Nothing Special   »   [go: up one dir, main page]

JP6963755B2 - 半導体結晶及び発電方法 - Google Patents

半導体結晶及び発電方法 Download PDF

Info

Publication number
JP6963755B2
JP6963755B2 JP2018563335A JP2018563335A JP6963755B2 JP 6963755 B2 JP6963755 B2 JP 6963755B2 JP 2018563335 A JP2018563335 A JP 2018563335A JP 2018563335 A JP2018563335 A JP 2018563335A JP 6963755 B2 JP6963755 B2 JP 6963755B2
Authority
JP
Japan
Prior art keywords
semiconductor crystal
semiconductor
group
element selected
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018563335A
Other languages
English (en)
Other versions
JPWO2018135486A1 (ja
Inventor
祥一郎 末岡
哲彦 水阪
伸治 宗藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JPWO2018135486A1 publication Critical patent/JPWO2018135486A1/ja
Application granted granted Critical
Publication of JP6963755B2 publication Critical patent/JP6963755B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/8556Thermoelectric active materials comprising inorganic compositions comprising compounds containing germanium or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、半導体結晶及びこれを用いた発電方法に関する。
ゼーベック効果を利用した熱電変換素子は、熱エネルギーを電気エネルギーに変換することを可能とする。その性質を利用し、産業プロセスや移動体から排出される排熱を有効な電力に変換することができるため、ゼーベック効果を利用した様々な熱電変換素子が研究されている。
通常、ゼーベック効果を利用した熱電変換素子は温度差に基づく起電力を利用して熱エネルギーを電気エネルギーに変換する。このように温度差を利用したゼーベック効果を奏する熱電材料の性能を向上させるための手法が、種々検討されている。しかしながら、温度差に基づく起電力を利用した熱電材料を用いて発電モジュールを組み立てた場合、熱伝導などによって温度差が小さくなり発電量が低下してしまう場合がある。そのような発電量の低下を抑制するために、温度差を維持するための冷却装置等が必要となり、その結果、モジュールが複雑化してしまう。
一方、そのような温度差がなくても熱電変換素子として機能する材料についての研究は極めて少なく、例えば特許文献1に記載のような半導体単結晶が提案されている。
国際公開第2015/125823号
しかしながら、特許文献1に記載の半導体単結晶は、発電できるクラスレート化合物の組成が限られており、その起電力も小さなものである。
本発明は上記事情に鑑みてなされたものであり、温度差がなくても熱電変換素子(以下、単に「熱電素子」という。)として機能する新規な半導体結晶及びその半導体結晶を用いた発電方法を提供することを目的とする。
本発明者らは、上記目的を達成すべく鋭意検討した結果、所定の組成を有するクラストレート化合物を含む新規な半導体結晶が、温度差がなくても熱電変換素子として機能し得ることを見出し、本発明を完成するに至った。
すなわち、本発明は下記のとおりである。
[1]下記式(I)で表されるクラスレート化合物を含む半導体結晶であって、一方の端部と他方の端部との間で、少なくとも1種の元素の濃度に差がある、半導体結晶。
46−y (I)
(式(I)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、Eは、Si、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7〜8であり、yは14〜20である。)
[2]前記一方の端部がp型半導体部であり、前記他方の端部がn型半導体部であり、前記p型半導体部及び前記n型半導体部が接合している、[1]に記載の半導体結晶。
[3]前記クラスレート化合物が、下記式(II)で表される化合物を含む、[1]又は[2]に記載の半導体結晶。
46−y−zSi (II)
(式(II)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、Eは、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7〜8であり、yは14〜20であり、zは0〜23である。)
[4]前記一方の端部が下記式(III)で表されるクラストレート化合物を含むp型半導体部であり、前記他方の端部が下記式(IV)で表されるクラストレート化合物を含むn型半導体部である、[1]に記載の半導体結晶。
46−y−z1Siz1 (III)
(式(III)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、Eは、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7〜8であり、yは14〜20であり、z1は0以上4未満である。)
46−y−z2Siz2 (IV)
(式(IV)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、Eは、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7〜8であり、yは14〜20であり、z2は3〜23である。ただし、z2は前記式(III)におけるz1よりも大きい。)
[5]前記一方の端部における前記yの値と、前記他方の端部における前記yの値との差が、0.01〜4.0である、[1]〜[4]のいずれか1つに記載の半導体結晶。
[6]前記式(I)において、AはBaである、[1]〜[5]のいずれか1つに記載の半導体結晶。
[7]前記式(I)において、DはGaである、[1]〜[6]のいずれか1つに記載の半導体結晶。
[8]前記式(I)において、EはGe及びSiからなる群より選ばれる少なくとも1種の元素である、[1]〜[7]のいずれか1つに記載の半導体結晶。
[9]単結晶及び多結晶のいずれかである、[1]〜[8]のいずれか1つに記載の半導体結晶。
[10]下記式(V)で表されるクラスレート化合物を含む、[1]〜[9]のいずれか1つに記載の半導体結晶。
BaGe46−y−zSi (V)
(式(V)中、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、xは7〜8であり、yは14〜20であり、zは0〜23である。)
[11]下記式(VI)で表されるクラスレート化合物を含む、[1]〜[10]のいずれか1つに記載の半導体結晶。
BaGaGe46−y−zSi (VI)
(式(VI)中、xは7〜8であり、yは14〜20であり、zは0〜23である。)
[12][1]〜[11]のいずれか1つに記載の半導体結晶を加熱して発電する発電方法。
[13][1]〜[11]のいずれか1つに記載の半導体結晶を備える赤外線検出器。
本発明によれば、幅広い組成のクラスレート化合物によって各部に温度差がなくても熱電素子として機能する新規な半導体結晶及びその半導体結晶を用いた発電方法を提供することができる。
本発明の実施形態に係る半導体結晶の一例の構成を模式的に示す斜視図である。 本発明の実施形態に係る半導体結晶の別の一例の構成を模式的に示す斜視図である。 本発明の実施形態に係る半導体結晶のさらに別の一例の構成を模式的に示す斜視図である。 本発明の実施例に係る半導体結晶の温度変化に伴う電圧変化を示すチャートである。 本発明の実施例に係る半導体結晶の温度変化に伴うゼーベック係数の変化を示すチャートである。 本発明の実施例に係る半導体結晶の温度変化に伴う電圧変化を示すチャートである。 本発明の実施例に係る半導体結晶の温度変化に伴う電圧変化を示すチャートである。
以下、必要に応じて図面を参照しつつ、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明するが、本発明は下記本実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。本実施形態の半導体結晶は、下記式(I)で表されるクラスレート化合物を含む半導体結晶であって、一方の端部と他方の端部との間で、少なくとも1種の元素の濃度に差があるものである。
46−y (I)
ここで、式(I)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、Eは、Si、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7〜8であり、yは14〜20である。一方の端部におけるyの値と、他方の端部におけるyの値との差は、本発明の作用効果をより有効かつ確実に奏する観点から、0.01以上であると好ましく、0.02以上であるとより好ましく、0.1以上であると更に好ましい。同様に、本発明の作用効果をより有効かつ確実に奏する観点から、それらのyの値の差は4.0以下であると好ましく、2.0以下であるとより好ましく、1.0以下であると更に好ましい。それらのyの値の差は、0.01〜4.0であると好ましく、0.02〜2.0であるとより好ましく、0.1〜1.0であると更に好ましい。
図1は、本実施形態の半導体結晶の一例の構成を模式的に示す図である。半導体結晶の形状は特に限定されず、例えば板状であってもよく、直方体であってもよく、円柱などの柱状であってもよい。図1に示すように、半導体結晶10が板状又は柱状である場合、半導体結晶10の下部(一方の端部)側にp型半導体部14を有し、上部(他方の端部)側にn型半導体部12を有する構成とすることができる。半導体結晶10は、n型半導体部12とp型半導体部14とを直接接合してpn接合部16を形成している。
このような半導体結晶10は、n型半導体部12とp型半導体部14との間で、少なくとも1種の元素の濃度に差がある。また、このような元素の濃度の差が、以下に説明するような、半導体結晶10のバンドギャップの分布に寄与し、その結果、温度差がなくても発電することができると考えられる。ただし、要因は下記のものに限定されない。すなわち、n型半導体部12とp型半導体部14との接合部分(pn接合部16)等において、n型半導体部12及びp型半導体部14におけるバンドギャップよりも小さいバンドギャップを有する領域が存在すると考えられる。そのような半導体結晶10を所定の温度に加熱すると、価電子帯の電子が伝導帯に熱励起する。このとき、バンドギャップが相対的に小さいpn接合部16のみで伝導帯に電子が熱励起される。一方、バンドギャップが相対的に大きいn型半導体部12及びp型半導体部14では、電子が熱励起されにくい。次いで、伝導帯に熱励起したpn接合部16の電子は、エネルギーの低い方、すなわちn型半導体部12側に移動する。一方、電子の励起により価電子帯側に生じたホールはエネルギーの低いp型半導体部14側へと移動する。これによって、n型半導体部12が負に帯電し、p型半導体部14が正に帯電するため、起電力が生じる。このようにして、半導体結晶10は、n型半導体部12とp型半導体部14との間に温度差がなくても、発電することができると考えられる。このような起電力発生のメカニズムは、温度差に基づいて起電力を生じるゼーベック効果とは異なる。
本実施形態の半導体結晶10は、温度差がなくても発電できることから、モジュール化した場合にも、冷却又は加熱等の温度制御のための設備をなくしたり、簡素化したりすることができる。したがって、半導体結晶10は、熱電変換用、又は排熱回収用の発電材料として好適に使用することができる。例えば、半導体結晶10を発電モジュールに備えさせ、その発電モジュールを、内燃機関を有する自動車及び航空機などの輸送機器、装置、並びにプラント等に設置することができる。
半導体結晶10は、構成元素としてA、D及びEを有する、上記式(I)で表わされるクラスレート化合物を含むことが好ましい(以下、元素としてのA、D、Eをそれぞれ「A元素」、「D元素」、「E元素」ともいう。)。このようなクラスレート化合物において、A元素は1価又は2価のドナーとして機能し、D元素は3価又は1価のアクセプタとして機能する。半導体結晶10において、クラスレート化合物におけるD元素のモル比を示すyが、p型半導体部14とn型半導体部12との間で異なると好ましい。言い換えれば、p型半導体部14とn型半導体部12との間で、D元素の濃度に差があると好ましい。一方、A元素のモル比を示すxは、半導体結晶10においてほぼ均一に分布していてもよいし、p型半導体部14とn型半導体部12との間で異なっていてもよい。半導体結晶10では、上部よりも下部の方がA元素に対するD元素のモル比(y/x)が高くなっている。これによって、上部はn型半導体部12となり、下部はp型半導体部14となっている。
クラスレート化合物(包接化合物)は、D元素及びE元素によって構成されるカゴ状組織と、それに内包されるA元素で構成される。通常のクラスレート化合物として、カゴ状組織がE元素のみによって構成されたものが知られている(例えば、BaSi46)。しかしながら、このようなクラスレート化合物の製造には、非常に高い圧力が必要となる。一方、E元素の6cサイトをD元素で置換した構造のものは、常圧でアーク溶融法によって合成することができる。
上記式(I)において、A元素はBaであると好ましい。また、D元素は、B、Ga及びInからなる群より選ばれる少なくとも1種の元素であると好ましく、Gaであるとより好ましい。さらに、E元素はGe及びSiからなる群より選ばれる少なくとも1種の元素であると好ましい。また、yは、0〜20であると好ましく、14〜20であるとより好ましい。これらによって、半導体結晶は、本発明による作用効果をより有効かつ確実に奏することができる。
クラスレート化合物は、上記式(I)で表される化合物として、下記式(II)で表される化合物を含むと好ましい。
46−y−zSi (II)
ここで、式(II)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、Eは、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7〜8であり、yは14〜20であり、zは0〜23である。A元素はBaであると好ましい。また、D元素は、B、Ga及びInからなる群より選ばれる少なくとも1種の元素であると好ましく、Eは、Geであると好ましい。yは、14〜18であると好ましく、zは0〜15であると好ましい。これらにより、半導体結晶は、本発明による作用効果をより有効かつ確実に奏することができる。
また、クラスレート化合物は、上記式(I)で表される化合物として、下記式(V)で表される化合物を含むとより好ましく、下記式(VI)で表される化合物を含むとさらに好ましい。
BaGe46−y−zSi (V)
BaGaGe46−y−zSi (VI)
ここで、式(V)及び(VI)中、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、B、Ga及びInからなる群より選ばれる少なくとも1種の元素であると好ましい。xは7〜8であり、yは14〜20であり、zは0〜23である。yは、14〜18であると好ましく、zは0〜15であると好ましく、zの下限は0であってもよい。これらにより、半導体結晶は、本発明による作用効果をより有効かつ確実に奏することができる。
本実施形態の半導体結晶は、一方の端部がp型半導体部であり、他方の端部がn型半導体部であることが好ましい。この際、上記式(I)、(II)、(V)及び(VI)におけるzは、p型半導体部よりもn型半導体部の方が大きい。より具体的には、一方の端部が下記式(III)で表されるクラストレート化合物を含むp型半導体部であり、他方の端部が下記式(IV)で表されるクラストレート化合物を含むn型半導体部であるとより好ましい。
46−y−z1Siz1 (III)
ここで、式(III)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Baであると好ましく、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、B、Ga及びInからなる群より選ばれる少なくとも1種の元素であると好ましく、Gaであるとより好ましく、Eは、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示し、Geであると好ましい。xは7〜8であり、yは14〜20であり、z1は0以上4未満である。
46−y−z2Siz2 (IV)
ここで、式(IV)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Baであると好ましく、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、B、Ga及びInからなる群より選ばれる少なくとも1種の元素であると好ましく、Gaであるとより好ましく、Eは、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示し、Geであると好ましい。xは7〜8であり、yは14〜20であり、z2は3〜23である。ただし、p型半導体部における組成とn型半導体部における組成とは、互いに異なるものであり、上記式(IV)におけるz2は、上記式(III)におけるz1よりも大きい。これらにより、半導体結晶は、本発明による作用効果をより有効かつ確実に奏することができる。
n型半導体となるクラスレート化合物として、より具体的には、BaGaGe46−y−zSi、BaGaSn46−y−zSi、BaGaSi46−y−zSn、BaGaGe46−y−zSn及びBaGaSi46−y−zGeが挙げられる。ただし、xは7〜8であり、yは14〜20であり、zは3〜23である。また、p型半導体となるクラスレート化合物として、より具体的には、BaGaGe46−y−zSi、BaGaSn46−y−zSi、BaGaSi46−y−zSn、BaGaGe46−y−zSn及びBaGaSi46−y−zGeが挙げられる。ただし、xは7〜8であり、yは14〜20であり、zは0以上4未満である。
半導体結晶10は、n型半導体部12とp型半導体部14とを接合することによって、pn接合部16を有する。この際、半導体結晶10のn型半導体部12とp型半導体部14との間で、少なくとも1種の元素の濃度に差がある。このような構造を有する本実施形態の半導体結晶10は、p型半導体部14とn型半導体部12との温度差がなくても、所定の温度範囲で発電をすることができる。
半導体結晶10は、多結晶であっても単結晶であってもよい。ただし、所望の半導体結晶10を得やすい観点から、半導体結晶10は多結晶であると好ましい。一方、電気伝導性の高い結晶を得る観点から、半導体結晶10は単結晶であると好ましい。
本実施形態の発電方法は、半導体結晶10と、n型半導体部12及びp型半導体部14にそれぞれ接続される一対の電極とを備える発電モジュールを用いて発電する方法である。発電モジュールにおける半導体結晶10以外の構成は、公知のものを用いることができる。半導体結晶10は、例えば50〜700℃に、好ましくは200〜500℃に加熱することによって、効率よく発電することができる。半導体結晶10は、例えば、500℃における両端部の間の電位差の絶対値を0.5mV以上にすることが可能であり、0.5〜20mV(例えば、0.5〜4mV)とすることも可能である。
本実施形態の半導体結晶10の製造方法の一例を以下に説明する。まず、クラスレート化合物の構成元素に対応する、金属又は半金属を準備する。そして、最終目的物の組成に応じて、準備した金属又は半金属を所定量秤量する。準備した金属又は半金属の秤量は、必要に応じてアルゴンガスに置換されたグローブボックス内で行う。秤量した金属及び半金属を、銅製のモールド内に入れて、アーク溶融法等によって溶解する。アーク溶解中の溶融金属の温度は、例えば約2000℃〜3000℃である。
アーク溶融によって得られた融液を冷却すると、上記式(I)で表されるクラスレート化合物のインゴットが得られる。得られたインゴットを破砕して、粉末状のクラスレート化合物を得る。
また、上記と同様にして、上記のクラスレート化合物とは少なくとも1種の元素の濃度に差が出るように調整した、粉末状のクラスレート化合物を得る。
次いで、それら少なくとも1種の元素の濃度が異なる2種の粉末状のクラスレート化合物を、所望の形状の成形体が得られるような形状を有するグラファイトダイに下層と上層に分けて充填する。次に、充填後のグラファイトダイをスパークプラズマ焼結装置のチャンバー内の所定位置に設置し、チャンバー内を高真空にする。次いで、グラファイトダイ内を例えば40〜60MPaに加圧しながら、例えば700〜900℃に加熱して、例えば2〜10分間、その条件で維持することによって、グラファイトダイ内のクラスレート化合物を焼結する。こうして、2種のクラスレート化合物が接合した半導体を得る。
そして、その半導体を真空炉内に収容し、高真空下で例えば700〜1100℃に加熱し、例えば5〜14時間アニールを施すことによって、半導体多結晶を得る。
図2は、本実施形態の半導体結晶の別の一例の構成を模式的に示す図である。半導体結晶20は、半導体結晶20の下部(一方の端部)側にp型半導体部14a及び14bを有し、上部(他方の端部)側にn型半導体部12a及び12bを有する。p型半導体部14a及び14bは、互いに組成が異なり、p型半導体として機能する上述のクラスレート化合物を含むものであればよい。また、n型半導体部12a及び12bは、互いに組成が異なり、n型半導体として機能する上述のクラスレート化合物を含むものであればよい。この例の半導体結晶20は、n型半導体部12bとp型半導体部14bとを直接接合してpn接合部16を形成している。このように本実施形態の半導体結晶は、2層以上のp型半導体部を備えるものであってもよく、2層以上のn型半導体部を備えるものであってもよい。このような半導体結晶20であっても、上記と同様の要因により、n型半導体部12a及び12bとp型半導体部14a及び14bとの間に温度差がなくても、発電することができる。
図3は、本実施形態の半導体結晶の別の一例の構成を模式的に示す図である。半導体結晶30は、半導体結晶30の下部(一方の端部)側にp型半導体部14を有し、上部(他方の端部)側にn型半導体部12を有し、それらの間に真性半導体部18を有する。このような半導体結晶30において、上記式(I)、(II)、(V)、(VI)、(III)及び(IV)におけるz、上記式(III)におけるz1及び上記式(IV)におけるz2は、n型半導体部12、真性半導体部18、p型半導体部14の順に高い。真性半導体部18において真性半導体となるクラスレート化合物として、具体的には、BaGaGe46−y−zSiが挙げられる。ただし、xは7〜8であり、yは14〜20であり、zは3〜4である。
本実施形態の半導体結晶は、熱電素子として特に好適であるが、その半導体結晶を備える赤外線検出器及び赤外線撮像装置も本実施形態の一態様である。本実施形態の赤外線検出器及び赤外線撮像装置は、上記半導体結晶を備えるものであれば、装置の具体的種類や構成は特に限定されない。それらの装置は、上記半導体結晶を下地基板及び/又は結晶層として備えるものであれば、他の構成は公知のものであってもよい。そのような赤外線検出器及び赤外線撮像装置としては、例えば、本実施形態の半導体結晶を備える、真性半導体型赤外線検出器、不純物半導体型赤外線検出器、内部光電効果型赤外線検出器、ボロメータ、量子井戸型赤外線検出器(QWIP)、及び量子ドット型赤外線検出器(QDIP)が挙げられる。
以上、本実施形態について説明したが、本発明は上述の本実施形態に限定されるものではない。例えば、上述の本実施形態では、板状の半導体結晶を示したが、本発明の半導体結晶の形状は板状に限定されるものではなく、用途に応じて種々の形状にすることができる。また、半導体結晶の製造方法は、上述の方法に限定されるものではなく、各種の多結晶及び単結晶の製造方法を適用することができる。例えば、本発明の半導体結晶が多結晶である場合は、キャスト法(鋳造法)によっても製造することができる。また、本発明の半導体結晶が単結晶である場合は、2種の単結晶の一方にドーパントなどのイオンを注入した後に、それらに対して上述のようにしてアニールを施す方法によって、半導体結晶を製造してもよい。あるいは、本発明の半導体結晶が単結晶である場合は、2種以上の単結晶のそれぞれに異なるドーパントなどのイオンを注入した後に、それらに対して上述のようにしてアニールを施す方法によって、半導体結晶を製造してもよい。あるいは、予め所定の元素の濃度が異なる2種の多結晶の試料を準備しておいて、それぞれの試料にレーザー光を照射して溶解した後、徐々に冷却して単結晶を成長させるFZ法(フローティングゾーン法)によって、本実施形態の半導体結晶を製造してもよい。あるいは、FZ法に代えてチョクラルスキー法によって、本実施異形態の半導体結晶を製造してもよい。
本発明によると、上述のように、幅広い組成のクラスレート化合物を用いても、各部に温度差を設けることなく加熱することによって発電することが可能な熱電素子を提供することができる。
以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
<アーク溶融法によるクラスレート化合物の調製>
市販のBa粉末、Ga粉末、Ge粉末、及びSi粉末(いずれも高純度品)を準備した。これらの粉末を、Ba:Ga:Ge:Si=8:18:20:8(モル比)となるように秤量した。秤量した各粉末をCuモールドに収容して、チャンバー内に載置した。チャンバー内をアルゴンガスで置換した後、アーク溶融法によって約2000℃に加熱し、Cuモールド内の粉末を溶融させた。その後、得られた融液を冷却した。このようにして、クラスレート化合物(BaGa18Ge20Si)のインゴットを得た。また、上記と同様にして、原料の粉末をBa:Ga:Ge=8:18:28(モル比)となるように秤量した後、上記と同様にして、クラスレート化合物(BaGa18Ge28)のインゴットを得た。
<スパークプラズマ焼結法による接合半導体の作製>
得られた2種の上記クラスレート化合物のインゴットをそれぞれ粉砕して粉状にした。それらを円柱状の成形体が得られるような形状を有するグラファイトダイに、下層と上層に分けて充填した。充填後のグラファイトダイをスパークプラズマ焼結装置のチャンバー内の所定位置に設置し、チャンバー内を高真空(2Pa)にした。次いで、グラファイトダイ内を50MPaに加圧しながら750℃に加熱し、その条件で5分間維持することによって、グラファイトダイ内のクラスレート化合物を焼結した。こうして、2種の上記クラスレート化合物が接合した円柱状の半導体(直径20mm、高さ20mm)を得た。
<アニール>
次いで、得られた半導体を真空炉内に収容し、高真空下(10−3〜10−2Pa)で900℃に加熱し、その半導体に対して10時間アニールを施した。こうして、半導体多結晶を得た。
<半導体多結晶の評価>
半導体多結晶における互いに異なるクラスレート化合物からなる両端部に、それぞれ導線を接続し、加熱してその両端部の電位差を測定した。このとき、両端部に温度差が生じないように調整しながら加熱した。半導体多結晶の温度変化に伴う電圧変化の測定結果を図4に示す。図4に示すとおり、半導体多結晶の両端部の間に温度差がないにもかかわらず、所定の温度以上に加熱することによって、電位差が生じることが確認された。
また、半導体多結晶における互いに組成の異なるクラスレート化合物のうち、全体としてBaGa18Ge28の組成である端部の側を下層とし、全体としてBaGa18Ge20Siの組成である他方の端部の側を上層として、上下方向に沿って切断した切断面について、電子線マイクロアナライザ(型式名「EPMA―1200、WDX型、島津製作所社製)を用いて元素分析を行った。このとき、フィラメント電圧は15kVに、フィラメント電流は10nAにそれぞれ設定した。元素分析の測定値を、クラスレート化合物の組成比に換算した。その組成比の結果を表1に示す。
Figure 0006963755
表1に示すとおり、下層よりも上層の方が、Siの濃度が高くなっていた。また、接合部は上層と下層の中間のSi濃度を示した。
次に、得られた半導体多結晶を接合部にて切断し、互いに組成の異なるクラスレート化合物からなる2種の試料を得た。それら2種の試料について、ゼーベック係数を測定した。具体的には、各試料の長手方向の両端部に導線を接続し、両端部間の温度差を20℃に維持しながら昇温して電位差を測定し、電位差を温度差で除することにより、各温度でのゼーベック係数S(μV/K)を算出した。算出したゼーベック係数に基づいて、ゼーベック係数の温度依存性を調べた。各試料について、低温側と高温側の平均温度が500℃に到達するまでのゼーベック係数Sの変化を図5に示す。全体としてBaGa18Ge28の組成である試料のゼーベック係数Sは正の値であり、全体としてBaGa18Ge20Siの組成である試料のゼーベック係数Sは負の値であった。すなわち、前者の試料はp型半導体であり、後者の試料はn型半導体であった。
(実施例2)
市販のBa粉末、Ga粉末、Ge粉末、及びSi粉末(いずれも高純度品)を準備した。これらの粉末を、Ba:Ga:Ge:Si=8:18:23:5(モル比)となるように秤量した。秤量した各粉末を実施例1と同様にして、アーク溶融法で溶融させ、得られた融液を冷却した。このようにして、クラスレート化合物(BaGa18Ge23Si)のインゴットを得た。また、上記と同様にして、原料の粉末をBa:Ga:Ge=8:18:28(モル比)となるように秤量した後、上記と同様にして、クラスレート化合物(BaGa18Ge28)のインゴットを得た。
得られた2種の上記クラスレート化合物を用いて、実施例1と同様にしてスパークプラズマ焼結法により、2種の上記クラスレート化合物が接合した半導体を得た。次いで、得られた半導体に対して、実施例1と同様にしてアニールを施して、半導体多結晶を得た。
半導体多結晶について、実施例1と同様にして、半導体多結晶の温度変化に伴う電圧変化を測定した。その測定結果を図6に示す。図6に示すとおり、半導体多結晶の両端部の間に温度差がないにもかかわらず、所定の温度以上に加熱することによって、電位差が生じることが確認された。
また、実施例1と同様にして、元素分析を行い、その測定値をクラスレート化合物の組成比に換算した。その組成比の結果を表2に示す。
Figure 0006963755
表2に示すとおり、下層よりも上層の方が、Siの濃度が高くなっていた。また、接合部は上層と下層の中間のSi濃度を示した。
(実施例3)
市販のBa粉末、Ga粉末、Ge粉末、及びSi粉末(いずれも高純度品)を準備した。これらの粉末を、Ba:Ga:Ge:Si=8:18:17:11(モル比)となるように秤量した。秤量した各粉末を実施例1と同様にして、アーク溶融法で溶融させ、得られた融液を冷却した。このようにして、クラスレート化合物(BaGa18Ge17Si11)のインゴットを得た。また、上記と同様にして、原料の粉末をBa:Ga:Ge=8:18:28(モル比)となるように秤量した後、上記と同様にして、クラスレート化合物(BaGa18Ge28)のインゴットを得た。
得られた2種の上記クラスレート化合物を用いて、実施例1と同様にしてスパークプラズマ焼結法により、2種の上記クラスレート化合物が接合した半導体を得た。次いで、得られた半導体に対して、実施例1と同様にしてアニールを施して、半導体多結晶を得た。 半導体多結晶について、実施例1と同様にして、半導体多結晶の温度変化に伴う電圧変化を測定した。その測定結果を図7に示す。図7に示すとおり、半導体多結晶の両端部の間に温度差がないにもかかわらず、所定の温度以上に加熱することによって、電位差が生じることが確認された。
また、実施例1と同様にして、元素分析を行い、その測定値をクラスレート化合物の組成比に換算した。その組成比の結果を表3に示す。
Figure 0006963755
表3に示すとおり、下層よりも上層の方が、Siの濃度が高くなっていた。また、接合部は上層と下層の中間のSi濃度を示した。
本出願は、2017年1月19日出願の日本特許出願(特願2017−007728)に基づくものであり、その内容はここに参照として取り込まれる。
本発明によれば、幅広い組成のクラスレート化合物を用いても、温度差を設けることなく加熱することによって発電することが可能な熱電素子を提供することができる。したがって、本発明の半導体結晶は、特に熱電素子が用いられる分野において産業上の利用可能性がある。
10,20,30…半導体結晶、12,12a,12b…n型半導体部、14,14a,14b…p型半導体部、16…pn接合部、18…真性半導体部。

Claims (13)

  1. 下記式(I)で表されるクラスレート化合物を含む半導体結晶であって、
    一方の端部と他方の端部との間で、少なくとも1種の元素の濃度に差がある、半導体結晶。
    46−y (I)
    (式(I)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、Eは、Si、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7〜8であり、yは14〜20である。)
  2. 前記一方の端部がp型半導体部であり、前記他方の端部がn型半導体部であり、前記p型半導体部及び前記n型半導体部が接合している、請求項1に記載の半導体結晶。
  3. 前記クラスレート化合物が、下記式(II)で表される化合物を含む、請求項1又は2に記載の半導体結晶。
    46−y−zSi (II)
    (式(II)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、Eは、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7〜8であり、yは14〜20であり、zは0〜23である。)
  4. 前記一方の端部が下記式(III)で表されるクラストレート化合物を含むp型半導体部であり、前記他方の端部が下記式(IV)で表されるクラストレート化合物を含むn型半導体部である、請求項1に記載の半導体結晶。
    46−y−z1Siz1 (III)
    (式(III)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、Eは、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7〜8であり、yは14〜20であり、z1は0以上4未満である。)
    46−y−z2Siz2 (IV)
    (式(IV)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、Eは、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7〜8であり、yは14〜20であり、z2は3〜23である。ただし、z2は前記式(III)におけるz1よりも大きい。)
  5. 前記一方の端部における前記yの値と、前記他方の端部における前記yの値との差が、0.01〜4.0である、請求項1〜4のいずれか1項に記載の半導体結晶。
  6. 前記式(I)において、AはBaである、請求項1〜5のいずれか1項に記載の半導体結晶。
  7. 前記式(I)において、DはGaである、請求項1〜6のいずれか1項に記載の半導体結晶。
  8. 前記式(I)において、EはGe及びSiからなる群より選ばれる少なくとも1種の元素である、請求項1〜7のいずれか1項に記載の半導体結晶。
  9. 単結晶及び多結晶のいずれかである、請求項1〜8のいずれか1項に記載の半導体結晶。
  10. 下記式(V)で表されるクラスレート化合物を含む、請求項1〜9のいずれか1項に記載の半導体結晶。
    BaGe46−y−zSi (V)
    (式(V)中、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、xは7〜8であり、yは14〜20であり、zは0〜23である。)
  11. 下記式(VI)で表されるクラスレート化合物を含む、請求項1〜10のいずれか1項に記載の半導体結晶。
    BaGaGe46−y−zSi (VI)
    (式(VI)中、xは7〜8であり、yは14〜20であり、zは0〜23である。)
  12. 請求項1〜11のいずれか1項に記載の半導体結晶を加熱して発電する発電方法。
  13. 請求項1〜11のいずれか1項に記載の半導体結晶を備える赤外線検出器。
JP2018563335A 2017-01-19 2018-01-16 半導体結晶及び発電方法 Active JP6963755B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017007728 2017-01-19
JP2017007728 2017-01-19
PCT/JP2018/001015 WO2018135486A1 (ja) 2017-01-19 2018-01-16 半導体結晶及び発電方法

Publications (2)

Publication Number Publication Date
JPWO2018135486A1 JPWO2018135486A1 (ja) 2019-11-07
JP6963755B2 true JP6963755B2 (ja) 2021-11-10

Family

ID=62909115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018563335A Active JP6963755B2 (ja) 2017-01-19 2018-01-16 半導体結晶及び発電方法

Country Status (6)

Country Link
US (1) US10811584B2 (ja)
EP (1) EP3573116B1 (ja)
JP (1) JP6963755B2 (ja)
KR (1) KR102421839B1 (ja)
CN (1) CN110168758B (ja)
WO (1) WO2018135486A1 (ja)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2228823B (en) * 1988-11-16 1992-04-22 George Lawrence Jones Thermo-electric generators and heat pumps
US6103403A (en) * 1997-05-15 2000-08-15 University Of Kentucky Research Foundation Intellectual Property Development Clathrate structure for electronic and electro-optic applications
CA2307239A1 (en) * 1997-10-24 1999-05-06 Sumitomo Special Metals Co., Ltd. Thermoelectric transducing material and method of producing the same
US6188011B1 (en) * 1998-01-20 2001-02-13 Marlow Industries, Inc. Thermoelectric materials fabricated from clathrate compounds and other materials which form an inclusion complex and method for optimizing selected thermoelectric properties
US6169245B1 (en) * 1998-05-05 2001-01-02 Marlow Industries, Inc. Thermoelectric materials ternary penta telluride and selenide compounds
WO2000017104A1 (en) * 1998-09-24 2000-03-30 Arizona Board Of Regents Method of making silicon clathrates
EP1074512B1 (en) * 1999-08-03 2017-02-15 IHI Corporation Clathrate compounds, manufacture thereof, and thermoelectric materials, thermoelectric modules, semiconductor materials and hard materials based thereon
JP2005217310A (ja) * 2004-01-30 2005-08-11 Toyota Motor Corp クラスレート化合物、熱電変換素子及びその製造方法
EP2662466A3 (en) * 2004-04-21 2014-08-06 Showa Denko K.K. Process for producing thermoelectric semiconductor alloy, thermoelectric conversion module, thermoelectric power generating device, rare earth alloy, producing process thereof, thermoelectric conversion material, and thermoelectric conversion system using filled skutterudite based alloy
JP2006253291A (ja) * 2005-03-09 2006-09-21 Toyota Motor Corp 熱電材料
JP2007051345A (ja) * 2005-08-18 2007-03-01 Yamaguchi Univ クラスレート化合物及びそれを用いた熱電変換素子
JP2007103580A (ja) * 2005-10-03 2007-04-19 Toyota Motor Corp 熱電変換素子及びその製造方法
AT10749U1 (de) * 2008-05-21 2009-09-15 Univ Wien Tech Verfahren zur herstellung von clathratverbindungen
CN101393959B (zh) * 2008-11-07 2012-04-11 中国科学院上海硅酸盐研究所 一种笼型化合物
US8097802B2 (en) * 2009-05-01 2012-01-17 GM Global Technology Operations LLC Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure
JP4976566B2 (ja) * 2010-07-08 2012-07-18 古河電気工業株式会社 クラスレート化合物および熱電変換材料ならびに熱電変換材料の製造方法
JP2015038984A (ja) * 2013-07-18 2015-02-26 株式会社デンソー 熱電変換材料及びその製造方法
JP2015039161A (ja) 2013-07-19 2015-02-26 株式会社Jvcケンウッド スピーカ用磁気回路
AT514911B1 (de) * 2013-09-20 2018-08-15 Univ Wien Tech Intermetallische Clathratverbindungen
KR101614062B1 (ko) * 2013-10-04 2016-04-20 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
WO2015125823A1 (ja) 2014-02-18 2015-08-27 国立大学法人九州大学 半導体単結晶、及びこれを用いた発電方法
JP6715544B2 (ja) 2015-06-25 2020-07-01 大阪シーリング印刷株式会社 包装箱

Also Published As

Publication number Publication date
KR20190103144A (ko) 2019-09-04
CN110168758B (zh) 2022-09-30
WO2018135486A1 (ja) 2018-07-26
EP3573116A4 (en) 2019-12-25
CN110168758A (zh) 2019-08-23
EP3573116B1 (en) 2020-11-04
JPWO2018135486A1 (ja) 2019-11-07
US10811584B2 (en) 2020-10-20
US20190341539A1 (en) 2019-11-07
EP3573116A1 (en) 2019-11-27
KR102421839B1 (ko) 2022-07-15

Similar Documents

Publication Publication Date Title
Liu et al. Effects of Sb compensation on microstructure, thermoelectric properties and point defect of CoSb3 compound
KR100910158B1 (ko) Sn 충진 및 Te 도핑된 스커테루다이트계 열전재료 및그 제조방법
JP6551849B2 (ja) 半導体単結晶、及びこれを用いた発電方法
JP2005072391A (ja) N型熱電材料及びその製造方法並びにn型熱電素子
KR20100009455A (ko) 열전재료 및 칼코게나이드 화합물
JP2009277735A (ja) 熱電材料の製造方法
Sesselmann et al. Transport properties and microstructure of indium-added cobalt–antimony-based skutterudites
JP6873105B2 (ja) 化合物、熱電変換材料及び化合物の製造方法
US20160343930A1 (en) Thermoelectric composite material and method for producing same
KR20140065721A (ko) 열전재료, 이를 포함하는 열전소자 및 열전장치, 및 이의 제조방법
JPWO2016052272A1 (ja) p型熱電材料、熱電素子およびp型熱電材料の製造方法
CN111033772B (zh) 热电材料以及热电模块
JP5445276B2 (ja) マグネシウム、錫及び珪素からなる熱電変換材料並びにその製造方法
KR101959448B1 (ko) 열전재료, 상기 열전재료를 이용한 열전소자 및 그 제조방법
JP6963755B2 (ja) 半導体結晶及び発電方法
KR102409289B1 (ko) 마그네슘계 열전 변환 재료, 마그네슘계 열전 변환 소자, 및 마그네슘계 열전 변환 재료의 제조 방법
JP5660528B2 (ja) GaあるいはSnでドーピングされたバルク状マンガンシリサイド単結晶体あるいは多結晶体およびその製造方法
KR100802152B1 (ko) 스커테루다이트 열전재료 제조방법
KR101322779B1 (ko) 비스무스가 도핑된 규화마그네슘 열전재료용 조성물 및 그 제조방법
US11616183B2 (en) Alloy, sintered article, thermoelectric module and method for the production of a sintered article
US20200381606A1 (en) Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module
US20160035954A1 (en) Thermoelectric performance of calcium and calcium-cerium filled n-type skutterudites
KR20160137848A (ko) 열전재료, 이를 포함하는 열전모듈 및 열전장치
JP2017045841A (ja) 熱電変換材料、熱電変換素子、熱電変換モジュールおよび熱電変換材料の製造方法
KR20170082982A (ko) P형 스커테루다이트 열전재료 및 이를 포함하는 열전 소자

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210930

R151 Written notification of patent or utility model registration

Ref document number: 6963755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151