JP6969223B2 - Heat pump heat source machine - Google Patents
Heat pump heat source machine Download PDFInfo
- Publication number
- JP6969223B2 JP6969223B2 JP2017161146A JP2017161146A JP6969223B2 JP 6969223 B2 JP6969223 B2 JP 6969223B2 JP 2017161146 A JP2017161146 A JP 2017161146A JP 2017161146 A JP2017161146 A JP 2017161146A JP 6969223 B2 JP6969223 B2 JP 6969223B2
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- heat
- heating
- temperature
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 257
- 238000010438 heat treatment Methods 0.000 claims description 138
- 239000003507 refrigerant Substances 0.000 claims description 62
- 238000001704 evaporation Methods 0.000 claims description 15
- 230000008020 evaporation Effects 0.000 claims description 15
- 238000010257 thawing Methods 0.000 description 21
- 238000003303 reheating Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 230000017525 heat dissipation Effects 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Landscapes
- Steam Or Hot-Water Central Heating Systems (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Description
本発明は、加熱した湯水を貯湯給湯暖房装置に供給するヒートポンプ熱源機に関する。 The present invention relates to a heat pump heat source machine that supplies heated hot water to a hot water storage heater.
従来から、ヒートポンプ熱源機の加熱運転により加熱した湯水を利用して暖房運転を行うと共に、加熱運転により加熱した湯水を貯湯タンクに貯留して給湯設定温度の給湯を行う貯湯給湯暖房装置が広く使用されている。暖房運転時には、貯湯給湯暖房装置の暖房用熱交換器において、加熱運転により加熱した湯水と暖房端末に供給する暖房熱媒との熱交換により、暖房熱媒を暖房端末の暖房要求温度に加熱する。 Conventionally, a hot water storage heater that uses hot water heated by the heating operation of a heat pump heat source machine to perform heating operation and stores hot water heated by heating operation in a hot water storage tank to supply hot water at a set temperature is widely used. Has been done. During the heating operation, in the heat exchanger for heating of the hot water storage and hot water supply heating device, the heating heat medium is heated to the heating required temperature of the heating terminal by heat exchange between the hot water heated by the heating operation and the heating heat medium supplied to the heating terminal. ..
暖房運転開始直後は、低温の室内を暖めるために暖房の必要熱量が多く、室温が上昇するにつれて暖房の必要熱量が減少する。このときヒートポンプ熱源機は、冷媒を圧縮する圧縮機の作動回転数を減少させると共に、冷媒の膨張手段である膨張弁の開度を調整して供給熱量を減少させる。 Immediately after the start of heating operation, the amount of heat required for heating is large in order to warm a low-temperature room, and the amount of heat required for heating decreases as the room temperature rises. At this time, the heat pump heat source machine reduces the operating rotation speed of the compressor that compresses the refrigerant, and adjusts the opening degree of the expansion valve, which is the expansion means of the refrigerant, to reduce the amount of heat supplied.
圧縮機の作動回転数を減少させていくと圧縮機の振動が大きくなり、圧縮機に接続された配管に加わる応力や騒音が大きくなる虞があるので、作動回転数には予め下限値が設定されている。そのため、ヒートポンプ熱源機は、例えば、必要熱量が作動回転数の下限値で作動したときの供給熱量を下回るような低負荷時に圧縮機を停止し、暖房用熱交換器で加熱した暖房熱媒の温度が暖房要求温度を下回ると圧縮機の作動を再開する間欠運転を行うように構成されている。 As the operating rotation speed of the compressor is reduced, the vibration of the compressor increases, and the stress and noise applied to the piping connected to the compressor may increase. Therefore, the lower limit value is set in advance for the operating rotation speed. Has been done. Therefore, in the heat pump heat source machine, for example, the compressor is stopped at a low load such that the required heat amount is lower than the supply heat amount when operating at the lower limit of the operating rotation speed, and the heating heat medium heated by the heating heat exchanger is used. It is configured to perform intermittent operation to restart the operation of the compressor when the temperature falls below the required heating temperature.
ところで、ヒートポンプ熱源機は、膨張弁で膨張した低温の冷媒により蒸発熱交換器に霜が発生して空気との熱交換が妨げられる場合に、圧縮機で圧縮した高温の冷媒を、開閉弁を備えた通路を介して蒸発熱交換器に流通させる除霜運転を行うように構成されている。また、特許文献1のように、ヒートポンプを利用する冷凍システムにおいて、圧縮機の作動回転数が低い場合に発生する冷凍用熱交換器内の油分の滞留を、圧縮機で圧縮した冷媒を、開閉弁を備えた通路を介して定期的に冷凍用熱交換器に流通させることにより解消する技術が知られている。
By the way, in the heat pump heat source machine, when the heat exchange with the air is hindered by frost generated in the evaporation heat exchanger by the low temperature refrigerant expanded by the expansion valve, the high temperature refrigerant compressed by the compressor is used as the on-off valve. It is configured to perform a defrosting operation to be distributed to the evaporative heat exchanger through the provided passage. Further, as in
圧縮機の作動は、図4に示すように時刻t1の作動開始から冷媒温度が安定する時刻t2まである程度時間がかかり、その間ヒートポンプ熱源機のエネルギー効率が低い状態である。従って、ヒートポンプ熱源機は、圧縮機の間欠運転によりエネルギー効率が低下する。その上、間欠運転により圧縮機の振動発生の機会が増加するので騒音が増え、ヒートポンプ熱源機の耐久性を損なう虞がある。 As shown in FIG. 4, the operation of the compressor takes a certain amount of time from the start of operation at time t1 to the time t2 when the refrigerant temperature stabilizes, during which the energy efficiency of the heat pump heat source machine is low. Therefore, the energy efficiency of the heat pump heat source machine is lowered due to the intermittent operation of the compressor. In addition, the intermittent operation increases the chances of vibration of the compressor, which increases noise and may impair the durability of the heat pump heat source machine.
本発明の目的は、暖房運転における低負荷時に圧縮機の間欠運転を回避してエネルギー効率の低下を抑えることが可能なヒートポンプ熱源機を提供することである。 An object of the present invention is to provide a heat pump heat source machine capable of avoiding intermittent operation of a compressor and suppressing a decrease in energy efficiency at a low load in a heating operation.
請求項1の発明は、圧縮機と凝縮熱交換器と膨張手段と蒸発熱交換器とを接続する冷媒回路と、前記凝縮熱交換器と前記膨張手段をバイパスするように前記冷媒回路に設けられたバイパス通路と、前記バイパス通路を開閉可能な開閉弁と、前記蒸発熱交換器に送風する送風機を備えたヒートポンプ熱源機であって、前記凝縮熱交換器で、所定の加熱温度に加熱した冷媒と暖房端末に供給する暖房熱媒を加熱するための湯水との熱交換により、湯水の温度が所定の目標温度範囲内となるように前記圧縮機の回転数と前記膨張手段の開度を制御するヒートポンプ熱源機において、前記圧縮機が設定された下限回転数で作動しているときに、湯水の温度が前記目標温度範囲より高温となった場合には前記開閉弁を開放し、前記開閉弁の開放中に前記圧縮機から吐出される冷媒の温度が低下し始めた場合には、前記送風機の作動を停止させることを特徴としている。
The invention according to
上記構成により、暖房運転における低負荷時に圧縮機が下限回転数で作動しているときに、バイパス通路に高温の冷媒を分配することができるので、圧縮機を停止させることなく湯水に供給する熱量を減少させることができる。従って、圧縮機が停止と作動を繰り返す間欠運転を回避して、ヒートポンプ熱源機のエネルギー効率の低下を抑えることができると共に、騒音の発生を抑え、ヒートポンプ熱源機の耐久性を維持することができる。
そして、蒸発熱交換器において冷媒の放熱を抑制して、ヒートポンプ熱源機のエネルギー効率の低下を抑制することができる。
With the above configuration, when the compressor is operating at the lower limit rotation speed at low load in the heating operation, the high temperature refrigerant can be distributed to the bypass passage, so that the amount of heat supplied to the hot water without stopping the compressor. Can be reduced. Therefore, it is possible to avoid the intermittent operation in which the compressor repeatedly stops and operates, suppress the decrease in energy efficiency of the heat pump heat source machine, suppress the generation of noise, and maintain the durability of the heat pump heat source machine. ..
Then, it is possible to suppress heat dissipation of the refrigerant in the heat of vaporization exchanger and suppress a decrease in energy efficiency of the heat pump heat source machine.
請求項2の発明は、請求項1の発明において、前記開閉弁の開放中に湯水の温度が前記目標温度範囲より低温となった場合には、前記開閉弁を閉止することを特徴としている。
The invention of
上記構成により、湯水の温度が目標温度範囲の下限温度より低下した場合に、バイパス通路を閉止して凝縮熱交換器を流通する冷媒を増加させ、湯水に供給する熱量を増加させて目標温度範囲内の温度に湯水を加熱することができる。 With the above configuration, when the temperature of the hot water drops below the lower limit of the target temperature range, the bypass passage is closed to increase the amount of refrigerant flowing through the condensate heat exchanger, and the amount of heat supplied to the hot water is increased to the target temperature range. Hot water can be heated to the temperature inside.
請求項3の発明は、請求項1又は2の発明において、前記開閉弁の開放中に前記圧縮機から吐出される冷媒の温度が前記加熱温度より低温となった場合には、前記開閉弁を閉止することを特徴としている。
The invention of claim 3 is the invention of
上記構成により、凝縮熱交換器に供給する冷媒を加熱温度に加熱して湯水を目標温度範囲内の温度に維持することができる。 With the above configuration, the refrigerant supplied to the condensate heat exchanger can be heated to a heating temperature to maintain the hot water at a temperature within the target temperature range.
請求項4の発明は、請求項1〜3の何れか1項の発明において、湯水を貯留する貯湯タンクと、前記貯湯タンクの湯水を給湯設定温度に調整して給湯するための給湯通路と、前記貯湯タンクの湯水と前記暖房熱媒との熱交換を行う暖房用熱交換器とを備えた貯湯給湯暖房装置の前記貯湯タンクに加熱した湯水を供給することを特徴としている。
The invention of
上記構成により、ヒートポンプ熱源機により加熱された湯水を暖房に利用すると共に給湯に使用することができる。従って、湯水に供給する熱量を減らすために開閉弁を開放して暖房運転を行っているときに給湯使用があった場合に、開閉弁を閉止して凝縮熱交換器に供給する熱量を増加させることができるので、湯水に供給する熱量を早く増加させることができる。 With the above configuration, the hot water heated by the heat pump heat source machine can be used for heating and also for hot water supply. Therefore, if hot water is supplied while the on-off valve is opened to reduce the amount of heat supplied to the hot water, the on-off valve is closed to increase the amount of heat supplied to the condensate heat exchanger. Therefore, the amount of heat supplied to the hot water can be increased quickly.
本発明によれば、暖房運転における低負荷時に圧縮機の間欠運転を回避できるので、ヒートポンプ熱源機のエネルギー効率の低下を抑えることができる。 According to the present invention, it is possible to avoid intermittent operation of the compressor when the load is low in the heating operation, so that it is possible to suppress a decrease in energy efficiency of the heat pump heat source machine.
以下、本発明を実施するための形態について実施例に基づいて説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to examples.
最初に、図1〜図3に基づいて貯湯給湯暖房システム1の全体構成について説明する。
貯湯給湯暖房システム1は、ヒートポンプ熱源機2と貯湯給湯暖房装置3と暖房端末4を備え、湯水循環通路15により貯湯給湯暖房装置3がヒートポンプ熱源機2に接続され、暖房回路13により暖房端末4が貯湯給湯暖房装置3に接続されている。貯湯給湯暖房装置3とヒートポンプ熱源機2の間で湯水循環通路15を介して湯水が循環する。また、暖房端末4と貯湯給湯暖房装置3の間で暖房回路13を介して暖房熱媒が循環する。
First, the overall configuration of the hot water storage / hot water supply /
The hot water
次に、ヒートポンプ熱源機2について説明する。
ヒートポンプ熱源機2は、外装ケース20内に圧縮機22、凝縮熱交換器23、膨張弁24(膨張手段)、蒸発熱交換器25を冷媒配管26により接続した冷媒回路27を有する。圧縮機22と凝縮熱交換器23の間で冷媒配管26から分岐した冷媒バイパス通路28(バイパス通路)は、冷媒バイパス通路28を開閉可能な除霜用開閉弁28a(開閉弁)を備え、膨張弁24と蒸発熱交換器25の間の冷媒配管26に接続されている。また、圧縮機22と凝縮熱交換器23の間の冷媒配管26には、圧縮機22から吐出された冷媒の温度を検知する冷媒温度センサ29が配設されている。湯水循環通路15に接続された凝縮熱交換器23の熱交換通路部23aには、凝縮熱交換器23の入口側の湯水の温度を検知する入口温度センサ23b及び出口側の湯水の温度を検知する出口温度センサ23cが配設されている。
Next, the heat pump
The heat pump
ヒートポンプ熱源機2は、後述する貯湯給湯暖房装置3の制御ユニット16と電気的に接続された補助制御ユニット21により加熱運転等を制御する。加熱運転では、除霜用開閉弁28aを閉止し、圧縮機22と蒸発熱交換器25に送風する送風機25aを夫々駆動し、膨張弁24の開度を調整して冷媒配管26内に封入された冷媒を循環させる。
The heat pump
加熱運転により圧縮機22において圧縮されて昇温した高温の冷媒が、凝縮熱交換器23に導入される。凝縮熱交換器23において、高温の冷媒と湯水循環通路15に接続された熱交換通路部23aを流れる湯水との間で熱交換が行われて湯水が加熱される。熱交換により降温して一部液化した冷媒は、膨張弁24において膨張してさらに降温し、蒸発熱交換器25に導入される。蒸発熱交換器25において、冷媒は外気の熱を吸熱して気化し、再び圧縮機22に導入される。
The high-temperature refrigerant compressed in the
この加熱運転により蒸発熱交換器25に低温の冷媒が供給されるので、蒸発熱交換器25に大気と冷媒の熱交換を妨げる霜が発生する場合がある。このとき補助制御ユニット21は、圧縮機22で圧縮され高温になった冷媒を利用して霜を除去するために、除霜用開閉弁28aを所定の期間開放する除霜運転を行う。
Since the low-temperature refrigerant is supplied to the
次に、貯湯給湯暖房装置3について説明する。
貯湯給湯暖房装置3は、貯湯、給湯、浴槽への注湯及び浴槽の湯水の追焚き、床暖房パネル等の暖房端末4への暖房熱媒の供給等の機能を有する。この貯湯給湯暖房装置3は、貯湯タンク5、補助熱源機6、追焚用熱交換器7、暖房用熱交換器8、給水通路9、給湯系通路10、湯張り通路11、風呂追焚回路12、暖房回路13、熱交換器往き通路14a、熱交換器戻り通路14b、湯水循環通路15、制御ユニット16、湯水混合弁35等を外装ケース30内に備え、貯湯給湯暖房装置3の各種設定等操作が可能なように制御ユニット16に電気的に接続された操作端末38を備えている。
Next, the hot water storage hot water supply heating device 3 will be described.
The hot water storage hot water supply heating device 3 has functions such as hot water storage, hot water supply, pouring hot water into a bathtub, reheating hot water in a bathtub, and supplying a heating heat medium to a
貯湯タンク5は、ヒートポンプ熱源機2により加熱された湯水を貯留する。貯湯タンク5の外周部には、上下方向に間隔を空けて複数の貯湯温度センサ5a〜5dが設けられ、貯湯タンク5内の複数の貯留層の湯水温度を検出可能である。貯留された湯水の放熱を防ぐため、貯湯タンク5は図示外の保温材で覆われている。
The hot
補助熱源機6は、バーナや熱交換器等を内蔵した公知のガス給湯器である。この補助熱源機6は、貯湯タンク5内の湯水では給湯設定温度の給湯ができない場合等の特別な場合に限り、湯水を加熱して給湯するように制御ユニット16に制御される。
The auxiliary
給水通路9は、上水源から低温の上水を貯湯タンク5の下部に供給するものであり、上流端が上水源に接続され、下流端が貯湯タンク5の下部に接続され、給水温度を検知する給水温度センサ9aが配設されている。給湯系通路10に上水を供給するために、給水通路9から分岐された給水バイパス通路17が湯水混合弁35に接続されている。この分岐部より下流側の給水通路9に設けられた切換弁19から熱交換器戻り通路14bに接続する接続通路部18が分岐されている。この接続通路部18を介して、低温の上水を熱交換器戻り通路14bに供給することができ、逆に熱交換器戻り通路14bから湯水を貯湯タンク5に供給することができる。
The water supply passage 9 supplies low-temperature clean water from the clean water source to the lower part of the hot
次に、給湯系通路10について説明する。
給湯系通路10は、貯湯タンク5に貯湯された湯水を給湯栓等の所望の給湯先に供給するものであり、給湯栓に接続する給湯通路31、貯湯タンク5の上部から湯水混合弁35を介して給湯通路31に接続する出湯通路32、この出湯通路32から分岐して補助熱源機6に接続する補助加熱通路33、補助熱源機6から出湯通路32に接続する補助熱源機出湯通路34等を有している。
Next, the hot water
The hot water
給湯設定温度の給湯が可能なように混合比を調整可能な湯水混合弁35において、出湯通路32を流通する高温の湯水と給水バイパス通路17から供給される上水とを混合し、給湯通路31から給湯栓等に給湯される。給湯通路31から分岐された湯張り通路11は、図示外の浴槽に湯張り可能なように接続される。給湯通路31には給湯流量センサ31aと給湯流量調整弁31bが配設され、出湯通路32には出湯通路32の湯水の温度を検知する出湯温度センサ32aが配設されている。
In the hot
補助加熱通路33には三方弁33a、圧送ポンプ39等が配設されている。補助熱源機出湯通路34は、流量調整弁34aを介して出湯通路32に接続されている。流量調整弁34aより上流側で補助熱源機出湯通路34から分岐した熱交換器往き通路14aは、追焚用熱交換器7及び暖房用熱交換器8に湯水を供給可能に接続されている。
A three-
次に、湯水循環通路15について説明する。
湯水循環通路15は、貯湯タンク5の下部とヒートポンプ熱源機2の熱交換通路部23aを接続する上流循環通路部15a、熱交換通路部23aと貯湯タンク5の上部を接続する下流循環通路部15bを備えている。上流循環通路部15aは、循環ポンプ36と循環切換弁37を有する。下流循環通路部15bから分岐した循環バイパス通路部15cは、循環切換弁37を介して上流循環通路部15aに接続され、循環切換弁37を循環バイパス通路部15c側に切換えて、ヒートポンプ熱源機2で加熱された湯水をヒートポンプ熱源機2で再加熱可能に構成されている。
Next, the hot
The hot
次に、制御ユニット16について説明する。
制御ユニット16は、暖房端末4の暖房要求信号等を受信すると共に、貯湯温度センサ5a〜5d等の各部に配設されたセンサにより検知信号に基づいて、湯水混合弁35、循環ポンプ36、圧送ポンプ39等を駆動し、補助制御ユニット21を介してヒートポンプ熱源機2を加熱運転して貯湯運転、給湯運転、暖房運転等を制御する。
Next, the
The
次に、暖房端末4について説明する。
暖房端末4は、例えば温水式の床暖房パネルや温風ヒータであり、制御ユニット16に通信可能に接続された制御部(図示略)を備えている。暖房運転時には暖房端末4の制御部から制御ユニット16に、暖房運転時の暖房熱媒の設定温度として予め設定された暖房要求温度が送信される。暖房要求温度は暖房端末4の種類により異なるが、例えば40℃〜60℃の温度に設定される。
Next, the
The
次に、貯湯運転について説明する。
貯湯運転は、ヒートポンプ熱源機2の加熱運転により、給湯や浴槽の湯張りに必要な熱量に相当する湯水を貯湯タンク5に貯留する。具体的には、循環ポンプ36を駆動して貯湯タンク5の下部から供給される低温の湯水をヒートポンプ熱源機2で加熱し、高温の湯水を貯湯タンク5の上部から貯留する。
Next, the hot water storage operation will be described.
In the hot water storage operation, hot water corresponding to the amount of heat required for hot water supply and hot water filling in the bathtub is stored in the hot
次に、給湯運転について説明する。
給湯栓等が開栓されて給湯流量センサ31aが所定の流量を検知すると、制御ユニット16は、例えば出湯通路32の湯水の温度と給水温度に基づいて、給湯通路31を流通する湯水の給湯温度が操作端末38で設定した給湯設定温度となるように湯水混合弁35の混合比率を調整する。また、貯湯タンク5に貯留された湯水を上水との混合により給湯設定温度に調整することが困難な場合には、補助熱源機6と圧送ポンプ39を作動させて加熱した湯水を湯水混合弁35に供給して給湯する。
Next, the hot water supply operation will be described.
When the hot water supply tap or the like is opened and the hot water supply
次に、追焚運転について説明する。
浴槽の湯水を加熱する追焚運転において、風呂追焚回路12に浴槽の湯水を循環させ、追焚用熱交換器7で補助熱源機6により加熱した高温の湯水との熱交換により浴槽の湯水を加熱する。このとき追焚用開閉弁7aを開放し、圧送ポンプ39を駆動して熱交換器往き通路14aから追焚用熱交換器7にヒートポンプ熱源機2又は補助熱源機6で加熱した湯水を導入する。熱交換器往き通路14aから追焚用熱交換器7に導入された湯水は、熱交換器戻り通路14bを流通して補助熱源機6に戻る。
Next, the reheating operation will be described.
In the reheating operation to heat the hot water in the bathtub, the hot water in the bathtub is circulated in the
次に、暖房運転について説明する。
暖房運転は、暖房用熱交換器8において、ヒートポンプ熱源機2の加熱運転により加熱した高温の湯水と、暖房回路13に循環させた暖房熱媒との熱交換により、暖房熱媒を加熱する。このとき暖房用開閉弁8aを開放し、圧送ポンプ39を駆動して、ヒートポンプ熱源機2で目標温度範囲内の温度に加熱した貯湯タンク5の上部の湯水を熱交換器往き通路14aから暖房用熱交換器8に導入する。熱交換器往き通路14aから暖房用熱交換器8に導入された湯水は、熱交換器戻り通路14bを流通して貯湯タンク5の下部に供給される。
Next, the heating operation will be described.
In the heating operation, in the heating heat exchanger 8, the heating heat medium is heated by heat exchange between the high-temperature hot water heated by the heating operation of the heat pump
制御ユニット16は、暖房用熱交換器8において暖房熱媒を暖房端末4から送信された暖房熱媒温度に加熱するため、暖房用熱交換器8に導入する湯水の温度、即ちヒートポンプ熱源機2で加熱する湯水の温度を所定の目標温度範囲内に維持するように制御する。そのために、補助制御ユニット21は、圧縮機22から吐出される冷媒温度を所定の加熱温度に維持するように、圧縮機22の回転数や膨張弁24の開度、送風機25aの回転数を制御する。例えば暖房要求温度が40℃の場合に、目標温度範囲は、暖房要求温度より例えば10℃〜20℃高い50℃〜60℃に設定され、加熱温度は目標温度範囲より例えば10℃高い60℃〜70℃に設定される。尚、これらの温度は1例を示すものであり、適宜変更可能である。
Since the
循環ポンプ36を駆動して貯湯タンク5の下部から凝縮熱交換器23に導入される湯水が、凝縮熱交換器23において加熱温度の冷媒との熱交換により目標温度範囲内の温度に加熱される。加熱された湯水は貯湯タンク5の上部に貯留され、圧送ポンプ39の作動により出湯通路32、補助加熱通路33、補助熱源機6、補助熱源機出湯通路34、熱交換器往き通路14aの順に流通して暖房用熱交換器8に導入される。このとき補助熱源機6で湯水を加熱しない。暖房用熱交換器8において導入された湯水と暖房熱媒との熱交換により暖房熱媒を暖房要求温度に加熱し、熱交換後の湯水は熱交換器戻り通路14bと接続通路部18と下流給水通路部9cを介して貯湯タンク5の下部に戻る。暖房熱媒は暖房用熱交換器8と暖房端末4の間を循環する。
The hot water introduced into the
暖房端末4が冷えた状態で暖房運転が開始された場合、暖房端末4での放熱量が多いので暖房熱媒は低温になって暖房用熱交換器8に戻る。そのため、暖房熱媒と熱交換した湯水は、低温になって貯湯タンク5の下部から凝縮熱交換器23に導入される。暖房運転により室温が上昇するにつれて暖房に必要な熱量が減少し、暖房熱媒と熱交換した湯水は温度が高いまま凝縮熱交換器23に導入されるようになる。そのため、補助制御ユニット21は、凝縮熱交換器23で湯水を加熱するための供給熱量を減少させるように圧縮機22の回転数を低下させ、膨張弁24の開度を調整する。
When the heating operation is started in a state where the
湯水の加熱に必要とされる熱量が、圧縮機22の回転数を予め設定された下限回転数まで下げたときの供給熱量を下回る低負荷時には、凝縮熱交換器23で加熱した湯水の温度が目標温度範囲より高温になる。このとき補助制御ユニット21は除霜用開閉弁28aを開放して圧縮機22で圧縮された冷媒の一部を冷媒バイパス通路28に流通させる。これにより圧縮機22を停止することなく凝縮熱交換器23に供給する冷媒を減らして供給熱量を減らすことができる。
When the amount of heat required to heat the hot water is lower than the amount of heat supplied when the number of revolutions of the
除霜用開閉弁28aを開放すると、圧縮機22で圧縮された高温の冷媒が膨張弁24を流通した低温の冷媒と混合されて蒸発熱交換器25に導入される。このとき蒸発熱交換器25に導入される冷媒の温度は気温より高くなり、蒸発熱交換器25において冷媒の熱を大気に放熱することになる。また、温度が高い冷媒が圧縮機22に供給されるので、冷媒温度センサ29で検知される冷媒の温度は上昇する。圧縮機22から吐出される冷媒の温度が低下し始めると、補助制御ユニット21は送風機25aの駆動を停止して、蒸発熱交換器25における冷媒の放熱を抑制する。これにより加熱された冷媒の大気への放熱を抑制してエネルギー効率の低下を抑制できる。
When the defrosting on-off
上記のように供給熱量を減らして暖房運転を継続すると、凝縮熱交換器23に導入される湯水の温度が低下して圧縮機22に供給される冷媒の温度が低下する。そして圧縮機22から吐出される冷媒の温度が加熱温度より低温となった場合には、補助制御ユニット21は除霜用開閉弁28aを閉止して通常の加熱運転に戻る。また、出口温度センサ23cが検知する凝縮熱交換器23で加熱した湯水の温度が、目標温度範囲より低温になった場合にも、除霜用開閉弁28aを閉止して通常の加熱運転に戻る。このように、圧縮機22を作動させたまま除霜用開閉弁28aの開閉により供給熱量を調整するので、圧縮機22の間欠運転を回避することが可能である。尚、所定期間(例えば10分間)除霜用開閉弁28aを開放した後、除霜用開閉弁28aを閉止するように構成してもよい。
When the amount of heat supplied is reduced and the heating operation is continued as described above, the temperature of the hot water introduced into the
本発明のヒートポンプ熱源機2の作用、効果について説明する。
暖房運転においてヒートポンプ熱源機2は、湯水を目標温度範囲内に維持するために圧縮機22の作動回転数と膨張弁24の開度を制御する。湯水の加熱に必要な熱量が少ない低負荷時には、除霜用開閉弁28aを開放して圧縮機22で圧縮された高温の冷媒の一部を冷媒バイパス通路28に流通させ、凝縮熱交換器23において湯水への供給熱量を減少させる。従って、供給熱量を減らすために圧縮機22が下限回転数で作動する状態でさらに供給熱量を減らすことができ、圧縮機22の間欠運転を回避してエネルギー効率の低下を抑制することができる。さらに、圧縮機22の間欠運転を回避して振動の発生を抑えて騒音を抑えると共に、配管等に加わる応力を小さくしてヒートポンプ熱源機2の耐久性を維持することができる。
The operation and effect of the heat pump
In the heating operation, the heat pump
また、除霜用開閉弁28aの開放中に加熱した湯水の温度が目標温度範囲より低下した場合には、除霜用開閉弁28aを閉止することにより凝縮熱交換器23に導入する冷媒を増やして湯水に供給する熱量を増加させ、目標温度範囲内の温度に湯水を加熱することができる。
If the temperature of the hot water heated while the defrosting on-off
その上、除霜用開閉弁28aを開放しているときに圧縮機22から吐出される冷媒の温度が下がり始めたら送風機25aを停止し、蒸発熱交換器25において冷媒の放熱を抑制して、ヒートポンプ熱源機2のエネルギー効率の低下を抑制することができる。しかも、除霜用開閉弁28aの開放中に圧縮機22から吐出される冷媒の温度が加熱温度より低温となった場合には、除霜用開閉弁28aを閉止するので、冷媒を加熱温度に加熱して凝縮熱交換器23に導入し、湯水を目標温度範囲内の温度に維持することができる。
Further, when the temperature of the refrigerant discharged from the
また、貯湯給湯暖房装置3の貯湯タンク5にヒートポンプ熱源機2で加熱した湯水を供給するので、ヒートポンプ熱源機2により加熱された湯水を暖房に利用すると共に給湯に使用することができる。従って、湯水に供給する熱量を減らすために除霜用開閉弁28aを開放して暖房運転を行っているときに給湯使用があった場合に、除霜用開閉弁28aを閉止して湯水に供給する熱量を増加させることができるので、圧縮機22が間欠運転を行う場合と比べて、湯水に供給する熱量を早く増加させることができる。
Further, since the hot water water heated by the heat pump
1 貯湯給湯暖房システム
2 ヒートポンプ熱源機
3 貯湯給湯暖房装置
4 暖房端末
5 貯湯タンク
8 暖房用熱交換器
13 暖房回路
15 湯水循環通路
16 制御ユニット
21 補助制御ユニット
22 圧縮機
23 凝縮熱交換器
23a 熱交換通路部
23c 出口温度センサ
24 膨張弁
25 蒸発熱交換器
25a 送風機
27 冷媒回路
28 冷媒バイパス通路
28a 除霜用開閉弁
29 冷媒温度センサ
31 給湯通路
33 補助加熱通路
34 補助熱源機出湯通路
36 循環ポンプ
39 圧送ポンプ
1 Hot water
Claims (4)
前記凝縮熱交換器で、所定の加熱温度に加熱した冷媒と暖房端末に供給する暖房熱媒を加熱するための湯水との熱交換により、湯水の温度が所定の目標温度範囲内となるように前記圧縮機の回転数と前記膨張手段の開度を制御するヒートポンプ熱源機において、
前記圧縮機が設定された下限回転数で作動しているときに、湯水の温度が前記目標温度範囲より高温となった場合には前記開閉弁を開放し、前記開閉弁の開放中に前記圧縮機から吐出される冷媒の温度が低下し始めた場合には前記送風機の作動を停止させることを特徴とするヒートポンプ熱源機。 A refrigerant circuit connecting the compressor, the condensate heat exchanger, the expansion means, and the evaporation heat exchanger, a bypass passage provided in the refrigerant circuit so as to bypass the condensate heat exchanger and the expansion means, and the bypass. A heat pump heat source machine equipped with an on-off valve that can open and close the passage and a blower that blows air to the evaporation heat exchanger.
In the condensed heat exchanger, the temperature of the hot water is within the predetermined target temperature range by heat exchange between the refrigerant heated to the predetermined heating temperature and the hot water for heating the heating heat medium supplied to the heating terminal. In the heat pump heat source machine that controls the rotation speed of the compressor and the opening degree of the expansion means.
When the compressor is operating at the lower limit rotation speed set to open the pre-SL-off valve if the hot water temperature becomes a temperature higher than the target temperature range, said during opening of the on-off valve A heat pump heat source machine characterized in that the operation of the blower is stopped when the temperature of the refrigerant discharged from the compressor begins to drop.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017161146A JP6969223B2 (en) | 2017-08-24 | 2017-08-24 | Heat pump heat source machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017161146A JP6969223B2 (en) | 2017-08-24 | 2017-08-24 | Heat pump heat source machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019039596A JP2019039596A (en) | 2019-03-14 |
JP6969223B2 true JP6969223B2 (en) | 2021-11-24 |
Family
ID=65725634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017161146A Active JP6969223B2 (en) | 2017-08-24 | 2017-08-24 | Heat pump heat source machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6969223B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112629022B (en) * | 2020-12-21 | 2022-03-01 | 珠海格力电器股份有限公司 | Multi-split water heater control method and device and multi-split water heater |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61291868A (en) * | 1985-06-18 | 1986-12-22 | 富士電機株式会社 | Control system of operation of refrigerator |
JP6281736B2 (en) * | 2013-05-23 | 2018-02-21 | 株式会社ノーリツ | Heat pump water heater |
-
2017
- 2017-08-24 JP JP2017161146A patent/JP6969223B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019039596A (en) | 2019-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5095295B2 (en) | Water heater | |
JP2009041860A (en) | Control method of heat pump hot water supply device | |
JP7135493B2 (en) | heat pump water heater | |
JP5592427B2 (en) | Heating system | |
JP5816422B2 (en) | Waste heat utilization system of refrigeration equipment | |
JP2009299941A (en) | Hot water supply system | |
JP2012172869A (en) | Heat pump device | |
JP5176474B2 (en) | Heat pump water heater | |
JP6969223B2 (en) | Heat pump heat source machine | |
JP5068599B2 (en) | Water heater | |
JP6065606B2 (en) | Heat pump water heater | |
JP6465332B2 (en) | Heat pump hot water supply system | |
JP2007322084A (en) | Heat pump water heater | |
JP2007333340A (en) | Heat pump type hot water supply apparatus | |
JP2006003077A (en) | Heat pump type hot water supply apparatus | |
JP2007155296A (en) | Heat pump type water heater | |
JP7135369B2 (en) | Hot water storage water heater | |
JP2009085476A (en) | Heat pump water heater | |
JP2002295899A (en) | Hot-water storage type water-heating heat source | |
JP6327499B2 (en) | Heat pump water heater | |
JP7025086B1 (en) | Heat pump device | |
KR100801142B1 (en) | Expansion control valve for heat pump | |
JP3594426B2 (en) | Air conditioner | |
JP6913555B2 (en) | Hot water heating system | |
JP3846755B2 (en) | Refrigerant circulation type air conditioning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200722 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210716 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210727 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210928 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211011 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6969223 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |