filtrate containing a product. Then, the residue was purified by silica gel column chromatography (developing solution; toluene), and the solvent was removed under reduced pressure to obtain 2- (4'-(2-naphthyl)-(1,1'-biphenyl) -4-yl). -4,4,5,5-Tetramethyl-1,3,2-dioxaborolane (6.6 parts, yield 80%) was obtained.
(工程54)2,7−ビス(4’−(2−ナフチル)−(1,1’−ビフェニル)−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(200部)に、水(10.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(3.2部)、工程53で得られた2−(4’−(2−ナフチル)−(1,1’−ビフェニル)−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(6.6部)、リン酸三カリウム(5.5部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.4部)を混合し、窒素雰囲気下、80℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(200部)を加え、固形分をろ過分取した。得られた固形分をDMF及びアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.190で表される化合物(0.5部、収率10%)を得た。
(Step 54) 2,7-Bis (4'-(2-naphthyl)-(1,1'-biphenyl) -4-yl) [1] Synthesis of benzothiophene [3,2-b] [1] benzothiophene DMF (200 parts), water (10.0 parts), 2,7-diiodo [1] benzothiophene [3,2-b] [1] benzothiophene (3. 2 parts), 2- (4'-(2-naphthyl)-(1,1'-biphenyl) -4-yl) -4,4,5,5-tetramethyl-1,3 obtained in step 53 , 2-Dioxaborolane (6.6 parts), tripotassium phosphate (5.5 parts) and tetrakis (triphenylphosphine) palladium (0.4 parts) were mixed and stirred at 80 ° C. for 6 hours under a nitrogen atmosphere. .. After cooling the obtained reaction solution to room temperature, water (200 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with DMF and acetone, dried, and then sublimated and purified. A compound represented by 190 (0.5 part, yield 10%) was obtained.
合成例30(2,7−ビス(4−(ナフト[1,2−b]チオフェン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程55)2−(4−ブロモフェニル)ナフト[1,2−b]チオフェンの合成
DMF(190部)に、公知の方法により合成された2−(ナフト[1,2−b]チオフェン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(6.0部)、パラ―ブロモヨードベンゼン(5.5部)、水(5.0部)、リン酸三カリウム(22.9部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.6部)を混合し、窒素雰囲気下、70℃で4時間撹拌した。得られた反応液を室温まで冷却した後、水(190部)を加え、固形分をろ過分取した。得られた固形分をメタノールで洗浄し乾燥することにより、2−(4−ブロモフェニル)ナフト[1,2−b]チオフェン(3.0部、収率47%)を得た。
Synthesis Example 30 (2,7-bis (4- (naphtho [1,2-b] thiophen-2-yl) phenyl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
(Step 55) Synthesis of 2- (4-bromophenyl) naphtho [1,2-b] thiophene 2- (naphtho [1,2-b] thiophene-synthesized with DMF (190 parts) by a known method. 2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (6.0 parts), para-bromoiodobenzene (5.5 parts), water (5.0 parts), Tripotassium phosphate (22.9 parts) and tetrakis (triphenylphosphine) palladium (0.6 parts) were mixed and stirred at 70 ° C. for 4 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (190 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with methanol and dried to obtain 2- (4-bromophenyl) naphtho [1,2-b] thiophene (3.0 parts, yield 47%).
(工程56)2−(4−(ナフト[1,2−b]チオフェン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(110部)に、工程55で得られた2−(4−ブロモフェニル)ナフト[1,2−b]チオフェン(2.8部)、ビス(ピナコラト)ジボロン(2.5部)、酢酸カリウム(1.6部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.22部)を混合し、窒素雰囲気下、還流温度で4時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル20部を加え、5分間撹拌した。その後、固形分をろ別し、溶媒を減圧除去することにより2−(4−(ナフト[1,2−b]チオフェン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(2.2部、収率69%)を得た。
(Step 56) Synthesis of 2- (4- (naphtho [1,2-b] thiophen-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (110) 2- (4-Bromophenyl) naphtho [1,2-b] thiophene (2.8 parts), bis (pinacolato) diboron (2.5 parts), potassium acetate (1 part) obtained in step 55. .6 parts) and [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.22 parts) were mixed and stirred at reflux temperature for 4 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, 20 parts of silica gel was added, and the mixture was stirred for 5 minutes. Then, the solid content was filtered off and the solvent was removed under reduced pressure to remove 2- (4- (naphtho [1,2-b] thiophen-2-yl) phenyl) -4,4,5,5-tetramethyl-. 1,3,2-Dioxaborolane (2.2 parts, yield 69%) was obtained.
(工程57)2,7−ビス(4−(ナフト[1,2−b]チオフェン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(100部)に、水(2.6部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(1.2部)、工程56で得られた2−(4−(ナフト[1,2−b]チオフェン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(2.0部)、リン酸三カリウム(8.1部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.2部)を混合し、窒素雰囲気下、80℃で5時間撹拌した。得られた反応液を室温まで冷却した後、水(100部)を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.199で表される化合物(0.4部、収率26%)を得た。
(Step 57) 2,7-Bis (4- (naphtho [1,2-b] thiophen-2-yl) phenyl) [1] Benzothiophene [3,2-b] [1] Synthesis of benzothiophene DMF (100) Parts), water (2.6 parts), 2,7-diiodo [1] benzothiophene [3,2-b] [1] benzothiophene (1.2 parts) synthesized by the method described in Japanese Patent No. 4945757. , 2- (4- (naphtho [1,2-b] thiophen-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2) obtained in step 56. .0 parts), tripotassium phosphate (8.1 parts) and tetrakis (triphenylphosphine) palladium (0.2 parts) were mixed and stirred at 80 ° C. for 5 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (100 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. A compound represented by 199 (0.4 part, yield 26%) was obtained.
合成例31(2,7−ビス(4−(ベンゾ[d]オキサゾール−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程58)2−(ベンソ[d]オキサゾール−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(500部)に、2−(4−ブロモフェニル)ベンゾ[d]オキサゾール(10部)、ビス(ピナコラト)ジボロン(10.8部)、酢酸カリウム(6.9部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(1.0部)を混合し、窒素雰囲気下、還流温度で4時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル20部を加え、5分間撹拌した。その後、固形分をろ別し、溶媒を減圧除去することにより2−(ベンソ[d]オキサゾール−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(11.4部、収率99%)を得た。
Synthesis Example 31 (2,7-bis (4- (benzo [d] oxazole-2-yl) phenyl) [1] Synthesis of benzothiophene [3,2-b] [1] benzothiophene)
(Step 58) Synthesis of 2- (benzo [d] oxazole-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (500 parts), 2- ( 4-Bromophenyl) benzo [d] oxazole (10 parts), bis (pinacolato) diboron (10.8 parts), potassium acetate (6.9 parts) and [1,1'-bis (diphenylphosphino) ferrocene] Palladium (II) dichloride dichloromethane adduct (1.0 part) was mixed and stirred at reflux temperature for 4 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, 20 parts of silica gel was added, and the mixture was stirred for 5 minutes. Then, the solid content was filtered off and the solvent was removed under reduced pressure to remove 2- (benzo [d] oxazole-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane. (11.4 parts, yield 99%) was obtained.
(工程59)2,7−ビス(4−(ベンゾ[d]オキサゾール−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(430部)に、水(11部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(4.9部)、工程58で得られた2−(ベンソ[d]オキサゾール−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(8.0部)、リン酸三カリウム(34部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.8部)を混合し、窒素雰囲気下、80℃で5時間撹拌した。得られた反応液を室温まで冷却した後、水(430部)を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.112で表される化合物(3.6部、収率57%)を得た。
(Step 59) 2,7-Bis (4- (benzo [d] oxazole-2-yl) phenyl) [1] Synthesis of benzothiophene [3,2-b] [1] Synthesis of benzothiophene In DMF (430 parts), Water (11 parts), 2,7-diiodo [1] benzothiophene [3,2-b] [1] benzothiophene (4.9 parts) synthesized by the method described in Japanese Patent No. 4945757, obtained in step 58. 2- (Benzo [d] oxazole-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (8.0 parts), tripotassium phosphate (34 parts) And tetrakis (triphenylphosphine) palladium (0.8 parts) were mixed, and the mixture was stirred at 80 ° C. for 5 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (430 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. A compound represented by 112 (3.6 parts, yield 57%) was obtained.
合成例32(2,7−ビス(4−(5−フェニルベンゾ[b]チオフェン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程60)5−フェニルベンゾ[b]チオフェンの合成
DMF(500部)に、5−ブロモベンゾ[b]チオフェン(20部)、フェニルボロン酸(13.7部)、リン酸三カリウム(113部)及びテトラキス(トリフェニルホスフィン)パラジウム(3.0部)を混合し、窒素雰囲気下、70℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(500部)を加え、固形分をろ過分取した。得られた固形分を水とアセトンで洗浄し乾燥を行うことにより、5−フェニルベンゾ[b]チオフェン(13.3部、収率67%)を得た。
Synthesis Example 32 (2,7-bis (4- (5-phenylbenzo [b] thiophen-2-yl) phenyl) [1] Synthesis of benzothiophene [3,2-b] [1] benzothiophene)
(Step 60) Synthesis of 5-phenylbenzo [b] thiophene To DMF (500 parts), 5-bromobenzo [b] thiophene (20 parts), phenylboronic acid (13.7 parts), tripotassium phosphate (113 parts) ) And tetrakis (triphenylphosphine) palladium (3.0 parts) were mixed and stirred at 70 ° C. for 6 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (500 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with water and acetone and dried to obtain 5-phenylbenzo [b] thiophene (13.3 parts, yield 67%).
(工程61)2−(5−フェニルベンゾ[b]チオフェン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
テトラヒドロフラン(300部)に、工程60で得られた5−フェニルベンゾ[b]チオフェン(12.6部)を混合した。0℃に冷却した混合液へノルマルブチルリチウムヘキサン溶液(2.6M、28部)を加え、窒素雰囲気下、1時間撹拌した。得られた混合液へイソプロポキシボロン酸ピナコール(16部)を加え、室温で12時間撹拌した。得られた反応液へ水(100部)を加え、溶媒を減圧留去することで生じた固形分をろ過分取した。得られた固形分を水で洗浄し乾燥を行うことにより、2−(5−フェニルベンゾ[b]チオフェン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(11.4部、収率57%)を得た。
(Step 61) Synthesis of 2- (5-phenylbenzo [b] thiophen-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane In tetrahydrofuran (300 parts), step 60. 5-Phenylbenzo [b] thiophene (12.6 parts) obtained in the above was mixed. A normal butyllithium hexane solution (2.6 M, 28 parts) was added to the mixture cooled to 0 ° C., and the mixture was stirred under a nitrogen atmosphere for 1 hour. Pinacol isopropoxyboronic acid (16 parts) was added to the obtained mixed solution, and the mixture was stirred at room temperature for 12 hours. Water (100 parts) was added to the obtained reaction solution, and the solid content generated by distilling off the solvent under reduced pressure was collected by filtration. By washing the obtained solid content with water and drying it, 2- (5-phenylbenzo [b] thiophen-2-yl) -4,4,5,5-tetramethyl-1,3,2- Dioxaborolane (11.4 parts, 57% yield) was obtained.
(工程62)2−(4−ブロモフェニル)−5−フェニルベンゾ[b]チオフェンの合成
DMF(300部)に、水(8.0部)、工程61で得られた2−(5−フェニルベンゾ[b]チオフェン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(10部)、1−ブロモ−4−ヨードベンゼン(8.4部)、リン酸三カリウム(36部)及びテトラキス(トリフェニルホスフィン)パラジウム(1.0部)を混合し、窒素雰囲気下、70℃で3時間撹拌した。得られた反応液を室温まで冷却し、水(300部)を加え、固形分をろ過分取した。得られた固形分を水、メタノールの順序で洗浄することで、2−(4−ブロモフェニル)−5−フェニルベンゾ[b]チオフェン(9.2部、収率85%)を得た。
(Step 62) Synthesis of 2- (4-bromophenyl) -5-phenylbenzo [b] thiophene DMF (300 parts) was mixed with water (8.0 parts), and 2- (5-phenyl) obtained in step 61 was added. Benzo [b] thiophen-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (10 parts), 1-bromo-4-iodobenzene (8.4 parts), phosphorus Tripotassium phosphate (36 parts) and tetrakis (triphenylphosphine) palladium (1.0 parts) were mixed and stirred at 70 ° C. for 3 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, water (300 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with water and methanol in this order to obtain 2- (4-bromophenyl) -5-phenylbenzo [b] thiophene (9.2 parts, yield 85%).
(工程63)2−(4−(5−フェニルベンゾ[b]チオフェン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(300部)に、工程62で得られた2−(4−ブロモフェニル)−5−フェニルベンゾ[b]チオフェン(8.5部)、ビス(ピナコラト)ジボロン(6.9部)、酢酸カリウム(4.4部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.64部)を混合し、窒素雰囲気下、還流温度で6時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル20部を加え、5分間撹拌した。その後、固形分をろ別し、溶媒を減圧除去することにより2−(4−(5−フェニルベンゾ[b]チオフェン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(5.2部、収率55%)を得た。
(Step 63) Synthesis of 2- (4- (5-phenylbenzo [b] thiophen-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (300 parts) ), 2- (4-Bromophenyl) -5-phenylbenzo [b] thiophene (8.5 parts), bis (pinacolato) diboron (6.9 parts), potassium acetate (4.) obtained in step 62. 4 parts) and [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.64 parts) were mixed and stirred at reflux temperature for 6 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, 20 parts of silica gel was added, and the mixture was stirred for 5 minutes. Then, the solid content was filtered off and the solvent was removed under reduced pressure to remove 2- (4- (5-phenylbenzo [b] thiophen-2-yl) phenyl) -4,4,5,5-tetramethyl-1. , 3,2-Dioxaborolane (5.2 parts, yield 55%) was obtained.
(工程64)2,7−ビス(4−(5−フェニルベンゾ[b]チオフェン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(200部)に、水(5.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(1.8部)、工程63で得られた2−(4−(5−フェニルベンゾ[b]チオフェン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(4.5部)、リン酸三カリウム(15部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.4部)を混合し、窒素雰囲気下、80℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(200部)を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.90で表される化合物(1.5部、収率50%)を得た。
(Step 64) 2,7-Bis (4- (5-phenylbenzo [b] thiophen-2-yl) phenyl) [1] Benzothiophene [3,2-b] [1] Synthesis of benzothiophene DMF (200 parts) ), Water (5.0 parts), 2,7-diiodo [1] benzothiophene [3,2-b] [1] benzothiophene (1.8 parts) synthesized by the method described in Japanese Patent No. 4945757. 2- (4- (5-Phenylbenzo [b] thiophen-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4.5) obtained in step 63 Part), tripotassium phosphate (15 parts) and tetrakis (triphenylphosphene) palladium (0.4 parts) were mixed and stirred at 80 ° C. for 6 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (200 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. A compound represented by 90 (1.5 parts, yield 50%) was obtained.
合成例33(2,7−ビス(4−(3−ジベンゾ[b,d]フラン)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程65)2−(3−ジベンゾ[b,d]フラン)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(100部)に、3−ブロモジベンゾ[b,d]フラン(5.0部)、ビス(ピナコラト)ジボロン(6.2部)、酢酸カリウム(4.0部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.5部)を混合し、窒素雰囲気下、還流温度で5時間撹拌した。得られた反応液を室温まで冷却し、固形分をろ別し、生成物を含むろ液を得た。次いで、ショートシリカゲルカラムクロマトグラフィー(展開液;トルエン)にて精製し、溶媒を減圧除去することにより、2−(3−ジベンゾ[b,d]フラン)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(3.8部、収率64%)を得た。
Synthesis Example 33 (2,7-bis (4- (3-dibenzo [b, d] furan) phenyl) [1] Synthesis of benzothiophene [3,2-b] [1] benzothiophene)
(Step 65) Synthesis of 2- (3-dibenzo [b, d] furan) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (100 parts) was added to 3-bromodibenzo [ b, d] furan (5.0 parts), bis (pinacolato) diboron (6.2 parts), potassium acetate (4.0 parts) and [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) ) Dichloroside dichloromethane adduct (0.5 part) was mixed, and the mixture was stirred at reflux temperature for 5 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, and the solid content was filtered off to obtain a filtrate containing a product. Then, the residue was purified by short silica gel column chromatography (developing solution; toluene), and the solvent was removed under reduced pressure to obtain 2- (3-dibenzo [b, d] furan) -4,4,5,5-tetramethyl. -1,3,2-dioxaborolane (3.8 parts, yield 64%) was obtained.
(工程66)3−(4−ブロモフェニル)ジベンゾ[b,d]フランの合成
DMF(60部)に、工程65で得られた2−(3−ジベンゾ[b,d]フラン)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(3.8部)、1−ブロモ−4−ヨードベンゼン(3.7部)、リン酸三カリウム(5.5部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.4部)を混合し、窒素雰囲気下、60℃で2時間撹拌した。得られた反応液を室温まで冷却し、水(200部)を加え、固形分をろ過分取した。得られた固形分を水、メタノールの順序で洗浄することで、3−(4−ブロモフェニル)ジベンゾ[b,d]フラン(2.7部、収率64%)を得た。
(Step 66) Synthesis of 3- (4-bromophenyl) dibenzo [b, d] furan To DMF (60 parts), 2- (3-dibenzo [b, d] furan) -4, obtained in
(工程67)2−(4−(3−ジベンゾ[b,d]フラン)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(50部)に、工程66で得られた3−(4−ブロモフェニル)ジベンゾ[b,d]フラン(2.7部)、ビス(ピナコラト)ジボロン(2.5部)、酢酸カリウム(1.6部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.2部)を混合し、窒素雰囲気下、還流温度で8時間撹拌した。得られた反応液を室温まで冷却し、固形分をろ別し、生成物を含むろ液を得た。次いで、ショートシリカゲルカラムクロマトグラフィー(展開液;トルエン)にて精製することで、2−(4−(3−ジベンゾ[b,d]フラン)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(2.8部、収率90%)を得た。
(Step 67) Synthesis of 2- (4- (3-dibenzo [b, d] furan) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane To toluene (50 parts), 3- (4-Bromophenyl) dibenzo [b, d] furan (2.7 parts), bis (pinacolato) diboron (2.5 parts), potassium acetate (1.6 parts) and [ 1,1'-Bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.2 parts) was mixed and stirred at reflux temperature for 8 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, and the solid content was filtered off to obtain a filtrate containing a product. Then, by purifying with short silica gel column chromatography (developing solution; toluene), 2- (4- (3-dibenzo [b, d] furan) phenyl) -4,4,5,5-tetramethyl- 1,3,2-dioxaborolane (2.8 parts, yield 90%) was obtained.
(工程68)2,7−ビス(4−(3−ジベンゾ[b,d]フラン)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(80部)に、水(8.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(1.5部)、工程67で得られた2−(4−(3−ジベンゾ[b,d]フラン)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(2.8部)、リン酸三カリウム(2.6部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.2部)を混合し、窒素雰囲気下、80℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(100部)を加え、固形分をろ過分取した。得られた固形分をアセトン、DMFで洗浄し、乾燥した後、昇華精製を行うことにより、上記具体例のNo.206で表される化合物(0.9部、収率41%)を得た。
(Step 68) Synthesis of 2,7-bis (4- (3-dibenzo [b, d] furan) phenyl) [1] benzothiophene [3,2-b] [1] benzothiophene In DMF (80 parts), Water (8.0 parts), 2,7-diiodo [1] benzothiophene [3,2-b] [1] benzothiophene (1.5 parts) synthesized by the method described in Patent No. 4945757, in step 67. The obtained 2- (4- (3-dibenzo [b, d] furan) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.8 parts), triphosphate Potassium (2.6 parts) and tetrakis (triphenylphosphine) palladium (0.2 parts) were mixed and stirred at 80 ° C. for 6 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (100 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with acetone and DMF, dried, and then sublimated and purified. A compound represented by 206 (0.9 parts, yield 41%) was obtained.
合成例34(2,7−ビス(4−(3−ジベンゾ[b,d]チオフェン)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程69)2−(3−ジベンゾ[b,d]チオフェン)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(100部)に、3−ブロモジベンゾ[b,d]チオフェン(5.0部)、ビス(ピナコラト)ジボロン(5.8部)、酢酸カリウム(3.7部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.4部)を混合し、窒素雰囲気下、還流温度で4時間撹拌した。得られた反応液を室温まで冷却し、固形分をろ別し、生成物を含むろ液を得た。次いで、ショートシリカゲルカラムクロマトグラフィー(展開液;トルエン)にて精製し、溶媒を減圧除去することにより、2−(3−ジベンゾ[b,d]チオフェン)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(2.3部、収率39%)を得た。
Synthesis Example 34 (2,7-bis (4- (3-dibenzo [b, d] thiophene) phenyl) [1] Synthesis of benzothiophene [3,2-b] [1] benzothiophene)
(Step 69) Synthesis of 2- (3-dibenzo [b, d] thiophene) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane To toluene (100 parts), 3-bromodibenzo [ b, d] thiophene (5.0 parts), bis (pinacolato) diboron (5.8 parts), potassium acetate (3.7 parts) and [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) ) Dichloride dichloromethane adduct (0.4 parts) was mixed and stirred at reflux temperature for 4 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, and the solid content was filtered off to obtain a filtrate containing a product. Then, the residue was purified by short silica gel column chromatography (developing solution; toluene), and the solvent was removed under reduced pressure to obtain 2- (3-dibenzo [b, d] thiophene) -4,4,5,5-tetramethyl. -1,3,2-dioxaborolane (2.3 parts, yield 39%) was obtained.
(工程70)3−(4−ブロモフェニル)ジベンゾ[b,d]チオフェンの合成
DMF(40部)に、工程69で得られた2−(3−ジベンゾ[b,d]チオフェン)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(2.3部)、1−ブロモ−4−ヨードベンゼン(2.1部)、リン酸三カリウム(3.0部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.3部)を混合し、窒素雰囲気下、60℃で3時間撹拌した。得られた反応液を室温まで冷却し、水(60部)を加え、固形分をろ過分取した。得られた固形分を水、メタノールの順序で洗浄することで、3−(4−ブロモフェニル)ジベンゾ[b,d]チオフェン(2.5部、収率99%)を得た。
(Step 70) Synthesis of 3- (4-bromophenyl) dibenzo [b, d] thiophene To DMF (40 parts), 2- (3-dibenzo [b, d] thiophene) -4, obtained in step 69. 4,5,5-Tetramethyl-1,3,2-dioxaborolane (2.3 parts), 1-bromo-4-iodobenzene (2.1 parts), tripotassium phosphate (3.0 parts) and tetrakis (Triphenylphosphine) palladium (0.3 parts) was mixed, and the mixture was stirred at 60 ° C. for 3 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, water (60 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with water and methanol in this order to obtain 3- (4-bromophenyl) dibenzo [b, d] thiophene (2.5 parts, yield 99%).
(工程71)2−(4−(3−ジベンゾ[b,d]チオフェン)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(50部)に、工程70で得られた3−(4−ブロモフェニル)ジベンゾ[b,d]チオフェン(2.5部)、ビス(ピナコラト)ジボロン(2.2部)、酢酸カリウム(1.4部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.2部)を混合し、窒素雰囲気下、還流温度で8時間撹拌した。得られた反応液を室温まで冷却し、固形分をろ別し、生成物を含むろ液を得た。次いで、ショートシリカゲルカラムクロマトグラフィー(展開液;トルエン)にて精製することで、2−(4−(3−ジベンゾ[b,d]チオフェン)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(2.0部、収率71%)を得た。
(Step 71) Synthesis of 2- (4- (3-dibenzo [b, d] thiophene) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (50 parts), 3- (4-Bromophenyl) dibenzo [b, d] thiophene (2.5 parts), bis (pinacolato) diboron (2.2 parts), potassium acetate (1.4 parts) and [ 1,1'-Bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.2 parts) was mixed and stirred at reflux temperature for 8 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, and the solid content was filtered off to obtain a filtrate containing a product. Then, by purifying with short silica gel column chromatography (developing solution; toluene), 2- (4- (3-dibenzo [b, d] thiophene) phenyl) -4,4,5,5-tetramethyl- 1,3,2-dioxaborolane (2.0 parts, yield 71%) was obtained.
(工程72)2,7−ビス(4−(3−ジベンゾ[b,d]チオフェン)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(60部)に、水(8.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(1.0部)、工程71で得られた2−(4−(3−ジベンゾ[b,d]チオフェン)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(2.0部)、リン酸三カリウム(1.8部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.1部)を混合し、窒素雰囲気下、80℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(100部)を加え、固形分をろ過分取した。得られた固形分をアセトン、DMFで洗浄し、乾燥した後、昇華精製を行うことにより、上記具体例のNo.207で表される化合物(0.4部、収率26%)を得た。
(Step 72) Synthesis of 2,7-bis (4- (3-dibenzo [b, d] thiophene) phenyl) [1] benzothieno [3,2-b] [1] benzothiophene In DMF (60 parts), Water (8.0 parts), 2,7-diiode [1] benzothieno [3,2-b] [1] benzothiophene (1.0 parts) synthesized by the method described in Japanese Patent No. 4945757, in step 71. The obtained 2- (4- (3-dibenzo [b, d] thiophene) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.0 parts), triphosphate Potassium (1.8 parts) and tetrakis (triphenylphosphine) palladium (0.1 parts) were mixed and stirred at 80 ° C. for 6 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (100 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with acetone and DMF, dried, and then sublimated and purified. A compound represented by 207 (0.4 part, yield 26%) was obtained.
合成例35(2,7−ビス(4−(フェナントレン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程73)2−(フェナントレン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(130部)に、一般に入手可能な2−ブロモフェナントレン(2.4部)、ビス(ピナコラト)ジボロン(3.0部)、酢酸カリウム(1.9部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.28部)を混合し、窒素雰囲気下、還流温度で6時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル20部を加え、5分間撹拌した。その後、固形分をろ別し、溶媒を減圧除去することにより2−(フェナントレン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(2.7部、収率96%)を得た。
Synthesis Example 35 (2,7-bis (4- (phenanthrene-2-yl) phenyl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
(Step 73) Synthesis of 2- (phenanthrene-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (130 parts) is commonly available with 2-bromophenanthrene (step 73). 2.4 parts), bis (pinacolato) diboron (3.0 parts), potassium acetate (1.9 parts) and [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (1 part) 0.28 part) was mixed, and the mixture was stirred at reflux temperature for 6 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, 20 parts of silica gel was added, and the mixture was stirred for 5 minutes. Then, the solid content was filtered off and the solvent was removed under reduced pressure to remove 2- (phenanthrene-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.7 parts, Yield 96%) was obtained.
(工程74)2−(4−ブロモフェニル)フェナントレンの合成
DMF(90部)に、水(2.4部)工程73で得られた2−(フェナントレン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(2.7部)、2−ブロモ−5−ヨードトルエン(2.5部)、リン酸三カリウム(10.7部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.28部)を混合し、窒素雰囲気下、70℃で2時間撹拌した。得られた反応液を室温まで冷却した後、水(90部)を加え、固形分をろ過分取した。得られた固形分をメタノールで洗浄し乾燥することにより、2−(4−ブロモフェニル)フェナントレン(2.9部、収率100%)を得た。
(Step 74) Synthesis of 2- (4-bromophenyl) phenanthrene DMF (90 parts) and water (2.4 parts) 2- (phenanthrene-2-yl) -4,4,5 obtained in step 73 , 5-Tetramethyl-1,3,2-dioxaborolane (2.7 parts), 2-bromo-5-iodotoluene (2.5 parts), tripotassium phosphate (10.7 parts) and tetrakis (triphenyl) Phenyl) palladium (0.28 part) was mixed, and the mixture was stirred at 70 ° C. for 2 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (90 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with methanol and dried to obtain 2- (4-bromophenyl) phenanthrene (2.9 parts, yield 100%).
(工程75)2−(4−(フェナントレン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(120部)に、工程74で得られた2−(4−ブロモフェニル)フェナントレン(2.8部)、ビス(ピナコラト)ジボロン(2.7部)、酢酸カリウム(1.7部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.25部)を混合し、窒素雰囲気下、還流温度で5時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル20部を加え、5分間撹拌した。その後、固形分をろ別し、溶媒を減圧除去することにより2−(4−(フェナントレン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(2.8部、収率88%)を得た。
(Step 75) Synthesis of 2- (4- (phenanthrene-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (120 parts) was obtained in step 74. 2- (4-Bromophenyl) phenanthrene (2.8 parts), bis (pinacolato) diboron (2.7 parts), potassium acetate (1.7 parts) and [1,1'-bis (diphenylphosphino) ) Phenanthrene] Phenanthrene (II) dichloride dichloromethane adduct (0.25 parts) was mixed and stirred at reflux temperature for 5 hours under a nitrogen atmosphere. The obtained reaction solution was cooled to room temperature, 20 parts of silica gel was added, and the mixture was stirred for 5 minutes. Then, the solid content was filtered off, and the solvent was removed under reduced pressure to remove 2- (4- (phenanthrene-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4,4,5,5-tetramethyl-1,3,2-dioxaborolane). 2.8 parts, yield 88%) was obtained.
(工程76)2,7−ビス(4−(フェナントレン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(140部)に、水(3.6部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(2.7部)、工程75で得られた2−(4−(フェナントレン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(2.7部)、リン酸三カリウム(3.6部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.26部)を混合し、窒素雰囲気下、80℃で7時間撹拌した。得られた反応液を室温まで冷却した後、水(140部)を加え、固形分をろ過分取した。得られた固形分をDMF及びアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.210で表される化合物(0.8部、収率38%)を得た。
(Step 76) 2,7-Bis (4- (phenanthrene-2-yl) phenyl) [1] Benzothiophene [3,2-b] [1] Synthesis of benzothiophene DMF (140 parts) was added to water (3. 6 parts), 2,7-diiode [1] benzothiophene [3,2-b] [1] benzothiophene (2.7 parts) synthesized by the method described in Patent No. 4945757, 2 obtained in step 75. -(4- (Phenanthrene-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.7 parts), tripotassium phosphate (3.6 parts) and Tetrakis (triphenylphosphine) palladium (0.26 parts) was mixed and stirred at 80 ° C. for 7 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (140 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with DMF and acetone, dried, and then sublimated and purified. A compound represented by 210 (0.8 parts, yield 38%) was obtained.
合成例36(2,7−ビス(4−(ナフト[2,3−b]チオフェン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程77)2−(4−ブロモフェニル)ナフト[2,3−b]チオフェンの合成
2−(ナフト[1,2−b]チオフェン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの代わりに、公知の方法により合成された2−(ナフト[2,3−b]チオフェン−2−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランを使用したこと以外は工程55に準じて合成を行うことで、2−(4−ブロモフェニル)ナフト[2,3−b]チオフェン(3.5部、収率55%)を得た。
Synthesis Example 36 (2,7-bis (4- (naphtho [2,3-b] thiophen-2-yl) phenyl) [1] benzothiophene [3,2-b] [1] synthesis of benzothiophene)
(Step 77) Synthesis of 2- (4-bromophenyl) naphtho [2,3-b] thiophene 2- (Naft [1,2-b] thiophene-2-yl) -4,4,5,5-tetra 2- (Naft [2,3-b] thiophen-2-yl) -4,4,5,5-tetramethyl-1 synthesized by a known method instead of methyl-1,3,2-dioxaborolane , 3,2-Dioxaborolane was synthesized according to step 55 except that 2- (4-bromophenyl) naphtho [2,3-b] thiophene (3.5 parts, yield 55%). ) Was obtained.
(工程78)2−(4−(ナフト[2,3−b]チオフェン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
2−(4−ブロモフェニル)ナフト[1,2−b]チオフェンの代わりに、工程77で得られた2−(4−ブロモフェニル)ナフト[2,3−b]チオフェンを使用したこと以外は工程56に準じて合成を行うことで、2−(4−(ナフト[2,3−b]チオフェン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(3.7部、収率58%)を得た。
(Step 78) Synthesis of 2- (4- (naphtho [2,3-b] thiophen-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane 2- ( In step 56, except that 2- (4-bromophenyl) naphtho [2,3-b] thiophene obtained in step 77 was used instead of 4-bromophenyl) naphtho [1,2-b] thiophene. By synthesizing according to the same procedure, 2- (4- (naphtho [2,3-b] thiophen-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane ( 3.7 parts, yield 58%) was obtained.
(工程79)2,7−ビス(4−(ナフト[2,3−b]チオフェン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
2−(4−(ナフト[1,2−b]チオフェン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの代わりに、工程78で得られた2−(4−(ナフト[2,3−b]チオフェン−2−イル)フェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランを使用したこと以外は工程57に準じて合成を行うことで、上記具体例のNo.102で表される化合物(0.6部、収率39%)を得た。
(Step 79) 2,7-Bis (4- (naphtho [2,3-b] thiophen-2-yl) phenyl) [1] Benzothiophene [3,2-b] [1] Synthesis of benzothiophene 2- ( 4- (Naft [1,2-b] Thiophene-2-yl) Phenyl) -4,4,5,5-Tetramethyl-1,3,2-Dioxaborolane instead of 2- obtained in step 78 (4- (Naft [2,3-b] thiophen-2-yl) phenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane according to step 57 except that dioxaborolane was used. By synthesizing, No. of the above specific example. A compound represented by 102 (0.6 parts, yield 39%) was obtained.
実施例1(光電変換素子の作製およびその評価)
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)を、ブロック層として抵抗加熱真空蒸着により50nm成膜した。このブロック層の平均表面粗さSaは1.7nmであった。次に、前記のブロック層の上に、光電変換層としてキナクリドンを100nm真空成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを100nm真空成膜し、本発明の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として、5Vの電圧を印加したときの明暗比は2.8×105であった。
Example 1 (Preparation of photoelectric conversion element and its evaluation)
2,7-Bis (naphthalene-2-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (Synthesis Example 1) on ITO transparent conductive glass (manufactured by Geomatec Co., Ltd., ITO film thickness 150 nm) The compound (No. 9 represented by No. 9) obtained in (1) was formed into a 50 nm film by resistance heating vacuum deposition as a block layer. The average surface roughness Sa of this block layer was 1.7 nm. Next, quinacridone was vacuum-deposited on the block layer as a photoelectric conversion layer at 100 nm. Finally, aluminum was vacuum-deposited on the photoelectric conversion layer at 100 nm as an electrode to produce the photoelectric conversion element for an imaging device of the present invention. The ITO and aluminum as electrodes, the contrast ratio at the time of applying a voltage of 5V was 2.8 × 10 5.
実施例2(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(4’−メチル−[1,1’−ビフェニル]−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例2で得られたNo.21で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.8nmであり、5Vの電圧を印加したときの明暗比は1.2×105であった。
Example 2 (Preparation of photoelectric conversion element and its evaluation)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (4'-methyl- [1,1'-biphenyl] -4-yl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (No. 21 obtained in Synthesis Example 2) As a result of evaluation according to Example 1 except that the compound represented by (compound) was used, the average surface roughness Sa of the block layer was 1.8 nm, and the light-dark ratio when a voltage of 5 V was applied. It was 1.2 × 10 5.
実施例3(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(2−フルオロ−[1,1’−ビフェニル]−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例3で得られたNo.23で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.6nmであり、5Vの電圧を印加したときの明暗比は1.1×105であった。
Example 3 (Preparation of photoelectric conversion element and its evaluation)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (2-fluoro- [1,1'-biphenyl] -4-yl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (No. 23 obtained in Synthesis Example 3) As a result of evaluation according to Example 1 except that the compound (represented) was used, the average surface roughness Sa of the block layer was 1.6 nm, and the light-dark ratio when a voltage of 5 V was applied was It was 1.1 × 10 5.
実施例4(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス([1,1’:3,1”−ターフェニル]−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例4で得られたNo.26で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.6nmであり、5Vの電圧を印加したときの明暗比は1.1×105であった。
Example 4 (Preparation of photoelectric conversion element and evaluation thereof)
Instead of 2,7-bis (naphthalen-2-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis ([1,1': 3,1 "-terphenyl] -4-yl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (No. obtained in Synthesis Example 4). When the evaluation was performed according to Example 1 except that the compound represented by 26) was used, the average surface roughness Sa of the block layer was 1.6 nm, and the brightness and darkness when a voltage of 5 V was applied. the ratio was 1.1 × 10 5.
実施例5(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス([1,1’:3’,1”−ターフェニル]−5’−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例5で得られたNo.27で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.6nmであり、5Vの電圧を印加したときの明暗比は7.0×104であった。
Example 5 (Preparation of photoelectric conversion element and evaluation thereof)
Instead of 2,7-bis (naphthalen-2-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis ([1,1': 3', 1 "-terphenyl] -5'-yl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (obtained in Synthesis Example 5) When the evaluation was performed according to Example 1 except that the compound represented by No. 27) was used, the average surface roughness Sa of the block layer was 1.6 nm, and when a voltage of 5 V was applied. the light-dark ratio was 7.0 × 10 4.
実施例6(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(ベンゾ[b]フラン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例6で得られたNo.29で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.4nmであり、5Vの電圧を印加したときの明暗比は2.5×105であった。
Example 6 (Preparation of photoelectric conversion element and evaluation thereof)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (benzo [b] furan-2-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 29 obtained in Synthesis Example 6) was used. was except that, were evaluated in accordance with example 1, the average surface roughness Sa of the blocking layer is 1.4 nm, the contrast ratio at the time of applying a voltage of 5V is 2.5 × 10 5 there were.
実施例7(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(ベンゾ[b]チオフェン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例7で得られたNo.33で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.7nmであり、5Vの電圧を印加したときの明暗比は2.2×105であった。
Example 7 (Preparation of photoelectric conversion element and evaluation thereof)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (benzo [b] thiophen-2-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 33 obtained in Synthesis Example 7) was used. was except that, were evaluated in accordance with example 1, the average surface roughness Sa of the blocking layer is 1.7 nm, the contrast ratio at the time of applying a voltage of 5V is 2.2 × 10 5 there were.
実施例8(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(4−(ベンゾ[b]フラン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例8で得られたNo.83で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.7nmであり、5Vの電圧を印加したときの明暗比は3.2×105であった。
Example 8 (Preparation of photoelectric conversion element and evaluation thereof)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (4- (benzo [b] furan-2-yl) phenyl) [1] benzothiophene [3,2-b] [1] benzothiophene (represented by No. 83 obtained in Synthesis Example 8) As a result of evaluation according to Example 1, the average surface roughness Sa of the block layer was 1.7 nm, and the light-dark ratio when a voltage of 5 V was applied was 3. It was 2 × 10 5.
実施例9(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(4−(ベンゾ[b]チオフェン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例9で得られたNo.87で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは4.1nmであり、5Vの電圧を印加したときの明暗比は6.7×105であった。
Example 9 (Preparation of photoelectric conversion element and evaluation thereof)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (4- (benzo [b] thiophen-2-yl) phenyl) [1] benzothiophene [3,2-b] [1] benzothiophene (represented by No. 87 obtained in Synthesis Example 9) As a result of evaluation according to Example 1, the average surface roughness Sa of the block layer was 4.1 nm, and the light-dark ratio when a voltage of 5 V was applied was 6. It was 7 × 10 5.
実施例10(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(5’−フェニル−[1,1’:3’,1’’−ターフェニル]−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例16で得られたNo.28で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.7nmであり、5Vの電圧を印加したときの明暗比は5.1×105であった。
Example 10 (Preparation of photoelectric conversion element and evaluation thereof)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-bis (5'-phenyl- [1,1': 3', 1''-terphenyl] -4-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (Synthetic example) When the evaluation was carried out according to Example 1 except that the compound represented by No. 28 obtained in No. 16 was used, the average surface roughness Sa of the block layer was 1.7 nm, which was 5 V. contrast ratio when applying the voltage was 5.1 × 10 5.
実施例11(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(4’−(ピリジン−2−イル)−[1,1’−ビフェニル]−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例17で得られたNo.168で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは2.4nmであり、5Vの電圧を印加したときの明暗比は2.5×105であった。
Example 11 (Preparation of photoelectric conversion element and evaluation thereof)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-bis (4'-(pyridine-2-yl)-[1,1'-biphenyl] -4-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (in Synthesis Example 17) When the evaluation was carried out according to Example 1 except that the obtained compound (represented by No. 168) was used, the average surface roughness Sa of the block layer was 2.4 nm, and a voltage of 5 V was applied. contrast ratio when the applied of 2.5 × 10 5.
実施例12(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(4−(ベンゾ[d]チアゾール−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例18で得られたNo.111で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは2.8nmであり、5Vの電圧を印加したときの明暗比は2.5×105であった。
Example 12 (Preparation of photoelectric conversion element and evaluation thereof)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (4- (benzo [d] thiazole-2-yl) phenyl) [1] benzothiophene [3,2-b] [1] benzothiophene (represented by No. 111 obtained in Synthesis Example 18). As a result of evaluation according to Example 1, the average surface roughness Sa of the block layer was 2.8 nm, and the light-dark ratio when a voltage of 5 V was applied was 2. It was 5 × 10 5.
実施例13(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(4−(ベンゾ[b]チオフェン−2−イル)−2−メチルフェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例19で得られたNo.170で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.7nmであり、5Vの電圧を印加したときの明暗比は8.4×105であった。
Example 13 (Preparation of photoelectric conversion element and evaluation thereof)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (4- (benzo [b] thiophen-2-yl) -2-methylphenyl) [1] benzothieno [3,2-b] [1] benzothiophene (No. 1 obtained in Synthesis Example 19). When the evaluation was performed according to Example 1 except that the compound represented by 170) was used, the average surface roughness Sa of the block layer was 1.7 nm, and the brightness and darkness when a voltage of 5 V was applied. the ratio was 8.4 × 10 5.
実施例14(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(2−ジベンゾフラニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例20で得られたNo.165で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.8nmであり、5Vの電圧を印加したときの明暗比は1.1×104であった。
Example 14 (Preparation of photoelectric conversion element and evaluation thereof)
Instead of 2,7-bis (naphthalen-2-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (2-dibenzofuranyl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (compound represented by No. 165 obtained in Synthesis Example 20) except that it was used. were evaluated in accordance with example 1, the average surface roughness Sa of the blocking layer is 1.8 nm, the contrast ratio at the time of applying a voltage of 5V is was 1.1 × 10 4.
実施例15(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(9,9−ジメチル−9H−フルオレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例21で得られたNo.166で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは2.1nmであり、5Vの電圧を印加したときの明暗比は1.6×105であった。
Example 15 (Preparation of photoelectric conversion element and evaluation thereof)
Instead of 2,7-bis (naphthalene-2-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (9,9-dimethyl-9H-fluorene-2-yl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (Represented by No. 166 obtained in Synthesis Example 21) When the evaluation was performed according to Example 1 except that the compound) was used, the average surface roughness Sa of the block layer was 2.1 nm, and the light-dark ratio when a voltage of 5 V was applied was 1.6. × was 10 5.
実施例16(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(4−(9,9−ジメチル−9H−フルオレン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例22で得られたNo.167で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは2.0nmであり、5Vの電圧を印加したときの明暗比は9.5×105であった。
Example 16 (Preparation of photoelectric conversion element and evaluation thereof)
Instead of 2,7-bis (naphthalene-2-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (4- (9,9-dimethyl-9H-fluoren-2-yl) phenyl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (No. obtained in Synthesis Example 22). When the evaluation was performed according to Example 1 except that the compound represented by 167 was used, the average surface roughness Sa of the block layer was 2.0 nm, and the brightness and darkness when a voltage of 5 V was applied. the ratio was 9.5 × 10 5.
実施例17(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(6−フェニルナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例23で得られたNo.10で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.8nmであり、5Vの電圧を印加したときの明暗比は9.8×105であった。
Example 17 (Preparation of photoelectric conversion element and evaluation thereof)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (6-phenylnaphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (compound represented by No. 10 obtained in Synthesis Example 23) was used. except that, were evaluated in accordance with example 1, the average surface roughness Sa of the blocking layer is 1.8 nm, the contrast ratio is 9.8 × 10 5 meet at the time of applying a voltage of 5V rice field.
実施例18(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(2,2’−ビナフタレン−6−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例24で得られたNo.169で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.9nmであり、5Vの電圧を印加したときの明暗比は1.6×106であった。
Example 18 (Preparation of photoelectric conversion element and evaluation thereof)
Instead of 2,7-bis (naphthalen-2-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (2,2'-Binaphthalene-6-yl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (compound represented by No. 169 obtained in Synthesis Example 24) except for using, were evaluated in accordance with example 1, the average surface roughness Sa of the blocking layer is 1.9 nm, the contrast ratio is 1.6 × 10 upon application of a voltage of 5V 6 Met.
実施例19(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(2−ジベンゾチエニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例25で得られたNo.164で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは2.1nmであり、5Vの電圧を印加したときの明暗比は4.8×105であった。
Example 19 (Preparation of photoelectric conversion element and evaluation thereof)
Instead of 2,7-bis (naphthalen-2-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (2-dibenzothienyl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (compound represented by No. 164 obtained in Synthesis Example 25) except that it was used. were evaluated in accordance with example 1, the average surface roughness Sa of the blocking layer is 2.1 nm, the contrast ratio at the time of applying a voltage of 5V was 4.8 × 10 5.
実施例20(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(1,1’:4’,1’’:4’’,1’’’−クォーターフェニル−4−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例26で得られたNo.172で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは2.0nmであり、5Vの電圧を印加したときの明暗比は7.0×103であった。
Example 20 (Preparation of photoelectric conversion element and evaluation thereof)
Instead of 2,7-bis (naphthalen-2-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (1,1': 4', 1'': 4'', 1'''-Quarterphenyl-4-yl)-[1] Benzothiophene [3,2-b] [1] Benzothiophene When the evaluation was carried out according to Example 1 except that (the compound represented by No. 172 obtained in Synthesis Example 26) was used, the average surface roughness Sa of the block layer was 2.0 nm. , contrast ratio at the time of applying a voltage of 5V was 7.0 × 10 3.
実施例21(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、公知の方法により合成されたNo.160で表される化合物を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.4nmであり、5Vの電圧を印加したときの明暗比は2.4×103であった。
Example 21 (Preparation of photoelectric conversion element and evaluation thereof)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1) is known instead of benzothiophene. No. synthesized by the method of No. When the evaluation was performed according to Example 1 except that the compound represented by 160 was used, the average surface roughness Sa of the block layer was 1.4 nm, and the light-dark ratio when a voltage of 5 V was applied. It was 2.4 × 10 3.
実施例22(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、公知の方法により合成されたNo.173で表される化合物を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.5nmであり、5Vの電圧を印加したときの明暗比は2.7×105であった。
Example 22 (Preparation of photoelectric conversion element and its evaluation)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1) is known instead of benzothiophene. No. synthesized by the method of No. When the evaluation was performed according to Example 1 except that the compound represented by 173 was used, the average surface roughness Sa of the block layer was 1.5 nm, and the light-dark ratio when a voltage of 5 V was applied. It was 2.7 × 10 5.
実施例23(光電変換素子の作製およびその評価)
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、公知の方法により合成されたNo.160で表される化合物を抵抗加熱真空蒸着により200nm成膜した。この有機層の平均表面粗さSaは1.4nmであった。次に、電極としてアルミニウムを100nm真空成膜し、本発明の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として、5Vの電圧を印加したときの明暗比は3.3×105であった。
Example 23 (Preparation of photoelectric conversion element and its evaluation)
No. 1 synthesized by a known method on ITO transparent conductive glass (manufactured by Geomatec Co., Ltd., ITO film thickness 150 nm). The compound represented by 160 was formed into a 200 nm film by resistance heating vacuum deposition. The average surface roughness Sa of this organic layer was 1.4 nm. Next, aluminum was vacuum-deposited at 100 nm as an electrode to produce a photoelectric conversion element for an image pickup device of the present invention. The ITO and aluminum as electrodes, the contrast ratio at the time of applying a voltage of 5V was 3.3 × 10 5.
実施例24(光電変換素子の作製およびその評価)
No.160で表される化合物の代わりに、公知の方法により合成されたNo.176で表される化合物を使用したこと以外は、実施例23に準じて評価を行ったところ、有機層の平均表面粗さSaは1.6nmであり、5Vの電圧を印加したときの明暗比は2.3×105であった。
Example 24 (Preparation of photoelectric conversion element and evaluation thereof)
No. No. 1 synthesized by a known method instead of the compound represented by 160. When the evaluation was carried out according to Example 23 except that the compound represented by 176 was used, the average surface roughness Sa of the organic layer was 1.6 nm, and the light-dark ratio when a voltage of 5 V was applied. It was 2.3 × 10 5.
実施例25(光電変換素子の作製およびその評価)
No.160で表される化合物の代わりに、公知の方法により合成されたNo.175で表される化合物を使用したこと以外は、実施例23に準じて評価を行ったところ、有機層の平均表面粗さSaは6.0nmであり、5Vの電圧を印加したときの明暗比は5.7×104であった。
Example 25 (Preparation of photoelectric conversion element and evaluation thereof)
No. No. 1 synthesized by a known method instead of the compound represented by 160. When the evaluation was carried out according to Example 23 except that the compound represented by 175 was used, the average surface roughness Sa of the organic layer was 6.0 nm, and the light-dark ratio when a voltage of 5 V was applied. It was 5.7 × 10 4.
実施例26(光電変換素子の作製およびその評価)
No.160で表される化合物の代わりに、公知の方法により合成されたNo.177で表される化合物を使用したこと以外は、実施例23に準じて評価を行ったところ、有機層の平均表面粗さSaは3.9nmであり、5Vの電圧を印加したときの明暗比は5.1×103であった。
Example 26 (Preparation of Photoelectric Conversion Element and Evaluation thereof)
No. No. 1 synthesized by a known method instead of the compound represented by 160. When the evaluation was carried out according to Example 23 except that the compound represented by 177 was used, the average surface roughness Sa of the organic layer was 3.9 nm, and the light-dark ratio when a voltage of 5 V was applied. It was 5.1 × 10 3.
実施例27(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(6−(ベンゾ[b]チオフェン−2−イル)ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例27で得られたNo.179で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.6nmであり、5Vの電圧を印加したときの明暗比は3.8×105であった。
Example 27 (Preparation of photoelectric conversion element and evaluation thereof)
Instead of 2,7-bis (naphthalene-2-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (6- (benzo [b] thiophen-2-yl) naphthalene-2-yl) [1] benzothieno [3,2-b] [1] benzothiophene (No. obtained in Synthesis Example 27). When the evaluation was performed according to Example 1 except that the compound represented by 179) was used, the average surface roughness Sa of the block layer was 1.6 nm, and the brightness and darkness when a voltage of 5 V was applied. the ratio was 3.8 × 10 5.
実施例28(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(4−(5−ベンゾ[b]チエニル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例28で得られたNo.187で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.6nmであり、5Vの電圧を印加したときの明暗比は4.4×105であった。
Example 28 (Preparation of photoelectric conversion element and evaluation thereof)
Instead of 2,7-bis (naphthalen-2-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (4- (5-benzo [b] thienyl) phenyl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (Compound represented by No. 187 obtained in Synthesis Example 28) ) Was evaluated according to Example 1. The average surface roughness Sa of the block layer was 1.6 nm, and the light-dark ratio when a voltage of 5 V was applied was 4.4 ×. It was 10 5.
実施例29(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(4’−(2−ナフチル)−(1,1’−ビフェニル)−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例29で得られたNo.190で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.8nmであり、5Vの電圧を印加したときの明暗比は3.8×105であった。
Example 29 (Preparation of photoelectric conversion element and evaluation thereof)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (4'-(2-naphthyl)-(1,1'-biphenyl) -4-yl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (obtained in Synthesis Example 29) When the evaluation was carried out according to Example 1 except that the compound represented by No. 190 was used, the average surface roughness Sa of the block layer was 1.8 nm, and a voltage of 5 V was applied. contrast ratio of time was 3.8 × 10 5.
実施例30(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(4−(ナフト[1,2−b]チオフェン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例30で得られたNo.199で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.8nmであり、5Vの電圧を印加したときの明暗比は8.4×105であった。
Example 30 (Preparation of photoelectric conversion element and evaluation thereof)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (4- (naphtho [1,2-b] thiophen-2-yl) phenyl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (No. obtained in Synthesis Example 30). When the evaluation was performed according to Example 1 except that the compound represented by 199) was used, the average surface roughness Sa of the block layer was 1.8 nm, and the brightness and darkness when a voltage of 5 V was applied. the ratio was 8.4 × 10 5.
実施例31(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(4−(ベンゾ[d]オキサゾール−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例31で得られたNo.112で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.6nmであり、5Vの電圧を印加したときの明暗比は3.5×105であった。
Example 31 (Preparation of photoelectric conversion element and evaluation thereof)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (4- (benzo [d] oxazole-2-yl) phenyl) [1] benzothiophene [3,2-b] [1] benzothiophene (represented by No. 112 obtained in Synthesis Example 31). As a result of evaluation according to Example 1, the average surface roughness Sa of the block layer was 1.6 nm, and the light-dark ratio when a voltage of 5 V was applied was 3. It was 5 × 10 5.
実施例32(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(4−(5−フェニルベンゾ[b]チオフェン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例32で得られたNo.90で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.6nmであり、5Vの電圧を印加したときの明暗比は1.0×106であった。
Example 32 (Preparation of photoelectric conversion element and evaluation thereof)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (4- (5-phenylbenzo [b] thiophen-2-yl) phenyl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (No. 90 obtained in Synthesis Example 32) As a result of evaluation according to Example 1 except that the compound represented by (compound) was used, the average surface roughness Sa of the block layer was 1.6 nm, and the light-dark ratio when a voltage of 5 V was applied. It was 1.0 × 10 6.
実施例33(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(4−(3−ジベンゾ[b,d]フラン)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例33で得られたNo.206で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.7nmであり、5Vの電圧を印加したときの明暗比は1.2×105であった。
Example 33 (Preparation of photoelectric conversion element and evaluation thereof)
Instead of 2,7-bis (naphthalen-2-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (4- (3-dibenzo [b, d] furan) phenyl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (Represented by No. 206 obtained in Synthesis Example 33) As a result of evaluation according to Example 1, the average surface roughness Sa of the block layer was 1.7 nm, and the light-dark ratio when a voltage of 5 V was applied was 1. It was 2 × 10 5.
実施例34(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(4−(3−ジベンゾ[b,d]チオフェン)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例34で得られたNo.207で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.7nmであり、5Vの電圧を印加したときの明暗比は9.2×105であった。
Example 34 (Preparation of photoelectric conversion element and evaluation thereof)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (4- (3-dibenzo [b, d] thiophene) phenyl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (Represented by No. 207 obtained in Synthesis Example 34) As a result of evaluation according to Example 1, the average surface roughness Sa of the block layer was 1.7 nm, and the light-dark ratio when a voltage of 5 V was applied was 9. It was 2 × 10 5.
実施例35(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(4−(フェナントレン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例35で得られたNo.210で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.5nmであり、5Vの電圧を印加したときの明暗比は5.7×105であった。
Example 35 (Preparation of photoelectric conversion element and evaluation thereof)
Instead of 2,7-bis (naphthalen-2-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (4- (phenanthrene-2-yl) phenyl) [1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 210 obtained in Synthesis Example 35) except for using, were evaluated in accordance with example 1, the average surface roughness Sa of the blocking layer is 1.5 nm, the contrast ratio is 5.7 × 10 5 at the time of applying a voltage of 5V Met.
実施例36(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(4−(ナフト[2,3−b]チオフェン−2−イル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例36で得られたNo.102で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは1.6nmであり、5Vの電圧を印加したときの明暗比は4.5×105であった。
Example 36 (Preparation of photoelectric conversion element and evaluation thereof)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (4- (naphtho [2,3-b] thiophen-2-yl) phenyl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (No. 36 obtained in Synthesis Example 36). When the evaluation was performed according to Example 1 except that the compound represented by 102) was used, the average surface roughness Sa of the block layer was 1.6 nm, and the brightness and darkness when a voltage of 5 V was applied. the ratio was 4.5 × 10 5.
比較例1(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス([1,1’−ビフェニル]−3−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例10で得られたNo.6で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは52.5nmであり、5Vの電圧を印加したときの明暗比は1.8×103であった。
Comparative Example 1 (Manufacturing of photoelectric conversion element and its evaluation)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis ([1,1'-biphenyl] -3-yl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (Compound No. 6 obtained in Synthesis Example 10) ) Was evaluated according to Example 1. The average surface roughness Sa of the block layer was 52.5 nm, and the light-dark ratio when a voltage of 5 V was applied was 1.8 ×. It was 10 3.
比較例2(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス([1,1’−ビフェニル]−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例11で得られたNo.7で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは68.4nmであり、5Vの電圧を印加したときの明暗比は1.5×101であった。
Comparative Example 2 (Manufacturing of photoelectric conversion element and its evaluation)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis ([1,1'-biphenyl] -2-yl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (Compound No. 7 obtained in Synthesis Example 11) ) Was evaluated according to Example 1. The average surface roughness Sa of the block layer was 68.4 nm, and the light-dark ratio when a voltage of 5 V was applied was 1.5 ×. 10 was 1.
比較例3(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(ナフタレン−1−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例12で得られたNo.13で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは89.9nmであり、5Vの電圧を印加したときの明暗比は2.4×102であった。
Comparative Example 3 (Manufacturing of photoelectric conversion element and its evaluation)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (naphthalene-1-yl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (compound represented by No. 13 obtained in Synthesis Example 12) except that it was used. were evaluated in accordance with example 1, the average surface roughness Sa of the blocking layer is 89.9Nm, contrast ratio at the time of applying a voltage of 5V was 2.4 × 10 2.
比較例4(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(フェナントレン−9−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例13で得られたNo.15で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは73.3nmであり、5Vの電圧を印加したときの明暗比は6.9×102であった。
Comparative Example 4 (Manufacturing of photoelectric conversion element and its evaluation)
Instead of 2,7-bis (naphthalen-2-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (phenanthrene-9-yl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (compound represented by No. 15 obtained in Synthesis Example 13) except that it was used. were evaluated in accordance with example 1, the average surface roughness Sa of the blocking layer is 73.3Nm, contrast ratio at the time of applying a voltage of 5V was 6.9 × 10 2.
比較例5(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(3,5−ビス(トリフルオロメチル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例14で得られたNo.18で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは7.6nmであり、5Vの電圧を印加したときの明暗比は2.0×102であった。
Comparative Example 5 (Preparation of photoelectric conversion element and its evaluation)
Instead of 2,7-bis (naphthalen-2-yl) [1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (3,5-bis (trifluoromethyl) phenyl) [1] Benzothiophene [3,2-b] [1] Benzothiophene (Compound represented by No. 18 obtained in Synthesis Example 14) As a result of evaluation according to Example 1, the average surface roughness Sa of the block layer was 7.6 nm, and the light-dark ratio when a voltage of 5 V was applied was 2.0 × 10. It was 2.
比較例6(光電変換素子の作製およびその評価)
2,7−ビス(ナフタレン−2−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.9で表される化合物)の代わりに、2,7−ビス(9H−カルバゾール−9−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例15で得られたNo.81で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、ブロック層の平均表面粗さSaは27.9nmであり、5Vの電圧を印加したときの明暗比は4.7×100であった。
Comparative Example 6 (Manufacturing of photoelectric conversion element and its evaluation)
2,7-Bis (naphthalene-2-yl) [1] Benzothiophene [3,2-b] [1] Instead of benzothiophene (compound represented by No. 9 obtained in Synthesis Example 1), 2 , 7-Bis (9H-carbazole-9-yl)-[1] benzothiophene [3,2-b] [1] benzothiophene (compound represented by No. 81 obtained in Synthesis Example 15) was used. except that, were evaluated in accordance with example 1, the average surface roughness Sa of the blocking layer is 27.9Nm, met contrast ratio is 4.7 × 10 0 at the time of applying a voltage of 5V rice field.
上記の実施例の評価において得られた明暗比は撮像素子用光電変換素子として明らかに優れた特性を示す。 The light-dark ratio obtained in the evaluation of the above examples shows clearly excellent characteristics as a photoelectric conversion element for an image sensor.
上記の評価結果より、光電変換部の表面粗さが7.0nm以下の有機薄膜層を有する本発明の撮像素子用光電変換素子が、光電変換部の表面粗さが7.0nm以下の有機薄膜層を有さない比較例の撮像素子用光電変換素子よりも優れた特性を有することは明らかである。 From the above evaluation results, the photoelectric conversion element for an imaging device of the present invention having an organic thin film layer having a surface roughness of 7.0 nm or less in the photoelectric conversion part has an organic thin film having a surface roughness of 7.0 nm or less in the photoelectric conversion part. It is clear that it has better characteristics than the photoelectric conversion element for an imaging element of the comparative example having no layer.
以上の様に、本発明の撮像素子用光電変換素子は、有機光電変換特性に優れた性能を有しており、高解像度と高応答性を有する有機撮像素子はもとより有機EL素子、有機太陽電池素子及び有機トランジスタ素子等の有機エレクトロニクスデバイス、光センサー、赤外センサー、紫外センサー、X線センサーやフォトンカウンター等のデバイスやそれらを利用したカメラ、ビデオカメラ、赤外線カメラ等の分野への応用が期待される。 As described above, the photoelectric conversion element for an imaging device of the present invention has excellent performance in organic photoelectric conversion characteristics, and is not only an organic imaging element having high resolution and high responsiveness, but also an organic EL element and an organic solar cell. Expected to be applied to organic electronic devices such as elements and organic transistor elements, devices such as optical sensors, infrared sensors, ultraviolet sensors, X-ray sensors and photon counters, and cameras, video cameras, infrared cameras, etc. using them. Will be done.
1 絶縁部
2 上部電極
3 電子ブロック層もしくは正孔輸送層
4 光電変換部
5 正孔ブロック層もしくは電子輸送層
6 下部電極
7 絶縁基材、もしくは他光電変換素子
1
Claims (12)
で表される化合物を含む表面粗さRa及び/又はSaが7.0nm以下の有機薄膜層を一層以上有する撮像素子用光電変換素子。 A photoelectric conversion element having (A) a first electrode film, (B) a second electrode film, and (C) a photoelectric conversion unit arranged between the first electrode film and the second electrode film. The photoelectric conversion unit is based on the following equation (1).
A photoelectric conversion element for an image sensor having one or more organic thin film layers having a surface roughness Ra and / or Sa of 7.0 nm or less containing a compound represented by.
An optical sensor including the photoelectric conversion element for an image sensor according to any one of claims 1 to 10 or the image sensor according to claim 11.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016167783 | 2016-08-30 | ||
JP2016167783 | 2016-08-30 | ||
JP2017080829 | 2017-04-14 | ||
JP2017080829 | 2017-04-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018166200A JP2018166200A (en) | 2018-10-25 |
JP6906388B2 true JP6906388B2 (en) | 2021-07-21 |
Family
ID=63922968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017144539A Active JP6906388B2 (en) | 2016-08-30 | 2017-07-26 | Photoelectric conversion element for image sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6906388B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4290596A4 (en) | 2021-02-05 | 2024-09-04 | Fujifilm Corp | Photoelectric conversion element, imaging element, photosensor, and compound |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007227574A (en) * | 2006-02-22 | 2007-09-06 | Fujifilm Corp | Photoelectric conversion element, and solid-state imaging element |
CN110085742A (en) * | 2014-04-25 | 2019-08-02 | 日本化药株式会社 | Material for photographing element photo-electric conversion element and the photo-electric conversion element comprising the material |
-
2017
- 2017-07-26 JP JP2017144539A patent/JP6906388B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018166200A (en) | 2018-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6986887B2 (en) | Photoelectric conversion element for image sensor | |
JP6803362B2 (en) | Photoelectric conversion element for image sensor | |
JP6836591B2 (en) | Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them | |
JP6739290B2 (en) | Material for photoelectric conversion element for imaging device and photoelectric conversion element including the same | |
JP2018190755A (en) | Photoelectric conversion element for imaging device | |
JP6906357B2 (en) | Photoelectric conversion element for image sensor | |
JP6862277B2 (en) | Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them | |
JP6864561B2 (en) | Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them | |
JP6619806B2 (en) | Fused polycyclic aromatic compounds | |
JP6890469B2 (en) | Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them | |
JP6906388B2 (en) | Photoelectric conversion element for image sensor | |
JP2020010024A (en) | Material for photoelectric conversion element for imaging element and photoelectric conversion element | |
JP6784639B2 (en) | Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them | |
JP6759075B2 (en) | Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them | |
JP7514258B2 (en) | Polycyclic aromatic compounds | |
JP2018046267A (en) | Photoelectric conversion element material for image pickup element, and photoelectric conversion element including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210301 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210629 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6906388 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |