Nothing Special   »   [go: up one dir, main page]

JP6955106B2 - Glass plate suitable for image display devices - Google Patents

Glass plate suitable for image display devices Download PDF

Info

Publication number
JP6955106B2
JP6955106B2 JP2020530123A JP2020530123A JP6955106B2 JP 6955106 B2 JP6955106 B2 JP 6955106B2 JP 2020530123 A JP2020530123 A JP 2020530123A JP 2020530123 A JP2020530123 A JP 2020530123A JP 6955106 B2 JP6955106 B2 JP 6955106B2
Authority
JP
Japan
Prior art keywords
micro
glass plate
deformed
less
dimensions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020530123A
Other languages
Japanese (ja)
Other versions
JPWO2020013012A1 (en
Inventor
筏井 正博
正博 筏井
真治 大泉
真治 大泉
淳一 桐山
淳一 桐山
勉 田上
勉 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Mitsumura Printing Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Mitsumura Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd, Mitsumura Printing Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Publication of JPWO2020013012A1 publication Critical patent/JPWO2020013012A1/en
Priority to JP2021160656A priority Critical patent/JP7085051B2/en
Application granted granted Critical
Publication of JP6955106B2 publication Critical patent/JP6955106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/09Materials and properties inorganic glass

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Glass (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Description

本発明は、ガラス板、特に画像表示装置と組み合わせて使用することに適したガラス板に関する。 The present invention relates to a glass plate, particularly a glass plate suitable for use in combination with an image display device.

液晶表示装置に代表される画像表示装置の画像表示側に配置されるガラス板には、環境光の鏡面反射を抑制するために防眩機能が付与されることがある。防眩機能はガラス板の表面に形成された微小変形部、具体的には微小凹凸、により発現する。防眩機能は、グロスを指標としてその値が小さいほど優れていると評価される。一方、微小凹凸により生じる光の拡散はヘイズにより評価される。表示される画像の鮮明さを損なわないためには小さいヘイズが望ましい。通常、微小凹凸は、サンドブラスト法、エッチング法、或いはこれらの組み合わせによってガラス板の表面に形成される。 A glass plate arranged on the image display side of an image display device represented by a liquid crystal display device may be provided with an antiglare function in order to suppress specular reflection of ambient light. The antiglare function is exhibited by a minute deformed portion formed on the surface of the glass plate, specifically, a minute unevenness. The anti-glare function is evaluated to be superior as the value is smaller using the gloss as an index. On the other hand, the diffusion of light caused by minute irregularities is evaluated by haze. A small haze is desirable so as not to impair the sharpness of the displayed image. Usually, the fine irregularities are formed on the surface of the glass plate by a sandblasting method, an etching method, or a combination thereof.

画像表示装置の高精細化に伴い、スパークルと呼ばれる現象が問題になっている。スパークルは、防眩機能が付与された防眩ガラスの主面の微小凹凸と画像表示装置の画素サイズとの関係に依存して発生する輝点である。スパークルは、特に画像表示装置に対してユーザの視点が相対的に移動する場合に不規則な光のゆらぎとして認識されやすくなるが、ユーザの視点が静止していても観察される。 With the increase in definition of image display devices, a phenomenon called sparkle has become a problem. The sparkle is a bright spot generated depending on the relationship between the minute unevenness of the main surface of the antiglare glass to which the antiglare function is provided and the pixel size of the image display device. Sparkles are more likely to be recognized as irregular light fluctuations, especially when the user's viewpoint moves relative to the image display device, but are observed even when the user's viewpoint is stationary.

特許文献1には、算術平均粗さRaが0.01〜0.1μm、平均間隔RSmが1〜20μmの基礎表面と、この基礎表面に分散した直径3〜20μm、深さ0.2〜1.5μmの窪み体と呼ばれる凹部とを有する主面を備えたガラス板が開示されている。この主面は、サンドブラスト法の後にエッチング法を適用することによって形成される。特許文献1の実施例には、上記主面を有するガラス板がスパークルを抑制できたことが開示されている。 Patent Document 1 describes a base surface having an arithmetic mean roughness Ra of 0.01 to 0.1 μm and an average interval RSm of 1 to 20 μm, and a diameter of 3 to 20 μm and a depth of 0.2 to 1 dispersed on the base surface. A glass plate having a main surface having a recess called a .5 μm recess is disclosed. This main surface is formed by applying an etching method after the sandblasting method. In the examples of Patent Document 1, it is disclosed that the glass plate having the main surface can suppress sparkling.

特許文献2には、算術平均粗さRaが0.02〜0.4μm、平均間隔RSmが5〜30μmの主面を有するガラス板が開示されている。この主面の微小凹凸は、組成を調整したエッチング液を用いたエッチング法によって、サンドブラスト法による前処理を実施することなく形成される。特許文献2の実施例には、上記微小凹凸を有するガラス板がスパークルを抑制できたことが開示されている。 Patent Document 2 discloses a glass plate having a main surface having an arithmetic mean roughness Ra of 0.02 to 0.4 μm and an average interval RSm of 5 to 30 μm. The fine irregularities on the main surface are formed by an etching method using an etching solution having an adjusted composition without performing pretreatment by a sandblasting method. In the examples of Patent Document 2, it is disclosed that the glass plate having the fine irregularities could suppress sparkling.

特許文献3には、表面粗さRMSの変化量に対するグロスの変化量ΔGloss/ΔRMSを−800以下としたガラス板が開示されている。このガラス板は、プレエッチングを伴うエッチング法、言い換えると2段階のエッチングによって作製される。特許文献3の実施例の欄によると、ΔGloss/ΔRMSが小さくなるほどスパークルは抑制される。 Patent Document 3 discloses a glass plate in which the amount of change in gloss ΔGloss / ΔRMS with respect to the amount of change in surface roughness RMS is −800 or less. This glass plate is produced by an etching method involving pre-etching, in other words, a two-step etching. According to the column of Examples of Patent Document 3, sparkle is suppressed as ΔGloss / ΔRMS becomes smaller.

特開2016−136232号公報Japanese Unexamined Patent Publication No. 2016-136232 特表2017−523111号公報Special Table 2017-523111 国際公開第2014/112297号International Publication No. 2014/11227

スパークルを抑制するにつれて、グロス及びヘイズを共に小さい値に制御することは難しくなる。例えば特許文献2において、スパークルが抑制されていない比較例4はグロス75%、ヘイズ3.0%であるのに対し、スパークルを抑制した実施例8はグロス75%、ヘイズ13.6%であり、グロスを同一とするとヘイズが10%程度高くなっている。特許文献3においても、スパークルが抑制された例1〜6のグロスは、スパークルが抑制されておらずヘイズがほぼ同じ範囲にある例7〜10のグロスよりも大きくなっている。以上の第1の観点からは、スパークルを抑制しながらグロス及びヘイズを適切に制御することに適した微小凹凸を備えたガラス板が望まれている。 As sparkle is suppressed, it becomes more difficult to control both gloss and haze to smaller values. For example, in Patent Document 2, Comparative Example 4 in which sparkle is not suppressed has a gloss of 75% and haze of 3.0%, whereas Example 8 in which sparkle is suppressed has a gloss of 75% and haze of 13.6%. If the gloss is the same, the haze is about 10% higher. Also in Patent Document 3, the glosses of Examples 1 to 6 in which sparkle is suppressed are larger than the glosses of Examples 7 to 10 in which sparkle is not suppressed and the haze is in substantially the same range. From the above first viewpoint, a glass plate having fine irregularities suitable for appropriately controlling gloss and haze while suppressing sparkle is desired.

画像表示装置と組み合わせて使用されるガラス板はタッチパネルとして使用されることがある。タッチパネルの表面にはユーザに良好な操作感を提供することも求められる。以上の第2の観点からは、スパークルの抑制と共にユーザに良好な操作感を提供することに適した微小凹凸を備えたガラス板が望まれている。 A glass plate used in combination with an image display device may be used as a touch panel. The surface of the touch panel is also required to provide a good operability to the user. From the above second viewpoint, a glass plate having fine irregularities suitable for suppressing sparkle and providing a good operation feeling to the user is desired.

スパークルの抑制に適した従来の微小凹凸は、凹部及び凸部の大きさと位置とが基本的に不規則であるために、量産時にそれを正確に再現することが容易ではない。一方、本発明者の検討によると、大きさ及び位置の規則性を改善した微小凹凸からは、不自然な反射光、より具体的には反射光のムラが観察されることがある。以上の第3の観点からは、スパークルの抑制に適し、量産の際に再現性が高く、それ自体から発生する反射光のムラの緩和に適した、微小凹凸を備えたガラス板が望ましい。 Conventional micro-concavities and convexities suitable for suppressing sparkles are not easy to accurately reproduce at the time of mass production because the sizes and positions of the concave and convex portions are basically irregular. On the other hand, according to the study of the present inventor, unnatural reflected light, more specifically, unevenness of reflected light may be observed from the minute unevenness with improved regularity of size and position. From the above third viewpoint, it is desirable to use a glass plate having fine irregularities, which is suitable for suppressing sparkles, has high reproducibility in mass production, and is suitable for alleviating unevenness of reflected light generated from itself.

従来、エッチング法等によりガラス板の主面を部分的に後退させてこの主面に形成した微小凹凸の形状は、主面に垂直方向から見て、円、楕円、内角が鈍角若しくはそれ未満の角度である多角形、又は左記のいずれかの形状に近似できる形状に限られていた。また、主面に分散する微小凹凸の形状は互いに類似したものになることが通常であった。このため、主面設計の自由度が低く、これがスパークルを抑制したガラス板においてその他の諸特性、例えばグロス及びヘイズ、を制御しにくい一因になっていた。以上の第4の観点からは、スパークルの抑制に適し、かつ設計の自由度が高いガラス板が望ましい。 Conventionally, the shape of the minute irregularities formed on the main surface of the glass plate by partially retracting the main surface by an etching method or the like has a circle, an ellipse, or an internal angle of an obtuse angle or less when viewed from the direction perpendicular to the main surface. It was limited to a polygon that is an angle, or a shape that can be approximated to any of the shapes shown on the left. In addition, the shapes of the fine irregularities dispersed on the main surface are usually similar to each other. For this reason, the degree of freedom in designing the main surface is low, which contributes to the difficulty in controlling other characteristics such as gloss and haze in the glass plate in which sparkle is suppressed. From the above fourth viewpoint, a glass plate suitable for suppressing sparkle and having a high degree of freedom in design is desirable.

本発明の目的は、以上に挙げた観点の少なくとも1つから、スパークルの抑制に適し、かつ実用性に優れたガラス板を提供することにある。 An object of the present invention is to provide a glass plate suitable for suppressing sparkle and having excellent practicality from at least one of the above-mentioned viewpoints.

第1の観点を考慮し、本発明は、その第1の側面から、
複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凹部又は複数の凸部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の長さの平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm〜35.5μmであり、かつ
前記複数の微小変形部に占める前記寸法が0.5μm〜3.0μmの微小変形部A1の個数基準の比率が5%未満であるとの条件a1、及び/又は、前記複数の微小変形部の前記寸法の変動係数が40%以下であるとの条件d1、を満たす、
ガラス板、を提供する。
In consideration of the first aspect, the present invention is based on the first aspect.
It has a main surface with multiple microdeformations and
The plurality of micro-deformed portions are a plurality of concave portions or a plurality of convex portions.
When the average value of the lengths of the two adjacent sides of the smallest right-angled square surrounding the micro-deformed portion when observed from the direction perpendicular to the main surface is defined as the dimension of the micro-deformed portion, the plurality of micro-deformed portions are defined. The average value of the dimensions of the deformed portion is 3.2 μm to 35.5 μm, and the ratio of the number-based number of the micro deformed portions A1 having the dimensions of 0.5 μm to 3.0 μm among the plurality of micro deformed portions is 5. The condition a1 that it is less than% and / or the condition d1 that the fluctuation coefficient of the dimension of the plurality of minute deformed portions is 40% or less is satisfied.
Glass plate, provided.

第2の観点を考慮し、本発明は、その第2の側面から、
複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凸部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の長さの平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm〜35.5μmである、
ガラス板、を提供する。
In consideration of the second aspect, the present invention is based on the second aspect.
It has a main surface with multiple microdeformations and
The plurality of micro-deformed portions are a plurality of convex portions, and the plurality of micro-deformed portions are a plurality of convex portions.
When the average value of the lengths of the two adjacent sides of the smallest right-angled quadrangle surrounding the micro-deformed portion when observed from the direction perpendicular to the main surface is defined as the dimension of the micro-deformed portion, the plurality of micro-deformed portions are defined. The average value of the dimensions of the deformed portion is 3.2 μm to 35.5 μm.
Glass plate, provided.

第3の観点を考慮し、本発明は、その第3の側面から、まず、
複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凹部又は複数の凸部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の長さの平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm〜35.5μmであり、かつ
前記主面の200μm四方の領域を前記方向から観察して前記複数の微小変形部を周囲から区別する二値化処理Aをした画像の二次元フーリエ変換像に3〜30個の輝点が観察されるか、又は前記二値化処理Aをした画像の二次元フーリエ変換像に1個の輝点が、前記二値化処理Aに代えて二値化処理Bをした画像の二次元フーリエ変換像に2以上の輝点がそれぞれ観察される、
ガラス板、を提供する。
ここで、二値化処理Aは画像を256×256の画素に区分けして実施する二値化処理であり、二値化処理Bは画像を65536×65536の画素に区分けして実施する二値化処理である。
In consideration of the third aspect, the present invention first describes from the third aspect.
It has a main surface with multiple microdeformations and
The plurality of micro-deformed portions are a plurality of concave portions or a plurality of convex portions.
When the average value of the lengths of the two adjacent sides of the smallest right-angled quadrangle surrounding the micro-deformed portion when observed from the direction perpendicular to the main surface is defined as the dimension of the micro-deformed portion, the plurality of micro-deformed portions are defined. A binarization process in which the average value of the dimensions of the deformed portion is 3.2 μm to 35.5 μm, and the 200 μm square region of the main surface is observed from the direction to distinguish the plurality of micro deformed portions from the surroundings. Three to thirty bright spots are observed in the two-dimensional Fourier transformed image of the image subjected to A, or one bright spot is observed in the two-dimensional Fourier transformed image of the image subjected to the binarization process A. Two or more bright spots are observed in the two-dimensional Fourier transformed image of the image subjected to the binarization process B instead of the digitization process A.
Glass plate, provided.
Here, the binarization process A is a binarization process performed by dividing the image into 256 × 256 pixels, and the binarization process B is a binarization process performed by dividing the image into 65536 × 65536 pixels. It is a binarization process.

二次元フーリエ変換像は、画像の縦横をそれぞれ所定数の画素に区分けし、微小変形部とその周囲の領域とが区別されるように画素の二値化処理を実施した処理画像から得ることができる。後述するように、主面の200μm四方の領域に代えて、寸法が0.5μm以上の微小変形部が80〜150個存在する主面の領域に対して、二値化処理A又はBを実施し、その処理画像の二次元フーリエ変換像に基づいて輝点数をカウントしてもよい。この場合も、二値化処理Aをした画像の二次元フーリエ変換像に3〜30個の輝点が観察されるか、又は二値化処理Aをした画像の二次元フーリエ変換像に1個の輝点が、二値化処理Aに代えて二値化処理Bをした画像の二次元フーリエ変換像に2以上の輝点がそれぞれ観察されることが好ましい。なお、二値化処理の際の画素数は「階調」の段階の数として表記されることがあり、本明細書ではこの表記に従う。すなわち、例えば256×256の階調での二値化処理は、画像の縦横それぞれを256等分して256×256の区分を定め、その区分ごとに二値化を実施する処理(二値化処理A)である。階調数は2の整数乗に設定され、その値が大きくなるほど輝点の検出感度は向上する。 The two-dimensional Fourier transform image can be obtained from a processed image in which the vertical and horizontal directions of the image are divided into a predetermined number of pixels and the pixels are binarized so that the minute deformed portion and the surrounding area can be distinguished. can. As will be described later, instead of the 200 μm square region of the main surface, the binarization process A or B is performed on the region of the main surface where 80 to 150 microdeformed portions having a size of 0.5 μm or more are present. Then, the number of bright spots may be counted based on the two-dimensional Fourier transform image of the processed image. Also in this case, 3 to 30 bright spots are observed in the two-dimensional Fourier transformed image of the image subjected to the binarization process A, or one in the two-dimensional Fourier transformed image of the image subjected to the binarization process A. It is preferable that two or more bright spots are observed in the two-dimensional Fourier transformed image of the image obtained by the binarization treatment B instead of the binarization treatment A. The number of pixels in the binarization process may be expressed as the number of "gradation" stages, and this notation is followed in the present specification. That is, for example, in the binarization process with a gradation of 256 × 256, the vertical and horizontal directions of the image are divided into 256 equal parts to determine the 256 × 256 division, and the binarization is performed for each division (binarization). Process A). The number of gradations is set to the integer power of 2, and the larger the value, the higher the detection sensitivity of the bright spot.

第4の観点を考慮し、本発明は、その第4の側面から、
複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凹部又は複数の凸部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の長さの平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm以上であり、かつ
前記方向から観察したときに、前記複数の微小変形部は、i)前記直角四角形の辺から選択した前記直角四角形の頂点を含まない一部の後退部に接する直線部を有する微小変形部、又はii)少なくとも1つの内角が優角である多角形である微小変形部、に相当する第1微小変形部と、前記第1微小変形部と形状が相違する第2微小変形部と、を含む、
ガラス板、を提供する。
In consideration of the fourth aspect, the present invention is based on the fourth aspect.
It has a main surface with multiple microdeformations and
The plurality of micro-deformed portions are a plurality of concave portions or a plurality of convex portions.
When the average value of the lengths of the two adjacent sides of the smallest right-angled quadrangle surrounding the micro-deformed portion when observed from the direction perpendicular to the main surface is defined as the dimension of the micro-deformed portion, the plurality of micro-deformed portions are defined. When the average value of the dimensions of the deformed portion is 3.2 μm or more and when observed from the direction, the plurality of micro deformed portions i) include the vertices of the right-angled quadrangle selected from the sides of the right-angled quadrangle. A first micro-deformed portion corresponding to a micro-deformed portion having a straight portion in contact with a part of the receding portion, or ii) a micro-deformed portion having a right angle at least one internal angle, and the first micro-deformed portion. Including a second micro-deformed portion having a different shape from the deformed portion,
Glass plate, provided.

本発明によれば、スパークルの抑制に適し、かつ実用性が高いガラス板を提供できる。本発明の第1の側面から提供されるガラス板は、スパークルを抑制しながらグロス及びヘイズを広い範囲で適切に制御することに適している。 According to the present invention, it is possible to provide a glass plate suitable for suppressing sparkle and having high practicality. The glass plate provided from the first aspect of the present invention is suitable for appropriately controlling gloss and haze in a wide range while suppressing sparkle.

本発明の第2の側面から提供されるガラス板は、スパークルを抑制しながらユーザに良好な操作感を提供することに適している。 The glass plate provided from the second aspect of the present invention is suitable for providing a good operability to the user while suppressing sparkling.

本発明の第3の側面から提供されるガラス板は、スパークルの抑制に適し、量産による再現性が高く、それ自体から発生する反射光のムラの緩和にも適している。 The glass plate provided from the third aspect of the present invention is suitable for suppressing sparkles, has high reproducibility in mass production, and is also suitable for alleviating unevenness of reflected light generated from itself.

本発明の第4の側面から提供されるガラス板は、スパークルの抑制に適し、かつ設計の自由度にも優れている。 The glass plate provided from the fourth aspect of the present invention is suitable for suppressing sparkle and has an excellent degree of freedom in design.

本発明のガラス板の一例の主面の一部を拡大して示した平面図である。It is a top view which showed the part of the main surface of the example of the glass plate of this invention in an enlarged manner. 微小変形部が凸部である場合の図1の断面図である。It is sectional drawing of FIG. 1 when the minute deformation part is a convex part. 微小変形部が凹部である場合の図1の断面図である。It is sectional drawing of FIG. 1 when the minute deformation part is a concave part. 微小変形部の各種形状を示す平面図である。It is a top view which shows various shapes of the minute deformation part. 微小変形部の丸まった隅角部を示す平面図である。It is a top view which shows the rounded corner part of the minute deformation part. 従来のガラス板の一例の主面の一部を拡大して示す平面図である。It is a top view which shows the part of the main surface of an example of a conventional glass plate enlarged. 従来のガラス板の別の例の主面の一部を拡大して示す断面図である。It is sectional drawing which enlarges and shows a part of the main surface of another example of the conventional glass plate. 例1のガラス板の主面の50μm四方(50μm×50μmの領域)を走査型電子顕微鏡(SEM)で観察した像を示す図である。It is a figure which shows the image which observed the 50 μm square (the region of 50 μm × 50 μm) of the main surface of the glass plate of Example 1 with a scanning electron microscope (SEM). 例2のガラス板の主面の50μm四方をSEMで観察した像を示す図である。It is a figure which shows the image which observed 50 μm square of the main surface of the glass plate of Example 2 by SEM. 例3のガラス板の主面の50μm四方をSEMで観察した像を示す図である。It is a figure which shows the image which observed 50 μm square of the main surface of the glass plate of Example 3 by SEM. 例4のガラス板の主面の50μm四方をSEMで観察した像を示す図である。It is a figure which shows the image which observed 50 μm square of the main surface of the glass plate of Example 4 by SEM. 例5のガラス板の主面の50μm四方をSEMで観察した像を示す図である。It is a figure which shows the image which observed 50 μm square of the main surface of the glass plate of Example 5 by SEM. 例6のガラス板の主面の50μm四方をSEMで観察した像を示す図である。It is a figure which shows the image which observed 50 μm square of the main surface of the glass plate of Example 6 by SEM. 例7のガラス板の主面の50μm四方をSEMで観察した像を示す図である。It is a figure which shows the image which observed 50 μm square of the main surface of the glass plate of Example 7 by SEM. 例8のガラス板の主面の200μm四方をSEMで観察した像と、この像から得た二次元フーリエ変換像(FT像)とを示す図である。It is a figure which shows the image which observed 200 μm square of the main surface of the glass plate of Example 8 by SEM, and the two-dimensional Fourier transform image (FT image) obtained from this image. 例9のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。It is a figure which shows the image which observed 200 μm square of the main surface of the glass plate of Example 9 by SEM, and the FT image obtained from this image. 例10のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。It is a figure which shows the image which observed 200 μm square of the main surface of the glass plate of Example 10 by SEM, and the FT image obtained from this image. 例11のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。It is a figure which shows the image which observed 200 μm square of the main surface of the glass plate of Example 11 by SEM, and the FT image obtained from this image. 例12のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。It is a figure which shows the image which observed 200 μm square of the main surface of the glass plate of Example 12 by SEM, and the FT image obtained from this image. 例13のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。It is a figure which shows the image which observed 200 μm square of the main surface of the glass plate of Example 13 by SEM, and the FT image obtained from this image. 例14のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。It is a figure which shows the image which observed 200 μm square of the main surface of the glass plate of Example 14 by SEM, and the FT image obtained from this image. 例15のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。It is a figure which shows the image which observed 200 μm square of the main surface of the glass plate of Example 15 by SEM, and the FT image obtained from this image. 例16のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。It is a figure which shows the image which observed 200 μm square of the main surface of the glass plate of Example 16 by SEM, and the FT image obtained from this image. 例17のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。It is a figure which shows the image which observed 200 μm square of the main surface of the glass plate of Example 17 by SEM, and the FT image obtained from this image. 例18のガラス板の主面をSEMで観察した像と、この像から得たFT像とを示す図である。It is a figure which shows the image which observed the main surface of the glass plate of Example 18 by SEM, and the FT image obtained from this image. 例22と同様にして得たガラス板の主面の200μm四方をSEMで観察した像を示す図である。It is a figure which shows the image which observed the 200 μm square of the main surface of the glass plate obtained in the same manner as in Example 22 by SEM. 例27と同様にして得たガラス板の主面の200μm四方をSEMで観察した像を示す図である。It is a figure which shows the image which observed the 200 μm square of the main surface of the glass plate obtained in the same manner as in Example 27 by SEM. 例1〜35及び特許文献1〜3実施例のガラス板のグロスとヘイズとの関係を示す図である。It is a figure which shows the relationship between the gloss and haze of the glass plate of Examples 1-35 and Patent Documents 1-3.

以下、本発明の各実施形態を説明するが、以下の説明は本発明を特定の実施形態に制限する趣旨ではない。各実施形態について繰り返しになる説明は基本的に省略する。各実施形態には、その実施形態に明らかに適用できない場合を除いてその他の実施形態についての説明を適用できる。 Hereinafter, each embodiment of the present invention will be described, but the following description is not intended to limit the present invention to a specific embodiment. The repetitive description of each embodiment is basically omitted. Descriptions of other embodiments can be applied to each embodiment unless it is clearly not applicable to that embodiment.

[第1の実施形態]
まず、第1の側面から提供されるガラス板の一形態を説明する。この一形態においてガラス板は複数の微小変形部を有する主面を備えている。複数の微小変形部は複数の凹部又は複数の凸部である。複数の微小変形部は、所定範囲の平均寸法を有し、寸法分布についての所定の条件を満たす。この条件は、少なくとも、以下に述べる条件a1及び/又は条件d1である。
[First Embodiment]
First, one form of the glass plate provided from the first side surface will be described. In this embodiment, the glass plate has a main surface having a plurality of microdeformed portions. The plurality of micro-deformed portions are a plurality of concave portions or a plurality of convex portions. The plurality of micro-deformed portions have an average dimension in a predetermined range and satisfy a predetermined condition for the dimension distribution. This condition is at least the condition a1 and / or the condition d1 described below.

図1に示すように、ガラス板10の主面1には複数の微小変形部2が形成されている。微小変形部2は、ガラス板10の主面1がガラス板の厚み方向(図1紙面垂直方向でもある)に局所的に変位した微小領域である。微小変形部2は、凸部(図2A)、凹部(図2B)のいずれであってもよい。図2A、Bに示した凸部又は凹部の断面形状は例示であって、これに限られるものではない。 As shown in FIG. 1, a plurality of minute deformed portions 2 are formed on the main surface 1 of the glass plate 10. The minute deformation portion 2 is a minute region in which the main surface 1 of the glass plate 10 is locally displaced in the thickness direction of the glass plate (also in the direction perpendicular to the paper surface in FIG. 1). The micro-deformed portion 2 may be either a convex portion (FIG. 2A) or a concave portion (FIG. 2B). The cross-sectional shape of the convex portion or the concave portion shown in FIGS. 2A and 2B is an example, and is not limited thereto.

図1に示した微小変形部2は、主面1に垂直な方向から見て円形であるが、微小変形部の形状はこれに限らない。図3に各種形状の微小変形部2A〜2Kを示す。微小変形部の形状は、例えば、円形2A、楕円形2B、多角形2C〜2D及び2H〜2K、これらの複数が互いに接するように若しくは一部重複するように組み合わされた形状2E〜2F、左記いずれかの形状から1又は複数の部分が除去された形状2G、又は左記いずれかの形状に近似できる形状である。 The micro-deformed portion 2 shown in FIG. 1 is circular when viewed from a direction perpendicular to the main surface 1, but the shape of the micro-deformed portion is not limited to this. FIG. 3 shows minute deformed portions 2A to 2K having various shapes. The shapes of the micro-deformed parts are, for example, circular 2A, elliptical 2B, polygons 2C to 2D and 2H to 2K, and shapes 2E to 2F in which a plurality of these are combined so as to be in contact with each other or partially overlap, as shown on the left. It is a shape 2G in which one or a plurality of parts are removed from any of the shapes, or a shape that can be approximated to any of the shapes shown on the left.

微小変形部の形状は、少なくとも1つの内角が優角、言い換えると180°を超え360°未満の角度、である多角形2H〜2Kであってもよい。内角に優角を有する多角形は、例えばL字型2H、凸字型2I、クランク型2J、疑似ダンベル型2Kである。主面1に垂直な方向から見て、微小変形部2Hはその内角に1つの優角2pを有し、微小変形部2I〜2Kはその内角に2以上の優角2pを有する。 The shape of the microdeformed portion may be polygonal 2H to 2K in which at least one internal angle is a dominant angle, in other words, an angle of more than 180 ° and less than 360 °. The polygons having a dominant angle at the internal angle are, for example, L-shaped 2H, convex-shaped 2I, crank-shaped 2J, and pseudo-dumbbell-shaped 2K. When viewed from the direction perpendicular to the main surface 1, the micro-deformed portion 2H has one dominant angle 2p at its internal angle, and the micro-deformed portions 2I to 2K have two or more dominant angles 2p at its internal angle.

図3も微小変形部の形状を例示したものに過ぎない。なお、微小変形部の形状は、厳密には、微小変形部2とそれを囲む連続部5との境界、すなわち凸部であれば底部、凹部であれば開口部を基準に定められる。この基準は後述する面積比率及び平均最短距離にも適用される。 FIG. 3 is also merely an example of the shape of the minute deformed portion. Strictly speaking, the shape of the micro-deformed portion is determined based on the boundary between the micro-deformed portion 2 and the continuous portion 5 surrounding the micro-deformed portion 2, that is, the bottom portion if it is a convex portion and the opening if it is a concave portion. This standard also applies to the area ratio and average shortest distance described below.

実際の微小変形部はその隅角部がやや丸まった形状になることがある。しかし形状を類型化して記述するため、本明細書では、隅角部における局部的な変形部がその隅角部を構成する線分の25%以下であればこの変形部を無視して形状を記述する。例えば、図4に示す微小変形部2Lは、正確には隅角部が丸まった正方形であるが、ここでは正方形として取り扱う。 The actual micro-deformed portion may have a slightly rounded corner portion. However, in order to describe the shape as a typology, in the present specification, if the locally deformed portion at the corner portion is 25% or less of the line segment constituting the corner portion, this deformed portion is ignored and the shape is described. Describe. For example, the micro-deformed portion 2L shown in FIG. 4 is a square with rounded corners to be exact, but is treated as a square here.

微小変形部の形状の種類は2以上に及んでいてもよく、3以上、さらには4以上であってもよい。なお、形状の種類は、互いに相似である形状を同一とみなしてその数等を定めることとする。複数種の微小変形部の存在は、主面における微小変形部の配置の自由度を向上させる。特に、平均寸法が所定範囲にある微小変形部を、主面に対する微小変形部の面積比率が所定範囲となり、かつ微小変形部が所定以上の平均最短距離を保つように配置するべき場合、複数種の形状の微小変形部の使用は、その配置の設計の自由度を向上させ、両立が難しい条件の成立を容易にする。主面の面内方向における微小変形部の周期性を所定範囲に低下させて配置するべき場合も同様である。 The type of the shape of the micro-deformed portion may be 2 or more, 3 or more, and further 4 or more. As for the types of shapes, the numbers and the like are determined by regarding the shapes that are similar to each other as the same. The presence of a plurality of types of micro-deformed portions improves the degree of freedom in arranging the micro-deformed portions on the main surface. In particular, when the micro-deformed portion having an average dimension within a predetermined range should be arranged so that the area ratio of the micro-deformed portion to the main surface is within a predetermined range and the micro-deformed portion maintains an average shortest distance of a predetermined range or more, a plurality of types are used. The use of the micro-deformed portion of the shape of the above increases the degree of freedom in the design of the arrangement and facilitates the establishment of conditions that are difficult to achieve at the same time. The same applies to the case where the periodicity of the minute deformed portion in the in-plane direction of the main surface should be reduced to a predetermined range and arranged.

以下に述べる微小変形部の形状A及び形状Bは、上述した設計の自由度の向上への寄与が特に大きい。
(形状A)主面に垂直な方向から見て、微小変形部を囲む最小の直角四角形の辺から選択した直角四角形の頂点を含まない一部、言い換えると直角四角形の辺の一部であって直角四角形の頂点を含まない一部、が直角四角形の内部へと後退した領域(以下、「後退部」)に接する直線部を有する微小変形部
(形状B)主面に垂直な方向から見て、少なくとも1つの内角が優角である多角形である微小変形部
The shapes A and B of the micro-deformed portion described below have a particularly large contribution to improving the degree of freedom in design described above.
(Shape A) A part that does not include the vertices of the right-angled quadrangle selected from the sides of the smallest right-angled quadrangle that surrounds the minute deformation part when viewed from the direction perpendicular to the main surface, in other words, a part of the sides of the right-angled quadrangle. A part of the right-angled quadrangle that does not include the apex, but has a straight part that is in contact with the region that recedes into the inside of the right-angled quadrangle (hereinafter, "retracted part"). , A small deformed part that is a quadrangle whose at least one internal angle is a dominant angle

微小変形部2F、2Gは形状Aに相当する。これらの形状は、仮想的な最小の直角四角形3の辺の一部が後退した後退部3f、3gに接する直線部2f、2gを有している。後退して後退部3f、3gを形成する直角四角形3の辺の一部は直角四角形3の頂点3pを含まないように設定される。直線部2f、2gの長さは特に限定されないが、例えば1μm以上、さらには1.5μm以上である。なお、従来の防眩ガラスの主面でも偶発的に形成されることがあった円が部分的に重複した形状(図5A参照)は直線部を有さず、形状Aには相当しない。微小変形部2H〜2Kは形状Bに相当する。形状A及びBは、従来の防眩ガラスではその形成が全く検討されていなかった。しかし、これらの形状は、互いに近接しすぎることなく微小変形部を主面に配置する際には有用である。 The minute deformation portions 2F and 2G correspond to the shape A. These shapes have a linear portion 2f and 2g in contact with a retracted portion 3f and 3g in which a part of the side of the virtual minimum right-angled quadrangle 3 is retracted. A part of the sides of the right-angled quadrangle 3 that recedes to form the receding portions 3f and 3g is set so as not to include the apex 3p of the right-angled quadrangle 3. The length of the straight portions 2f and 2g is not particularly limited, but is, for example, 1 μm or more, and further 1.5 μm or more. It should be noted that the shape in which circles partially overlapped (see FIG. 5A), which may be accidentally formed even on the main surface of the conventional antiglare glass, does not have a straight line portion and does not correspond to the shape A. The micro-deformed portions 2H to 2K correspond to the shape B. The formation of the shapes A and B has not been investigated in the conventional antiglare glass. However, these shapes are useful when arranging the microdeformed portions on the main surface without being too close to each other.

微小変形部は、形状A又は形状Bに相当する形状を有する第1微小変形部と、第1微小変形部とは異なる形状を有する第2微小変形部とを含むことが好ましい。第2微小変形部は、形状A又は形状Bに相当する形状であってもそれ以外の形状であってもよい。第1微小変形部は、個数基準で、微小変形部全体の10%以上、さらには20%以上を占めていてもよく、90%以下、さらには80%以下であってもよい。第2微小変形部も同様の比率で主面に配置することができる。 The micro-deformed portion preferably includes a first micro-deformed portion having a shape corresponding to the shape A or B, and a second micro-deformed portion having a shape different from that of the first micro-deformed portion. The second micro-deformed portion may have a shape corresponding to the shape A or the shape B, or may have a shape other than that. The first micro-deformed portion may occupy 10% or more, further 20% or more, 90% or less, or even 80% or less of the entire micro-deformed portion on a number basis. The second microdeformed portion can also be arranged on the main surface at the same ratio.

微小変形部の相互の平均最短距離は、4.5μm以上、さらには7μm以上、特に15μm以上であることが好ましく、305μm以下、さらに150μm以下、特に80μm以下、場合によっては50μm以下であってもよい。本明細書において、微小変形部の平均最短距離は、ガラス板の主面の直角四角形の領域内に存在する微小変形部の個数の平方根で当該直角四角形と同面積の正方形の一辺の長さを除して定めることとする。ただし、微小変形部が上記領域内に存在するかは、その微小変形部の幾何中心の位置に基づいて定める。また、上記領域は、30個以上、好ましくは50個以上、より好ましくは80〜100個の微小変形部を含むように定めることとする。以下に述べる微小変形部の「寸法」に関する数値も、特に断らない限り、同様の個数の微小変形部が存在するように定めたある領域内の微小変形部に基づいて定めることとする。 The average shortest distance between the micro-deformed parts is preferably 4.5 μm or more, further 7 μm or more, particularly 15 μm or more, and even if it is 305 μm or less, further 150 μm or less, particularly 80 μm or less, and in some cases 50 μm or less. good. In the present specification, the average shortest distance of the micro-deformed portion is the square root of the number of micro-deformed portions existing in the region of the right-angled quadrangle of the main surface of the glass plate, and the length of one side of the square having the same area as the right-angled quadrangle. It shall be decided by dividing. However, whether or not the minute deformed portion exists in the above region is determined based on the position of the geometric center of the minute deformed portion. Further, the above-mentioned region is defined to include 30 or more, preferably 50 or more, more preferably 80 to 100 minute deformed portions. Unless otherwise specified, the numerical values relating to the "dimensions" of the micro-deformed parts described below are also determined based on the micro-deformed parts in a certain region where the same number of micro-deformed parts are determined to exist.

微小変形部の「寸法」は以下のように定める。まず、主面1に垂直な方向から観察し、微小変形部2を囲む面積が最小となる直角四角形3を仮想的に設定する。次に、この仮想的な直角四角形3の隣接する2辺3a、3b(図3の微小変形部2A〜2Bを参照)の長さをそれぞれ測定する。最後に、2辺3a、3bの長さの平均値を算出し、それを寸法とする。円である微小変形部2Aの寸法はその円の直径となる。 The "dimensions" of the micro-deformed part are defined as follows. First, the right-angled quadrangle 3 that minimizes the area surrounding the minute deformation portion 2 is virtually set by observing from the direction perpendicular to the main surface 1. Next, the lengths of the two adjacent sides 3a and 3b of the virtual right-angled rectangle 3 (see the minute deformation portions 2A to 2B in FIG. 3) are measured, respectively. Finally, the average value of the lengths of the two sides 3a and 3b is calculated and used as the dimension. The dimension of the minute deformed portion 2A which is a circle is the diameter of the circle.

複数の微小変形部の寸法の平均値は3.2μm以上、場合によっては4μm以上、さらには5μm以上、特に5.5μm以上、とりわけ6μm以上、場合によっては7μm以上、さらには9μm以上の範囲に調整されていることが望ましい。平均値がこれ以下になって微細な微小変形部が増加すると、ミー散乱による透過光の散乱が顕著になる。透過光の散乱をより確実に低下させて望ましいヘイズを達成するために、微小変形部は以下の条件a1を満たすことが望ましく、条件a2を満たすことがより望ましく、条件a3を満たすことがさらに望ましく、条件a4を満たすことが特に望ましく、条件a5を満たすことがとりわけ望ましい。 The average value of the dimensions of multiple microdeformations is in the range of 3.2 μm or more, in some cases 4 μm or more, further 5 μm or more, especially 5.5 μm or more, especially 6 μm or more, in some cases 7 μm or more, and even 9 μm or more. It is desirable that it is adjusted. When the average value becomes less than this and the number of minute deformed portions increases, the scattered light due to Mie scattering becomes remarkable. In order to more reliably reduce the scattering of transmitted light and achieve the desired haze, it is desirable that the microdeformed portion satisfies the following condition a1, more preferably the condition a2, and further preferably the condition a3. It is particularly desirable to satisfy the condition a4, and it is particularly desirable to satisfy the condition a5.

(条件a1)複数の微小変形部に占める寸法が0.5μm〜3.0μmの微小変形部A1の個数基準の比率が5%未満、好ましくは3%未満である。
(条件a2)複数の微小変形部に占める寸法が0.5μm〜3.6μmの微小変形部A2の個数基準の比率が5%未満、好ましくは3%未満である。
(条件a3)複数の微小変形部に占める寸法が0.5μm〜4.0μmの微小変形部A3の個数基準の比率が5%未満、好ましくは3%未満である。
(条件a4)複数の微小変形部に占める寸法が0.5μm〜5.3μmの微小変形部A4の個数基準の比率が5%未満、好ましくは3%未満である。
(条件a5)複数の微小変形部に占める寸法が0.5μm〜6.5μmの微小変形部A5の個数基準の比率が5%未満、好ましくは3%未満である。
(Condition a1) The ratio of the number-based number of the micro-deformed portions A1 having a size of 0.5 μm to 3.0 μm among the plurality of micro-deformed portions is less than 5%, preferably less than 3%.
(Condition a2) The ratio of the number-based number of the micro-deformed portions A2 having a size of 0.5 μm to 3.6 μm among the plurality of micro-deformed portions is less than 5%, preferably less than 3%.
(Condition a3) The ratio of the number-based number of the micro-deformed portions A3 having a size of 0.5 μm to 4.0 μm among the plurality of micro-deformed portions is less than 5%, preferably less than 3%.
(Condition a4) The ratio of the number-based number of the micro-deformed portions A4 having a size of 0.5 μm to 5.3 μm among the plurality of micro-deformed portions is less than 5%, preferably less than 3%.
(Condition a5) The ratio of the number-based number of the micro-deformed portions A5 having a size of 0.5 μm to 6.5 μm among the plurality of micro-deformed portions is less than 5%, preferably less than 3%.

従来の防眩ガラスでは寸法が0.5μm〜3.0μm程度の微細な微小凹凸に注意が払われてこなかった。ガラス板の主面の全面にサンドブラスト/エッチング法や表面凹凸を発達させる条件でエッチング法を適用すると、この程度に微細な微小凹凸が相当数発生し、可視域の光に対するミー散乱が顕著になりやすい。図5Aに、従来の防眩ガラスの主面の典型的な一例を示す。主面11に存在する微小変形部である凹部の径の分布は極めて広い。凹部の一部が隣接する凹部と接続して一体化していることも、凹部の径の分布をさらに広くしている。 In the conventional antiglare glass, attention has not been paid to fine irregularities having a size of about 0.5 μm to 3.0 μm. When the sandblasting / etching method or the etching method is applied to the entire surface of the main surface of the glass plate under the condition of developing surface irregularities, a considerable number of fine irregularities are generated to this extent, and Mie scattering with respect to light in the visible region becomes remarkable. Cheap. FIG. 5A shows a typical example of the main surface of the conventional antiglare glass. The distribution of the diameter of the concave portion, which is a minute deformed portion existing on the main surface 11, is extremely wide. The fact that a part of the recess is connected to and integrated with the adjacent recess further widens the diameter distribution of the recess.

図5Bに、図5Aの状態からエッチング等により主面の後退がさらに進行した状態の断面を示す。この状態では、凹部の径が拡大し、主面12から連続した平坦部が失われていく。図5Bに示した状態においても、微細な凹部は残存し、凹部の径の分布は依然として広い。 FIG. 5B shows a cross section of a state in which the main surface is further retracted by etching or the like from the state of FIG. 5A. In this state, the diameter of the recess is increased, and the flat portion continuous from the main surface 12 is lost. Even in the state shown in FIG. 5B, fine recesses remain, and the diameter distribution of the recesses is still wide.

微小変形部の寸法の平均値の上限は、ガラス板と組み合わせて使用する画像表示装置の画素密度、より詳細にはその画像表示装置のサブ画素サイズに応じて適宜定めるとよく、具体的には、サブ画素サイズの短辺の半分程度以下とすることが好ましい。微小変形部の寸法の平均値の上限は、(d/1.9)μm、好ましくは(d/2)μmの範囲に設定するとよい。ここで、サブ画素サイズdはサブ画素の短辺である。 The upper limit of the average value of the dimensions of the minute deformed portion may be appropriately determined according to the pixel density of the image display device used in combination with the glass plate, and more specifically, the sub-pixel size of the image display device. , It is preferable that the size is about half or less of the short side of the sub pixel size. The upper limit of the average value of the dimensions of the minute deformed portion may be set in the range of (d / 1.9) μm, preferably (d / 2) μm. Here, the sub-pixel size d is the short side of the sub-pixel.

画素密度125ppiの画像表示装置は、通常dが67.5μm程度であるから、微小変形部2の寸法の平均値の上限は35.5μm、好ましくは33.8μmである。画素密度264ppiの画像表示装置についての上記上限は16.9μm、好ましくは16.0μmである。画素密度326ppiの画像表示装置についての上記上限は13.6μm、好ましくは13.0μmである。 Since d is usually about 67.5 μm in an image display device having a pixel density of 125 ppi, the upper limit of the average value of the dimensions of the minute deformation portion 2 is 35.5 μm, preferably 33.8 μm. The upper limit of the image display device having a pixel density of 264 ppi is 16.9 μm, preferably 16.0 μm. The upper limit of the image display device having a pixel density of 326 ppi is 13.6 μm, preferably 13.0 μm.

防眩機能を有するガラス板が求められる画像表示装置の画素密度は概ね125ppi以上であるから、微小変形部の寸法の平均値の上限は35.5μm以下として、必要に応じて35.5μmよりも小さい範囲に設定するとよい。具体的には、組み合わせて使用する画像表示装置のサブ画素サイズの短辺をdμmとしたときに、微小変形部の寸法の平均値は35.5μm以下かつ(d/1.9)μm以下に設定するとよい。 Since the pixel density of an image display device for which a glass plate having an antiglare function is required is approximately 125 ppi or more, the upper limit of the average value of the dimensions of the minute deformed portion is set to 35.5 μm or less, and if necessary, more than 35.5 μm. It is good to set it in a small range. Specifically, when the short side of the sub-pixel size of the image display device used in combination is dμm, the average value of the dimensions of the minute deformed portion is 35.5 μm or less and (d / 1.9) μm or less. It is good to set.

微小変形部の寸法の平均値は、上述した理由から、通常、3.2μm〜35.5μmに設定される。ただし、高精細化した画像表示装置にも適用される可能性があれば、微小変形部の寸法の平均値の上限を、例えば16.9μm以下、さらには13.6μm以下、必要があれば12μm以下、特に10μm未満に設定してもよい。 The average value of the dimensions of the minute deformed portion is usually set to 3.2 μm to 35.5 μm for the reason described above. However, if there is a possibility that it can be applied to a high-definition image display device, the upper limit of the average value of the dimensions of the minute deformed portion is set to, for example, 16.9 μm or less, further 13.6 μm or less, and 12 μm if necessary. Hereinafter, it may be set to less than 10 μm in particular.

図5A及びBを参照して説明したように、従来の防眩ガラスでは凹部の径の分布が極めて広い。このため、微小変形部である凹部の寸法の平均値を上述の範囲に調整すると、寸法0.5μm〜3.0μm程度の微細な微小変形部の比率が高くなる。その一方、微細な微小変形部の比率を低下させるためにエッチングを進行させると、微小変形部が大きくなり過ぎてスパークルを抑制できなくなる。 As described with reference to FIGS. 5A and 5B, the diameter distribution of the recesses is extremely wide in the conventional antiglare glass. Therefore, if the average value of the dimensions of the concave portion, which is the minute deformed portion, is adjusted within the above range, the ratio of the fine minute deformed portion having a dimension of about 0.5 μm to 3.0 μm becomes high. On the other hand, if the etching is advanced in order to reduce the ratio of the finely deformed portion, the minute deformed portion becomes too large and sparkle cannot be suppressed.

微小変形部の形状によっては寸法がdに基づく計算値よりやや大きくてもスパークルの原因にならないことはある。しかし、スパークルをより確実に抑制するためには、微小変形部が以下の条件b及び/又は条件cを満たすことが望ましい。 Depending on the shape of the minute deformed portion, even if the dimension is slightly larger than the calculated value based on d, it may not cause sparkle. However, in order to suppress sparkle more reliably, it is desirable that the microdeformed portion satisfies the following condition b and / or condition c.

(条件b)複数の微小変形部に占める寸法が35.5μmを上回る微小変形部Bの個数基準の比率が15%未満、好ましくは10%未満である。
(条件c)組み合わせて使用する画像表示装置のサブ画素サイズの短辺をdμmとしたときに、複数の微小変形部に占める寸法が(d/1.9)μmを上回る微小変形部Cの個数基準の比率が15%未満、好ましくは10%未満である。
(Condition b) The ratio of the number-based number of the micro-deformed parts B having a size of more than 35.5 μm among the plurality of micro-deformed parts is less than 15%, preferably less than 10%.
(Condition c) When the short side of the sub-pixel size of the image display device used in combination is d μm, the number of micro-deformed portions C whose dimension occupying a plurality of micro-deformed portions exceeds (d / 1.9) μm. The reference ratio is less than 15%, preferably less than 10%.

微小変形部の寸法はバラツキが少なく揃っていることが好ましい。任意に選択した50個、好ましくは80〜100個の微小変形部について測定した寸法の変動係数は、例えば40%以下、35%以下、30%以下、25%以下、23%以下、さらに22%以下であり、好ましくは21%以下であり、より好ましくは18%以下であり、場合によっては15%以下、13%以下、10%以下、さらには5%以下、特に3%以下である。従来は微小変形部の寸法の変動係数は着目されていなかった。変動係数に着目すれば、以下の望ましい条件d1を導くことができる。なお、変動係数は、周知のとおり、標準偏差を平均値で除して求めることができる。 It is preferable that the dimensions of the micro-deformed portion are uniform with little variation. The coefficient of variation of the dimensions measured for 50 arbitrarily selected microdeformations, preferably 80 to 100, is, for example, 40% or less, 35% or less, 30% or less, 25% or less, 23% or less, and further 22%. It is less than or equal to, preferably 21% or less, more preferably 18% or less, and in some cases 15% or less, 13% or less, 10% or less, and further 5% or less, particularly 3% or less. Conventionally, the coefficient of variation of the dimensions of the minute deformed portion has not been paid attention to. Focusing on the coefficient of variation, the following desirable condition d1 can be derived. As is well known, the coefficient of variation can be obtained by dividing the standard deviation by the average value.

(条件d1)複数の微小変形部の寸法の変動係数が40%以下、さらには上述した値以下である。 (Condition d1) The coefficient of variation of the dimensions of the plurality of minute deformed portions is 40% or less, and further, the above-mentioned value or less.

ただし、微小変形部の寸法には、上述の変動係数が3〜40%、さらには3〜23%、特に5〜22%、場合によっては5〜21%となる程度のバラツキが存在してもよい。この程度のバラツキは反射ムラの緩和に寄与することがある。反射ムラの緩和を重視するべき場合、変動係数は23%を超えていてもよい。例えば、微小変形部の寸法の変動係数が3〜40%の範囲にあり、かつ当該寸法の平均値が13.6μm以下、特に9μm以上13.6μm以下であるガラス板は、画素密度326ppiの画像表示装置との組み合わせにおいて、スパークルを抑制し、かつ反射ムラを抑制することに適している。この場合、変動係数は、12.3%以上、さらには12.5%以上が特に好適であり、例えば12.3〜35%である。また、この場合、上述した二値化処理Aをした画像の二次元フーリエ変換像の輝点が15個以下であると、反射ムラをさらに抑制することが可能となる。 However, even if there is a variation in the dimensions of the minute deformed portion, the above-mentioned coefficient of variation is 3 to 40%, further 3 to 23%, particularly 5 to 22%, and in some cases 5 to 21%. good. This degree of variation may contribute to the alleviation of uneven reflection. If the mitigation of reflection unevenness should be emphasized, the coefficient of variation may exceed 23%. For example, a glass plate in which the coefficient of variation of the dimensions of the minute deformed portion is in the range of 3 to 40% and the average value of the dimensions is 13.6 μm or less, particularly 9 μm or more and 13.6 μm or less is an image having a pixel density of 326 ppi. In combination with a display device, it is suitable for suppressing sparkle and suppressing uneven reflection. In this case, the coefficient of variation is particularly preferably 12.3% or more, more preferably 12.5% or more, for example, 12.3 to 35%. Further, in this case, if the number of bright spots of the two-dimensional Fourier transform image of the image subjected to the above-mentioned binarization process A is 15 or less, the reflection unevenness can be further suppressed.

なお、互いに寸法が明確に異なり、かつ寸法によって区分可能な複数の寸法の微小変形部を意図的に形成する場合には、微小変形部の寸法のバラツキを種類ごとに検討してもよい。「互いに寸法が明確に異なる」と言えるのは、例えば、ガラス板の主面の微小変形部が、寸法の平均値がμα、最小値がminαである微小変形部αと、寸法の平均値がμβ、最大値がmaxβである微小変形部βとを含み、μα>μβ、かつminα−maxβ>1μmの関係が成立する場合である。後者の式はminα−maxβ>2μm、さらにminα−maxβ>3μmであってもよい。また、「区分可能」と言えるのは、minαとmaxβとの間の寸法を有する微小変形部が実質的に存在しない場合である。特定の寸法を有する微小変形部が「実質的に存在しない」とは、該当する微小変形部の比率、例えばminαとmaxβとの間の寸法を有する微小変形部の比率が個数基準で全体の3%未満、特に1%未満、とりわけ0.5%未満であることをいう。この例において、微小変形部は、微小変形部α、βのそれぞれと互いに寸法が明確に異なり、かつ区分可能な微小変形部γをさらに含んでいてもよい。互いに寸法が明確に異なり、かつ寸法によって区分可能な複数種の微小変形部が含まれる場合は、条件d1と共に、又は条件d1に代えて、以下の条件d2を満たすことが望ましい。 When the micro-deformed portions having a plurality of dimensions that are clearly different from each other and can be classified by the dimensions are intentionally formed, the variation in the dimensions of the micro-deformed portions may be examined for each type. It can be said that "the dimensions are clearly different from each other", for example, the minute deformed portion of the main surface of the glass plate has the average value of the dimensions of μα and the minimum value of minα. This is a case where μβ and a minute deformed portion β having a maximum value of maxβ are included, and a relationship of μα> μβ and minα-maxβ> 1 μm is established. The latter equation may be minα-maxβ> 2 μm and further minα-maxβ> 3 μm. Further, it can be said that it is "classifiable" when there is substantially no minute deformed portion having a dimension between minα and maxβ. “Substantially non-existent” means that the micro-deformed portion having a specific dimension means that the ratio of the corresponding micro-deformed portion, for example, the ratio of the micro-deformed portion having a dimension between minα and maxβ is 3 of the total based on the number. It means less than%, especially less than 1%, especially less than 0.5%. In this example, the micro-deformation portion may further include a micro-deformation portion γ which is clearly different in size from each of the micro-deformation portions α and β and can be distinguished from each other. When the dimensions are clearly different from each other and a plurality of types of minute deformed portions that can be classified by the dimensions are included, it is desirable to satisfy the following condition d2 together with or in place of the condition d1.

(条件d2)
互いに寸法が明確に異なり、かつ区分可能な複数の寸法の微小変形部が含まれている場合は、各微小変形部(α、β、γ・・・)の寸法それぞれについて算出した変動係数が、それぞれ23%以下、22%以下、21%以下、15%以下、10%以下、さらには7%以下、好ましくは5%以下である。なお、各微小変形部(α、β、γ・・・)は、個数基準で、微小変形部全体の15%以上、20%以上、さらには30%以上を占めるように設定される。
(Condition d2)
When the dimensions are clearly different from each other and the micro-deformation parts of a plurality of distinguishable dimensions are included, the coefficient of variation calculated for each of the dimensions of each micro-deformation part (α, β, γ ...) It is 23% or less, 22% or less, 21% or less, 15% or less, 10% or less, further 7% or less, preferably 5% or less, respectively. Each micro-deformed portion (α, β, γ ...) Is set to occupy 15% or more, 20% or more, and further 30% or more of the entire micro-deformed portion on a number basis.

ガラス板は、条件d1及び/又は条件d2を満たしていることが好ましい。条件d2を満たすガラス板は、その前提として、条件a1を満たすことが好ましい。 The glass plate preferably satisfies the conditions d1 and / or the condition d2. As a premise, the glass plate satisfying the condition d2 preferably satisfies the condition a1.

複数の微小変形部2は、凸部であっても凹部であっても構わない。ただし、以下の理由からは凸部であることが好ましい。第1に、タッチパネルとして使用するガラス板については、凸部が凹部よりも指への抵抗が小さい表面を提供できる。したがって、ユーザの操作感を重視するべき場合には凸部が有利である。第2に、エッチング法等によりガラス表面を後退させる過程において、時間の経過と共に凹部の寸法は所望の設計値から拡大することがあるのに対し、凸部の寸法は設計値からの拡大、いわゆるオーバーエッチングによる寸法の拡大、を容易に防止できる。このため、スパークルをより確実に防止するべき場合には凸部が有利である。後述するとおり、凹部又は凸部は、それぞれが実質的に平坦な連続部によって囲まれていることが好ましい。 The plurality of micro-deformed portions 2 may be convex portions or concave portions. However, it is preferably a convex portion for the following reasons. First, with respect to the glass plate used as the touch panel, it is possible to provide a surface in which the convex portion has less resistance to the finger than the concave portion. Therefore, the convex portion is advantageous when the user's operability should be emphasized. Secondly, in the process of retracting the glass surface by an etching method or the like, the dimension of the concave portion may expand from the desired design value with the passage of time, whereas the dimension of the convex portion expands from the design value, so-called. It is possible to easily prevent the expansion of dimensions due to overetching. For this reason, the convex portion is advantageous when sparkling should be prevented more reliably. As will be described later, it is preferable that each of the concave portion or the convex portion is surrounded by a substantially flat continuous portion.

ただし、エッチング加工の効率性、言い換えるとエッチングするガラスの量の少なさを重視するべき場合には、凹部が有利である。 However, recesses are advantageous when the efficiency of the etching process, in other words, the small amount of glass to be etched, should be emphasized.

微小変形部2の深さ又は高さは、特に制限されないが、例えば0.1μm以上、好ましくは0.2μm以上、より好ましくは0.3μm以上であり、例えば1μm以下、好ましくは0.8μm以下、より好ましくは0.7μm以下である。 The depth or height of the microdeformed portion 2 is not particularly limited, but is, for example, 0.1 μm or more, preferably 0.2 μm or more, more preferably 0.3 μm or more, and for example, 1 μm or less, preferably 0.8 μm or less. , More preferably 0.7 μm or less.

図1に戻って、主面1においてそれぞれの微小変形部2を囲む連続部5について説明する。連続部5は、微小変形部2により分断されることなく、微小変形部2の間及びその周囲に広がっている。言い換えると、主面1において、微小変形部2は連続部5に囲まれた島状の領域を形成している。連続部5は実質的に平坦な領域であることが好ましい。本明細書において「実質的に平坦」な領域とは、その領域内の表面粗さ曲線に基づいて算術平均粗さRaの算出式により算出した表面粗さが0.07μm以下、好ましくは0.05μm以下、より好ましくは0.02μm以下、特に好ましくは0.01μm以下の領域である。実質的に平坦に該当するかは、例えば、断面SEM観察により評価することができる。なお、図5Bから明らかなように、従来のエッチング法により凹凸を発達させたガラス板の表面には、実質的に平坦な領域が存在しない。従来のエッチング法では、表面凹凸を発達させるために、事前にサンドブラストして微細な凹部を生成してから、或いは析出物を局所的に生成させながら、エッチングを進行させる。これらの方法では、事実上、微小変形部の起点の位置と寸法の分布とを制御できないため、凹凸が発達した段階では主面の表面から平坦な領域が失われる(図5B)。 Returning to FIG. 1, the continuous portion 5 surrounding each of the minute deformed portions 2 on the main surface 1 will be described. The continuous portion 5 extends between and around the micro-deformed portion 2 without being divided by the micro-deformed portion 2. In other words, on the main surface 1, the micro-deformed portion 2 forms an island-shaped region surrounded by the continuous portion 5. The continuous portion 5 is preferably a substantially flat region. In the present specification, the “substantially flat” region means that the surface roughness calculated by the formula for calculating the arithmetic mean roughness Ra based on the surface roughness curve in the region is 0.07 μm or less, preferably 0. The region is 05 μm or less, more preferably 0.02 μm or less, and particularly preferably 0.01 μm or less. Whether or not it corresponds to substantially flatness can be evaluated by, for example, cross-section SEM observation. As is clear from FIG. 5B, there is no substantially flat region on the surface of the glass plate whose irregularities have been developed by the conventional etching method. In the conventional etching method, in order to develop surface irregularities, etching is advanced after sandblasting in advance to generate fine recesses or while locally generating precipitates. With these methods, it is practically impossible to control the position of the starting point of the minute deformation portion and the distribution of dimensions, so that a flat region is lost from the surface of the main surface at the stage where the unevenness is developed (FIG. 5B).

実質的に平坦な領域は、ガラス板の主面の40%以上、50%以上、さらには60%以上を占めていてもよい。この領域は微小変形部が占める面積の残部を占めていてもよい。 The substantially flat region may occupy 40% or more, 50% or more, and even 60% or more of the main surface of the glass plate. This region may occupy the rest of the area occupied by the microdeformed portion.

図1では、主面1上に同一の微小変形部2が規則的に配列している。この設計は、基本的には量産品の特性を安定化させる上では好ましい。大きさが不均一な微小変形部を不規則に配置した設計は、エッチング等による加工時に互いに結合して一体化し、過度に大きい微小変形部を生じさせやすい(図5A参照)。また、特に大きな面積のガラス板については特性の局所的な相違を十分に抑制することも容易ではない。規則的な配列によればこれらの不利益は解消される。しかし、微小変形部の配置の規則性が高い主面からは不自然な虹状の反射光のムラが観察されることがある。このムラはスパークルほどには目立たないが、抑制することが望ましい。 In FIG. 1, the same minute deformed portions 2 are regularly arranged on the main surface 1. This design is basically preferable for stabilizing the characteristics of mass-produced products. The design in which the minute deformed portions having a non-uniform size are irregularly arranged is likely to be bonded to each other and integrated with each other during processing by etching or the like to generate an excessively large minute deformed portion (see FIG. 5A). Further, it is not easy to sufficiently suppress the local difference in characteristics especially for a glass plate having a large area. A regular arrangement eliminates these disadvantages. However, unnatural rainbow-shaped unevenness of reflected light may be observed from the main surface where the arrangement of the minute deformed portions is highly regular. This unevenness is not as noticeable as sparkle, but it is desirable to suppress it.

反射光のムラは、微小変形部の配列の規則性を緩和することにより抑制できる。具体的には、主面の200μm四方の領域、及び/又は寸法が0.5μm以上の微小変形部が80〜150個存在する主面の領域、を主面に垂直な方向から観察して微小変形部を周囲の領域から区別する上述の二値化処理Aをした画像の二次元フーリエ変換像に、2〜30個、さらに3〜30個、好ましくは5〜25個、より好ましくは9〜18個、特に好ましくは13〜17個、別のより好ましい例としては5〜15個の輝点が観察される程度に、主面の面内方向についての微小変形部の配置の周期性を低下させることが好ましい。防眩機能を有する従来のガラス板は、微小変形部の配置に周期性が全くないか、あったとしてもその程度がごく低いため、上記二次元フーリエ変換像に観察される輝点は1つのみとなる。他方、図1に示した程度に周期性が高い配列は、上記二次元フーリエ変換像に数百程度以上の多数の輝点を発生させる。 The unevenness of the reflected light can be suppressed by relaxing the regularity of the arrangement of the minute deformed portions. Specifically, a region of 200 μm square on the main surface and / or a region of the main surface in which 80 to 150 minute deformed portions having a size of 0.5 μm or more are observed from a direction perpendicular to the main surface are minute. The two-dimensional Fourier transform image of the image subjected to the above-mentioned binarization process A that distinguishes the deformed portion from the surrounding region has 2 to 30, further 3 to 30, preferably 5 to 25, and more preferably 9 to. The periodicity of the arrangement of the minute deformed portions in the in-plane direction of the main surface is reduced to the extent that 18, particularly preferably 13 to 17, and another more preferably 5 to 15 bright spots are observed. It is preferable to let it. A conventional glass plate having an antiglare function has no periodicity in the arrangement of minute deformation parts, or even if there is, the degree is very low. Therefore, one bright spot is observed in the above two-dimensional Fourier transform image. Only. On the other hand, the array having a high periodicity as shown in FIG. 1 generates a large number of bright spots of about several hundreds or more in the two-dimensional Fourier transform image.

なお、「寸法が0.5μm以上の微小変形部が80〜150個存在する主面の領域」は、主面上に直角四角形の領域として設定するとよい。この場合、微小変形部の個数は、直角四角形の領域にその一部が存在する微小変形部も含めてカウントすることとする。 The "region of the main surface in which 80 to 150 minute deformed portions having a size of 0.5 μm or more exist" may be set as a region of a right-angled quadrangle on the main surface. In this case, the number of micro-deformed portions is counted including the micro-deformed portions whose part exists in the right-angled rectangular region.

微小変形部の配列の規則性を緩和すると、上述の輝点の数が、製造ロットによって、或いは局所的に、相違することがある。これは、エッチング条件等の製造条件が不可避的に僅かに変動することによって、微小変形部の位置や大きさが影響を受けたためと考えられる。本発明者の検討によると、このような輝点の数の不安定化は、その製造条件で得られる平均的な輝点の個数が15程度以下となる場合に顕著になり、この影響により輝点の個数が1つに減少したガラス板が得られることもある。このようなガラス板からも、輝点の個数が2以上のガラス板と実質的に変わらない程度に所望の特性が得られることが確認されている。これは、二値化処理Aによっては確認できない程度の規則性が存在するためと考えられる。実際に、輝点の個数が1つに減少した製造ロットのガラス板に対し、256×256より高い階調、例えば8192×8192の階調を適用して画像の二値化処理を実施すると、上述の輝点は2以上観察される。階調が高くなるほど輝点の数は増えるためである。また、配列の規則性をさらに緩和して設計したガラス板からも所望の特性を得ることは可能である。ただし、緩和の程度によっては、二値化処理Bのような数万程度の高い階調で二値化しなければ2以上の輝点数を測定できず、規則性の存在を確認できないことがある。以上を考慮に入れると、簡便には8192×8192の階調、厳密には二値化処理B(65536×65536)により2以上の輝点が確認できることを前提として、二値化処理Aによる輝点の数が1つであるように微小変形部を設計してもよいことになる。一方、特許文献1〜3に開示されている従来のガラス板を数千程度の高い階調、さらには二値化処理Bを適用して測定しても、得られる輝点の数は1つとなる。 If the regularity of the arrangement of the micro-deformed parts is relaxed, the number of the above-mentioned bright spots may differ depending on the production lot or locally. It is considered that this is because the position and size of the minute deformed portion were affected by the unavoidable slight fluctuation of the manufacturing conditions such as the etching conditions. According to the study of the present inventor, such destabilization of the number of bright spots becomes remarkable when the average number of bright spots obtained under the manufacturing conditions is about 15 or less, and due to this influence, the bright spots shine. A glass plate with the number of dots reduced to one may be obtained. It has been confirmed that even from such a glass plate, desired characteristics can be obtained to the extent that the number of bright spots is substantially the same as that of a glass plate having two or more bright spots. It is considered that this is because there is a regularity that cannot be confirmed by the binarization process A. Actually, when the image binarization process is performed by applying a gradation higher than 256 × 256, for example, a gradation of 8192 × 8192, to the glass plate of the production lot in which the number of bright spots is reduced to one, Two or more of the above-mentioned bright spots are observed. This is because the number of bright spots increases as the gradation becomes higher. It is also possible to obtain desired characteristics from a glass plate designed by further relaxing the regularity of arrangement. However, depending on the degree of relaxation, the number of bright spots of 2 or more cannot be measured unless binarization is performed with a high gradation of about tens of thousands as in the binarization process B, and the existence of regularity may not be confirmed. Taking the above into consideration, it is assumed that two or more bright spots can be confirmed by the gradation of 8192 × 8192, strictly speaking, the binarization process B (65536 × 65536), and the brightness by the binarization process A. The minute deformation portion may be designed so that the number of points is one. On the other hand, even if the conventional glass plate disclosed in Patent Documents 1 to 3 is measured by applying a high gradation of about several thousand and further binarization processing B, the number of bright spots obtained is one. Become.

微小変形部の面積比率、より詳しくは主面に垂直な方向から見た微小変形部の面積の合計の主面の面積に占める比率は、特に制限されないが、例えば1.5〜60%、さらには1.5〜50%、特に1.5〜40%である。微小変形部の面積比率は、好ましくは2%以上、より好ましくは5%以上、場合によっては8%以上であり、好ましくは45%以下、より好ましくは40%以下、特に好ましくは30%以下、場合によっては25%以下、さらには23%以下、特に20%以下である。 The area ratio of the micro-deformed portion, more specifically, the ratio of the total area of the micro-deformed portion viewed from the direction perpendicular to the main surface to the area of the main surface is not particularly limited, but is, for example, 1.5 to 60%, and more. Is 1.5 to 50%, especially 1.5 to 40%. The area ratio of the microdeformed portion is preferably 2% or more, more preferably 5% or more, and in some cases 8% or more, preferably 45% or less, more preferably 40% or less, and particularly preferably 30% or less. In some cases, it is 25% or less, further 23% or less, especially 20% or less.

上述した微小変形部を有するガラス板は、スパークルを抑制しながらグロス及びヘイズを共に望ましい範囲に調整することに適している。具体的には、グロスをX(%)、ヘイズをY(%)と表示したときに、式(I)の関係を満たすことが可能である。326ppiの画像表示装置と組み合わせて使用してもスパークルを防止できる程度に微細に微小変形部を制御しても、具体的には例えば微小変形部の平均寸法を3.2μm〜13.6μmに設定したとしても、式(I)を満たすガラス板を提供することもできる。 The glass plate having the above-mentioned minute deformation portion is suitable for adjusting both gloss and haze to a desired range while suppressing sparkle. Specifically, when the gloss is displayed as X (%) and the haze is displayed as Y (%), the relationship of the formula (I) can be satisfied. Even if the micro-deformed portion is finely controlled to the extent that sparkling can be prevented even when used in combination with a 326 ppi image display device, specifically, for example, the average dimension of the micro-deformed portion is set to 3.2 μm to 13.6 μm. Even so, it is possible to provide a glass plate satisfying the formula (I).

Y≦−1/6X+20 (I) Y ≦ -1 / 6X + 20 (I)

本発明者の検討により、ヘイズが十分に抑制されていれば、グロスがある程度高くてもガラス板の実用性を確保できることが明らかになった。上述した微小変形部を有するガラス板は、このような範囲にヘイズ及びグロスに調整することにも適しており、具体的には式(II)の関係を満たすことが可能である。 According to the study by the present inventor, it has been clarified that if the haze is sufficiently suppressed, the practicality of the glass plate can be ensured even if the gloss is high to some extent. The glass plate having the above-mentioned micro-deformed portion is also suitable for adjusting the haze and gloss within such a range, and specifically, it is possible to satisfy the relationship of the formula (II).

Y≦−1/40X+8 (II) Y ≦ -1 / 40X + 8 (II)

式(II)を具備するガラス板において、Yの値は6以下、さらに5以下であってもよい。X及びYの値は、それぞれ100≦X≦160、0≦Y≦6、さらには100≦X≦150、0≦Y≦5の範囲に制限されていてもよい。式(II)は、Y≦−1/40X+7.5であってもよい。 In the glass plate having the formula (II), the value of Y may be 6 or less, and further 5 or less. The values of X and Y may be limited to the range of 100 ≦ X ≦ 160, 0 ≦ Y ≦ 6, and 100 ≦ X ≦ 150, 0 ≦ Y ≦ 5, respectively. Formula (II) may be Y ≦ -1 / 40X + 7.5.

本発明により提供される、微小変形部を有するガラス板は、式(I)及び(II)の少なくとも1つの関係を満たすことができる。 The glass plate having a micro-deformed portion provided by the present invention can satisfy at least one relationship of the formulas (I) and (II).

特許文献1〜3において比較例として提示されているガラス板の中には、式(I)及び/又は(II)を満たす程度にヘイズ及びグロスが低いものが含まれている(特許文献2比較例1〜5及び特許文献3実験例8)。しかし、従来、この程度にヘイズ及びグロスが低いガラス板は、特許文献1〜3に報告されているとおりスパークルを抑制できないものであった。これは微小変形部が全体的に大きすぎるためである。このようなガラス板は、条件bを満たすことが難しく、寸法のバラツキが大きいために条件d1を満たすことも難しい。一方、スパークルが抑制されるように微小変形部全体の寸法を制御すると(特許文献1〜3の各実施例)、微細な微小変形部の比率が増加して条件a1が満たされなくなり、特にヘイズを抑制することが難しくなる。特許文献1〜3に開示されている従来のエッチング法では、条件d1が満たされる程度に微小変形部の寸法を揃えることも困難である。このため、特許文献1〜3の実施例は、式(I)及び(II)の関係を満たしていない。 Among the glass plates presented as comparative examples in Patent Documents 1 to 3, those having low haze and gloss to the extent that the formulas (I) and / or (II) are satisfied are included (Patent Document 2 comparison). Examples 1 to 5 and Patent Document 3 Experimental Example 8). However, conventionally, a glass plate having such a low haze and gloss cannot suppress sparkle as reported in Patent Documents 1 to 3. This is because the minute deformation portion is too large as a whole. It is difficult for such a glass plate to satisfy the condition b, and it is also difficult to satisfy the condition d1 because the dimensional variation is large. On the other hand, if the dimensions of the entire micro-deformed portion are controlled so that sparkle is suppressed (each embodiment of Patent Documents 1 to 3), the ratio of the micro-deformed portion increases and the condition a1 is not satisfied, and in particular, haze. It becomes difficult to suppress. In the conventional etching method disclosed in Patent Documents 1 to 3, it is difficult to make the dimensions of the minute deformed portion uniform to the extent that the condition d1 is satisfied. Therefore, the examples of Patent Documents 1 to 3 do not satisfy the relationship of the formulas (I) and (II).

このような従来の技術水準に対し、本形態によれば、例えばスパークルが抑制されるように画素密度326ppiから計算される値以下、具体的には13.6μm以下、さらには12μm以下、場合によっては10μm未満にまで微小変形部の寸法の平均値を制限しても、式(I)及び/又は(II)の関係を満たすガラス板を提供することが可能である。言い換えると、本発明は、上述した側面から以下のガラス板を提供することもできる。 In contrast to such conventional technical levels, according to the present embodiment, for example, a value or less calculated from a pixel density of 326 ppi so as to suppress sparkle, specifically 13.6 μm or less, further 12 μm or less, and in some cases, Can provide a glass plate satisfying the relationship of the formulas (I) and / or (II) even if the average value of the dimensions of the minute deformed portion is limited to less than 10 μm. In other words, the present invention can also provide the following glass plates from the above-mentioned aspects.

複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凹部又は複数の凸部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm〜13.6μmであり、かつ
グロスをX(%)、ヘイズをY(%)と表示したときに、式(I)及び(II)の少なくとも1つを満たす、
ガラス板。
It has a main surface with multiple microdeformations and
The plurality of micro-deformed portions are a plurality of concave portions or a plurality of convex portions.
When the average value of two adjacent sides of the smallest right-angled quadrangle surrounding the micro-deformed portion when observed from a direction perpendicular to the main surface is defined as the dimension of the micro-deformed portion, the plurality of micro-deformed portions When the average value of the dimensions is 3.2 μm to 13.6 μm, and the gloss is expressed as X (%) and the haze is expressed as Y (%), at least one of the formulas (I) and (II) is satisfied. ,
Glass plate.

このガラス板は、さらに条件b及び/又は条件cを満たしていてもよく、条件d1及び/又は条件d2を満たしていてもよく、第1の実施形態で述べたその他の特徴を具備していてもよい。なお、本明細書において、グロスは、日本工業規格(JIS) Z8741−1997の「鏡面光沢度測定方法」の「方法3(60度鏡面光沢)」に従って、ヘイズはJIS K7136:2000に従ってそれぞれ測定される。 The glass plate may further satisfy the condition b and / or the condition c, and may satisfy the condition d1 and / or the condition d2, and has other features described in the first embodiment. May be good. In this specification, the gloss is measured according to "Method 3 (60 degree mirror gloss)" of the "Mirror gloss measuring method" of Japanese Industrial Standards (JIS) Z8741-1997, and the haze is measured according to JIS K7136: 2000. NS.

[第2の実施形態]
次に、上述の第2の側面から提供されるガラス板の一形態を説明する。この一形態においてガラス板は複数の微小変形部を有する主面を備えている。複数の微小変形部は複数の凸部である。複数の微小変形部はそれぞれ実質的に平坦な連続部によって囲まれていることが好ましい。複数の微小変形部は所定範囲の平均寸法を有する。
[Second Embodiment]
Next, one form of the glass plate provided from the second side surface described above will be described. In this embodiment, the glass plate has a main surface having a plurality of microdeformed portions. The plurality of micro-deformed portions are a plurality of convex portions. It is preferable that each of the plurality of micro-deformed portions is surrounded by a substantially flat continuous portion. The plurality of micro-deformed portions have an average dimension in a predetermined range.

本形態においても、微小変形部の平均寸法は、3.2μm〜35.5μmの範囲内に設定される。微小変形部の形状、寸法、相互の距離、面積比率の好ましい範囲及び条件は、第1の実施形態で述べたとおりである。本形態においても、上述した二次元フーリエ変換像には、第1の実施形態で述べた個数の輝点が観察される程度に微小変形部の配置の周期性を低下させることが好ましい。本形態によっても、式(I)及び/又は(II)を満たすガラス板を提供することが可能であり、その他第1の実施形態で述べたその他の特徴を具備することも可能である。 Also in this embodiment, the average dimension of the minute deformed portion is set in the range of 3.2 μm to 35.5 μm. The preferred range and conditions of the shape, dimensions, mutual distance, and area ratio of the microdeformed portion are as described in the first embodiment. Also in this embodiment, it is preferable to reduce the periodicity of the arrangement of the minute deformed portions to the extent that the number of bright spots described in the first embodiment is observed in the above-mentioned two-dimensional Fourier transform image. Also in this embodiment, it is possible to provide a glass plate satisfying the formulas (I) and / or (II), and it is also possible to have other features described in the first embodiment.

ただし本形態では、主面に形成されている微小変形部は凸部である。凸部の高さの好ましい範囲は第1の実施形態で述べたとおりである。微小変形部が凸部であるため、タッチパネルとしてガラス板を使用するユーザにより優れた操作感を提供できる。微小変形部が凹部であるガラス板との操作感の相違は、相対湿度が低い環境下でより顕著になる。また、微小変形部の製造に際して凸部はその寸法を所定限度以下に制御しやすいため、凸部によればスパークルがより確実に防止される。さらに、凸部を囲む連続部が実質的に平坦である場合、本形態によるガラス板の主面は、雰囲気から付着する粉塵やユーザの指から転写される皮脂の除去が相対的に容易になる。 However, in this embodiment, the minute deformed portion formed on the main surface is a convex portion. The preferred range of the height of the convex portion is as described in the first embodiment. Since the minute deformed portion is a convex portion, it is possible to provide a better operation feeling to the user who uses the glass plate as the touch panel. The difference in operation feeling from the glass plate in which the minute deformed portion is a recess becomes more remarkable in an environment where the relative humidity is low. Further, since the size of the convex portion can be easily controlled to be equal to or less than a predetermined limit in the production of the minute deformed portion, the convex portion can more reliably prevent sparkling. Further, when the continuous portion surrounding the convex portion is substantially flat, the main surface of the glass plate according to this embodiment makes it relatively easy to remove dust adhering from the atmosphere and sebum transferred from the user's finger. ..

[第3の実施形態]
さらに、上述の第3の側面から提供されるガラス板の一形態を説明する。この一形態においてガラス板は複数の微小変形部を有する主面を備えている。複数の微小変形部は複数の凹部又は複数の凸部である。複数の微小変形部は所定範囲の平均寸法を有する。主面から得た所定の二次元フーリエ変換像は、所定範囲の個数の輝点を有する。所定範囲の個数は、二値化処理を256×256(二値化処理A)、必要に応じさらに65536×65536(二値化処理B)の階調で実施した場合に基づいて定めることができる。
[Third Embodiment]
Further, one form of the glass plate provided from the third aspect described above will be described. In this embodiment, the glass plate has a main surface having a plurality of microdeformed portions. The plurality of micro-deformed portions are a plurality of concave portions or a plurality of convex portions. The plurality of micro-deformed portions have an average dimension in a predetermined range. The predetermined two-dimensional Fourier transform image obtained from the main surface has a predetermined range of bright spots. The number of predetermined ranges can be determined based on the case where the binarization process is performed with a gradation of 256 × 256 (binarization process A) and, if necessary, 65536 × 65536 (binarization process B). ..

本形態においても、微小変形部の平均寸法は、3.2μm〜35.5μmの範囲内に設定される。微小変形部の形状、寸法、相互の距離、面積比率の好ましい範囲及び条件は、第1の実施形態で述べたとおりである。本形態においても、微小変形部は好ましくは凸部であり、その好ましい高さは第1の実施形態で述べたとおりである。本形態によっても、式(I)及び/又は(II)を満たすガラス板を提供することが可能である。 Also in this embodiment, the average dimension of the minute deformed portion is set in the range of 3.2 μm to 35.5 μm. The preferred range and conditions of the shape, dimensions, mutual distance, and area ratio of the microdeformed portion are as described in the first embodiment. Also in this embodiment, the minute deformed portion is preferably a convex portion, and the preferable height thereof is as described in the first embodiment. Also in this embodiment, it is possible to provide a glass plate satisfying the formulas (I) and / or (II).

ただし本形態では、微小変形部の配列は、図1に示したような周期性が高い配列ではなく、二値化処理Aによる二次元フーリエ変換像に、3〜30個、好ましくは5〜25個、より好ましくは9〜18個、特に好ましくは13〜17個、別の好ましい例としては5〜15個の輝点が観察される程度の周期性を有している。この程度に緩和した周期性は、量産の際の再現性の確保とそれ自体から発生する反射光のムラの緩和との両立に適している。上述したとおり、周期性を緩和すると、製造ロットによっては輝点の数が1つのみとなる場合がある。しかしこの場合も、256×256より高い階調、例えば数千程度、さらには65536×65536の階調による二値化処理Bを実施すると、2以上の輝点が観察されることから、程度が低いながらも周期性は確認できる。 However, in this embodiment, the arrangement of the minute deformation portions is not the arrangement with high periodicity as shown in FIG. 1, but 3 to 30, preferably 5 to 25, in the two-dimensional Fourier transform image obtained by the binarization process A. It has a periodicity such that 9 to 18 bright spots, more preferably 9 to 18, particularly preferably 13 to 17, and another preferable example of 5 to 15 bright spots are observed. The periodicity relaxed to this extent is suitable for both ensuring reproducibility during mass production and mitigating unevenness of reflected light generated from itself. As described above, if the periodicity is relaxed, the number of bright spots may be only one depending on the production lot. However, also in this case, when the binarization process B with a gradation higher than 256 × 256, for example, several thousand, and further a gradation of 65536 × 65536 is performed, two or more bright spots are observed. Although it is low, periodicity can be confirmed.

上述したとおり、二次元フーリエ変換像は、ガラス板の主面の200μm四方の領域、又は寸法が0.5μm以上の微小変形部が80〜150個存在する主面の領域、を主面に垂直な方向から観察して微小変形部を周囲の領域から区別する二値化処理をした画像から得ることができる。1辺を200μmとする領域の設定は簡便に実施できる。一方、個数に基づく領域の設定は、微小変形部の分布密度が小さい主面における微小変形部の周期性を正しく評価することに、より適している。 As described above, the two-dimensional Fourier transform image is perpendicular to the main surface in a 200 μm square region of the main surface of the glass plate or a region of the main surface in which 80 to 150 minute deformed portions having dimensions of 0.5 μm or more exist. It can be obtained from a binarized image that distinguishes the minute deformed part from the surrounding area by observing from a different direction. The region where one side is 200 μm can be easily set. On the other hand, the setting of the region based on the number is more suitable for correctly evaluating the periodicity of the micro-deformed portion on the main surface where the distribution density of the micro-deformed portion is small.

本形態では、ガラス板が、二次元フーリエ変換像が所定の個数の輝点を有するとの条件に代えて、微小変形部の寸法の変動係数が3〜40%、さらには3〜23%であるとの条件を具備していてもよい。この場合の変動係数の好ましい範囲は、5〜22%であり、さらには8〜21%、特に12.5〜21%である。 In this embodiment, instead of the condition that the two-dimensional Fourier transform image has a predetermined number of bright spots, the coefficient of variation of the dimensions of the minute deformed portion is 3 to 40%, and further 3 to 23%. It may satisfy the condition that there is. The preferred range of the coefficient of variation in this case is 5 to 22%, more preferably 8 to 21%, and particularly 12.5 to 21%.

本形態では、ガラス板が、二次元フーリエ変換像が所定の個数の輝点を有するとの条件に代えて、微小変形部の寸法の変動係数が3%以上であるとの条件と、条件a1、すなわち微細な微小変形部の比率が小さいとの条件とを具備していてもよい。この場合の変動係数の好ましい範囲は、5%以上、さらには8%以上、特に12.5%以上である。 In this embodiment, instead of the condition that the two-dimensional Fourier transform image has a predetermined number of bright spots, the condition that the coefficient of variation of the dimensions of the minute deformed portion is 3% or more and the condition a1. That is, the condition that the ratio of the fine minute deformed portion is small may be satisfied. The preferable range of the coefficient of variation in this case is 5% or more, further 8% or more, and particularly 12.5% or more.

[第4の実施形態]
引き続き、上述の第4の側面から提供されるガラス板の一形態を説明する。この一形態においてガラス板は複数の微小変形部を有する主面を備えている。複数の微小変形部は複数の凹部又は複数の凸部である。複数の微小変形部は所定範囲の平均寸法を有する。複数の微小変形部は、所定形状の第1微小変形部と、第1微小変形部とは異なる形状を有する第2変形部とを含んでいる。
[Fourth Embodiment]
Subsequently, one form of the glass plate provided from the fourth aspect described above will be described. In this embodiment, the glass plate has a main surface having a plurality of microdeformed portions. The plurality of micro-deformed portions are a plurality of concave portions or a plurality of convex portions. The plurality of micro-deformed portions have an average dimension in a predetermined range. The plurality of micro-deformed portions include a first micro-deformed portion having a predetermined shape and a second deformed portion having a shape different from that of the first micro-deformed portion.

本形態において、微小変形部の平均寸法は、3.2μm以上、例えば3.2μm〜50μm、好ましくは3.2μm〜35.5μmの範囲に設定される。第1微小変形部は見かけ上の寸法が大きくてもスパークルを発生させにくい。微小変形部の形状、寸法、相互の距離、面積比率の好ましい範囲及び条件は、第1の実施形態で述べたとおりである。本形態においても、微小変形部は好ましくは凸部であり、その好ましい高さは第1の実施形態で述べたとおりである。本形態においても、上述した二次元フーリエ変換像には、第1の実施形態で述べた個数の輝点が観察される程度に微小変形部の配置の周期性を低下させることが好ましい。本形態によっても、式(I)及び/又は(II)を満たすガラス板を提供することが可能である。 In the present embodiment, the average size of the minute deformed portion is set to 3.2 μm or more, for example, 3.2 μm to 50 μm, preferably 3.2 μm to 35.5 μm. The first micro-deformed portion is unlikely to generate sparkles even if the apparent dimensions are large. The preferred range and conditions of the shape, dimensions, mutual distance, and area ratio of the microdeformed portion are as described in the first embodiment. Also in this embodiment, the minute deformed portion is preferably a convex portion, and the preferable height thereof is as described in the first embodiment. Also in this embodiment, it is preferable to reduce the periodicity of the arrangement of the minute deformed portions to the extent that the number of bright spots described in the first embodiment is observed in the above-mentioned two-dimensional Fourier transform image. Also in this embodiment, it is possible to provide a glass plate satisfying the formulas (I) and / or (II).

ただし本形態では、微小変形部が、上述した形状A又は形状Bに相当する第1微小変形部と、第1微小変形部とは異なる形状を有する第2微小変形部を含んでいる。第2微小変形部は、形状A又は形状Bに相当するものであっても相当しないものであってもよい。第1微小変形部及び第2微小変形部の好ましい存在比率は第1の実施形態で述べたとおりである。第1微小変形部は、従来はその形成が意図されてこなかったものであり、その特徴ある形状から明らかなように、第2微小変形部と組み合わせることによって、主面上への微小変形部の配置の設計の自由度をより向上させる。特徴ある微小変形部の形状は、微小変形部の面積比率や規則性の調整を容易にする。 However, in this embodiment, the micro-deformed portion includes a first micro-deformed portion corresponding to the above-mentioned shape A or shape B and a second micro-deformed portion having a shape different from that of the first micro-deformed portion. The second micro-deformed portion may or may not correspond to the shape A or the shape B. The preferable abundance ratios of the first micro-deformed portion and the second micro-deformed portion are as described in the first embodiment. The first micro-deformed portion has not been intended to be formed in the past, and as is clear from its characteristic shape, the first micro-deformed portion can be combined with the second micro-deformed portion to form a micro-deformed portion on the main surface. Increase the degree of freedom in layout design. The characteristic shape of the micro-deformed portion facilitates adjustment of the area ratio and regularity of the micro-deformed portion.

[画像表示装置としての実施形態]
最後に、画像表示装置としての実施形態について説明する。本発明は、その一形態として、サブ画素サイズの短辺がdμmである画像表示装置と、当該画像表示装置の画像表示側に配置されるガラス板とを備え、ガラス板が上述した第1〜第4実施形態の少なくとも1つで述べたガラス板である、ガラス板を備えた画像表示装置を提供する。ただし、ガラス板の微小変形部の平均寸法は、好ましくは、3.2μm以上(d/1.9)μm以下、特に4μm以上(d/2)μm以下の範囲に設定される。
[Embodiment as an image display device]
Finally, an embodiment as an image display device will be described. The present invention includes, as one form thereof, an image display device having a short side of a sub-pixel size of dμm and a glass plate arranged on the image display side of the image display device, and the glass plates are described above. Provided is an image display device provided with a glass plate, which is the glass plate described in at least one of the fourth embodiments. However, the average size of the minute deformed portion of the glass plate is preferably set in the range of 3.2 μm or more (d / 1.9) μm or less, particularly 4 μm or more (d / 2) μm or less.

[ガラス板]
ガラス板の組成に特段の制限はない。ガラス板は、ソーダライムガラス、アルミノシリケートガラス、無アルカリガラスに代表される各種組成を有するものであってよい。ガラス板の厚みは、特段の制限はないが、例えば0.1mm〜4.0mmの範囲、特に0.5mm〜3.0mmの範囲である。
[Glass plate]
There are no particular restrictions on the composition of the glass plate. The glass plate may have various compositions typified by soda lime glass, aluminosilicate glass, and non-alkali glass. The thickness of the glass plate is not particularly limited, but is, for example, in the range of 0.1 mm to 4.0 mm, particularly in the range of 0.5 mm to 3.0 mm.

[ガラス板の加工]
(強化処理)
ガラス板には、必要に応じ、物理強化処理又は化学強化処理を施してもよい。これらの処理は、従来から実施されている方法により実施すれば足りるため、ここではその説明を省略する。
[Processing of glass plate]
(Strengthening process)
The glass plate may be subjected to a physical strengthening treatment or a chemical strengthening treatment, if necessary. Since it is sufficient to carry out these processes by a conventional method, the description thereof will be omitted here.

(薄膜形成)
ガラス板の表面には、必要に応じ、諸機能を付加するために薄膜を形成してもよい。薄膜は、微小変形部2を配置した主面1に形成してもよいし、反対側の主面に形成してもよい。薄膜としては、反射抑制膜、指紋付着防止膜等が挙げられる。これらの薄膜も、従来から実施されている方法により形成すれば足りるため、ここではその説明を省略する。薄膜は、典型的には、真空蒸着法、スパッタリング法、化学気相法等の気相成膜法、ゾルゲル法等の湿式成膜法により形成される。
(Thin film formation)
A thin film may be formed on the surface of the glass plate to add various functions, if necessary. The thin film may be formed on the main surface 1 on which the minute deformation portion 2 is arranged, or may be formed on the main surface on the opposite side. Examples of the thin film include a reflection suppression film and a fingerprint adhesion prevention film. Since it is sufficient to form these thin films by a conventional method, the description thereof will be omitted here. The thin film is typically formed by a vapor deposition method such as a vacuum deposition method, a sputtering method, or a chemical vapor deposition method, or a wet film formation method such as a sol-gel method.

以下、実施例により本発明をより詳細に説明するが、以下の実施例は本発明を制限する趣旨で開示されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are not disclosed for the purpose of limiting the present invention.

[ガラス板の作製]
以下のようにしてガラス板の主面に微小変形部である微小凹凸を形成した。用いたガラス板は厚さ1.1mmのアルミノシリケートガラスである。このガラス板の一方の主面にフォトリソグラフィーにより各種の微小凹凸を形成した。フォトマスクの現像及び洗浄に引き続いて実施するエッチングに用いるエッチング液としては濃度1.5wt%のフッ酸(フッ化水素水溶液)を用いた。エッチングは、形成される凹部の深さ又は凸部の高さがほぼ0.3〜0.6μmとなるように実施した。
[Making a glass plate]
As follows, minute irregularities, which are minute deformation portions, were formed on the main surface of the glass plate. The glass plate used was aluminosilicate glass with a thickness of 1.1 mm. Various micro-concavities and convexities were formed on one main surface of this glass plate by photolithography. Hydrofluoric acid (hydrofluoric acid aqueous solution) having a concentration of 1.5 wt% was used as the etching solution used for the etching carried out following the development and washing of the photomask. Etching was performed so that the depth of the concave portion to be formed or the height of the convex portion was approximately 0.3 to 0.6 μm.

なお、例18のガラス板は、フォトリソグラフィーによらず、サンドブラストとフッ酸によるエッチングにより作製した。 The glass plate of Example 18 was produced by sandblasting and etching with hydrofluoric acid without using photolithography.

[ガラス板の評価]
ガラス板の評価は以下のように実施した。
(微小変形部の寸法及び面積比率)
SEMを用い、微小変形部の主面を広さ126×95μmにわたって観察し、微小変形部の面積比率と寸法とを測定した。微小変形部の寸法は84個について測定した。
[Evaluation of glass plate]
The evaluation of the glass plate was carried out as follows.
(Dimensions and area ratio of minute deformed parts)
Using SEM, the main surface of the micro-deformed portion was observed over a width of 126 × 95 μm, and the area ratio and dimensions of the micro-deformed portion were measured. The dimensions of the micro-deformed parts were measured for 84 pieces.

(グロス及びヘイズ)
グロスは、JIS Z8741−1997の「鏡面光沢度測定方法」の「方法3(60度鏡面光沢)」に基づいて測定した。ヘイズは、JIS K7136:2000に基づいて測定した。
(Gloss and haze)
Gross was measured based on "Method 3 (60 degree mirror gloss)" of "Mirror gloss measuring method" of JIS Z8741-1997. Haze was measured based on JIS K7136: 2000.

(FT輝点数)
二次元フーリエ変換像における輝点数の測定には、画像処理ソフトウェア「Imagej 1.50i」を用いた。このソフトウェアは、パブリックドメインにあり、フーリエ解析機能を備えている。具体的には、SEM観察により得られた画像において微小変形部がその周囲から区別されるように閾値を設定し、フーリエ変換像を作成してその像に現れた揮点の数をカウントした。なお、上記ソフトウェアによる解析は基本的に256×256の階調(二値化処理A)で実施し、後述する場合は65536×65536の階調(二値化処理B)で実施した。
(Number of FT bright spots)
Image processing software "Imagej 1.50i" was used to measure the number of bright spots in the two-dimensional Fourier transform image. The software is in the public domain and has Fourier analysis capabilities. Specifically, a threshold value was set so that the minute deformed portion could be distinguished from the surroundings in the image obtained by SEM observation, a Fourier transform image was created, and the number of volatilization points appearing in the image was counted. The analysis by the above software was basically performed with a gradation of 256 × 256 (binarization process A), and in the case described later, it was performed with a gradation of 65536 × 65536 (binarization process B).

(スパークル抑制効果)
緑色のサブ画素のみを発光させた階調表示(R,G,B)を(0,255,0)とした125ppi及び326ppiのディスプレイの表面に微小凹凸を形成した主面がディスプレイの外側を向くようにガラス板を載せ、ディスプレイを静止させた状態で画像のチラツキを評価した。結果は以下に基づいて評価した。
×:画面のチラツキが確認できる。
△:画面のチラツキが僅かに確認できる。
○:画面のチラツキが確認できない。
(Sparkle suppression effect)
The main surface of the 125 ppi and 326 ppi displays with the gradation display (R, G, B) that emits only green sub-pixels (0,255,0) faces the outside of the display. The flicker of the image was evaluated with the glass plate placed and the display stationary. The results were evaluated based on:
×: The flicker on the screen can be confirmed.
Δ: Slight flicker on the screen can be confirmed.
◯: The flicker on the screen cannot be confirmed.

(反射ムラ)
表面が黒色の検査台の上方に20Wの蛍光灯を設置し、その蛍光灯の下方約30cmにガラス板を保持した。この状態でガラス板から約30cm離れた位置からガラス板の主面の表面反射を観察した。結果は以下に基づいて評価した。
×:虹色の干渉色を確認できる。
○:僅かに干渉色を確認できる。
◎:干渉色を確認できない。
(Reflective unevenness)
A 20 W fluorescent lamp was installed above the inspection table having a black surface, and a glass plate was held about 30 cm below the fluorescent lamp. In this state, the surface reflection of the main surface of the glass plate was observed from a position about 30 cm away from the glass plate. The results were evaluated based on:
X: The rainbow-colored interference color can be confirmed.
◯: The interference color can be slightly confirmed.
⊚: Interference color cannot be confirmed.

結果を表1及び2に示す。また、SEMを用いて例1〜18から得られたガラス板の主面を観察した結果を図6〜23に示す。各SEM像は、50μm四方の領域(図6〜12;例1〜7)、200μm四方の領域(図13〜22;例8〜17)、100μm四方の領域(図23;例18)を観察したものである。また、図13〜23には、得られたSEM像から得られた二次元フーリエ変換像を併せて示す。この変換像における輝点は○印で囲んだ位置にある。例1〜7からは、50μm四方の領域の測定により少なくとも100を超える輝点が確認されたため、輝点数がさらに増加することになる200μm四方を対象とした測定は省略した。また、例18については、200μm四方の領域についての二次元フーリエ変換像も観察したが、輝点数は、図23と同様、1つのみとなった。図示を省略するが、例19〜35についても、ガラス板の主面には微小変形部が形成されている。 The results are shown in Tables 1 and 2. The results of observing the main surfaces of the glass plates obtained from Examples 1 to 18 using SEM are shown in FIGS. 6 to 23. For each SEM image, a 50 μm square region (FIGS. 6 to 12; Examples 1 to 7), a 200 μm square region (FIGS. 13 to 22; Examples 8 to 17), and a 100 μm square region (FIG. 23; Example 18) are observed. It was done. In addition, FIGS. 13 to 23 also show a two-dimensional Fourier transform image obtained from the obtained SEM image. The bright spots in this converted image are at the positions circled. From Examples 1 to 7, since at least 100 bright spots were confirmed by the measurement in the 50 μm square region, the measurement for the 200 μm square, which would further increase the number of bright spots, was omitted. Further, in Example 18, a two-dimensional Fourier transform image for a region of 200 μm square was also observed, but the number of bright spots was only one as in FIG. 23. Although not shown, in Examples 19 to 35, a minute deformed portion is formed on the main surface of the glass plate.

なお、特許文献2図1及び図2のSEM像について、上記と同様にして二次元フーリエ変換像を作成したところ、例18と同様、輝点数は1であった。従来の防眩ガラスは、そのいずれについても、主面の面内方向についての微小変形部の周期性を確認することができなかった。 When a two-dimensional Fourier transform image was prepared in the same manner as above for the SEM images of Patent Document 2 FIGS. 1 and 2, the number of bright spots was 1 as in Example 18. In any of the conventional antiglare glasses, it was not possible to confirm the periodicity of the minute deformed portion in the in-plane direction of the main surface.

輝点数が相対的に少なくなるように、具体的には15以下、さらには10以下となるように設計したガラス板を繰り返し製造すると、製造ロットによって輝点数が表1及び2に示した値よりも小さくなる場合があり、輝点数が1となったサンプルも確認された。このようなサンプルのSEMを用いた観察した結果を図24及び25に示す。図24及び25は、それぞれ例22及び27と同じ製造条件を適用して得られたサンプルから得られた結果である。ただし、輝点数を除いた表2の各項目については、これらのサンプルからも、それぞれ例22及び27とほぼ同様の良好な結果が得られた。また、図24及び25に示したサンプルについて、ソフトウェアによる解析をより高い階調、具体的には8192×8192又はそれ以上の階調、で実施してFT輝点数をカウントしたところ、それぞれの輝点数は2以上現れた。例32〜35も、二値化処理AによるとFT輝点数は1となったが、ソフトウェアによる解析をより高い階調、具体的には65536×65536の階調(二値化処理B)で実施した場合にはFT輝点数は2以上になった。これに対し、同程度に高い階調で例18のサンプルを解析しても輝点数は1のままであった。 When a glass plate designed so that the number of bright spots is relatively small, specifically 15 or less, and further 10 or less is repeatedly manufactured, the number of bright spots is higher than the values shown in Tables 1 and 2 depending on the production lot. Was also small, and a sample with 1 bright spot was also confirmed. The observation results of such a sample using SEM are shown in FIGS. 24 and 25. 24 and 25 are the results obtained from the samples obtained by applying the same production conditions as in Examples 22 and 27, respectively. However, for each item in Table 2 excluding the number of bright spots, good results were obtained from these samples as well as in Examples 22 and 27, respectively. Further, the samples shown in FIGS. 24 and 25 were analyzed by software at a higher gradation, specifically 8192 × 8192 or higher gradations, and the number of FT bright spots was counted. The score appeared 2 or more. In Examples 32 to 35, the number of FT bright spots was 1 according to the binarization process A, but the analysis by the software was performed with a higher gradation, specifically 65536 × 65536 gradation (binarization process B). When carried out, the number of FT bright spots was 2 or more. On the other hand, the number of bright spots remained at 1 even when the sample of Example 18 was analyzed with the same high gradation.

さらに、微小変形部の面積比率がほぼ同一であって微小変形部の形状(凹又は凸)が相違する例13及び14について、ガラス板の主面の触感テストを実施した。このテストは、主面を乾いた指先にて5回程度擦り付けることによって実施した。微小変形部が凸部である例14が例13よりも触感に優れていた。その他のガラス板についても同様の触感テストを実施したところ、面積比率が同じ範囲にある場合、微小変形部が凸部であるガラス板は、微小変形部が凹部であるガラス板よりも触感に優れていることが確認できた。 Further, a tactile test of the main surface of the glass plate was carried out for Examples 13 and 14 in which the area ratio of the micro-deformed portion was substantially the same and the shape (concave or convex) of the micro-deformed portion was different. This test was carried out by rubbing the main surface with a dry fingertip about 5 times. Example 14 in which the minute deformed portion was a convex portion was superior in tactile sensation to Example 13. When the same tactile sensation test was performed on other glass plates, when the area ratio was in the same range, the glass plate having the minute deformed portion as a convex portion had a better tactile sensation than the glass plate having the minute deformed portion as a concave portion. I was able to confirm that.

また、例1〜17の連続部について断面SEMを用いて表面粗さ曲線を測定し、連絡部に相当する部分について同曲線から算術平均粗さRaと同様の式により平均粗さを算出したところ、その値はいずれも0.008μm以下になった。また、例1〜17の微小変形部である凸部の頂部又は凹部の底部について同様に平均粗さを算出したところ、その値は、いずれも0.008μm以下になった。例19〜35についても同様の測定を実施したところ、平均粗さは同様に低く抑えられていた。 Further, the surface roughness curve was measured for the continuous portion of Examples 1 to 17 using the cross-sectional SEM, and the average roughness was calculated from the same curve for the portion corresponding to the connecting portion by the same formula as the arithmetic average roughness Ra. , The values were all 0.008 μm or less. Further, when the average roughness was calculated in the same manner for the top of the convex portion or the bottom of the concave portion, which is the minute deformation portion of Examples 1 to 17, the value was 0.008 μm or less in each case. When the same measurement was performed for Examples 19 to 35, the average roughness was similarly kept low.

図26に例1〜16、19〜35のグロスとヘイズとの関係を示す。図26に示した実線の斜線は、グロスをX(%)、ヘイズをY(%)と表示したときに、Y=−1/6X+20で示される。表1の例1〜16のガラス板の特性は、図26においてこの直線の下方に、より詳しくは上記斜線とY=−1/6X+15で表される図26では図示を省略する斜線との間にプロットされる。特に例1〜6のガラス板は、寸法の平均値が3.2μm〜13.6μmであって、画素密度326ppiの画像表示装置と組み合わせにおいてスパークルを抑制しながらも、グロス及びヘイズとを従来よりもバランスよく低下させたものである。 FIG. 26 shows the relationship between the gloss and haze of Examples 1 to 16 and 19 to 35. The solid diagonal line shown in FIG. 26 is indicated by Y = -1 / 6X + 20 when the gloss is displayed as X (%) and the haze is displayed as Y (%). The characteristics of the glass plates of Examples 1 to 16 in Table 1 are below this straight line in FIG. 26, more specifically between the above diagonal line and the diagonal line shown in FIG. 26 represented by Y = -1 / 6X + 15, which is not shown. It is plotted in. In particular, the glass plates of Examples 1 to 6 have an average dimensional value of 3.2 μm to 13.6 μm, and while suppressing sparkle in combination with an image display device having a pixel density of 326 ppi, gloss and haze are conventionally maintained. Is also lowered in a well-balanced manner.

例19〜35は、ヘイズが十分に抑えられているがグロスがやや高く、例22、25、27を除いてY≦−1/6X+20の関係を具備しない。しかし、これらのサンプルからも、実用上問題がない特性が得られることが確認された。特に、例19〜35のガラス板は、画素密度326ppiの画像表示装置と組み合わせにおいてスパークルが抑制され、ヘイズが十分に低下し、かつ反射ムラも良好に抑制されたものであった。図26に示した破線の斜線は、Y=−1/40X+8で示される。例19〜35のガラス板の特性は、図26においてこの直線の下方にプロットされている。 In Examples 19 to 35, the haze is sufficiently suppressed, but the gloss is slightly high, and except for Examples 22, 25, and 27, the relationship of Y ≦ -1 / 6X + 20 is not satisfied. However, it was confirmed that these samples also provide characteristics that do not cause any problems in practical use. In particular, the glass plates of Examples 19 to 35 had sparkle suppressed, haze sufficiently reduced, and reflection unevenness well suppressed in combination with an image display device having a pixel density of 326 ppi. The dashed diagonal line shown in FIG. 26 is indicated by Y = -1 / 40X + 8. The properties of the glass plates of Examples 19-35 are plotted below this straight line in FIG.

図26にプロットされたPD1〜3は、それぞれ特許文献1〜3においてスパークルを抑制できた実施例として開示されているガラス板の特性を示したものである。特許文献1〜3の実施例のガラス板は、画素密度326ppiの画像表示装置と組み合わせにおいてスパークルを抑制しているが、グロス及びヘイズを共に小さく抑えることには成功していない。特許文献1〜3の技術は、これらの文献に比較例として提示されているように、スパークルの発生を許容しなければグロスとヘイズとを適切に設定できない。特許文献1〜3の実施例のガラス板は、寸法が3μm程度以下の微小変形部の比率が高いために特性がやや劣ることになったと考えられる。これらの特許文献に開示されている従来の技術では、適度な寸法の微小変形部を寸法のバラツキを抑制して形成することが難しい。 PDs 1 to 3 plotted in FIG. 26 show the characteristics of the glass plate disclosed as examples in which sparkle could be suppressed in Patent Documents 1 to 3, respectively. The glass plates of the examples of Patent Documents 1 to 3 suppress sparkle in combination with an image display device having a pixel density of 326 ppi, but have not succeeded in suppressing both gloss and haze to a small value. As presented as comparative examples in these documents, the techniques of Patent Documents 1 to 3 cannot appropriately set the gloss and haze unless the generation of sparkle is allowed. It is considered that the glass plates of the examples of Patent Documents 1 to 3 are slightly inferior in characteristics because the ratio of the minute deformed portions having a size of about 3 μm or less is high. With the conventional techniques disclosed in these patent documents, it is difficult to form a minute deformed portion having an appropriate size while suppressing dimensional variation.

特許文献1〜3に示されているような従来の防眩ガラスでは、その主面に形成された微小凹凸の形状及び配置が制御されていない。このため、わずかな製造条件の相違で大きく特性が変化することがある。例えば、図26の実線の斜線に最も近い*のガラス板(グロス66%、ヘイズ9.6%)は、エッチングの時間を5秒間短くするだけでグロス及びヘイズがともに大きく上昇する(グロス75%、へイズ13.6%;特許文献2実施例8及び9を参照)。 In the conventional antiglare glass as shown in Patent Documents 1 to 3, the shape and arrangement of the minute irregularities formed on the main surface thereof are not controlled. Therefore, the characteristics may change significantly due to a slight difference in manufacturing conditions. For example, the * glass plate (gross 66%, haze 9.6%) closest to the solid diagonal line in FIG. 26 has a large increase in both gloss and haze just by shortening the etching time by 5 seconds (gloss 75%). , Haze 13.6%; see Patent Document 2 Examples 8 and 9).

表1の例1〜4及び6〜7を参照すると、寸法の標準偏差を測定した例から算出した寸法の変動係数(標準偏差/平均値)は、いずれも2.8〜2.9%程度と十分に小さくなった。また、例5には、寸法が明確に異なり、区分可能な2種の微小変形部α、βが存在し(微小変形部αの最小寸法は微小変形部βの最大寸法よりも2μm以上大きい)、各微小変形部について算出した寸法の変動係数はともに2.8〜2.9%程度であった。 With reference to Examples 1 to 4 and 6 to 7 in Table 1, the coefficient of variation (standard deviation / average value) of the dimensions calculated from the example of measuring the standard deviation of the dimensions is about 2.8 to 2.9%. And became small enough. Further, in Example 5, there are two types of micro-deformed parts α and β that are clearly different in size and can be classified (the minimum size of the micro-deformed part α is 2 μm or more larger than the maximum size of the micro-deformed part β). The coefficient of variation of the dimensions calculated for each minute deformation portion was about 2.8 to 2.9%.

微小変形部がランダムに配置されているように見える例8及び9においても、微小変形部の個数を相当数含む領域を対象として判断するとその配置に周期性が存在することが確認できた。例8、9とも200μm四方には130〜140個の微小変形部が存在し、これに対応するFT輝点数は5である。一方、これの1/4程度の微小変形部を含む100μm四方の領域から得られるFT輝点数は、例8,9とも、従来のランダムな微小変形部と同様、1つのみであった。FT輝点数に基づく微小変形部の周期性の判定は、微小変形部を80〜150個含むように領域を設定することが正確を期す上では望ましい。このような個数に基づく領域の設定は、微小変形部の平均最短距離が図示した例よりも長くその分布密度が図示した例よりも小さい、主面に対して特に有効と考えられる。 Even in Examples 8 and 9 in which the micro-deformed parts appear to be randomly arranged, it was confirmed that the arrangement has periodicity when the region including a considerable number of the micro-deformed parts is judged as a target. In both Examples 8 and 9, there are 130 to 140 minute deformed portions on a 200 μm square, and the corresponding number of FT bright spots is 5. On the other hand, the number of FT bright spots obtained from the 100 μm square region including the micro-deformed portion of about 1/4 of this was only one in both Examples 8 and 9, as in the conventional random micro-deformed portion. In determining the periodicity of the micro-deformed portion based on the number of FT bright spots, it is desirable to set the region so as to include 80 to 150 micro-deformed portions in order to ensure accuracy. Setting the region based on such a number is considered to be particularly effective for the main surface in which the average shortest distance of the minute deformed portion is longer than the illustrated example and the distribution density is smaller than the illustrated example.

表1の例8〜10、12〜13及び15、並びに表2の例19〜35を参照すると、変動係数は、3〜35%の範囲にあり、ややバラツキが大きくなっている。この程度に微小変形部の寸法にバラツキが認められても、スパークル抑制効果を始めとする効果は十分に得られた。また、この程度に大きい変動係数は反射ムラの抑制に有効であった。例5、11、14及び16には、寸法が明確に異なり、区分可能な微小変形部が存在し、微小変形部の種類ごとに見ると、その寸法のバラツキは小さくなっている。例5と同様、例11、14及び16についても、確認した範囲では、区分可能な種類ごとに見た微小変形部の寸法の変動係数は、23%以下となっていた。また、例32は、微小変形部の寸法のバラツキがごく微小に抑えられている。このようなガラス板においても、微小変形部の配置の規則性を緩和すれば(二値化処理AによるFT輝点数:1)、反射ムラはある程度改善される。 With reference to Examples 8 to 10, 12 to 13 and 15 in Table 1 and Examples 19 to 35 in Table 2, the coefficient of variation is in the range of 3 to 35%, and the variation is slightly large. Even if the dimensions of the minute deformed portion were varied to this extent, the effects such as the sparkle suppressing effect were sufficiently obtained. In addition, a coefficient of variation as large as this was effective in suppressing uneven reflection. In Examples 5, 11, 14 and 16, the dimensions are clearly different, and there are micro-deformed portions that can be classified, and when viewed for each type of micro-deformed portion, the variation in the dimensions is small. Similar to Example 5, in Examples 11, 14 and 16, the coefficient of variation of the dimensions of the minute deformed portion as seen for each type that can be classified was 23% or less in the confirmed range. Further, in Example 32, the variation in the dimensions of the minute deformed portion is suppressed to a very small amount. Even in such a glass plate, if the regularity of the arrangement of the minute deformed portions is relaxed (the number of FT bright spots by the binarization process A: 1), the reflection unevenness is improved to some extent.

一方、例17の微小変形部の平均寸法は40μmを超えており、スパークル抑制効果が得られなかった。例18は、微小変形部の平均寸法が2μm程度であった。例18は、例1〜17及び19〜35とは異なり、寸法0.5〜3.0μmの微小変形部を多数有し、透過光は激しく白濁していた。なお、例18は、各微小変形部が実質的に平坦な領域で囲まれておらず、主面のほぼすべてに微小変形部が形成されている点においても、そのような領域が存在し、微小変形部の面積比率が半分以下であるその他の例と相違していた(図6〜25参照)。 On the other hand, the average size of the minute deformed portion of Example 17 exceeded 40 μm, and the sparkle suppressing effect could not be obtained. In Example 18, the average size of the minute deformed portion was about 2 μm. Unlike Examples 1 to 17 and 19 to 35, Example 18 had a large number of minute deformed portions having a size of 0.5 to 3.0 μm, and the transmitted light was severely clouded. In Example 18, each micro-deformed portion is not surrounded by a substantially flat region, and such a region also exists in that the micro-deformed portion is formed on almost all of the main surface. It was different from other examples in which the area ratio of the micro-deformed portion was less than half (see FIGS. 6 to 25).

Figure 0006955106
Figure 0006955106

Figure 0006955106
Figure 0006955106

表1において、例1〜16は寸法0.5μm〜3.6μmの微小変形部A2の個数基準の比率が3%未満であった。例7〜16は寸法0.5μm〜4.0μmの微小変形部A3の個数基準の比率が3%未満であった。例10〜16は寸法0.5μm〜5.3μmの微小変形部A4の個数基準の比率が3%未満であった。例10〜11、14〜16は寸法0.5μm〜6.5μmの微小変形部A5の個数基準の比率が3%未満であった。また、表2において、例19〜35は寸法0.5μm〜3.6μmの微小変形部A2の個数基準の比率が3%未満であった。例23〜35は寸法0.5μm〜4.0μmの微小変形部A3の個数基準の比率が3%未満であった。例28〜35は寸法0.5μm〜5.3μmの微小変形部A4の個数基準の比率が3%未満であった。例30〜35は寸法0.5μm〜6.5μmの微小変形部A5の個数基準の比率が3%未満であった。また、例1〜10、12〜13、15〜16、18〜35は、寸法が35.5μmを上回る微小変形部Bの個数基準の比率が15%未満であった。 In Table 1, in Examples 1 to 16, the ratio based on the number of the minute deformed portions A2 having dimensions of 0.5 μm to 3.6 μm was less than 3%. In Examples 7 to 16, the ratio based on the number of the minute deformed portions A3 having dimensions of 0.5 μm to 4.0 μm was less than 3%. In Examples 10 to 16, the ratio based on the number of minute deformed portions A4 having dimensions of 0.5 μm to 5.3 μm was less than 3%. In Examples 10 to 11 and 14 to 16, the ratio based on the number of micro-deformed portions A5 having dimensions of 0.5 μm to 6.5 μm was less than 3%. Further, in Table 2, in Examples 19 to 35, the ratio based on the number of the minute deformed portions A2 having dimensions of 0.5 μm to 3.6 μm was less than 3%. In Examples 23 to 35, the ratio based on the number of micro-deformed portions A3 having dimensions of 0.5 μm to 4.0 μm was less than 3%. In Examples 28 to 35, the ratio based on the number of micro-deformed portions A4 having dimensions of 0.5 μm to 5.3 μm was less than 3%. In Examples 30 to 35, the ratio based on the number of micro-deformed portions A5 having dimensions of 0.5 μm to 6.5 μm was less than 3%. Further, in Examples 1 to 10, 12 to 13, 15 to 16 and 18 to 35, the ratio based on the number of the minute deformed portions B having a size exceeding 35.5 μm was less than 15%.

なお、本実施例に記載のようなフォトリソグラフィー−エッチングによれば、良好な性能を示すガラスを再現性よく製造することができる。この製造方法は、製品間のバラツキや不良率を大幅に低下させることにも適している。 According to the photolithography-etching as described in this example, glass showing good performance can be produced with good reproducibility. This manufacturing method is also suitable for significantly reducing the variation between products and the defect rate.

本発明によるガラス板は、特に画像表示装置の画像表示側に配置する防眩機能を有するガラスとして利用価値が高い。 The glass plate according to the present invention has high utility value as a glass having an antiglare function, which is arranged on the image display side of an image display device.

Claims (14)

複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凸部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の長さの平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm〜35.5μmであり、かつ
前記複数の微小変形部に占める前記寸法が0.5μm〜3.0μmの微小変形部A1の個数基準の比率が5%未満であるとの条件a1、及び/又は、前記複数の微小変形部の前記寸法の変動係数が40%以下であるとの条件d1、を満たし、
前記主面の200μm四方の領域を前記方向から観察して前記複数の微小変形部を周囲から区別する二値化処理Aをした画像の二次元フーリエ変換像に3〜30個の輝点が観察されるか、又は前記二値化処理Aをした画像の二次元フーリエ変換像に1個の輝点が、前記二値化処理Aに代えて二値化処理Bをした画像の二次元フーリエ変換像に2以上の輝点がそれぞれ観察される、ガラス板。
ここで、二値化処理Aは画像を256×256の画素に区分けして実施する二値化処理であり、二値化処理Bは画像を65536×65536の画素に区分けして実施する二値化処理である。
It has a main surface with multiple microdeformations and
Wherein the plurality of small deformation portion is a convex portion of the multiple,
When the average value of the lengths of the two adjacent sides of the smallest right-angled square surrounding the micro-deformed portion when observed from the direction perpendicular to the main surface is defined as the dimension of the micro-deformed portion, the plurality of micro-deformed portions are defined. The average value of the dimensions of the deformed portion is 3.2 μm to 35.5 μm, and the ratio of the number-based number of the micro deformed portions A1 having the dimensions of 0.5 μm to 3.0 μm among the plurality of micro deformed portions is 5. % less than the condition a1, and / or that the coefficient of variation of the dimensions of the plurality of small deformation portion meets the condition d1, and 40% or less,
Three to thirty bright spots are observed in the two-dimensional Fourier transform image of the image subjected to the binarization process A that distinguishes the plurality of minute deformed parts from the surroundings by observing the 200 μm square region of the main surface from the direction. One bright spot is added to the two-dimensional Fourier transform image of the image that has been or has been binarized A, and the two-dimensional Fourier transform of the image that has been binarized B in place of the binarization A. A glass plate in which two or more bright spots are observed in the image.
Here, the binarization process A is a binarization process performed by dividing the image into 256 × 256 pixels, and the binarization process B is a binarization process performed by dividing the image into 65536 × 65536 pixels. It is a binarization process.
前記主面において前記複数の微小変形部はそれぞれ実質的に平坦な連続部によって囲まれている、請求項1に記載のガラス板。 The glass plate according to claim 1, wherein the plurality of micro-deformed portions are each surrounded by a substantially flat continuous portion on the main surface. 前記主面の面積に対する前記複数の微小変形部の面積の合計が占める比率が1.5〜60%である、請求項1に記載のガラス板。 The glass plate according to claim 1, wherein the ratio of the total area of the plurality of micro-deformed portions to the area of the main surface is 1.5 to 60%. 前記複数の微小変形部の前記寸法の変動係数が23%以下である、請求項1に記載のガラス板。 The glass plate according to claim 1, wherein the coefficient of variation of the dimensions of the plurality of minute deformed portions is 23% or less. 前記複数の微小変形部の前記寸法の変動係数が23%を超える、請求項1に記載のガラス板。 The glass plate according to claim 1, wherein the coefficient of variation of the dimensions of the plurality of minute deformed portions exceeds 23%. 前記複数の微小変形部に占める前記寸法が0.5μm〜3.6μmの微小変形部A2の個数基準の比率が5%未満であるとの条件a2を満たす、請求項1に記載のガラス板。 The glass plate according to claim 1, which satisfies the condition a2 that the ratio of the number-based number of the micro-deformed portions A2 having the dimensions of 0.5 μm to 3.6 μm to the plurality of micro-deformed portions is less than 5%. 前記複数の微小変形部に占める前記寸法が0.5μm〜4.0μmの微小変形部A3の個数基準の比率が5%未満であるとの条件a3を満たす、請求項6に記載のガラス板。 The glass plate according to claim 6, which satisfies the condition a3 that the ratio of the number-based number of the micro-deformed portions A3 having the dimensions of 0.5 μm to 4.0 μm to the plurality of micro-deformed portions is less than 5%. 前記方向から観察したときに、前記複数の微小変形部は、i)前記直角四角形の辺から選択した前記直角四角形の頂点を含まない一部の後退部に接する直線部を有する微小変形部、又はii)少なくとも1つの内角が優角である多角形である微小変形部、に相当する第1微小変形部と、前記第1微小変形部と形状が相違する第2微小変形部と、を含む、請求項1に記載のガラス板。 When observed from the above direction, the plurality of micro-deformed portions are i) a micro-deformed portion having a straight portion in contact with a part of the receding portion that does not include the apex of the right-angled quadrangle selected from the sides of the right-angled quadrangle, or ii) Includes a first micro-deformed portion corresponding to a polygonal micro-deformed portion having at least one internal angle of a right angle, and a second micro-deformed portion having a shape different from that of the first micro-deformed portion. The glass plate according to claim 1. 前記第2微小変形部の形状は、前記i)及び前記ii)のいずれにも該当しない、請求項に記載のガラス板。 The glass plate according to claim 8 , wherein the shape of the second microdeformed portion does not correspond to any of the i) and the ii). 前記複数の微小変形部の前記寸法の平均値が3.2μm以上13.6μm以下である、請求項1に記載のガラス板。 The glass plate according to claim 1, wherein the average value of the dimensions of the plurality of minute deformed portions is 3.2 μm or more and 13.6 μm or less. 前記複数の微小変形部の前記寸法の平均値が7μm以上13.6μm以下である、請求項10に記載のガラス板。 The glass plate according to claim 10 , wherein the average value of the dimensions of the plurality of minute deformed portions is 7 μm or more and 13.6 μm or less. グロスをX(%)、ヘイズをY(%)と表示したときに、Y≦−1/6X+20及びY≦−1/40X+8の少なくとも1つの関係式を満たす、請求項1に記載のガラス板。 The glass plate according to claim 1, wherein when gloss is displayed as X (%) and haze is displayed as Y (%), at least one relational expression of Y ≦ -1 / 6X + 20 and Y ≦ -1 / 40X + 8 is satisfied. 前記複数の微小変形部の前記寸法の変動係数が3%以上である、請求項1に記載のガラス板。 The glass plate according to claim 1, wherein the coefficient of variation of the dimensions of the plurality of minute deformed portions is 3% or more. 前記複数の微小変形部に占める前記寸法が35.5μmを上回る微小変形部Bの個数基準の比率が15%未満であるとの条件bを満たす、請求項1に記載のガラス板。 The glass plate according to claim 1, wherein the ratio of the number-based number of the micro-deformed portions B having the dimension exceeding 35.5 μm in the plurality of micro-deformed portions is less than 15%.
JP2020530123A 2018-07-09 2019-07-01 Glass plate suitable for image display devices Active JP6955106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021160656A JP7085051B2 (en) 2018-07-09 2021-09-30 Glass plate suitable for image display devices

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2018130000 2018-07-09
JP2018130000 2018-07-09
JP2019017246 2019-02-01
JP2019017246 2019-02-01
JP2019081614 2019-04-23
JP2019081614 2019-04-23
PCT/JP2019/026130 WO2020013012A1 (en) 2018-07-09 2019-07-01 Glass plate suitable for image display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021160656A Division JP7085051B2 (en) 2018-07-09 2021-09-30 Glass plate suitable for image display devices

Publications (2)

Publication Number Publication Date
JPWO2020013012A1 JPWO2020013012A1 (en) 2021-08-02
JP6955106B2 true JP6955106B2 (en) 2021-10-27

Family

ID=69141819

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2020530123A Active JP6955106B2 (en) 2018-07-09 2019-07-01 Glass plate suitable for image display devices
JP2021160656A Active JP7085051B2 (en) 2018-07-09 2021-09-30 Glass plate suitable for image display devices
JP2022091209A Active JP7372395B2 (en) 2018-07-09 2022-06-03 Glass plate suitable for image display devices

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021160656A Active JP7085051B2 (en) 2018-07-09 2021-09-30 Glass plate suitable for image display devices
JP2022091209A Active JP7372395B2 (en) 2018-07-09 2022-06-03 Glass plate suitable for image display devices

Country Status (7)

Country Link
US (1) US20210230052A1 (en)
EP (1) EP3822234A4 (en)
JP (3) JP6955106B2 (en)
KR (1) KR102679368B1 (en)
CN (3) CN115432936B (en)
TW (1) TWI795576B (en)
WO (1) WO2020013012A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI821234B (en) 2018-01-09 2023-11-11 美商康寧公司 Coated articles with light-altering features and methods for the production thereof
CN115432936B (en) * 2018-07-09 2023-09-01 日本板硝子株式会社 glass plate
US20220009824A1 (en) * 2020-07-09 2022-01-13 Corning Incorporated Anti-glare substrate for a display article including a textured region with primary surface features and secondary surface features imparting a surface roughness that increases surface scattering
JP2022085125A (en) * 2020-11-27 2022-06-08 日東電工株式会社 Multilayer structure
CN117836248A (en) * 2021-07-06 2024-04-05 康宁公司 Anti-glare substrate for display article having textured regions comprising one or more surfaces at two, three, or four elevations and surface features providing at least a portion of the one or more surfaces and method of making the same
CN116133793A (en) * 2021-08-25 2023-05-16 康宁股份有限公司 Textured glass-based articles

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2764559B2 (en) * 1995-06-12 1998-06-11 大日本印刷株式会社 Lens array sheet, surface light source and transmissive display
CN1165781C (en) 1999-08-24 2004-09-08 株式会社辻电 Protective film for prism lens
US7329611B2 (en) * 2002-04-11 2008-02-12 Nec Corporation Method for forming finely-structured parts, finely-structured parts formed thereby, and product using such finely-structured part
US7150904B2 (en) * 2004-07-27 2006-12-19 Ut-Battelle, Llc Composite, ordered material having sharp surface features
US8598771B2 (en) * 2009-09-15 2013-12-03 Corning Incorporated Glass and display having anti-glare properties
WO2011072227A1 (en) * 2009-12-10 2011-06-16 Nano Terra Inc. Structured smudge-resistant anti-reflective coatings and methods of making and using the same
US9017566B2 (en) * 2010-04-30 2015-04-28 Corning Incorporated Anti-glare surface treatment method and articles thereof
US9446979B2 (en) * 2011-11-02 2016-09-20 Corning Incorporated Method for sparkle control and articles thereof
JP5784528B2 (en) * 2011-11-28 2015-09-24 日本板硝子株式会社 Antiglare glass substrate and method for producing the same
US20150174625A1 (en) * 2011-11-30 2015-06-25 Corning Incorporated Articles with monolithic, structured surfaces and methods for making and using same
CN104936920A (en) 2013-01-21 2015-09-23 旭硝子株式会社 Transparent substrate
KR101470306B1 (en) * 2013-09-17 2014-12-09 (주)에스이피 Maskless Etching Apparatus By Condensing Behavior of Etching Gas, And Etching Method For Fabricating Nano or Micro Scale Pattern Using The Same
US10293436B2 (en) * 2013-12-17 2019-05-21 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
KR102396551B1 (en) * 2013-12-19 2022-05-12 코닝 인코포레이티드 Textured surfaces for display applications
JP2015143756A (en) 2014-01-31 2015-08-06 パナソニックIpマネジメント株式会社 Optical sheet and light-emitting device
ES2770697T3 (en) * 2014-07-09 2020-07-02 Agc Glass Europe Low reflection glass sheet
WO2016113970A1 (en) * 2015-01-14 2016-07-21 セントラル硝子株式会社 Antiglare glass sheet article for display device and method of manufacturing same
JP6652696B2 (en) 2015-01-14 2020-02-26 セントラル硝子株式会社 Anti-glare glass plate article for display device and method for producing the same
US10239782B2 (en) * 2015-02-26 2019-03-26 Corning Incorporated Method for controlling surface features on glass-ceramic articles and articles formed therefrom
EP3295078A1 (en) * 2015-05-15 2018-03-21 Corning Incorporated Glass article comprising light extraction features and methods for making the same
WO2016187194A1 (en) * 2015-05-18 2016-11-24 Corning Incorporated Glass articles comprising light extraction features and methods for making the same
DE112017000097B4 (en) * 2016-02-01 2022-11-03 AGC Inc. Translucent structure
JP2018018378A (en) * 2016-07-29 2018-02-01 兼松株式会社 Touch panel cover glass
CN115432936B (en) 2018-07-09 2023-09-01 日本板硝子株式会社 glass plate

Also Published As

Publication number Publication date
CN115432936B (en) 2023-09-01
JP2022017240A (en) 2022-01-25
CN115448607A (en) 2022-12-09
CN112368247A (en) 2021-02-12
EP3822234A1 (en) 2021-05-19
TWI795576B (en) 2023-03-11
US20210230052A1 (en) 2021-07-29
KR20210030422A (en) 2021-03-17
JP2022130405A (en) 2022-09-06
WO2020013012A1 (en) 2020-01-16
CN115448607B (en) 2024-06-21
EP3822234A4 (en) 2022-04-27
JPWO2020013012A1 (en) 2021-08-02
CN115432936A (en) 2022-12-06
JP7085051B2 (en) 2022-06-15
TW202010721A (en) 2020-03-16
CN112368247B (en) 2022-10-25
KR102679368B1 (en) 2024-06-28
JP7372395B2 (en) 2023-10-31

Similar Documents

Publication Publication Date Title
JP6955106B2 (en) Glass plate suitable for image display devices
US11604514B2 (en) Substrate having a visually imperceptible texture for providing variable coefficients of friction between objects
TWI688886B (en) Conductive film, display device equipped with the same, and method for evaluating conductive film
JP2019144475A (en) Light transmissive structure
CN106470954A (en) The glass plate of low flash of light
EP2743764A1 (en) Method of designing random pattern, apparatus for designing random pattern, and optical substrate including random pattern according to the same method
TW202216629A (en) Textured region of a substrate to reduce specular reflectance incorporating surface features with an elliptical perimeter or segments thereof, and method of making the same
CN108439813B (en) Low-glare anti-glare glass-based article with bend reduction and method of reducing bend in anti-glare glass-based article
US10627971B2 (en) Conductive film, touch panel, and display device
JP2022546623A (en) Roughened antiglare glass article and method for producing the same
US11807572B2 (en) Glass plate, glass plate having anti-reflection layer, and method for producing glass plate
US8846175B2 (en) Light transmissive film and fabrication method of light transmissive film
TWI632401B (en) Display device
JP2012215894A (en) Glass substrate for reflective mirror and reflective mirror including glass substrate
TWI361928B (en) Reflective structure having a directivity of diffuse reflection and apparatus with it
JP2021092693A (en) cover glass
US20240158290A1 (en) Dual textured glass articles and methods of making the same
WO2016060142A1 (en) Conductive film, display device provided therewith, and conductive film evaluation method
CN115003639A (en) Glass substrate, display device, and method for manufacturing glass substrate
JP2018132496A (en) Evaluation method of transparent article
US20200096681A1 (en) Transparent substrate
JPWO2009014214A1 (en) 3D display device with reduced moiré
JP2018160214A (en) Pen input device, substrate for pen input device, and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210531

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210930

R150 Certificate of patent or registration of utility model

Ref document number: 6955106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250