JP6905719B2 - Hexagonal boron nitride single crystal, composite material composition containing the hexagonal boron nitride single crystal, and heat-dissipating member formed by molding the composite material composition. - Google Patents
Hexagonal boron nitride single crystal, composite material composition containing the hexagonal boron nitride single crystal, and heat-dissipating member formed by molding the composite material composition. Download PDFInfo
- Publication number
- JP6905719B2 JP6905719B2 JP2019119520A JP2019119520A JP6905719B2 JP 6905719 B2 JP6905719 B2 JP 6905719B2 JP 2019119520 A JP2019119520 A JP 2019119520A JP 2019119520 A JP2019119520 A JP 2019119520A JP 6905719 B2 JP6905719 B2 JP 6905719B2
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- single crystal
- boron nitride
- raw material
- hexagonal boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013078 crystal Substances 0.000 title claims description 140
- 239000000203 mixture Substances 0.000 title claims description 35
- 239000002131 composite material Substances 0.000 title claims description 29
- 229910052582 BN Inorganic materials 0.000 title claims description 20
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims description 20
- 238000000465 moulding Methods 0.000 title claims description 7
- 239000011159 matrix material Substances 0.000 claims description 13
- 238000002156 mixing Methods 0.000 claims description 11
- 239000000843 powder Substances 0.000 description 51
- 239000002994 raw material Substances 0.000 description 51
- 239000000945 filler Substances 0.000 description 21
- 229920005989 resin Polymers 0.000 description 17
- 239000011347 resin Substances 0.000 description 17
- 229910003002 lithium salt Inorganic materials 0.000 description 15
- 159000000002 lithium salts Chemical class 0.000 description 15
- 238000002441 X-ray diffraction Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 12
- 238000001878 scanning electron micrograph Methods 0.000 description 12
- 230000004907 flux Effects 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000000654 additive Substances 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000003822 epoxy resin Substances 0.000 description 7
- 229920000647 polyepoxide Polymers 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229920001187 thermosetting polymer Polymers 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000011049 filling Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- -1 nitrogen-containing compound Chemical class 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000004305 biphenyl Substances 0.000 description 3
- 235000010290 biphenyl Nutrition 0.000 description 3
- 239000011231 conductive filler Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229920006287 phenoxy resin Polymers 0.000 description 3
- 239000013034 phenoxy resin Substances 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 150000001639 boron compounds Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000002524 electron diffraction data Methods 0.000 description 2
- 239000003759 ester based solvent Substances 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical group C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical group C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 125000005577 anthracene group Chemical group 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical group C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- NMHMDUCCVHOJQI-UHFFFAOYSA-N lithium molybdate Chemical compound [Li+].[Li+].[O-][Mo]([O-])(=O)=O NMHMDUCCVHOJQI-UHFFFAOYSA-N 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000011656 manganese carbonate Substances 0.000 description 1
- 229940093474 manganese carbonate Drugs 0.000 description 1
- 235000006748 manganese carbonate Nutrition 0.000 description 1
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 1
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000005581 pyrene group Chemical group 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 125000001834 xanthenyl group Chemical group C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本発明はc軸方向の成長が促進された六方晶窒化ホウ素単結晶及びその製造方法に関するものである。 The present invention relates to a hexagonal boron nitride single crystal in which growth in the c-axis direction is promoted and a method for producing the same.
六方晶窒化ホウ素(h−BN)は熱伝導性、固体潤滑性、化学的安定性、そして耐熱性に優れるという特徴を備えていることから、電気・電子材料分野で多く利用されている。
近年、特に電気・電子分野では集積回路の高密度化に伴う発熱が大きな問題となっており、いかに熱を放熱するかが緊急の課題となっている。h−BNは、絶縁性であるにもかかわらず高い熱伝導性を有することから、このような放熱部材用熱伝導性フィラーとして注目を集めている。
Hexagonal boron nitride (h-BN) is widely used in the field of electrical and electronic materials because it has excellent thermal conductivity, solid lubricity, chemical stability, and heat resistance.
In recent years, especially in the fields of electricity and electronics, heat generation due to high density of integrated circuits has become a big problem, and how to dissipate heat has become an urgent issue. Since h-BN has high thermal conductivity despite its insulating property, it is attracting attention as such a thermally conductive filler for heat-dissipating members.
h−BNは板状結晶であり、その板面内(ab面内)は共有結合によって強く結合されているが、厚さ方向(c軸方向)はファンデルワールス力によって弱く結合されているに過ぎない。従って、板面内(通常、熱伝導率として250W/mK程度。)と厚さ方向(通常、熱伝導率として2〜3W/mK程度。)とで、大きな熱伝導異方性が生じる。
一般に、板状結晶をフィラーとして樹脂などに配合して複合材組成物を作製する際、原料混合、プレス成形、射出成形などの過程に於いて、板状結晶の板面が特定方向に配向する現象が起こる。従って、h−BN板状結晶をフィラーとして樹脂などに配合して複合材組成物を作製する場合、得られた複合材組成物に対して、特定方向には高熱伝導だがそれに垂直な方向には低熱伝導というように、h−BN板状結晶の熱伝導異方性が転写されるという問題が生じる。
h-BN is a plate-like crystal, and the inside of the plate surface (inside the ab plane) is strongly bonded by a covalent bond, but the thickness direction (c-axis direction) is weakly bonded by a van der Waals force. Not too much. Therefore, a large thermal conductivity anisotropy occurs in the plate surface (usually, the thermal conductivity is about 250 W / mK) and in the thickness direction (usually, the thermal conductivity is about 2 to 3 W / mK).
Generally, when a composite composition is prepared by blending a plate-shaped crystal as a filler with a resin or the like, the plate surface of the plate-shaped crystal is oriented in a specific direction in a process such as raw material mixing, press molding, or injection molding. The phenomenon occurs. Therefore, when a composite material composition is prepared by blending h-BN plate crystals as a filler with a resin or the like, the obtained composite material composition has high thermal conductivity in a specific direction but in a direction perpendicular to the heat conduction. There arises a problem that the thermal conduction anisotropy of the h-BN plate-like crystal is transferred, such as low thermal conductivity.
従来、この様な熱伝導異方性の転写を防ぐために、h−BN板状結晶をあらかじめランダムな方向に凝集させてからフィラーとして用いる方法が検討されてきた(特許文献1、2、3、4参照)。しかし、このような凝集フィラーには、フィラー内に空隙を持つために複合材組成物への充填量が制約される、凝集フィラーを構成するh−BN板状結晶同士の界面におけるフォノン散乱によって熱伝導が阻害される、などの問題があった。 Conventionally, in order to prevent such transfer of thermal conduction anisotropy, a method of aggregating h-BN plate crystals in a random direction in advance and then using them as a filler has been studied (Patent Documents 1, 2, 3 and 3). 4). However, such an agglomerated filler has voids in the filler, so that the amount of filling into the composite composition is restricted, and heat is generated by phonon scattering at the interface between the h-BN plate-like crystals constituting the agglomerated filler. There was a problem that conduction was hindered.
仮に、「結晶c軸方向の最大厚さ/結晶ab面の最大幅」で定義されるアスペクト比が1に近いh−BN単結晶をフィラーとして用いることが出来れば、上述のような熱伝導異方性の転写は起こらない。また、この様なフィラーは内部に大きな空隙や結晶界面を持たないため、充填量の制約や熱伝導の阻害が緩和される。しかし、通常ではh−BN結晶のc軸方向の成長速度はab面の成長速度に比べて非常に小さいため、上記アスペクト比が1に近いh−BN単結晶を成長させる方法はこれまでに存在しなかった。また、板状h−BN単結晶の粉砕によって上記アスペクト比が1に近いh−BN単結晶を作製しようとしても、ファンデルワールス力によって弱く結合されているab面での劈開が起こり易く、得られる粉砕品も結局は板状h−BN結晶となってしまい易い事が予想される。
反対に、上記アスペクト比が1よりも大きなh−BN単結晶から上記アスペクト比が1に近いh−BN単結晶を作製することは、上記アスペクト比が1よりも大きなh−BN単結晶をab面で劈開すれば良いために容易である事が予想される。従って、h−BN結晶のc軸方向成長がab面成長よりも促進されたようなh−BN単結晶を、容易に製造する方法の確立が望まれてきた。
If an h-BN single crystal having an aspect ratio close to 1 defined by "maximum thickness in the c-axis direction of crystal / maximum width of crystal ab plane" can be used as a filler, the heat conduction difference as described above can be used. Directional transcription does not occur. Further, since such a filler does not have a large void or a crystal interface inside, restrictions on the filling amount and inhibition of heat conduction are alleviated. However, since the growth rate of the h-BN crystal in the c-axis direction is usually very small compared to the growth rate of the ab plane, there has been a method for growing an h-BN single crystal having an aspect ratio close to 1. I didn't. Further, even if an attempt is made to produce an h-BN single crystal having an aspect ratio close to 1 by crushing a plate-shaped h-BN single crystal, cleavage is likely to occur on the ab plane that is weakly bonded by the Van der Waals force. It is expected that the crushed product produced will eventually become a plate-shaped h-BN crystal.
On the contrary, to produce an h-BN single crystal having an aspect ratio close to 1 from an h-BN single crystal having an aspect ratio greater than 1, ab the h-BN single crystal having an aspect ratio greater than 1. It is expected that it will be easy because it is only necessary to open the surface. Therefore, it has been desired to establish a method for easily producing an h-BN single crystal in which the c-axis direction growth of the h-BN crystal is promoted more than the ab plane growth.
本発明は、上記問題点に鑑みてなされたものであり、上記アスペクト比が1に近いh−BN単結晶、具体的には上記アスペクト比が0.3以上のh−BN単結晶を提供することを目的とし、またこのような上記アスペクト比が0.3以上のh−BN単結晶を容易に製造することが可能な製造方法を提供することを目的とするものである。 The present invention has been made in view of the above problems, and provides an h-BN single crystal having an aspect ratio close to 1, specifically, an h-BN single crystal having an aspect ratio of 0.3 or more. It is an object of the present invention to provide a production method capable of easily producing such an h-BN single crystal having an aspect ratio of 0.3 or more.
本発明者らは、鋭意検討を重ねた結果、特定の窒化ホウ素原料を用い、かつリチウム塩をフラックスとして用いるフラックス法によって、上記アスペクト比が0.3以上となるh−BN単結晶を作製することが出来ることを見出した。従来においてもフラックスを用いたh−BN結晶の作製は行われてきたが、得られたh−BN結晶は板状であり、上記アスペクト比が1に近いh−BN単結晶を作製した例は存在しない(特許文献5参照)。本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。 As a result of diligent studies, the present inventors prepare an h-BN single crystal having the above aspect ratio of 0.3 or more by a flux method using a specific boron nitride raw material and a lithium salt as a flux. I found that I could do it. Conventionally, h-BN crystals have been produced using flux, but the obtained h-BN crystals are plate-shaped, and there is an example in which an h-BN single crystal having an aspect ratio close to 1 is produced. It does not exist (see Patent Document 5). The present invention has been achieved based on such findings, and the gist of the present invention is as follows.
[1]結晶c軸方向の最大厚さ/結晶ab面の最大幅、で定義されるアスペクト比が0.3以上である六方晶窒化ホウ素単結晶。
[2]前記結晶ab面の最大幅が100nm以上である[1]に記載の六方晶窒化ホウ素単結晶。
[3]自形結晶または半自形結晶である[1]又は[2]に記載の六方晶窒化ホウ素単結晶。
[4]XRD解析において002面のピーク半値幅が0.4°以上の窒化ホウ素粉末とリチウム塩とを混合し、加熱するステップ、を有する、六方晶窒化ホウ素単結晶の製造方法。
[5]前記六方晶窒化ホウ素単結晶は、結晶ab面の最大幅が100nm以上である[4]に記載の製造方法。
[6]前記六方晶窒化ホウ素単結晶は、自形結晶または半自形結晶である[4]又は[5]に記載の製造方法。
[7][1]〜[3]のいずれかに記載された六方晶窒化ホウ素単結晶、または[4]〜[6]のいずれかに記載された製造方法により製造された六方晶窒化ホウ素単結晶、をマトリクスに配合させてなる、複合材組成物。
[8][7]に記載の複合材組成物を成形してなる、放熱部材。
[1] A hexagonal boron nitride single crystal having an aspect ratio of 0.3 or more defined by the maximum thickness in the c-axis direction of the crystal / the maximum width of the crystal ab plane.
[2] The hexagonal boron nitride single crystal according to [1], wherein the maximum width of the crystal ab plane is 100 nm or more.
[3] The hexagonal boron nitride single crystal according to [1] or [2], which is an automorphic crystal or a semi-automorphic crystal.
[4] A method for producing a hexagonal boron nitride single crystal, which comprises a step of mixing a boron nitride powder having a peak half width of 0.4 ° or more on the 002 surface and a lithium salt in XRD analysis and heating the mixture.
[5] The production method according to [4], wherein the hexagonal boron nitride single crystal has a maximum width of 100 nm or more on the crystal ab surface.
[6] The production method according to [4] or [5], wherein the hexagonal boron nitride single crystal is an automorphic crystal or a semi-automorphic crystal.
[7] Hexagonal boron nitride single crystal according to any one of [1] to [3], or hexagonal boron nitride single crystal produced by the production method according to any one of [4] to [6]. A composite composition obtained by blending crystals with a matrix.
[8] A heat radiating member obtained by molding the composite composition according to [7].
本発明により、h−BN結晶のc軸方向成長が促進されたh−BN単結晶が提供される。本発明のh−BN単結晶を樹脂などのマトリクスに配合した複合材組成物は、従来のh−BN単結晶を用いた際の問題点である熱伝導異方性の転写は起こらない。また、本発明により提供されるh−BN単結晶は内部に大きな空隙や結晶界面を持たないため、充填量の制約や熱伝導の阻害が緩和される。すなわち、放熱部材用熱伝導性フィラーとして有用なh−BN単結晶が提供される。 INDUSTRIAL APPLICABILITY The present invention provides an h-BN single crystal in which the c-axis direction growth of the h-BN crystal is promoted. The composite composition in which the h-BN single crystal of the present invention is blended in a matrix such as a resin does not cause the transfer of thermal conduction anisotropy, which is a problem when the conventional h-BN single crystal is used. Further, since the h-BN single crystal provided by the present invention does not have a large void or crystal interface inside, restrictions on the filling amount and inhibition of heat conduction are alleviated. That is, an h-BN single crystal useful as a heat conductive filler for a heat radiating member is provided.
以下、本発明を詳細に説明するが、本発明の範囲は具体的な実施形態のみに限定されない。
本発明の実施形態に係る六方晶窒化ホウ素単結晶は、「結晶c軸方向の最大厚さ/結晶ab面の最大幅」で定義されるアスペクト比が0.3以上である。
上述のとおり、従来のh−BNは、主に結晶ab面を広げるように成長するため、熱伝導の異方性を有していた。しかしながら本実施形態に係るh−BN単結晶は、0.3以上の上記アスペクト比を持つ単結晶である。従って、そのままフィラーとして樹脂などのマトリクスに配合して複合材組成物を作製しても、複合材組成物内で配向しにくいため、複合材組成物に熱伝導異方性が生じない事が期待される。また、本実施形態に係るh−BN単結晶をフィラーとして用いた場合には、従来のh−BN凝集フィラーと異なりフィラー内に空隙が存在しないため、従来のh−BN凝集フィラーと比べて複合材組成物への充填量の制約が緩和される事が期待される。
Hereinafter, the present invention will be described in detail, but the scope of the present invention is not limited to specific embodiments.
The hexagonal boron nitride single crystal according to the embodiment of the present invention has an aspect ratio of 0.3 or more defined by "maximum thickness in the c-axis direction of crystal / maximum width of crystal ab plane".
As described above, the conventional h-BN has anisotropy of heat conduction because it grows mainly so as to widen the crystal ab plane. However, the h-BN single crystal according to the present embodiment is a single crystal having the above aspect ratio of 0.3 or more. Therefore, even if a composite material composition is prepared by blending it as a filler in a matrix such as a resin as it is, it is expected that the composite material composition does not have thermal conduction anisotropy because it is difficult to be oriented in the composite material composition. Will be done. Further, when the h-BN single crystal according to the present embodiment is used as the filler, unlike the conventional h-BN agglomerated filler, there are no voids in the filler, so that the h-BN single crystal is more composite than the conventional h-BN agglomerated filler. It is expected that restrictions on the amount of filling in the material composition will be relaxed.
本実施形態に係るh−BN単結晶をフィラーとして用いた場合には、上記アスペクト比は1に近いほど複合材組成物中で配向しにくくなるが、1よりも僅かにずれた方がフィラー最大充填可能量は大きくなる。具体的には、フィラーを配向させることなくランダムに充填した際、フィラー最大充填可能量がアスペクト比1の場合よりも大きくなるのは、アスペクト比が0.3以上3.5以下(1を除く)の場合である(非特許文献1参照)。フィラー最大充填可能量は、アスペクト比が0.3以上0.6以下では単調増加し、0.6以上1以下では単調減少し、1以上1.5以下では単調増加し、1.5以上3.5以下では単調減少する(非特許文献1参照)。従って、配向しにくく、かつ、大きな最大充填可能量をもつフィラーとして好ましいアスペクト比は0.3以上であり、0.6以上がより好ましく、3.5以下であり、1.5以下がより好ましい。本明細書で規定するアスペクト比は、走査型電子顕微鏡を用いて測定された5万倍の画像から、自形および/または半自形の粒子を選択し、その粒子の結晶c軸方向の最大厚さ/結晶ab面の最大幅を実測し平均することにより求めることができる。 When the h-BN single crystal according to the present embodiment is used as a filler, the closer the aspect ratio is to 1, the more difficult it is to be oriented in the composite composition, but the one slightly deviated from 1 is the maximum filler. The fillable amount increases. Specifically, when the filler is randomly filled without being oriented, the maximum filler chargeable amount is larger than that when the aspect ratio is 1, that the aspect ratio is 0.3 or more and 3.5 or less (excluding 1). ) (See Non-Patent Document 1). The maximum filler chargeable amount increases monotonically when the aspect ratio is 0.3 or more and 0.6 or less, decreases monotonically when the aspect ratio is 0.6 or more and 1 or less, and monotonically increases when the aspect ratio is 1 or more and 1.5 or less, and 1.5 or more and 3 Below .5, it decreases monotonically (see Non-Patent Document 1). Therefore, the preferred aspect ratio of the filler which is difficult to be oriented and has a large maximum filling amount is 0.3 or more, more preferably 0.6 or more, 3.5 or less, and more preferably 1.5 or less. .. For the aspect ratio specified in the present specification, automorphic and / or semi-automorphic particles are selected from 50,000 times images measured using a scanning electron microscope, and the maximum of the particles in the crystal c-axis direction is selected. It can be obtained by actually measuring the thickness / maximum width of the crystal ab plane and averaging them.
本実施形態に係るh−BN単結晶は、結晶c軸方向への成長が促進された単結晶であり、結晶ab面の最大幅は、フィラーとして用いた場合のフィラー間の熱抵抗の効果を低く抑えるために100nm以上であることが好ましく、150nm以上であることがより好ましく、200nm以上であることが更に好ましい。一方で上限は特に限定されないが、通常200μm以下であり、好ましくは100μm以下であり、より好ましくは50μm以下であり、更に好ましくは10μm以下である。
また、結晶c軸方向の最大厚さは30nm以上であることが好ましく、100nm以上であることがより好ましく、200nm以上であることが更に好ましい。
h−BN単結晶のab面の最大幅、及び結晶c軸方向の最大厚さは、走査型電子顕微鏡(SEM)測定により得られた粒子1粒を拡大し、1粒の粒子を構成している一次粒子について、画像上で観察できる一次粒子の最大長を平均した値である。
The h-BN single crystal according to the present embodiment is a single crystal in which growth in the c-axis direction of the crystal is promoted, and the maximum width of the crystal ab plane determines the effect of thermal resistance between the fillers when used as a filler. In order to keep it low, it is preferably 100 nm or more, more preferably 150 nm or more, and further preferably 200 nm or more. On the other hand, the upper limit is not particularly limited, but is usually 200 μm or less, preferably 100 μm or less, more preferably 50 μm or less, and further preferably 10 μm or less.
The maximum thickness in the c-axis direction of the crystal is preferably 30 nm or more, more preferably 100 nm or more, and further preferably 200 nm or more.
The maximum width of the ab plane of the h-BN single crystal and the maximum thickness in the c-axis direction of the crystal are obtained by enlarging one particle obtained by scanning electron microscope (SEM) measurement to form one particle. It is a value obtained by averaging the maximum lengths of the primary particles that can be observed on the image for the primary particles.
本実施形態に係るh−BN結晶は単結晶であり、多結晶ではない。単結晶であるか多結晶であるかは、例えばX線回折測定、透過型電子顕微鏡(TEM)による電子線回折測定により把握できる。 The h-BN crystal according to this embodiment is a single crystal, not a polycrystal. Whether it is a single crystal or a polycrystal can be grasped by, for example, X-ray diffraction measurement or electron beam diffraction measurement by a transmission electron microscope (TEM).
本実施形態に係るh−BN単結晶は、自形結晶または半自形結晶であることが好ましい。従って、外界からの妨害を受けながら成長した他形結晶に比べて結晶欠陥含有率が低いこと、そして、結晶欠陥による熱伝導率の低下が少ないことが期待される。ここで自形結晶とは結晶構造を反映した結晶面で囲まれた結晶のことであり、半自形結晶とは結晶の一部が結晶構造を反映した結晶面で囲まれた結晶のことであり、他形結晶とは結晶に結晶構造を反映した面が現れていない結晶のことである。例えば、フラックス結晶成長のはなし(日刊工業新聞社)の文献等に記載されている。
自形結晶、半自形結晶又は多形結晶であるかは、例えば走査型電子顕微鏡(SEM)測定により把握できる。
The h-BN single crystal according to this embodiment is preferably an automorphic crystal or a semi-automorphic crystal. Therefore, it is expected that the crystal defect content is lower than that of polymorphic crystals grown while being disturbed by the outside world, and that the decrease in thermal conductivity due to crystal defects is small. Here, an automorphic crystal is a crystal surrounded by a crystal plane that reflects the crystal structure, and a semi-automorphic crystal is a crystal in which a part of the crystal is surrounded by a crystal plane that reflects the crystal structure. An allogeneic crystal is a crystal in which a plane reflecting the crystal structure does not appear in the crystal. For example, it is described in the literature of Flux Crystal Growth Story (Nikkan Kogyo Shimbun).
Whether it is an automorphic crystal, a semi-automorphic crystal or a polymorphic crystal can be grasped by, for example, a scanning electron microscope (SEM) measurement.
本実施形態に係るh−BN単結晶は、例えば図4及び5に示される形状を有し、頂面及び底面が多角形の形状を有した角柱又は円柱形状と表すこともでき、また、頂面から底面に向けて断面積が変化する形状であると表すこともできる。更には樽型と称することもでき、また、弾丸型と称することもできる。 The h-BN single crystal according to the present embodiment has, for example, the shapes shown in FIGS. 4 and 5, and can be expressed as a prism or a cylinder having a polygonal shape on the top surface and the bottom surface, and also has a top. It can also be expressed as a shape in which the cross-sectional area changes from the surface to the bottom surface. Further, it can be called a barrel type, and can also be called a bullet type.
本発明の別の実施形態はh−BN単結晶の製造方法であり、より具体的には、XRD解析において002面のピーク半値幅が0.4°以上の窒化ホウ素粉末とリチウム塩とを混合し、加熱するステップ、を有する、h−BN単結晶の製造方法である。このような製造方法により製造されたh−BN単結晶は、「結晶c軸方向の最大厚さ/結晶ab面の最大幅」で定義されるアスペクト比が0.3以上となる。 Another embodiment of the present invention is a method for producing an h-BN single crystal, and more specifically, in XRD analysis, a boron nitride powder having a peak half-value width of 0.4 ° or more on the 002 surface and a lithium salt are mixed. It is a method for producing an h-BN single crystal, which comprises a step of heating and heating. The h-BN single crystal produced by such a production method has an aspect ratio of 0.3 or more defined by "maximum thickness in the crystal c-axis direction / maximum width of the crystal ab plane".
<原料BN粉末>
本実施形態で用いる原料BN粉末としては、市販のh−BN、市販のαおよびβ−BN、ホウ素化合物とアンモニアの還元窒化法により作製されたBN、ホウ素化合物とメラミンなどの含窒素化合物から合成されたBNなど何れも制限なく使用できるが、特にh−BNが好ましく用いられる。
h−BN結晶成長の観点からは、XRD解析において002面のピーク半値幅が0.4°以上の原料BN粉末を用いることが好ましく、0.5°以上であることが好ましい。XRD解析において002面のピーク半値幅が大きいこと、すなわちピークが比較的ブロードであることは、原料BN粉末に不純物が含まれることを意味し、結晶性が低いことを意味する。本実施形態では、このような結晶性が低い原料BN粉末を用いることが好ましい。
<Raw material BN powder>
The raw material BN powder used in this embodiment is synthesized from commercially available h-BN, commercially available α and β-BN, BN produced by a reduction nitriding method of a boron compound and ammonia, and a nitrogen-containing compound such as a boron compound and melamine. Any of the above-mentioned BN can be used without limitation, but h-BN is particularly preferably used.
From the viewpoint of h-BN crystal growth, it is preferable to use the raw material BN powder having a peak half width of 0.4 ° or more on the 002 surface in the XRD analysis, and it is preferably 0.5 ° or more. In the XRD analysis, the large peak half-value width of the 002 plane, that is, the peak being relatively broad means that the raw material BN powder contains impurities, and means that the crystallinity is low. In the present embodiment, it is preferable to use such a raw material BN powder having low crystallinity.
不純物として、原料BN中に酸素がある程度存在することが好ましく、原料BN粉末として全酸素濃度が1質量%以上であるものを用いることが好ましい。また、通常30質量%以下である。全酸素濃度が上記範囲内であるBN粉末は、結晶が未発達のものが多いため、加熱処理により結晶が成長し易い。
原料BN粉末中の全酸素濃度は、より好ましくは3質量%以上であり、また、好ましくは10質量%以下、より好ましくは9質量%以下である。
原料BN粉末の全酸素濃度が上記下限未満の場合、BN自体の純度および結晶性が高いために結晶子の成長が十分になされず、逆に上記上限を超えると、加熱処理後も酸素濃度が高く複合材組成物の熱伝導性フィラーとして用いた際に高熱伝導化が図れなくなるため好ましくない。
As an impurity, it is preferable that oxygen is present in the raw material BN to some extent, and it is preferable to use a raw material BN powder having a total oxygen concentration of 1% by mass or more. Further, it is usually 30% by mass or less. Most of the BN powders having a total oxygen concentration within the above range have undeveloped crystals, so that crystals are likely to grow by heat treatment.
The total oxygen concentration in the raw material BN powder is more preferably 3% by mass or more, and preferably 10% by mass or less, more preferably 9% by mass or less.
If the total oxygen concentration of the raw material BN powder is less than the above lower limit, the crystallites will not grow sufficiently due to the high purity and crystallinity of the BN itself, and conversely, if it exceeds the above upper limit, the oxygen concentration will increase even after heat treatment. It is not preferable because it is too expensive to achieve high thermal conductivity when used as a thermally conductive filler in a composite composition.
<Li塩フラックス>
本実施形態では、フラックスとしてリチウム塩を用いる。リチウム塩としては特段限定されず、炭酸リチウム、水酸化リチウム,塩化リチウム、ヨウ化リチウム,フッ化リチウム,硝酸リチウム,硫酸リチウム,ホウ酸リチウム,モリブデン酸リチウム,およびそれらの混合物などがあげられる。好ましくは炭酸塩であり、Li2CO3などのリチウムを含む炭酸塩であれば何れも制限なく使用できる。
また、リチウム塩は融点が100℃以上のものが好ましく、400℃以上のものがより好ましい。
<Li salt flux>
In this embodiment, a lithium salt is used as the flux. The lithium salt is not particularly limited, and examples thereof include lithium carbonate, lithium hydroxide, lithium chloride, lithium iodide, lithium fluoride, lithium nitrate, lithium sulfate, lithium borate, lithium molybdate, and mixtures thereof. It is preferably a carbonate, and any carbonate containing lithium such as Li 2 CO 3 can be used without limitation.
Further, the lithium salt preferably has a melting point of 100 ° C. or higher, and more preferably 400 ° C. or higher.
本実施形態では、上述のようにXRD解析において002面のピーク半値幅が0.4°以上の原料BN粉末を用い、リチウム塩をフラックスとして用いることで、上記アスペクト比が0.3以上のh−BN単結晶を製造することができるが、その理由について本発明者らは以下のように考えている。
一般にリチウム塩フラックス、特に炭酸リチウムフラックスは溶解度が高いため,高濃度のh−BNが溶媒に溶解している。一方で,高温度領域では分解して炭酸ガスを発生する。そのため,保持過程中に蒸発を駆動力とした結晶成長が始まり,結晶と溶液の固液界面近傍での溶質濃化層の形成をともなった擬一次元成長によりc軸方向に成長したh−BN単結晶が製造されたと考える。
In the present embodiment, as described above, in the XRD analysis, the raw material BN powder having a peak half width of 0.4 ° or more on the 002 surface is used, and by using a lithium salt as a flux, the aspect ratio of h is 0.3 or more. -The BN single crystal can be produced, and the present inventors consider the reason as follows.
In general, lithium salt flux, particularly lithium carbonate flux, has high solubility, so that a high concentration of h-BN is dissolved in a solvent. On the other hand, it decomposes to generate carbon dioxide in the high temperature region. Therefore, crystal growth started with evaporation as a driving force during the holding process, and h-BN grew in the c-axis direction by pseudo-single-dimensional growth accompanied by the formation of a solute-concentrated layer near the solid-liquid interface between the crystal and the solution. It is considered that a single crystal was produced.
<混合、加熱ステップ>
本実施形態では、原料BN粉末とリチウム塩とを混合する。原料BN粉末とリチウム塩との混合割合は特段限定されないが、混合物全量に対してリチウム塩を通常1mоl%以上含有させるが、好ましくは5mоl%以上、より好ましくは10mоl%以上、更に好ましくは15mоl%以上、特に好ましくは20mоl%以上含有させてもよく、殊更好ましくは25mоl%以上含有させてもよい。また、通常80mоl%以下含有させるが、好ましくは75mоl%以下、より好ましくは70mоl%以下、更に好ましくは65mоl%以下、特に好ましくは60mоl%以下含有させてもよい。
なお、原料BN粉末とリチウム塩に加え、本発明の効果に影響のない範囲でその他の材料を加えてもよい。その他の材料としては、例えば炭酸バリウム,炭酸ストロンチウム,炭酸マンガン,炭酸カルシウム,炭酸カリウム,炭酸ナトリウムなどの炭酸塩があげられる。
<Mixing and heating steps>
In this embodiment, the raw material BN powder and the lithium salt are mixed. The mixing ratio of the raw material BN powder and the lithium salt is not particularly limited, but the lithium salt is usually contained in an amount of 1 mL% or more, preferably 5 mL% or more, more preferably 10 mL% or more, still more preferably 15 mL%, based on the total amount of the mixture. As described above, it may be particularly preferably contained in an amount of 20 mL or more, and particularly preferably in an amount of 25 mL or more. Further, it is usually contained in an amount of 80 mL or less, preferably 75 mL% or less, more preferably 70 mL or less, still more preferably 65 mL or less, and particularly preferably 60 mL or less.
In addition to the raw material BN powder and the lithium salt, other materials may be added as long as the effects of the present invention are not affected. Examples of other materials include carbonates such as barium carbonate, strontium carbonate, manganese carbonate, calcium carbonate, potassium carbonate, and sodium carbonate.
混合した原料BN粉末とリチウム塩は加熱される。加熱温度は特段限定されないが、通常1000℃以上で行われる。加熱時間についても特段限定されないが、通常1時間以上、好ましくは5時間以上、また通常10時間以下で行われる。
なお、加熱は大気雰囲気下で行ってもよく、不活性ガス雰囲気下で行ってもよいが、窒素雰囲気下、アルゴン雰囲気下、ヘリウム雰囲気下等、不活性ガス雰囲気下で行うことが好ましい。また、原料は通常坩堝収容し、混合・加熱を行う。坩堝の材質は、原料BN粉末とリチウム塩と加熱温度において非反応である材質を用いることが好ましい。
The mixed raw material BN powder and lithium salt are heated. The heating temperature is not particularly limited, but is usually 1000 ° C. or higher. The heating time is also not particularly limited, but is usually 1 hour or more, preferably 5 hours or more, and usually 10 hours or less.
The heating may be performed in an air atmosphere or an inert gas atmosphere, but it is preferably performed in an inert gas atmosphere such as a nitrogen atmosphere, an argon atmosphere, or a helium atmosphere. In addition, the raw materials are usually stored in a crucible and mixed and heated. As the material of the crucible, it is preferable to use a material that does not react with the raw material BN powder, the lithium salt, and the heating temperature.
加熱後、h−BN単結晶は常温まで冷却されるが、冷却速度も特段限定されず、通常300℃/時間以下である。また通常5℃/時間以上である。
上述のような製造方法にて得られた本実施形態に係るh−BN単結晶は、得られた製造物全量に対して、通常1質量%以上、好ましくは、5重量%以上、より好ましくは10重量%以上、更に好ましくは、20重量%以上である。この量が少なすぎると、樹脂と複合化した際に、熱伝導の異方性が出やすくなる傾向がある。
また、得られたh−BNに対して、通常の板状h−BN、金属酸化物等の化合物を混ぜても良い。
After heating, the h-BN single crystal is cooled to room temperature, but the cooling rate is not particularly limited, and is usually 300 ° C./hour or less. Moreover, it is usually 5 ° C./hour or more.
The h-BN single crystal according to the present embodiment obtained by the above-mentioned production method is usually 1% by mass or more, preferably 5% by weight or more, more preferably 5% by weight or more, based on the total amount of the obtained product. It is 10% by weight or more, more preferably 20% by weight or more. If this amount is too small, anisotropy of heat conduction tends to occur when the resin is compounded.
Further, a compound such as a normal plate-shaped h-BN or a metal oxide may be mixed with the obtained h-BN.
<複合材組成物>
本発明の別の実施形態は、上記h−BN単結晶をマトリクスに配合させてなる、複合材
組成物である。
用いるマトリクスは熱伝導性が高いことが好ましく、マトリクスの熱伝導率は0.2W/mK以上であることが好ましく、特に0.22W/mK以上であることが好ましい。
なお、マトリクスの熱伝導率の測定方法は以下の装置を用いて、熱拡散率、比重、及び比熱を測定し、この3つの測定値を乗じることで熱伝導率を求める。
(1)熱拡散率:アイフェイズ社製 「アイフェイズ・モバイル 1u」
(2)比重:メトラー・トレド社製 「天秤 XS−204」(固体比重測定キット使用)
(3)比熱:セイコーインスツル社製 「DSC320/6200」
<Composite composition>
Another embodiment of the present invention is a composite composition in which the above h-BN single crystal is blended in a matrix.
The matrix used preferably has high thermal conductivity, and the thermal conductivity of the matrix is preferably 0.2 W / mK or more, and particularly preferably 0.22 W / mK or more.
As a method for measuring the thermal conductivity of the matrix, the thermal diffusivity, the specific gravity, and the specific heat are measured using the following devices, and the thermal conductivity is obtained by multiplying these three measured values.
(1) Thermal diffusivity: "Eye Phase Mobile 1u" manufactured by Eye Phase
(2) Specific gravity: "Balance XS-204" manufactured by METTLER TOLEDO (using solid density measurement kit)
(3) Specific heat: Seiko Instruments Inc. "DSC320 / 6200"
マトリクスとしては通常樹脂が用いられ、硬化性樹脂、熱可塑性樹脂のいずれも制限なく用いることが出来る。硬化性樹脂としては、熱硬化性、光硬化性、電子線硬化性などの架橋可能なものであればよいが、耐熱性、吸水性、寸法安定性などの点で、熱硬化性樹脂が好ましく用いられる。
熱硬化性樹脂、熱硬化性樹脂としては、例えばWO2013/081061に例示されたものを用いることができる。このうち、熱硬化性樹脂を用いることが好ましく、特にエポキシ樹脂を用いることが好ましい。
エポキシ樹脂としては、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格及びジシクロペンタジエン骨格からなる群から選択された少なくとも1つの骨格を有するフェノキシ樹脂が好ましい。中でも、耐熱性がより一層高められることから、フルオレン骨格及び/又はビフェニル骨格を有するフェノキシ樹脂が特に好ましく、とりわけビルフェノールA骨格、ビスフェノールF骨格及びビフェニル骨格のうちの少なくとも1つ以上の骨格を有するフェノキシ樹脂であることが好ましい。
A resin is usually used as the matrix, and either a curable resin or a thermoplastic resin can be used without limitation. The curable resin may be any crosslinkable resin such as thermosetting, photocurable, and electron beam curable, but a thermosetting resin is preferable in terms of heat resistance, water absorption, dimensional stability, and the like. Used.
As the thermosetting resin and the thermosetting resin, for example, those exemplified in WO2013 / 081061 can be used. Of these, it is preferable to use a thermosetting resin, and it is particularly preferable to use an epoxy resin.
As the epoxy resin, a phenoxy resin having at least one skeleton selected from the group consisting of a naphthalene skeleton, a fluorene skeleton, a biphenyl skeleton, an anthracene skeleton, a pyrene skeleton, a xanthene skeleton, an adamantane skeleton and a dicyclopentadiene skeleton is preferable. Among them, a phenoxy resin having a fluorene skeleton and / or a biphenyl skeleton is particularly preferable because the heat resistance is further enhanced, and in particular, it has at least one or more skeletons of a bilphenol A skeleton, a bisphenol F skeleton and a biphenyl skeleton. It is preferably a phenoxy resin.
複合材組成物中のマトリクスの含有量は、通常2wt%以上、好ましくは5wt%以上、より好ましくは7wt%以上であり、通常70wt%以下、好ましくは60wt%以下、より好ましくは40wt%以下である。
また、複合材組成物中のh−BN単結晶の含有量は、通常30wt%以上、好ましくは40wt%以上、より好ましくは50wt%以上であり、通常99wt%以下、好ましくは98wt%以下、より好ましくは95wt%以下である。
The content of the matrix in the composite composition is usually 2 wt% or more, preferably 5 wt% or more, more preferably 7 wt% or more, usually 70 wt% or less, preferably 60 wt% or less, more preferably 40 wt% or less. be.
The content of the h-BN single crystal in the composite composition is usually 30 wt% or more, preferably 40 wt% or more, more preferably 50 wt% or more, usually 99 wt% or less, preferably 98 wt% or less, and more. It is preferably 95 wt% or less.
複合材組成物の調製には、有機溶剤を用いることができる。有機溶剤としては、アルコール系溶剤、芳香族系溶剤、アミド系溶剤、アルカン系溶剤、エチレングリコールエーテル及びエーテル・エステル系容易剤、プロピレングリコールエーテル及びエーテル・エステル系溶剤、ケトン系溶剤、エステル系溶剤の中から、樹脂の溶解性等を考慮して、好適に選択して用いることができる。
有機溶剤の具体例としては、WO2013/081061に例示されたものを用いることができる。
有機溶剤は、1種を単独で用いてもよく、2種以上を任意の組合せ及び比率で併用してもよい。
An organic solvent can be used to prepare the composite composition. Examples of the organic solvent include alcohol solvents, aromatic solvents, amide solvents, alkane solvents, ethylene glycol ethers and ether ester-based easy agents, propylene glycol ethers and ether ester solvents, ketone solvents, and ester solvents. From the above, it can be preferably selected and used in consideration of the solubility of the resin and the like.
As a specific example of the organic solvent, those exemplified in WO2013 / 081061 can be used.
As the organic solvent, one type may be used alone, or two or more types may be used in combination in any combination and ratio.
複合材組成物は、必要に応じて硬化剤を含有していてもよい。
硬化剤とは、エポキシ樹脂のエポキシ基等などの、マトリクスの架橋基間の架橋反応に寄与する物質を示す。
エポキシ樹脂においては、必要に応じて、エポキシ樹脂用の硬化剤、硬化促進剤が共に用いられる。
また、機能性の更なる向上を目的として、本発明の効果を損なわない範囲において、各種の添加剤(その他の添加剤)を含んでいてもよい。その他の添加剤としては、例えば、液晶性エポキシ樹脂等の、前記のマトリクスに機能性を付与した機能性樹脂、窒化アルミ
ニウム、窒化ケイ素、繊維状窒化ホウ素等の窒化物粒子、アルミナ、繊維状アルミナ、酸化亜鉛、酸化マグネシウム、酸化ベリリウム、酸化チタン等の絶縁性金属酸化物、ダイヤモンド、フラーレン等の絶縁性炭素成分、樹脂硬化剤、樹脂硬化促進剤、粘度調整剤、分散安定剤が挙げられる。
The composite composition may contain a curing agent, if necessary.
The curing agent refers to a substance that contributes to the cross-linking reaction between the cross-linking groups of the matrix, such as the epoxy group of the epoxy resin.
In the epoxy resin, a curing agent and a curing accelerator for the epoxy resin are used together, if necessary.
Further, for the purpose of further improving the functionality, various additives (other additives) may be contained as long as the effects of the present invention are not impaired. Examples of other additives include functional resins having functionality added to the matrix, such as liquid crystal epoxy resins, nitride particles such as aluminum nitride, silicon nitride, and fibrous boron nitride, alumina, and fibrous alumina. , Insulating metal oxides such as zinc oxide, magnesium oxide, beryllium oxide and titanium oxide, insulating carbon components such as diamond and fullerene, resin curing agents, resin curing accelerators, viscosity modifiers and dispersion stabilizers.
さらに、その他の添加剤としては、マトリクスとh−BN単結晶との接着性を向上させるための添加成分として、シランカップリング剤やチタネートカップリング剤等のカップリング剤、保存安定性向上のための紫外線防止剤、酸化防止剤、可塑剤、難燃剤、着色剤、分散剤、流動性改良剤等が挙げられる。 Further, as other additives, as an additive component for improving the adhesiveness between the matrix and the h-BN single crystal, a coupling agent such as a silane coupling agent or a titanate coupling agent, and for improving storage stability. Examples thereof include UV inhibitors, antioxidants, plasticizers, flame retardants, colorants, dispersants, fluidity improvers and the like.
その他、組成物中での各成分の分散性を向上させる、界面活性剤や、乳化剤、低弾性化剤、希釈剤、消泡剤、イオントラップ剤等を添加することもできる。
これらは、いずれも1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
添加剤の具体例については、WO2013/081061に例示されたものを用いることができ、添加量についてもWO2013/081061に記載の範囲とすることができる。
In addition, a surfactant, an emulsifier, a low elasticity agent, a diluent, an antifoaming agent, an ion trapping agent, etc., which improve the dispersibility of each component in the composition, can be added.
One of these may be used alone, or two or more thereof may be mixed and used in any combination and ratio.
As a specific example of the additive, those exemplified in WO2013 / 081061 can be used, and the amount of the additive can also be within the range described in WO2013 / 081061.
複合材組成物の調製は、h−BN単結晶、マトリクス、溶剤およびその他の添加剤を分散・混合することを目的として、ペイントシェーカーやビーズミル、プラネタリミキサ、攪拌型分散機、自公転攪拌混合機、三本ロール、ニーダー、単軸又は二軸混練機等の一般的な混練装置などを用いて混合することが好ましい。
複合材組成物の各配合成分の混合順序も、反応や沈殿物が発生するなど特段の問題がない限り任意であり、組成物の構成成分のうち、何れか2成分又は3成分以上を予め混合し、その後に残りの成分を混合してもよいし、一度に全部を混合してもよい。
The composite composition is prepared by a paint shaker, a bead mill, a planetary mixer, a stirring type disperser, or a self-rotating stirring mixer for the purpose of dispersing and mixing h-BN single crystals, matrices, solvents and other additives. , It is preferable to mix using a general kneading device such as a three-roll, kneader, single-screw or twin-screw kneader.
The mixing order of each compounding component of the composite material composition is also arbitrary as long as there are no particular problems such as reaction or precipitation, and any two components or three or more components of the composition are mixed in advance. Then the remaining ingredients may be mixed or all at once.
上記複合材組成物は、成形体とすることで放熱部材となり得る。
この成形体を成形する方法は、樹脂組成物の成形に一般に用いられる方法を用いることができる。
例えば、放熱シート用塗布液を所望の形状で、例えば、型へ充てんした状態で硬化させることによって成形することができる。このような成形体の製造法としては、射出成形法、射出圧縮成形法、押出成形法、及び圧縮成形法を用いることができる。
また、複合材組成物がエポキシ樹脂やシリコーン樹脂等の熱硬化性樹脂組成物を含む場合、成形体の成形、すなわち硬化は、それぞれの組成に応じた硬化温度条件で行うことができる。
The composite material composition can be a heat radiating member by forming a molded body.
As a method for molding this molded product, a method generally used for molding a resin composition can be used.
For example, it can be molded by curing the coating liquid for a heat radiating sheet in a desired shape, for example, in a state of being filled in a mold. As a method for producing such a molded product, an injection molding method, an injection compression molding method, an extrusion molding method, and a compression molding method can be used.
When the composite composition contains a thermosetting resin composition such as an epoxy resin or a silicone resin, the molded product can be molded, that is, cured under curing temperature conditions according to the respective compositions.
また、複合材組成物が熱可塑性樹脂組成物を含む場合、成形体の成形は、熱可塑性樹脂の溶融温度以上の温度及び所定の成形速度や圧力の条件で行うことができる。また、複合材組成物を成形硬化した固形状の材料から所望の形状に削り出すことによって成形体を得ることもできる。 When the composite composition contains a thermoplastic resin composition, the molded product can be molded under conditions of a temperature equal to or higher than the melting temperature of the thermoplastic resin and a predetermined molding speed and pressure. Further, a molded product can also be obtained by cutting the composite material composition into a desired shape from a solid material that has been molded and cured.
以下に、本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の例に限定されるものではない。
<測定方法>
・原料のピーク半値幅
原料のピーク半値幅は、X線(CuKα1)波長(λ )=1.54056Å(1Å=1×10-10m)を使用したX線回折測定の2θ=26.5付近に出現する(002)面ピ
ーク半価幅のことであり、下記式により求めた。半価幅(βo)はプロファイルフィッティング法(Peason−XII 関数又はPseud−Voigt関数)により算出し
、さらに、予め標準Siにより求めておいた装置由来の半価幅βiで補正して、半値幅βを求めた。
・酸素濃度
原料BN粉末の全酸素濃度は、不活性ガス融解−赤外線吸収法により、株式会社堀場製作所製の酸素・窒素分析計を用いて測定することができる。
・XRDパターン
粉末X線回折測定は、PANalytical社製X線回折装置「X‘Pert Pro MPD」を用いた。BN原料または生成したBNを0.2mm深さのガラス試料板に表面が平滑になるように充填し、粉末X線回折測定を行った。
・アスペクト比
アスペクト比は、走査型電子顕微鏡(Zeiss Ultra55、加速電圧3kV)を用いて測定された5万倍の画像から、自形および/または半自形の粒子の結晶c軸方向の最大厚さ/結晶ab面の最大幅を実測することにより求めた。
Hereinafter, the present invention will be described in more detail, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.
<Measurement method>
-Maximum half width of raw material The peak half width of raw material is 2θ = 26.5 of X-ray diffraction measurement using X-ray (CuKα 1 ) wavelength (λ) = 1.54056 Å (1 Å = 1 × 10 -10 m). It is the half-value width of the (002) plane peak that appears in the vicinity, and was calculated by the following formula. The full width at half maximum (βo) is calculated by the profile fitting method (Peason-XII function or Pseud-Voigt function), and further corrected by the device-derived full width at half maximum βi previously obtained by standard Si to obtain the full width at half maximum βi. Asked.
-Oxygen concentration The total oxygen concentration of the raw material BN powder can be measured by the inert gas melting-infrared absorption method using an oxygen / nitrogen analyzer manufactured by Horiba Seisakusho Co., Ltd.
-XRD pattern For powder X-ray diffraction measurement, an X-ray diffractometer "X'Pert Pro MPD" manufactured by PANalytical Co., Ltd. was used. The BN raw material or the produced BN was filled in a glass sample plate having a depth of 0.2 mm so that the surface was smooth, and powder X-ray diffraction measurement was performed.
Aspect ratio The aspect ratio is the maximum thickness of automorphic and / or semi-automorphic particles in the crystal c-axis direction from a 50,000-fold image measured using a scanning electron microscope (Zeiss Ultra55, acceleration voltage 3 kV). It was determined by actually measuring the maximum width of the crystal ab plane.
<実施例1>
原料h−BN粉末としては市販のh−BN原料粉末A(XRD解析(X線源:CuKα)において002面のピーク半値幅が0.67°、酸素濃度8質量%)を、リチウム塩としては市販のLi2CO3粉末(純度99.0%)を用いた。原料h−BN粉末と融点が723℃であるLi2CO3の量は、それぞれ50mol%とした。h−BN原料粉末AとLi2CO3を坩堝に入れ、窒素流通下、1000℃で5時間熱処理を行った。熱処理試料からフラックスを溶解除去(1M塩酸にて不純物を溶解)し、試料Aを得た。
図1にh−BN原料粉末Aおよび試料AのXRDパターンを示すが、試料Aのh−BNピークはh−BN原料粉末Aに比べて鋭くなっており(試料Aの002面のピーク半値幅は0.35°と、h−BN原料粉末Aのそれから48%減少している。)、試料Aの結晶性がh−BN原料粉末Aと比べて向上している事が判った。
図2に試料Aの電子線回折パターンを示すが、明確なスポットが得られており、試料Aは結晶性の高いh−BN単結晶であることが判った。
図3にh−BN原料粉末AのSEM像を示す。
図4および図5に試料AのSEM像を示すが、試料Aはh−BN原料粉末Aと異なる構造を持ち、アスペクト比は0.33〜1.5の結晶が含有される事が判った。ab面の幅は、100〜500nmであった。なお、SEM像には六方晶に特徴的な六角柱構造が見られるが、六角柱の底面がh−BNのab面に相当する。
<Example 1>
As the raw material h-BN powder, commercially available h-BN raw material powder A (in XRD analysis (X-ray source: CuKα), the peak half-value width of the 002 surface is 0.67 ° and the oxygen concentration is 8% by mass) is used as the lithium salt. A commercially available Li 2 CO 3 powder (purity 99.0%) was used. The amounts of the raw material h-BN powder and Li 2 CO 3 having a melting point of 723 ° C. were set to 50 mol%, respectively. The h-BN raw material powder A and Li 2 CO 3 were placed in a crucible and heat-treated at 1000 ° C. for 5 hours under nitrogen flow. Flux was dissolved and removed from the heat-treated sample (impurities were dissolved with 1M hydrochloric acid) to obtain Sample A.
FIG. 1 shows the XRD patterns of the h-BN raw material powder A and the sample A. The h-BN peak of the sample A is sharper than that of the h-BN raw material powder A (half-price width of the peak on the 002 surface of the sample A). Was 0.35 °, which is a 48% decrease from that of the h-BN raw material powder A), and it was found that the crystallinity of the sample A was improved as compared with the h-BN raw material powder A.
The electron diffraction pattern of sample A is shown in FIG. 2, and clear spots were obtained, and it was found that sample A was a highly crystalline h-BN single crystal.
FIG. 3 shows an SEM image of the h-BN raw material powder A.
The SEM images of sample A are shown in FIGS. 4 and 5, and it was found that sample A has a structure different from that of h-BN raw material powder A and contains crystals having an aspect ratio of 0.33 to 1.5. .. The width of the ab surface was 100 to 500 nm. In the SEM image, a hexagonal column structure characteristic of hexagonal crystals can be seen, and the bottom surface of the hexagonal column corresponds to the ab plane of h-BN.
<比較例1>
原料h−BN粉末としては市販のh−BN原料粉末B(XRD解析において002面のピーク半値幅が0.23°、酸素濃度0.4質量%)を、Li2CO3としては市販のLi2CO3粉末(純度99.0%)を用いた。原料h−BN粉末とLi2CO3の量は、それぞれ50mol%とした。h−BN原料粉末BとLi2CO3を坩堝に入れ、窒素流通下、1000℃で5時間熱処理を行った。熱処理試料からフラックスを溶解除去(1M塩酸にて不純物を溶解)し、試料Bを得た。
図6にh−BN原料粉末Bおよび試料BのXRDパターンを示すが、両者のh−BNピーク形状に大きな違いは見られず(試料Bの002面のピーク半値幅は0.20°であり、h−BN原料粉末Bのそれからは13%減少したに留まっている。)、試料Bの結晶性はh−BN原料粉末Bから大きくは向上していないことが判った。
図7にh−BN原料粉末BのSEM像を示す。
図8に試料BのSEM像を示すが、試料Bの形状はh−BN原料粉末Bと変わらず板状のままであることが判った。また、試料Bのアスペクト比は0.2以下であった。
<Comparative example 1>
As the raw material h-BN powder, commercially available h-BN raw material powder B (in XRD analysis, the peak half width of the 002 surface is 0.23 ° and the oxygen concentration is 0.4% by mass) is used, and as Li 2 CO 3 , the commercially available Li is used. 2 CO 3 powder (purity 99.0%) was used. The amounts of the raw material h-BN powder and Li 2 CO 3 were set to 50 mol%, respectively. The h-BN raw material powder B and Li 2 CO 3 were placed in a crucible and heat-treated at 1000 ° C. for 5 hours under nitrogen flow. Flux was dissolved and removed from the heat-treated sample (impurities were dissolved with 1M hydrochloric acid) to obtain sample B.
FIG. 6 shows the XRD patterns of the h-BN raw material powder B and the sample B, but no significant difference is observed in the h-BN peak shapes of the two (the peak half width of the 002 surface of the sample B is 0.20 °). , Only 13% decrease from that of h-BN raw material powder B), and it was found that the crystallinity of sample B was not significantly improved from that of h-BN raw material powder B.
FIG. 7 shows an SEM image of the h-BN raw material powder B.
FIG. 8 shows an SEM image of sample B, and it was found that the shape of sample B remained the same as that of h-BN raw material powder B and remained plate-like. The aspect ratio of sample B was 0.2 or less.
<比較例2>
原料h−BN粉末としては市販のh−BN原料粉末Aを、フラックスとしては市販のBaCO3粉末(純度99.9%、融点911℃)を用いた。原料h−BN粉末とBaCO3の量は、それぞれ50mol%とした。h−BN原料粉末AとBaCO3を坩堝に入れ、
窒素流通下、1000℃で5時間熱処理を行った。熱処理試料からフラックスを溶解除去(1M塩酸にて不純物を溶解)し、試料Cを得た。SEM像から、試料Cの形状はh−BN原料粉末Aとほとんど変わらないことが判った。また、結晶c軸方向の最大厚さ/結晶ab面の最大幅、で定義されるアスペクト比を算出可能な結晶性を有していなかった。
<比較例3、4>
BaCO3粉末をMnCO3(純度99.9%、分解温度100℃)、CaCO3(純度99.5%、融点825℃)に変更した以外は比較例2と同様にして、試料D及びEをそれぞれ得た。SEM像から、試料D及びEの形状はh−BN原料粉末Aとほとんど変わらないことが判った。また、結晶c軸方向の最大厚さ/結晶ab面の最大幅、で定義されるアスペクト比を算出可能な結晶性を有していなかった。
<Comparative example 2>
A commercially available h-BN raw material powder A was used as the raw material h-BN powder, and a commercially available BaCO 3 powder (purity 99.9%, melting point 911 ° C.) was used as the flux. The amounts of the raw material h-BN powder and BaCO 3 were set to 50 mol%, respectively. Put h-BN raw material powder A and BaCO 3 in a crucible,
Heat treatment was performed at 1000 ° C. for 5 hours under nitrogen flow. Flux was dissolved and removed from the heat-treated sample (impurities were dissolved with 1M hydrochloric acid) to obtain sample C. From the SEM image, it was found that the shape of the sample C was almost the same as that of the h-BN raw material powder A. Further, it did not have crystallinity capable of calculating the aspect ratio defined by the maximum thickness in the crystal c-axis direction / the maximum width of the crystal ab plane.
<Comparative Examples 3 and 4>
Samples D and E were prepared in the same manner as in Comparative Example 2 except that the BaCO 3 powder was changed to MnCO 3 (purity 99.9%,
従って、本実施例によって結晶c軸方向の最大厚さ/結晶ab面の最大幅、で定義されるアスペクト比が0.3以上であり、結晶ab面の最大幅が100nm以上、自形結晶または半自形結晶のh−BN単結晶を製造することが出来たと言える。 Therefore, according to this embodiment, the aspect ratio defined by the maximum thickness in the c-axis direction of the crystal / the maximum width of the crystal ab plane is 0.3 or more, the maximum width of the crystal ab plane is 100 nm or more, and the single crystal or self-shaped crystal or It can be said that a semi-automorphic h-BN single crystal could be produced.
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019119520A JP6905719B2 (en) | 2015-02-02 | 2019-06-27 | Hexagonal boron nitride single crystal, composite material composition containing the hexagonal boron nitride single crystal, and heat-dissipating member formed by molding the composite material composition. |
JP2021100653A JP7233657B2 (en) | 2019-06-27 | 2021-06-17 | A hexagonal boron nitride single crystal, a composite material composition containing the hexagonal boron nitride single crystal, and a heat dissipating member formed by molding the composite material composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015018847A JP6603965B2 (en) | 2015-02-02 | 2015-02-02 | Hexagonal boron nitride single crystal and method for producing the same, composite composition containing the hexagonal boron nitride single crystal, and heat dissipation member formed by molding the composite composition |
JP2019119520A JP6905719B2 (en) | 2015-02-02 | 2019-06-27 | Hexagonal boron nitride single crystal, composite material composition containing the hexagonal boron nitride single crystal, and heat-dissipating member formed by molding the composite material composition. |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015018847A Division JP6603965B2 (en) | 2015-02-02 | 2015-02-02 | Hexagonal boron nitride single crystal and method for producing the same, composite composition containing the hexagonal boron nitride single crystal, and heat dissipation member formed by molding the composite composition |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021100653A Division JP7233657B2 (en) | 2019-06-27 | 2021-06-17 | A hexagonal boron nitride single crystal, a composite material composition containing the hexagonal boron nitride single crystal, and a heat dissipating member formed by molding the composite material composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019189525A JP2019189525A (en) | 2019-10-31 |
JP6905719B2 true JP6905719B2 (en) | 2021-07-21 |
Family
ID=68389246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019119520A Active JP6905719B2 (en) | 2015-02-02 | 2019-06-27 | Hexagonal boron nitride single crystal, composite material composition containing the hexagonal boron nitride single crystal, and heat-dissipating member formed by molding the composite material composition. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6905719B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6955127B1 (en) * | 2019-12-19 | 2021-10-27 | 株式会社トクヤマ | Hexagonal boron nitride powder and its manufacturing method |
JP7467299B2 (en) | 2020-09-17 | 2024-04-15 | 株式会社東芝 | Location management system, location identification device, and location identification method |
JP2022111748A (en) * | 2021-01-20 | 2022-08-01 | 国立大学法人信州大学 | Method for producing boron nitride |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1059702A (en) * | 1996-08-09 | 1998-03-03 | Otsuka Chem Co Ltd | Boron nitride and its production |
JPH1072205A (en) * | 1996-08-29 | 1998-03-17 | Otsuka Chem Co Ltd | Fine disk-like hexagonal boron nitride powder and its production |
US6319602B1 (en) * | 1996-08-06 | 2001-11-20 | Otsuka Kagaku Kabushiki Kaisha | Boron nitride and process for preparing the same |
JP5081488B2 (en) * | 2006-04-20 | 2012-11-28 | Jfeスチール株式会社 | Hexagonal boron nitride powder |
JP5065198B2 (en) * | 2008-08-04 | 2012-10-31 | 株式会社カネカ | Method for producing hexagonal boron nitride |
-
2019
- 2019-06-27 JP JP2019119520A patent/JP6905719B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019189525A (en) | 2019-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6603965B2 (en) | Hexagonal boron nitride single crystal and method for producing the same, composite composition containing the hexagonal boron nitride single crystal, and heat dissipation member formed by molding the composite composition | |
JP7207384B2 (en) | Aggregated boron nitride particles, method for producing aggregated boron nitride particles, resin composition containing the aggregated boron nitride particles, molded article, and sheet | |
JP6950148B2 (en) | Aluminum Nitride-Boron Nitride Composite Agglomerated Particles and Their Manufacturing Methods | |
JP6905719B2 (en) | Hexagonal boron nitride single crystal, composite material composition containing the hexagonal boron nitride single crystal, and heat-dissipating member formed by molding the composite material composition. | |
JP6698953B2 (en) | Boron nitride powder, method for producing the same, and heat dissipation member using the same | |
JP5666342B2 (en) | Composite particles of melamine borate and boron nitride, and a method for producing boron nitride particles using the same. | |
JP6364883B2 (en) | Boron nitride particles, boron nitride particle manufacturing method, heat-dissipating sheet coating solution containing boron nitride particles, heat-dissipating sheet containing boron nitride particles, and power device device | |
JP4152920B2 (en) | Boron nitride powder and its use | |
WO2017034003A1 (en) | Thermally conductive resin composition | |
US11384024B2 (en) | Negative thermal expansion material, manufacturing method and composite material thereof | |
JP6500339B2 (en) | Heat dissipation sheet, coating liquid for heat dissipation sheet, and power device | |
JP7554473B2 (en) | Method for producing granular boron nitride and granular boron nitride | |
CN106103347A (en) | The excellent low alkali alpha alumina powder of viscosity characteristics and manufacture method thereof | |
JP6519876B2 (en) | Method of manufacturing hexagonal boron nitride, and method of manufacturing heat dissipation sheet | |
JP2015189823A (en) | boron nitride sheet | |
JP7233657B2 (en) | A hexagonal boron nitride single crystal, a composite material composition containing the hexagonal boron nitride single crystal, and a heat dissipating member formed by molding the composite material composition | |
JP2013147403A (en) | Metal compound-containing boron nitride and composite material composition containing the same | |
JP2010059025A (en) | Method for producing hexagonal boron nitride powder | |
WO2024203302A1 (en) | Boron nitride powder and method for producing boron nitride powder | |
JP7343734B1 (en) | Powder, powder manufacturing method, and heat dissipation sheet | |
JP5987322B2 (en) | Method for producing metal oxide-containing boron nitride | |
JP7506278B1 (en) | Aluminum nitride powder and resin composition | |
JP2015189609A (en) | Method of producing boron nitride sheet | |
JP7152003B2 (en) | Highly thermally conductive inorganic filler composite particles and method for producing the same | |
JP2023147855A (en) | boron nitride powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200901 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20201015 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210518 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210617 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6905719 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |