Nothing Special   »   [go: up one dir, main page]

JP6981373B2 - Rotor manufacturing method - Google Patents

Rotor manufacturing method Download PDF

Info

Publication number
JP6981373B2
JP6981373B2 JP2018124574A JP2018124574A JP6981373B2 JP 6981373 B2 JP6981373 B2 JP 6981373B2 JP 2018124574 A JP2018124574 A JP 2018124574A JP 2018124574 A JP2018124574 A JP 2018124574A JP 6981373 B2 JP6981373 B2 JP 6981373B2
Authority
JP
Japan
Prior art keywords
tubular member
prepreg
fibers
permanent magnet
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018124574A
Other languages
Japanese (ja)
Other versions
JP2020005449A (en
Inventor
満季 浅井
慶大 片桐
謙太 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2018124574A priority Critical patent/JP6981373B2/en
Publication of JP2020005449A publication Critical patent/JP2020005449A/en
Application granted granted Critical
Publication of JP6981373B2 publication Critical patent/JP6981373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、ータの製造方法に関する。 The present invention relates to a method of manufacturing B over data.

特許文献1に開示されているように、回転電機のロータは、繊維強化材料から構成された筒部材と、筒部材内に配置された磁性体と、筒部材の軸線方向の両端部に取り付けられたシャフトと、を備える。筒部材により磁性体及びシャフトは保持されている。これにより、磁性体、筒部材、及び、シャフトは一体回転可能となっている。 As disclosed in Patent Document 1, the rotor of a rotary electric machine is attached to a tubular member made of a fiber reinforced material, a magnetic material arranged in the tubular member, and both ends in the axial direction of the tubular member. It is equipped with a shaft. The magnetic material and the shaft are held by the tubular member. As a result, the magnetic material, the tubular member, and the shaft can be integrally rotated.

特開2004−112849号公報Japanese Unexamined Patent Publication No. 2004-11249

ロータの回転により磁性体に作用する遠心力や、回転電機の使用による磁性体の熱膨張により、磁性体から筒部材に力が加わると、筒部材が破断するおそれがある。筒部材が破断すると、磁性体を保持する保持力が低下する。 When a force is applied from the magnetic material to the cylinder member due to the centrifugal force acting on the magnetic material due to the rotation of the rotor or the thermal expansion of the magnetic material due to the use of the rotating electric machine, the cylinder member may be broken. When the tubular member breaks, the holding force for holding the magnetic material decreases.

本発明の目的は、筒部材の破断を抑制できるータの製造方法を提供することにある。 An object of the present invention is to provide a method for producing B over data capable of suppressing the breakage of the tubular member.

上記課題を解決するロータは、繊維強化材料から構成されており、樹脂部及び繊維を有する筒部材と、前記筒部材内に配置された磁性体と、前記筒部材の軸線方向の第1端部に取り付けられた第1シャフトと、前記筒部材の軸線方向の第2端部に取り付けられた第2シャフトと、を備え、前記筒部材は、前記筒部材の周方向に延びる状態で前記繊維が配向された第1層部と、前記筒部材の軸線方向に延びる状態で前記繊維が配向された第2層部と、を少なくとも積層することにより構成されており、前記筒部材の最外層は前記第1層部である。 The rotor that solves the above problems is made of a fiber reinforced material, and has a tubular member having a resin portion and fibers, a magnetic material arranged in the tubular member, and an axial first end portion of the tubular member. A first shaft attached to the cylinder member and a second shaft attached to a second end portion in the axial direction of the cylinder member, the cylinder member has the fibers extending in the circumferential direction of the cylinder member. It is composed of at least a laminated first layer portion in which the fibers are oriented and a second layer portion in which the fibers are oriented so as to extend in the axial direction of the tubular member, and the outermost layer of the tubular member is the outermost layer. It is the first layer part.

ロータが回転すると、磁性体に作用する遠心力や、磁性体の熱膨張により、磁性体から筒部材に力が加わる。この力は、筒部材の外周面に向かうように作用するため、最外層が破断しやすい。第2層部では、筒部材の軸線方向に延びる状態で繊維が配向されているため、周方向に隣り合う繊維同士の間には樹脂部が介在する。一方で、第1層部では、筒部材の周方向に延びる状態で繊維が配向されているため、繊維は周方向に連続していることになる。仮に、第2層部を最外層とした場合、周方向に隣り合う繊維同士の間の樹脂部が介在しているため、この樹脂部が破断しやすい。これに対して、第1層部を最外層とすることで、周方向に延びる繊維により樹脂部が破断することを抑制できる。したがって、筒部材の破断を抑制できる。 When the rotor rotates, a force is applied from the magnetic material to the tubular member due to the centrifugal force acting on the magnetic material and the thermal expansion of the magnetic material. Since this force acts toward the outer peripheral surface of the tubular member, the outermost layer is likely to break. In the second layer portion, since the fibers are oriented in a state of extending in the axial direction of the tubular member, the resin portion is interposed between the fibers adjacent to each other in the circumferential direction. On the other hand, in the first layer portion, since the fibers are oriented in a state of extending in the circumferential direction of the tubular member, the fibers are continuous in the circumferential direction. If the second layer portion is used as the outermost layer, the resin portion is likely to break because the resin portion is interposed between the fibers adjacent to each other in the circumferential direction. On the other hand, by using the first layer portion as the outermost layer, it is possible to prevent the resin portion from breaking due to the fibers extending in the circumferential direction. Therefore, it is possible to suppress the breakage of the tubular member.

上記課題を解決するロータの製造方法は、第1方向に延びる状態で配向された繊維に熱硬化性樹脂を含浸させた第1プリプレグと、前記第1方向に交差する方向である第2方向に延びる状態で配向された繊維に熱硬化性樹脂を含浸させた第2プリプレグと、を積層することで積層体を得る工程と、柱状の巻回部材に、前記第2プリプレグの繊維が前記巻回部材の軸線方向に延び、前記第1プリプレグの繊維が前記巻回部材の周方向に延び、かつ、前記第1プリプレグが最外層となるように前記積層体を巻回する工程と、巻回された前記積層体を加熱することで前記熱硬化性樹脂を硬化させる工程と、を含む。 A method for manufacturing a rotor that solves the above problems is to use a first prepreg in which fibers oriented in a first direction are impregnated with a thermosetting resin and a second direction that intersects the first direction. A step of obtaining a laminated body by laminating a second prepreg in which fibers oriented in an elongated state are impregnated with a thermosetting resin, and a columnar winding member in which the fibers of the second prepreg are wound. The step of winding the laminate so that the fibers of the first prepreg extend in the axial direction of the member, the fibers of the first prepreg extend in the circumferential direction of the winding member, and the first prepreg becomes the outermost layer, and the winding are performed. It includes a step of curing the thermosetting resin by heating the laminate.

第1プリプレグと第2プリプレグとを積層した積層体を加熱して、熱硬化性樹脂を硬化させると、第1プリプレグと第2プリプレグとが一体となり筒部材を製造することができる。第1プリプレグと第2プリプレグとを巻回する際に、第1プリプレグの繊維が巻回部材の周方向に延び、かつ、第1プリプレグが最外層となるようにすることで、筒部材の最外層では周方向に延びる状態で繊維が配向されることになる。従って、筒部材の破断を抑制できるロータを得ることができる。 When the laminate in which the first prepreg and the second prepreg are laminated is heated to cure the thermosetting resin, the first prepreg and the second prepreg are integrated to manufacture a tubular member. When winding the first prepreg and the second prepreg, the fibers of the first prepreg extend in the circumferential direction of the winding member, and the first prepreg becomes the outermost layer, so that the maximum of the tubular member is reached. In the outer layer, the fibers are oriented in a state of extending in the circumferential direction. Therefore, it is possible to obtain a rotor capable of suppressing the breakage of the tubular member.

本発明によれば、筒部材の破断を抑制できる。 According to the present invention, breakage of the tubular member can be suppressed.

回転電機の断面図。Sectional view of rotary electric machine. ロータの断面図。Sectional view of the rotor. 筒部材の一部を破断して示す断面図。A cross-sectional view showing a part of a tubular member broken. 筒部材の一部を破断して示す断面図。A cross-sectional view showing a part of a tubular member broken. 第1プリプレグと第2プリプレグの積層体を示す斜視図。The perspective view which shows the laminated body of the 1st prepreg and the 2nd prepreg. 積層体をマンドレルに巻回する工程を示す斜視図。The perspective view which shows the process of winding a laminated body around a mandrel. マンドレルに巻回された積層体を示す模式図。The schematic diagram which shows the laminated body wound around a mandrel. 筒部材に永久磁石を圧入する工程を示す図。The figure which shows the process of press-fitting a permanent magnet into a cylinder member. 筒部材に圧入された永久磁石を示す断面図。A cross-sectional view showing a permanent magnet press-fitted into a tubular member. ロータの作用を説明するための図。The figure for demonstrating the operation of a rotor. 変形例の筒部材を示す断面図。The cross-sectional view which shows the cylinder member of the modification.

以下、ロータ、及び、ロータの製造方法の一実施形態について説明する。
図1、及び、図2に示すように、回転電機10は、ハウジング11に収容されている。回転電機10は、ステータ12と、ロータ20と、を備える。ステータ12は、円筒状のステータコア13と、ステータコア13に巻かれたコイル14と、を備える。ステータコア13は、ハウジング11の内面に固定されている。
Hereinafter, an embodiment of the rotor and a method for manufacturing the rotor will be described.
As shown in FIGS. 1 and 2, the rotary electric machine 10 is housed in the housing 11. The rotary electric machine 10 includes a stator 12 and a rotor 20. The stator 12 includes a cylindrical stator core 13 and a coil 14 wound around the stator core 13. The stator core 13 is fixed to the inner surface of the housing 11.

ロータ20は、筒部材41と、磁性体である永久磁石21と、第1シャフト31と、第2シャフト36と、を備える。筒部材41は、繊維強化材料から構成されている。本実施形態において、筒部材41は、炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastic:CFRP)から構成されている。筒部材41は、筒部材41の軸線が直線状に延びる円筒状である。 The rotor 20 includes a tubular member 41, a permanent magnet 21 which is a magnetic material, a first shaft 31, and a second shaft 36. The tubular member 41 is made of a fiber reinforced material. In the present embodiment, the tubular member 41 is made of carbon fiber reinforced plastic (CFRP). The tubular member 41 has a cylindrical shape in which the axis of the tubular member 41 extends linearly.

永久磁石21は、中実円柱状である。永久磁石21は、永久磁石21の径方向に着磁されている。永久磁石21の軸線方向の寸法は、筒部材41の軸線方向の寸法よりも短い。永久磁石21の軸線方向の両端部22,23のうち一方を第1端部22とし、他方を第2端部23とする。 The permanent magnet 21 is a solid columnar shape. The permanent magnet 21 is magnetized in the radial direction of the permanent magnet 21. The axial dimension of the permanent magnet 21 is shorter than the axial dimension of the tubular member 41. One of both ends 22 and 23 in the axial direction of the permanent magnet 21 is referred to as the first end portion 22, and the other is referred to as the second end portion 23.

永久磁石21は、筒部材41内に配置されている。永久磁石21の軸線は、筒部材41の軸線と一致している。永久磁石21は、筒部材41の軸線方向の両端部42,43の間に配置されている。筒部材41の軸線方向の両端部42,43には、永久磁石21が配置されていない。本実施形態において、永久磁石21は、筒部材41に圧入されている。従って、筒部材41から永久磁石21には径方向に向かう圧縮力が作用し、この圧縮力により永久磁石21は保持されている。 The permanent magnet 21 is arranged in the tubular member 41. The axis of the permanent magnet 21 coincides with the axis of the tubular member 41. The permanent magnet 21 is arranged between both ends 42, 43 in the axial direction of the tubular member 41. Permanent magnets 21 are not arranged at both ends 42, 43 in the axial direction of the tubular member 41. In the present embodiment, the permanent magnet 21 is press-fitted into the tubular member 41. Therefore, a compressive force in the radial direction acts on the permanent magnet 21 from the tubular member 41, and the permanent magnet 21 is held by this compressive force.

第1シャフト31は、円柱状のシャフト本体32と、シャフト本体32からシャフト本体32の径方向に突出するフランジ部33と、を備える。フランジ部33は、シャフト本体32の軸線方向の一方の端面34寄りに配置されている。第2シャフト36は、円柱状のシャフト本体37と、シャフト本体37からシャフト本体37の径方向に突出するフランジ部38と、を備える。フランジ部38は、シャフト本体37の軸線方向の一方の端面39寄りに配置されている。 The first shaft 31 includes a columnar shaft main body 32 and a flange portion 33 protruding from the shaft main body 32 in the radial direction of the shaft main body 32. The flange portion 33 is arranged closer to one end surface 34 in the axial direction of the shaft main body 32. The second shaft 36 includes a columnar shaft main body 37 and a flange portion 38 protruding from the shaft main body 37 in the radial direction of the shaft main body 37. The flange portion 38 is arranged closer to one end surface 39 in the axial direction of the shaft main body 37.

第1シャフト31の一部は、筒部材41内に配置されている。詳細にいえば、筒部材41の軸線方向の両端部42,43のうちの一方を第1端部42、他方を第2端部43とすると、第1シャフト31のうち、フランジ部33よりも端面34側の部分は、第1端部42に圧入されている。第2シャフト36の一部は、筒部材41内に配置されている。詳細にいえば、第2シャフト36のうち、フランジ部38よりも端面39側の部分は、筒部材41の第2端部43に圧入されている。これにより、第1シャフト31は、筒部材41の第1端部42に取り付けられており、第2シャフト36は、筒部材41の第2端部43に取り付けられている。 A part of the first shaft 31 is arranged in the tubular member 41. More specifically, if one of both ends 42 and 43 in the axial direction of the tubular member 41 is the first end 42 and the other is the second end 43, the first shaft 31 is more than the flange 33. The portion on the end face 34 side is press-fitted into the first end portion 42. A part of the second shaft 36 is arranged in the tubular member 41. More specifically, the portion of the second shaft 36 on the end surface 39 side of the flange portion 38 is press-fitted into the second end portion 43 of the tubular member 41. As a result, the first shaft 31 is attached to the first end 42 of the tubular member 41, and the second shaft 36 is attached to the second end 43 of the tubular member 41.

ロータ20のうち、永久磁石21は、回転可能な状態でステータ12の径方向内側に配置されている。ロータ20のうち、両シャフト31,36は、ハウジング11に支持された軸受15に支持されている。コイル14への通電により永久磁石21が回転すると、永久磁石21に一体の筒部材41、及び、両シャフト31,36が永久磁石21とともに一体回転する。 Of the rotor 20, the permanent magnet 21 is arranged inside the stator 12 in a rotatable state in the radial direction. Of the rotor 20, both shafts 31 and 36 are supported by a bearing 15 supported by the housing 11. When the permanent magnet 21 is rotated by energizing the coil 14, the tubular member 41 integrated with the permanent magnet 21 and both shafts 31 and 36 rotate integrally with the permanent magnet 21.

次に、筒部材41について詳細に説明を行う。
図3、及び、図4に示すように、筒部材41は、樹脂部44と、繊維46,47と、を備える。樹脂部44は、エポキシ樹脂や、フェノール樹脂などの熱硬化性樹脂を硬化させたものである。各繊維46,47は炭素繊維である。筒部材41は、筒部材41の周方向に延びる状態で繊維46が配向された第1層部51と、筒部材41の軸線方向に延びる状態で繊維47が配向された第2層部52と、を積層することにより構成されている。
Next, the cylinder member 41 will be described in detail.
As shown in FIGS. 3 and 4, the tubular member 41 includes a resin portion 44 and fibers 46 and 47. The resin portion 44 is obtained by curing a thermosetting resin such as an epoxy resin or a phenol resin. Each fiber 46, 47 is a carbon fiber. The tubular member 41 includes a first layer portion 51 in which the fibers 46 are oriented in a state extending in the circumferential direction of the tubular member 41, and a second layer portion 52 in which the fibers 47 are oriented in a state extending in the axial direction of the tubular member 41. , Are configured by stacking.

第1層部51の繊維46を第1繊維46とすると、第1繊維46は、筒部材41の周方向の全体に亘って、連続して延びている。第1繊維46は、筒部材41内に配置される永久磁石21を囲むように配置されることになる。第1繊維46は、筒部材41の軸線方向に複数配置されている。説明の便宜上、図示は簡略化しているが、複数の第1繊維46は密に配置されており、筒部材41の周方向に延びる第1繊維46が軸線方向に複数配置されることで複数の第1繊維46は円筒状をなしているといえる。なお、「筒部材41の周方向に延びる」とは、筒部材41を径方向から見た場合に、筒部材41の中心軸と、第1繊維46とが直交するように第1繊維46が配向されている状態を示す。「直交」とは、筒部材41の中心軸と第1繊維46とが90度で交わる状態だけでなく、公差の範囲内での角度のずれを許容するものである。例えば、公差が±1度であれば、直交とは筒部材41の中心軸と、第1繊維46とが89度〜91度で交わる態様を含む。 Assuming that the fiber 46 of the first layer portion 51 is the first fiber 46, the first fiber 46 extends continuously over the entire circumferential direction of the tubular member 41. The first fiber 46 is arranged so as to surround the permanent magnet 21 arranged in the tubular member 41. A plurality of first fibers 46 are arranged in the axial direction of the tubular member 41. Although the illustration is simplified for convenience of explanation, a plurality of first fibers 46 are densely arranged, and a plurality of first fibers 46 extending in the circumferential direction of the cylindrical member 41 are arranged in the axial direction. It can be said that the first fiber 46 has a cylindrical shape. In addition, "extending in the circumferential direction of the tubular member 41" means that when the tubular member 41 is viewed from the radial direction, the first fiber 46 is orthogonal to the central axis of the tubular member 41 and the first fiber 46. Indicates the oriented state. “Orthogonal” means that not only the central axis of the tubular member 41 and the first fiber 46 intersect at 90 degrees, but also the angle deviation within the tolerance range is allowed. For example, if the tolerance is ± 1 degree, orthogonality includes an aspect in which the central axis of the tubular member 41 and the first fiber 46 intersect at 89 degrees to 91 degrees.

第2層部52の繊維47を第2繊維47とすると、第2繊維47は、筒部材41の軸線方向の全体に亘って連続して延びている。第2繊維47は、筒部材41内に配置される永久磁石21の軸線方向の全体に亘って樹脂部44を介して重なり合うように配置されている。第2繊維47は、筒部材41の周方向に複数配置されている。説明の便宜上、図示は省略しているが、複数の第2繊維47は密に配置されており、筒部材41の軸線方向に延びる第2繊維47が周方向に複数配置されることで複数の第2繊維47は円筒状をなしているといえる。なお、「筒部材41の軸線方向に延びる状態」とは、筒部材41を径方向から見た場合に、筒部材41の中心軸と、第2繊維47とが平行となるように第2繊維47が配向されている状態を示す。「平行」とは、筒部材41の中心軸と第2繊維47の延びる方向とが一致している状態だけでなく、公差の範囲内でのずれを許容するものである。例えば、公差が±1度であれば、「平行」とは筒部材41の中心軸に対して、第2繊維47の延びる方向が±1度ずれた方向に延びている態様も含む。 Assuming that the fiber 47 of the second layer portion 52 is the second fiber 47, the second fiber 47 extends continuously over the entire axial direction of the tubular member 41. The second fiber 47 is arranged so as to overlap with each other via the resin portion 44 over the entire axial direction of the permanent magnet 21 arranged in the tubular member 41. A plurality of second fibers 47 are arranged in the circumferential direction of the tubular member 41. Although not shown for convenience of explanation, a plurality of second fibers 47 are densely arranged, and a plurality of second fibers 47 extending in the axial direction of the cylindrical member 41 are arranged in the circumferential direction. It can be said that the second fiber 47 has a cylindrical shape. The "state extending in the axial direction of the tubular member 41" means that the central axis of the tubular member 41 and the second fiber 47 are parallel to each other when the tubular member 41 is viewed from the radial direction. Shows the state in which 47 is oriented. "Parallel" means not only a state in which the central axis of the tubular member 41 and the extending direction of the second fiber 47 coincide with each other, but also allow a deviation within a tolerance range. For example, if the tolerance is ± 1 degree, “parallel” includes a mode in which the extending direction of the second fiber 47 extends in a direction deviated by ± 1 degree with respect to the central axis of the tubular member 41.

第1層部51と第2層部52とは、筒部材41の径方向に複数積層されている。本実施形態では、第1層部51と第2層部52とは、2層ずつ積層されている。筒部材41の最内層から最外層に向けて、第2層部52→第1層部51の順に交互に第1層部51と第2層部52とは積層されている。筒部材41の最内層は第2層部52であり、筒部材41の最外層は第1層部51である。 A plurality of the first layer portion 51 and the second layer portion 52 are laminated in the radial direction of the tubular member 41. In the present embodiment, the first layer portion 51 and the second layer portion 52 are laminated in two layers each. From the innermost layer to the outermost layer of the tubular member 41, the first layer portion 51 and the second layer portion 52 are alternately laminated in the order of the second layer portion 52 → the first layer portion 51. The innermost layer of the tubular member 41 is the second layer portion 52, and the outermost layer of the tubular member 41 is the first layer portion 51.

次に、ロータ20の製造方法について説明する。
図5に示すように、まず、第1プリプレグ61と第2プリプレグ62とを積層することで積層体63を得る。各プリプレグ61,62は、一方向に配向された繊維64,65に熱硬化性樹脂66,67を含浸させたシート状の材料である。第1プリプレグ61は、熱硬化性樹脂66と、繊維64と、を備える。繊維64は、第1プリプレグ61の長さ方向に延びる状態で配向されている。第2プリプレグ62は、熱硬化性樹脂67と、繊維65と、を備える。繊維65は、第2プリプレグ62の幅方向に延びる状態で配向されている。
Next, a method of manufacturing the rotor 20 will be described.
As shown in FIG. 5, first, the laminated body 63 is obtained by laminating the first prepreg 61 and the second prepreg 62. Each prepreg 61, 62 is a sheet-like material obtained by impregnating fibers 64, 65 oriented in one direction with thermosetting resins 66, 67. The first prepreg 61 includes a thermosetting resin 66 and fibers 64. The fibers 64 are oriented so as to extend in the length direction of the first prepreg 61. The second prepreg 62 includes a thermosetting resin 67 and fibers 65. The fibers 65 are oriented so as to extend in the width direction of the second prepreg 62.

第1プリプレグ61と第2プリプレグ62を積層する際には、第1プリプレグ61の幅方向と第2プリプレグ62の幅方向とが一致するように積層を行う。これにより、繊維64,65は、互いに直交するように配置されることになる。本実施形態では、第1プリプレグ61の長さ方向が第1方向となり、第2プリプレグ62の幅方向が第2方向となる。 When laminating the first prepreg 61 and the second prepreg 62, laminating is performed so that the width direction of the first prepreg 61 and the width direction of the second prepreg 62 coincide with each other. As a result, the fibers 64 and 65 are arranged so as to be orthogonal to each other. In the present embodiment, the length direction of the first prepreg 61 is the first direction, and the width direction of the second prepreg 62 is the second direction.

次に、図6、及び、図7に示すように、円柱状の巻回部材であるマンドレル71に積層体63を巻回していく。積層体63を巻回する際には、第2プリプレグ62の繊維65がマンドレル71の軸線方向に延び、第1プリプレグ61の繊維64がマンドレル71の周方向に延び、かつ、第1プリプレグ61が最外層となるように巻回を行う。具体的にいえば、マンドレル71の外周面と積層体63の第2プリプレグ62が接する状態で、第2プリプレグ62の長さ方向がマンドレル71の周方向に一致するように巻回を行う。これにより、積層体63を巻回する回数に関わらず、第1プリプレグ61が最外層となる。本実施形態の筒部材41は、第1層部51及び第2層部52を2つずつ積層したものであるため、積層体63をマンドレル71に2回巻回する。積層体63の巻回回数を変更することで、第1層部51、及び、第2層部52の数は任意に変更可能である。 Next, as shown in FIGS. 6 and 7, the laminated body 63 is wound around the mandrel 71, which is a columnar winding member. When winding the laminate 63, the fibers 65 of the second prepreg 62 extend in the axial direction of the mandrel 71, the fibers 64 of the first prepreg 61 extend in the circumferential direction of the mandrel 71, and the first prepreg 61 Wind so that it is the outermost layer. Specifically, in a state where the outer peripheral surface of the mandrel 71 and the second prepreg 62 of the laminated body 63 are in contact with each other, winding is performed so that the length direction of the second prepreg 62 coincides with the circumferential direction of the mandrel 71. As a result, the first prepreg 61 becomes the outermost layer regardless of the number of times the laminated body 63 is wound. Since the tubular member 41 of the present embodiment is formed by laminating two first layer portions 51 and two second layer portions 52, the laminated body 63 is wound around the mandrel 71 twice. By changing the number of turns of the laminated body 63, the number of the first layer portion 51 and the second layer portion 52 can be arbitrarily changed.

次に、マンドレル71に巻回された積層体63を加熱する。積層体63を加熱すると、熱硬化性樹脂66,67が軟化し、各プリプレグ61,62が一体となる。軟化した熱硬化性樹脂66,67を更に加熱すると、熱硬化性樹脂66,67が硬化する。熱硬化性樹脂66,67を硬化させた後、マンドレル71を除去すると、筒部材41が得られる。第1プリプレグ61の熱硬化性樹脂66及び第2プリプレグ62の熱硬化性樹脂67は筒部材41の樹脂部44を構成する。第1プリプレグ61の繊維64は、第1繊維46を構成する。第2プリプレグ62の繊維65は、第2繊維47を構成する。上記したように、本実施形態のロータ20の製造方法は、積層体63を得る工程と、積層体63を巻回する工程と、巻回された積層体63を加熱する工程と、を含む。 Next, the laminate 63 wound around the mandrel 71 is heated. When the laminate 63 is heated, the thermosetting resins 66 and 67 are softened, and the prepregs 61 and 62 are integrated. Further heating of the softened thermosetting resins 66 and 67 cures the thermosetting resins 66 and 67. After curing the thermosetting resins 66 and 67, the mandrel 71 is removed to obtain the tubular member 41. The thermosetting resin 66 of the first prepreg 61 and the thermosetting resin 67 of the second prepreg 62 constitute the resin portion 44 of the tubular member 41. The fiber 64 of the first prepreg 61 constitutes the first fiber 46. The fiber 65 of the second prepreg 62 constitutes the second fiber 47. As described above, the method for manufacturing the rotor 20 of the present embodiment includes a step of obtaining the laminated body 63, a step of winding the laminated body 63, and a step of heating the wound laminated body 63.

次に、図8に示すように、筒部材41に永久磁石21を圧入する。永久磁石21を圧入する前の筒部材41の内径R1は、永久磁石21の直径R2よりも小さい。永久磁石21を圧入する前の筒部材41の内径R1と、永久磁石21の直径R2との差が締め代となる。筒部材41から永久磁石21には、締め代に依存した保持力が作用する。 Next, as shown in FIG. 8, the permanent magnet 21 is press-fitted into the tubular member 41. The inner diameter R1 of the tubular member 41 before the permanent magnet 21 is press-fitted is smaller than the diameter R2 of the permanent magnet 21. The difference between the inner diameter R1 of the tubular member 41 before the permanent magnet 21 is press-fitted and the diameter R2 of the permanent magnet 21 is the tightening allowance. A holding force depending on the tightening allowance acts on the tubular member 41 to the permanent magnet 21.

次に、図9に示すように、第1シャフト31、及び、第2シャフト36を筒部材41に圧入する。第1シャフト31及び第2シャフト36についても、永久磁石21と同様に、筒部材41から作用する圧縮力にて筒部材41に保持される。これにより、筒部材41、永久磁石21、及び、両シャフト31,36を一体化させたロータ20が製造される。 Next, as shown in FIG. 9, the first shaft 31 and the second shaft 36 are press-fitted into the tubular member 41. Similar to the permanent magnet 21, the first shaft 31 and the second shaft 36 are also held by the tubular member 41 by the compressive force acting from the tubular member 41. As a result, the rotor 20 in which the tubular member 41, the permanent magnet 21, and both shafts 31 and 36 are integrated is manufactured.

実施形態の作用について説明する。
コイル14に電流が流れると、ロータ20が回転する。永久磁石21には、ロータ20の回転に伴い遠心力が作用する。また、永久磁石21は、渦電流により発熱し、熱膨張する。永久磁石21に作用する遠心力や、永久磁石21の熱膨張により筒部材41に加わる力は、筒部材41の径方向外側に向かって作用する。結果として、筒部材41には、筒部材41の直径を大きくしようとする力が作用し、筒部材41の外周面が周方向に拡がるように力が作用することになる。これにより、筒部材41に径方向への力が加わった場合、最外層が最も破断しやすい。最外層が破断した場合、最外層よりも内側の層を最外層で保持することができず、筒部材41全体が破断する原因にもなる。
The operation of the embodiment will be described.
When a current flows through the coil 14, the rotor 20 rotates. Centrifugal force acts on the permanent magnet 21 as the rotor 20 rotates. Further, the permanent magnet 21 generates heat due to the eddy current and thermally expands. The centrifugal force acting on the permanent magnet 21 and the force applied to the tubular member 41 due to the thermal expansion of the permanent magnet 21 act toward the radially outer side of the tubular member 41. As a result, a force for increasing the diameter of the tubular member 41 acts on the tubular member 41, and a force acts on the tubular member 41 so that the outer peripheral surface of the tubular member 41 expands in the circumferential direction. As a result, when a radial force is applied to the tubular member 41, the outermost layer is most likely to break. When the outermost layer is broken, the layer inside the outermost layer cannot be held by the outermost layer, which causes the entire tubular member 41 to be broken.

ここで、第2層部52では、筒部材41の軸線方向に延びる状態で第2繊維47が配向されているため、周方向に隣り合う第2繊維47同士の間には微細な樹脂部44が介在する。図10に示すように、仮に、筒部材41の最外層を第2層部52とすると、筒部材41の外周面が拡がるように筒部材41に力が加わると、外周面から延びるクラックCが生じるおそれがあり、樹脂部44が破断しやすい。 Here, in the second layer portion 52, since the second fiber 47 is oriented so as to extend in the axial direction of the tubular member 41, the fine resin portion 44 is between the second fibers 47 adjacent to each other in the circumferential direction. Intervenes. As shown in FIG. 10, if the outermost layer of the tubular member 41 is the second layer portion 52, when a force is applied to the tubular member 41 so that the outer peripheral surface of the tubular member 41 expands, cracks C extending from the outer peripheral surface are generated. This may occur, and the resin portion 44 is likely to break.

一方で、第1層部51では、筒部材41の周方向に延びる状態で第1繊維46が配向されているため、第1繊維46は周方向に連続していることになる。本実施形態のように第1層部51を最外層とすることで、外周面が拡がるように力が加わった際に、周方向に連続する第1繊維46により樹脂部44が破断することを抑制できる。したがって、筒部材41の破断を抑制できる。 On the other hand, in the first layer portion 51, since the first fiber 46 is oriented in a state of extending in the circumferential direction of the tubular member 41, the first fiber 46 is continuous in the circumferential direction. By using the first layer portion 51 as the outermost layer as in the present embodiment, when a force is applied so as to expand the outer peripheral surface, the resin portion 44 is broken by the first fiber 46 continuous in the circumferential direction. Can be suppressed. Therefore, the breakage of the tubular member 41 can be suppressed.

また、筒部材41の外周面には、筒部材41の径方向に窪むヒケが生じる。ヒケは、最外層に含まれる繊維46,47に沿って延びる。このため、図10に示すように、筒部材41の最外層を第2層部52とした場合、筒部材41の軸線方向に延びるヒケDが生じることになる。すると、このヒケDを原因として回転電機10の使用時に風損が生じることになる。 Further, on the outer peripheral surface of the tubular member 41, a sink mark that is recessed in the radial direction of the tubular member 41 occurs. The sink mark extends along the fibers 46, 47 contained in the outermost layer. Therefore, as shown in FIG. 10, when the outermost layer of the tubular member 41 is the second layer portion 52, sink marks D extending in the axial direction of the tubular member 41 are generated. Then, due to this sink mark D, wind damage will occur when the rotary electric machine 10 is used.

一方で、筒部材41の最外層を第1層部51とした場合、筒部材41の外周面に生じるヒケDは、周方向に延びることになる。この場合、ヒケDが筒部材41の軸線方向に開口しないため、ヒケDを原因とする風損が生じにくい。 On the other hand, when the outermost layer of the tubular member 41 is the first layer portion 51, the sink marks D generated on the outer peripheral surface of the tubular member 41 extend in the circumferential direction. In this case, since the sink mark D does not open in the axial direction of the tubular member 41, wind damage caused by the sink mark D is unlikely to occur.

実施形態の効果について説明する。
(1)筒部材41を第1層部51と第2層部52との層構造とし、最外層を第1層部51としている。これにより、筒部材41が破断することを抑制できる。
The effect of the embodiment will be described.
(1) The tubular member 41 has a layered structure of a first layer portion 51 and a second layer portion 52, and the outermost layer has a first layer portion 51. As a result, it is possible to prevent the tubular member 41 from breaking.

(2)第2層部52では、筒部材41の軸線方向に延びる状態で第2繊維47が配向されている。第2層部52が積層されていない筒部材41に比べると、筒部材41における軸線方向に対する曲げ方向の剛性が高くなる。したがって、ロータ20に共振が発生し難くなり、回転電機10としての共振回転数が低下してしまうことが抑制される。 (2) In the second layer portion 52, the second fiber 47 is oriented so as to extend in the axial direction of the tubular member 41. Compared to the tubular member 41 in which the second layer portion 52 is not laminated, the rigidity of the tubular member 41 in the bending direction with respect to the axial direction is higher. Therefore, resonance is less likely to occur in the rotor 20, and it is possible to suppress a decrease in the resonance rotation speed of the rotary electric machine 10.

(3)永久磁石21は、ロータ20に圧入されている。筒部材41の締め代が不足すると、永久磁石21への保持力が不足し、締め代が過剰となると、筒部材41を圧入するときに筒部材41に過剰に応力が加わる。このため、筒部材41の締め代には高い精度管理が求められるが、永久磁石21や、筒部材41の精度不良により、筒部材41に過剰に応力が加わる場合がある。この応力は、筒部材41の径方向に加わることになる。筒部材41の最外層を第1層部51としているため、永久磁石21を圧入する際に応力が加わっても、遠心力による力が加わった場合と同様に、筒部材41の破断を抑制できる。 (3) The permanent magnet 21 is press-fitted into the rotor 20. If the tightening allowance of the tubular member 41 is insufficient, the holding force to the permanent magnet 21 is insufficient, and if the tightening allowance is excessive, excessive stress is applied to the tubular member 41 when the tubular member 41 is press-fitted. Therefore, high accuracy control is required for the tightening allowance of the tubular member 41, but excessive stress may be applied to the tubular member 41 due to poor accuracy of the permanent magnet 21 and the tubular member 41. This stress is applied in the radial direction of the tubular member 41. Since the outermost layer of the tubular member 41 is the first layer portion 51, even if stress is applied when the permanent magnet 21 is press-fitted, breakage of the tubular member 41 can be suppressed in the same manner as when a force due to centrifugal force is applied. ..

(4)筒部材41を製造する際には、第1プリプレグ61が最外層となるように積層体63を巻回している。これにより、最外層が第1層部51となる筒部材41を得ることができる。 (4) When manufacturing the tubular member 41, the laminated body 63 is wound so that the first prepreg 61 is the outermost layer. As a result, it is possible to obtain a tubular member 41 in which the outermost layer is the first layer portion 51.

(5)繊維に樹脂を含浸させながら、マンドレル71に繊維を巻回するフィラメントワインディング方式で筒部材41を製造する場合、軸線方向に延びるように巻回された繊維がマンドレル71から外れやすい。このため、フィラメントワインディング方式で筒部材41を製造する場合、第2層部52の第2繊維47を筒部材41の軸線方向と平行にすることが困難である。これに対して、本実施形態のように第1プリプレグ61と第2プリプレグ62によって筒部材41を製造することで、第2層部52の第2繊維47を筒部材41の軸線方向と平行にすることが容易となる。 (5) When the tubular member 41 is manufactured by the filament winding method in which the fiber is wound around the mandrel 71 while the fiber is impregnated with the resin, the fiber wound so as to extend in the axial direction tends to come off from the mandrel 71. Therefore, when the tubular member 41 is manufactured by the filament winding method, it is difficult to make the second fiber 47 of the second layer portion 52 parallel to the axial direction of the tubular member 41. On the other hand, by manufacturing the tubular member 41 by the first prepreg 61 and the second prepreg 62 as in the present embodiment, the second fiber 47 of the second layer portion 52 is parallel to the axial direction of the tubular member 41. It will be easier to do.

実施形態は、以下のように変更して実施することができる。実施形態及び以下の変形例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
○永久磁石21は、筒部材41内に配置されていればよく、筒部材41の内面に接着されていてもよい。同様に、両シャフト31,36も、筒部材41内に配置されていればよく、筒部材41の内面に接着されていてもよい。
The embodiment can be modified and implemented as follows. The embodiments and the following modifications can be implemented in combination with each other within a technically consistent range.
○ The permanent magnet 21 may be arranged inside the tubular member 41 and may be adhered to the inner surface of the tubular member 41. Similarly, both shafts 31 and 36 may be arranged in the tubular member 41 and may be adhered to the inner surface of the tubular member 41.

この場合、ロータ20の製造方法としては、マンドレル71に代えて、永久磁石21、及び、両シャフト31,36に積層体63を巻回する。そして、熱硬化性樹脂を加熱して硬化させることで、筒部材41、永久磁石21、及び、両シャフト31,36を一体化する。この場合、永久磁石21及び両シャフト31,36が巻回部材となる。 In this case, as a method of manufacturing the rotor 20, instead of the mandrel 71, the laminated body 63 is wound around the permanent magnet 21 and both shafts 31 and 36. Then, by heating and curing the thermosetting resin, the tubular member 41, the permanent magnet 21, and both shafts 31, 36 are integrated. In this case, the permanent magnet 21 and both shafts 31, 36 are winding members.

○図11に示すように、筒部材41の最内層は、第1層部51であってもよい。なお、図11では、筒部材41のうち最内層以外の層部については図示を省略している。第1層部51では、第1繊維46が筒部材41の周方向に延びる状態で配向されているため、筒部材41の内周面に対して永久磁石21を圧入する際に、第1繊維46が永久磁石21に引っ掛かり難い。よって、筒部材41の最内層を第2層部52とした場合のように、筒部材41に対して永久磁石21を圧入する際に、樹脂部44が永久磁石21によって削られてしまうことを抑制することができる。 ○ As shown in FIG. 11, the innermost layer of the tubular member 41 may be the first layer portion 51. In addition, in FIG. 11, the layer portion other than the innermost layer of the tubular member 41 is not shown. In the first layer portion 51, since the first fiber 46 is oriented so as to extend in the circumferential direction of the tubular member 41, the first fiber is pressed into the inner peripheral surface of the tubular member 41 when the permanent magnet 21 is press-fitted. 46 is hard to get caught in the permanent magnet 21. Therefore, as in the case where the innermost layer of the tubular member 41 is the second layer portion 52, when the permanent magnet 21 is press-fitted into the tubular member 41, the resin portion 44 is scraped by the permanent magnet 21. It can be suppressed.

筒部材41の最内層を第1層部51とする場合、例えば、2つの第1プリプレグ61で第2プリプレグ62を挟むことで積層体63を構成する。これにより、最内層及び最外層の両方が第1層部51となる筒部材41を得ることができる。 When the innermost layer of the tubular member 41 is the first layer portion 51, for example, the laminated body 63 is formed by sandwiching the second prepreg 62 between two first prepregs 61. As a result, it is possible to obtain a tubular member 41 in which both the innermost layer and the outermost layer are the first layer portions 51.

○筒部材41は、第1層部51及び第2層部52がそれぞれ1層ずつ積層されることにより構成されていてもよい。
○積層体63は、プリプレグ61,62を3層以上積層したものでもよい。
○ The tubular member 41 may be configured by laminating one layer each of the first layer portion 51 and the second layer portion 52.
○ The laminated body 63 may be one in which three or more layers of prepregs 61 and 62 are laminated.

○第1層部51及び第2層部52は、例えば、成形金型内に各繊維46,47を配置して、成形金型内に熱硬化性樹脂を注入し、各繊維46,47に熱硬化性樹脂を含浸させた後、加熱することにより形成されてもよい。 ○ In the first layer portion 51 and the second layer portion 52, for example, the fibers 46 and 47 are arranged in the molding die, the thermosetting resin is injected into the molding die, and the fibers 46 and 47 are filled with the thermosetting resin. It may be formed by impregnating with a thermosetting resin and then heating.

○筒部材41は、第1層部51及び第2層部52に加えて、例えば、繊維がヘリカル巻きであるヘリカル巻き層部をさらに有していてもよい。即ち、筒部材41は、第1層部51及び第2層部52に加えて、繊維の配向方向が第1層部51及び第2層部52とは異なる層部を備えていてもよい。 ○ In addition to the first layer portion 51 and the second layer portion 52, the tubular member 41 may further have, for example, a helical winding layer portion in which fibers are helically wound. That is, the tubular member 41 may include, in addition to the first layer portion 51 and the second layer portion 52, a layer portion in which the orientation direction of the fibers is different from that of the first layer portion 51 and the second layer portion 52.

○磁性体としては、永久磁石21に限らず、例えば、積層コア、アモルファスコア、又は圧粉コア等であってもよい。
○永久磁石21は、例えば、中実四角柱状であってもよく、永久磁石21の形状は特に限定されるものではない。また、両シャフト31,36は、例えば、四角柱状であってもよく、両シャフト31,36の形状は特に限定されるものではない。そして、例えば、永久磁石21が中実四角柱状であるとともに、両シャフト31,36が四角柱状である場合、筒部材41が四角筒状に形成されている必要がある。したがって、筒部材41の形状は、永久磁石21、及び、両シャフト31,36の形状によって適宜変更してもよい。なお、筒部材41の形状は、マンドレル71の形状を変更することで変更可能である。
○ The magnetic material is not limited to the permanent magnet 21, and may be, for example, a laminated core, an amorphous core, a dust core, or the like.
○ The permanent magnet 21 may be, for example, a solid square columnar shape, and the shape of the permanent magnet 21 is not particularly limited. Further, both shafts 31 and 36 may be, for example, a square columnar shape, and the shapes of both shafts 31 and 36 are not particularly limited. Then, for example, when the permanent magnet 21 has a solid square columnar shape and both shafts 31 and 36 have a square columnar shape, the tubular member 41 needs to be formed in a square cylindrical shape. Therefore, the shape of the tubular member 41 may be appropriately changed depending on the shapes of the permanent magnet 21 and both shafts 31 and 36. The shape of the tubular member 41 can be changed by changing the shape of the mandrel 71.

○繊維46,47として、有機繊維や無機繊維を使用してもよいし、異なる種類の有機繊維、異なる種類の無機繊維、又は有機繊維と無機繊維を混繊した混繊繊維を使用してもよい。有機繊維の種類としては、アラミド繊維、ポリ−p−フェニレンベンゾビスオキサゾール繊維、超高分子量ポリエチレン繊維等が挙げられ、無機繊維の種類としては、炭素繊維の他に、ガラス繊維、セラミック繊維等が挙げられる。 ○ As the fibers 46 and 47, organic fibers or inorganic fibers may be used, different types of organic fibers, different types of inorganic fibers, or mixed fiber fibers in which organic fibers and inorganic fibers are mixed may be used. good. Examples of the organic fiber include aramid fiber, poly-p-phenylene benzobisoxazole fiber, ultra-high molecular weight polyethylene fiber and the like, and examples of the inorganic fiber include glass fiber, ceramic fiber and the like in addition to carbon fiber. Can be mentioned.

20…ロータ、21…永久磁石(磁性体)、31…第1シャフト、36…第2シャフト、41…筒部材、44…樹脂部、46,47…繊維、51…第1層部、52…第2層部、61…第1プリプレグ、62…第2プリプレグ、64,65…繊維、71…マンドレル(巻回部材)。 20 ... Rotor, 21 ... Permanent magnet (magnetic material), 31 ... First shaft, 36 ... Second shaft, 41 ... Cylinder member, 44 ... Resin part, 46, 47 ... Fiber, 51 ... First layer part, 52 ... 2nd layer portion, 61 ... 1st prepreg, 62 ... 2nd prepreg, 64, 65 ... fiber, 71 ... mandrel (winding member).

Claims (1)

第1方向に延びる状態で配向された繊維に熱硬化性樹脂を含浸させた第1プリプレグと、前記第1方向に交差する方向である第2方向に延びる状態で配向された繊維に熱硬化性樹脂を含浸させた第2プリプレグと、を前記第1プリプレグで前記第2プリプレグが挟まれるように積層することで積層体を得る工程と、
柱状の巻回部材に、前記第2プリプレグの繊維が前記巻回部材の軸線方向に延び、前記第1プリプレグの繊維が前記巻回部材の周方向に延び、かつ、前記第1プリプレグが最外層及び最内層となるように前記積層体を巻回する工程と、
巻回された前記積層体を加熱することで前記熱硬化性樹脂を硬化させる工程と、
前記熱硬化性樹脂を硬化させることで得られた筒部材に永久磁石を圧入する工程と、を含むロータの製造方法。
Thermosetting to a first prepreg in which fibers oriented in a first direction are impregnated with a thermosetting resin and fibers oriented in a second direction intersecting the first direction. A step of laminating a second prepreg impregnated with a resin so that the second prepreg is sandwiched between the first prepregs to obtain a laminated body.
In the columnar winding member, the fibers of the second prepreg extend in the axial direction of the winding member, the fibers of the first prepreg extend in the circumferential direction of the winding member, and the first prepreg extends in the outermost layer. And the step of winding the laminate so as to be the innermost layer,
A step of curing the thermosetting resin by heating the wound laminate, and
A method for manufacturing a rotor , which comprises a step of press-fitting a permanent magnet into a tubular member obtained by curing the thermosetting resin.
JP2018124574A 2018-06-29 2018-06-29 Rotor manufacturing method Active JP6981373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018124574A JP6981373B2 (en) 2018-06-29 2018-06-29 Rotor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018124574A JP6981373B2 (en) 2018-06-29 2018-06-29 Rotor manufacturing method

Publications (2)

Publication Number Publication Date
JP2020005449A JP2020005449A (en) 2020-01-09
JP6981373B2 true JP6981373B2 (en) 2021-12-15

Family

ID=69100802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018124574A Active JP6981373B2 (en) 2018-06-29 2018-06-29 Rotor manufacturing method

Country Status (1)

Country Link
JP (1) JP6981373B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11652393B2 (en) * 2020-07-01 2023-05-16 Garrett Transportation I Inc Rotor assembly for electric motor of turbomachine with carbon-carbon composite magnet-retaining jacket member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107641A (en) * 1994-10-06 1996-04-23 Seiko Seiki Co Ltd Dc brushless motor
JP3509304B2 (en) * 1995-06-28 2004-03-22 株式会社明電舎 Rotor permanent magnet
JP2004112849A (en) * 2002-09-13 2004-04-08 Honda Motor Co Ltd Permanent magnet rotor
US8421297B2 (en) * 2008-07-28 2013-04-16 Direct Drive Systems, Inc. Stator wedge for an electric machine
JP2014172308A (en) * 2013-03-11 2014-09-22 Fujikura Rubber Ltd Frp cylinder, and method of manufacturing the same
JP2017163752A (en) * 2016-03-10 2017-09-14 株式会社明電舎 Rotor of permanent magnet dynamo-electric machine
JP2018107975A (en) * 2016-12-28 2018-07-05 株式会社デンソー Electric motor

Also Published As

Publication number Publication date
JP2020005449A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP6095685B2 (en) Electromechanical and electromechanical rotor
US10634188B2 (en) Rotors for rotating machines with hollow fiber-reinforced composite shaft
JP6527102B2 (en) Holding member, rotor of rotary electric machine having the same, and rotary electric machine having the same
JP6981373B2 (en) Rotor manufacturing method
US11233430B2 (en) Rotor of synchronous motor with reinforcement member for pressing magnet
JP2020005451A (en) Rotor and manufacturing method of the same
JPWO2015049967A1 (en) Permanent magnet embedded rotary electric machine and method for manufacturing the same
JP2018107975A (en) Electric motor
WO2012127866A1 (en) Canned rotating electric device
JP2020005450A (en) Rotor
KR101980405B1 (en) Vacuum pump
JP6639761B1 (en) Rotor and motor
JP2020005448A (en) Rotor for rotary electric machine, and rotary electric machine
JP7159830B2 (en) Cylindrical member, rotor of rotary electric machine, and rotary electric machine
JP6802087B2 (en) Rotor
CN109802502B (en) Rotor and motor
JP7476968B2 (en) ROTOR, MOTOR, AND METHOD FOR MANUFACTURING ROTOR
WO2023190854A1 (en) Rotor and rotor manufacturing method
JP7120503B1 (en) Motor rotor and motor using this rotor
JP2021040387A (en) Rotor of rotary electric machine
JP2020092564A (en) Rotor of rotary electric machine and rotary electric machine
JP2024518001A (en) Rotor, electric machine, and rotor manufacturing method
JP2020005416A (en) Rotor of rotary electric machine, and rotary electric machine
JP2020043734A (en) Stator core for rotary electric machine and rotary electric machine
JP2018070303A (en) Core material and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R151 Written notification of patent or utility model registration

Ref document number: 6981373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151