JP6831179B2 - Manufacturing method of heat-dissipating sheet material with high thermal conductivity - Google Patents
Manufacturing method of heat-dissipating sheet material with high thermal conductivity Download PDFInfo
- Publication number
- JP6831179B2 JP6831179B2 JP2016059767A JP2016059767A JP6831179B2 JP 6831179 B2 JP6831179 B2 JP 6831179B2 JP 2016059767 A JP2016059767 A JP 2016059767A JP 2016059767 A JP2016059767 A JP 2016059767A JP 6831179 B2 JP6831179 B2 JP 6831179B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- silicone resin
- roll
- sheet material
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 69
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 229920002050 silicone resin Polymers 0.000 claims description 77
- 239000011342 resin composition Substances 0.000 claims description 57
- 239000010410 layer Substances 0.000 claims description 40
- 239000011521 glass Substances 0.000 claims description 35
- 239000004744 fabric Substances 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 33
- 239000002243 precursor Substances 0.000 claims description 22
- 239000011231 conductive filler Substances 0.000 claims description 19
- 239000003960 organic solvent Substances 0.000 claims description 13
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 6
- 238000003825 pressing Methods 0.000 claims description 5
- 239000002356 single layer Substances 0.000 claims description 2
- 238000001723 curing Methods 0.000 description 25
- 238000010292 electrical insulation Methods 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 10
- 229920002379 silicone rubber Polymers 0.000 description 9
- 239000012779 reinforcing material Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- 239000004945 silicone rubber Substances 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000945 filler Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- 239000004944 Liquid Silicone Rubber Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 229920006310 Asahi-Kasei Polymers 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920004482 WACKER® Polymers 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 238000013006 addition curing Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Laminated Bodies (AREA)
Description
本発明は、電子部品と、その冷却のために接合する、例えばヒートシンクのような冷却器との界面間に密着させ、電気的な絶縁性を保ちつつ、電子部品が発する熱を冷却器に伝える、特に高い熱伝導性を有する放熱シート製品を得るためのシート素材であって、ロール状に形成されているもの、即ち高熱伝導性ロール状放熱シート素材の製造方法に関する。 In the present invention, the heat generated by an electronic component is transferred to the cooler while maintaining electrical insulation by bringing the electronic component into close contact with the interface between the electronic component and a cooler such as a heat sink, which is joined for cooling. The present invention relates to a sheet material for obtaining a heat-dissipating sheet product having particularly high thermal conductivity, which is formed in a roll shape, that is, a method for manufacturing a heat-dissipating sheet material having a high thermal conductivity.
放熱シート製品は、電子材料分野において、発熱する電子部品の冷却のために様々な形状に加工された、電子部品と、例えばヒートシンクなどの冷却器との界面に密着させて使用されるシート状の製品である。放熱シート製品は、熱伝導性、電気絶縁性、ハンドリング性などの特性に優れることが求められており、一般的には、ガラスクロスなどの補強材と、熱伝導性及び電気絶縁性を有する充填材を含有するシリコーン樹脂(以下、熱伝導性シリコーン樹脂組成物と記載する)とを、熱伝導性シリコーン樹脂組成物の層がいずれも外側になるように積層させた前駆シートを準備し、さらに前記前駆シートの表面をプレス加工処理するなどして製造された放熱シート素材から、用途に適した形状に切り出し加工して得られた製品である。 In the field of electronic materials, heat-dissipating sheet products are sheet-like products that are processed into various shapes to cool electronic components that generate heat and are used in close contact with the interface between electronic components and a cooler such as a heat sink. It is a product. Heat-dissipating sheet products are required to have excellent properties such as thermal conductivity, electrical insulation, and handleability. Generally, a reinforcing material such as glass cloth and a filling having thermal conductivity and electrical insulation are used. A precursor sheet is prepared in which a silicone resin containing a material (hereinafter referred to as a heat conductive silicone resin composition) is laminated so that the layers of the heat conductive silicone resin composition are all on the outside. It is a product obtained by cutting out a heat-dissipating sheet material produced by pressing the surface of the precursor sheet into a shape suitable for the intended use.
放熱シート製品は、電子部品の高電力化、或いはそれら電子部品を実装する基板や装置をさらに小型化しようとする要望に対応するため、高い電気絶縁性を保持させながらさらなる熱伝導率の向上が求められている。例えば3ACkV以上の絶縁破壊電圧を保持しつつ、熱伝導率が3W/mK以上の熱伝導性(本願では、「3W/mK以上の熱伝導性」を「高熱伝導性」という)を有する放熱シート製品の取得を目的とする場合には、高い熱伝導性を有する充填材を用いることは当然のことながら、熱伝導性シリコーン樹脂組成物の内部に、熱伝導性や電気絶縁性の妨げとなる微少な空隙を内部に含まない放熱シート素材を製造する必要がある。そのため、これまで高熱伝導性の放熱シート素材を製造する場合には、熱伝導性シリコーン樹脂組成物内部の微少な空隙を可能な限り除くため、平板プレス装置を用い、枚葉状として準備した前駆シートを長時間加熱プレス加工処理する方法が採用されてきた。従って、この方法で得られる放熱シート素材は枚葉状となる。 Heat-dissipating sheet products have further improved thermal conductivity while maintaining high electrical insulation in order to meet the demand for higher power consumption of electronic components or further miniaturization of substrates and devices on which these electronic components are mounted. It has been demanded. For example, a heat radiating sheet having a thermal conductivity of 3 W / mK or more (in the present application, "thermal conductivity of 3 W / mK or more" is referred to as "high thermal conductivity") while maintaining an insulation breakdown voltage of 3 ACkV or more. When the purpose is to obtain a product, it goes without saying that a filler having high thermal conductivity is used, which hinders thermal conductivity and electrical insulation inside the thermally conductive silicone resin composition. It is necessary to manufacture a heat radiating sheet material that does not contain minute voids inside. Therefore, in the case of producing a heat-dissipating sheet material having high thermal conductivity, a precursor sheet prepared as a single leaf using a flat plate press device in order to remove as much as possible the minute voids inside the thermally conductive silicone resin composition. A method of heat pressing for a long time has been adopted. Therefore, the heat radiating sheet material obtained by this method has a single-wafer shape.
一方、放熱シート製品を放熱シート素材から切り出す工程等では、枚葉状よりも連続作業が可能な長尺ロール状の放熱シート素材を用いる方がより効率的である。但し放熱シート素材を長尺ロール状とするためには、工業的にはロールプレス装置を用いて製造することになるため、前駆シートを長時間プレス加工処理し、十分確実に脱気して放熱シート素材内部の微少な空隙を除くことは、実際には不可能であった。即ち、これまで高熱伝導性ロール状放熱シート素材の工業的な製造方法が確立されてなかった。 On the other hand, in a process of cutting out a heat radiating sheet product from a heat radiating sheet material, it is more efficient to use a long roll-shaped heat radiating sheet material capable of continuous work rather than a single-wafer shape. However, in order to make the heat-dissipating sheet material into a long roll shape, it is industrially manufactured using a roll press device, so the precursor sheet is press-processed for a long time and degassed sufficiently and reliably to dissipate heat. It was actually impossible to remove the minute voids inside the sheet material. That is, until now, an industrial method for manufacturing a high thermal conductive roll-shaped heat radiating sheet material has not been established.
放熱シート素材に関する従来の技術として、特許文献1には、熱伝導性、密着性共に優れ、オイルブリードもなく、大量生産に適し、且つ電子部品等の組立作業性を低下させない放熱用絶縁シートとして好適な、熱伝導性充填剤を含有し、アスカーC硬度が5〜50であり、且つ厚さが0.4mm以下であり、表面が粘着性である熱伝導性シリコーンゴム層と、該シリコーンゴム層内に配置された少なくとも1枚の補強性シートと、前記シリコーンゴム層の粘着性を有する2つの表面の少なくとも一方に被覆された離型性保護シート層とを有してなる、熱伝導性複合シリコーンゴムシート素材が記載されている。 As a conventional technique relating to a heat-dissipating sheet material, Patent Document 1 describes as a heat-dissipating insulating sheet that has excellent thermal conductivity and adhesion, does not have oil bleeding, is suitable for mass production, and does not reduce the workability of assembling electronic parts and the like. A thermally conductive silicone rubber layer containing a suitable thermally conductive filler, having an Asker C hardness of 5 to 50, a thickness of 0.4 mm or less, and an adhesive surface, and the silicone rubber. Thermal conductivity comprising at least one reinforcing sheet disposed within the layer and a releasable protective sheet layer coated on at least one of the two adhesive surfaces of the silicone rubber layer. The composite silicone rubber sheet material is described.
また特許文献2には、熱伝導性及び柔軟性に優れた熱伝導性複合シート素材であって、大量生産に適しており、電子機器の組立作業にも適している、アスカーC硬度が5〜50であるシリコーンゴム層と、該シリコーンゴム層中に含まれた、直径0.3mm以上の孔を有する多孔性補強材層とを備えてなる熱伝導性複合シート素材が記載され、さらに熱伝導性充填材を含有し硬化後のアスカーC硬度が5〜50である液状付加硬化型オルガノポリシロキサン組成物層の上、下又は内部に多孔性補強材層を配置し、次に前記組成物層と多孔性補強材層とを上下から加熱下でプレス成形する工程を有する、該シート素材の製造方法を提供することが記載されている。 Further, Patent Document 2 describes a thermally conductive composite sheet material having excellent thermal conductivity and flexibility, which is suitable for mass production and also suitable for assembling electronic devices, and has an Asker C hardness of 5 to 5. A heat conductive composite sheet material including a silicone rubber layer of 50 and a porous reinforcing material layer having holes having a diameter of 0.3 mm or more contained in the silicone rubber layer is described, and further heat conductive. A porous reinforcing material layer is placed above, below, or inside a liquid addition-curing organopolysiloxane composition layer containing a sex filler and having an Asker C hardness of 5 to 50 after curing, and then the composition layer. It is described to provide a method for producing the sheet material, which comprises a step of press-molding the porous reinforcing material layer from above and below under heating.
さらに特許文献3及び4には、補強材で補強されたフィラー含有樹脂シート素材、例えば放熱シート素材を押し出し法で製造する方法が記載されている。 Further, Patent Documents 3 and 4 describe a method for producing a filler-containing resin sheet material reinforced with a reinforcing material, for example, a heat radiating sheet material by an extrusion method.
特許文献5には、熱伝導性に優れ、発熱性素子と放熱器の種々の隙間に設置可能で、組立作業に適合した熱伝導性複合シート素材の大量生産が容易な製造方法を見出すことを目的として、網目状補強材に熱伝導性充填剤配合のシリコーンゴムを被覆硬化させた放熱絶縁シートと、熱伝導性充填剤を配合した硬化後の硬さがアスカーF硬度計で10〜95の範囲である未硬化の付加型液状シリコーンゴムを一体化し、液状シリコーンゴムを成形硬化させ放熱絶縁シートと複合化することを特徴とする、熱伝導性複合シート素材の製造方法が記載されている。 In Patent Document 5, it is found that a manufacturing method having excellent thermal conductivity, which can be installed in various gaps between a heat generating element and a radiator, and which is suitable for assembly work and which facilitates mass production of a thermally conductive composite sheet material is found. For the purpose, a heat-dissipating insulating sheet in which a mesh-like reinforcing material is coated and cured with silicone rubber containing a heat conductive filler, and a hardness after curing in which a heat conductive filler is mixed are 10 to 95 with an Asker F hardness tester. Described is a method for producing a heat conductive composite sheet material, which comprises integrating an uncured additive liquid silicone rubber in the range, molding and curing the liquid silicone rubber, and combining it with a heat-dissipating insulating sheet.
本発明は、このような従来技術に鑑み、高い電気絶縁性を保持しつつ高熱伝導性を両立する高熱伝導性放熱シート製品を得ることができ、さらに切り出し工程等の効率を上げることができるロール状とした放熱シート素材、即ち高熱伝導性ロール状放熱シート素材の製造方法を提供することを目的とする。 In view of such a prior art, the present invention can obtain a highly thermally conductive heat radiating sheet product that maintains high electrical insulation and also has high thermal conductivity, and can further improve the efficiency of the cutting process and the like. It is an object of the present invention to provide a method for manufacturing a heat-dissipating sheet material in the form of a shape, that is, a highly heat-conductive roll-shaped heat-dissipating sheet material.
本発明者は前記課題を解決するために鋭意検討した結果、ロールプレス装置を使用して放熱シート素材を製造する場合には、帯状ガラスクロスと、シリコーン樹脂と熱伝導性充填材を含む前駆シートを、ロールプレス装置を用いてプレス加工処理する前に、適正範囲内に予備硬化させておくことが必要であり、さらにロールの線圧を適正に設定する必要があることを見出した。 As a result of diligent studies to solve the above problems, the present inventor, when producing a heat radiating sheet material using a roll press device, a precursor sheet containing a strip-shaped glass cloth, a silicone resin and a heat conductive filler. It was found that it is necessary to pre-cure the material within an appropriate range before the press working using the roll press apparatus, and it is necessary to set the linear pressure of the roll appropriately.
即ち、上記知見に基づいて完成した本発明は、帯状ガラスクロスの層と、硬化性シリコーン樹脂と熱伝導性充填材を含む熱伝導性シリコーン樹脂組成物の層とが積層し、前記熱伝導性シリコーン樹脂組成物の硬化度を70〜95%の範囲に予備硬化させた前駆シートを準備し、さらに前記前駆シートを、ロールの線圧50N/mm〜300N/mmのロールプレス装置を用いて連続的にプレス加工処理して巻き取る、高熱伝導性ロール状放熱シート素材の製造方法である。 That is, in the present invention completed based on the above findings, the layer of the strip-shaped glass cloth and the layer of the heat conductive silicone resin composition containing the curable silicone resin and the heat conductive filler are laminated, and the heat conductivity is described. A precursor sheet in which the degree of curing of the silicone resin composition is pre-cured in the range of 70 to 95% is prepared, and the precursor sheet is continuously subjected to a roll press device having a linear pressure of 50 N / mm to 300 N / mm. This is a method for manufacturing a highly thermally conductive roll-shaped heat-dissipating sheet material, which is specifically pressed and wound up.
また本発明は、前記帯状ガラスクロスが、帯状ガラスクロスの表面に、硬化性シリコーン樹脂と熱伝導性充填剤と有機溶剤とを含むスラリー状の熱伝導性シリコーン樹脂組成物を塗布した後、有機溶剤を除去及び加熱したものである、前記高熱伝導性ロール状放熱シート素材の製造方法である。 Further, in the present invention, the band-shaped glass cloth is organic after applying a slurry-like heat-conductive silicone resin composition containing a curable silicone resin, a heat-conductive filler and an organic solvent on the surface of the band-shaped glass cloth. This is a method for producing the high thermal conductive roll-shaped heat-dissipating sheet material, which is obtained by removing and heating a solvent.
また本発明は、前駆シートが、1層の帯状ガラスクロスの両面に、熱伝導性シリコーン樹脂組成物の層が積層している、前記高熱伝導性ロール状放熱シート素材の製造方法である。 Further, the present invention is a method for producing the high thermal conductive roll-shaped heat radiating sheet material, in which a layer of a thermally conductive silicone resin composition is laminated on both sides of a single layer of strip-shaped glass cloth.
さらに本発明は、熱伝導性充填剤が、アグリゲート状の六方晶窒化ホウ素粉末である、前記高熱伝導性ロール状放熱シート素材の製造方法である。 Further, the present invention is a method for producing the highly thermally conductive roll-shaped heat radiating sheet material, wherein the thermally conductive filler is an aggregate-shaped hexagonal boron nitride powder.
本発明の実施により、高い電気絶縁性を保持しつつ高熱伝導性を示す放熱シート製品を得ることができ、さらに切り出し工程等の効率を上げることができるロール状の放熱シート素材、即ち高熱伝導性ロール状放熱シート素材を、工業的な規模で市場に供給することができる。 By implementing the present invention, it is possible to obtain a heat-dissipating sheet product that exhibits high thermal conductivity while maintaining high electrical insulation, and further, a roll-shaped heat-dissipating sheet material that can improve the efficiency of the cutting process, that is, high thermal conductivity. The roll-shaped heat dissipation sheet material can be supplied to the market on an industrial scale.
本発明に係る高熱伝導性ロール状放熱シート素材において、その補強材となるのは帯状ガラスクロスである。帯状ガラスクロスは、高温窯で溶融したガラスの素地をノズルから高速で引き出した糸状のガラス長繊維を帯状に編んだ製品であり、電気的絶縁性に優れながら、柔軟性及び強度にも優れる素材である。なお、ガラス長繊維には熱処理が加えてあると不純物が少なくてより好ましく、また、ガラス長繊維にはシラン系カップリング剤による表面処理が施してあってもよい。帯状ガラスクロスの厚みや編み方、ガラス長繊維の種類や太さに特に制限はなく、一般に市販されている帯状ガラスクロスを使用することができる。但し、本発明の高熱伝導性ロール状放熱シート素材の製造方法で用いられる帯状ガラスクロスとしては、厚みが0.04mm以上0.10mm以下の帯状ガラスクロスが好ましく用いられる。また、帯状ガラスクロスの幅や長さにも特に制限はないが、幅は通常5cm以上、200cm以下、長さは通常5m以上200m以下のものが好ましく用いられる。 In the high thermal conductivity roll-shaped heat radiating sheet material according to the present invention, the reinforcing material thereof is a strip-shaped glass cloth. Band-shaped glass cloth is a product in which thread-like long glass fibers, which are obtained by pulling out a glass base melted in a high-temperature kiln from a nozzle at high speed, into a band shape, and are a material with excellent electrical insulation, flexibility and strength. Is. It is more preferable that the long glass fibers are heat-treated because they have less impurities, and the long glass fibers may be surface-treated with a silane-based coupling agent. There are no particular restrictions on the thickness and knitting method of the strip-shaped glass cloth, and the type and thickness of the long glass fibers, and a generally commercially available strip-shaped glass cloth can be used. However, as the strip-shaped glass cloth used in the method for producing the high thermal conductive roll-shaped heat radiating sheet material of the present invention, a strip-shaped glass cloth having a thickness of 0.04 mm or more and 0.10 mm or less is preferably used. The width and length of the strip-shaped glass cloth are not particularly limited, but those having a width of usually 5 cm or more and 200 cm or less and a length of usually 5 m or more and 200 m or less are preferably used.
本発明に係る高熱伝導性ロール状放熱シート素材において、熱伝導性シリコーン樹脂組成物に用いられるシリコーン樹脂は、硬化性シリコーン樹脂である。硬化性シリコーン樹脂の種類に特に制限はないが、過酸化物硬化型、縮合反応硬化型、付加反応硬化型、紫外線硬化型の硬化性シリコーン樹脂が好適に使用可能である。また前記硬化性シリコーン樹脂の、硬化前の粘度としては、25℃で1000Pa・sec以上100000Pa・sec以下のものが好ましく使用できる。 In the highly thermally conductive roll-shaped heat-dissipating sheet material according to the present invention, the silicone resin used in the thermally conductive silicone resin composition is a curable silicone resin. The type of the curable silicone resin is not particularly limited, but a peroxide-curable type, a condensation reaction-curable type, an addition reaction-curable type, and an ultraviolet-curable type curable silicone resin can be preferably used. The curable silicone resin preferably has a viscosity of 1000 Pa · sec or more and 100,000 Pa · sec or less at 25 ° C. before curing.
さらに、帯状ガラスクロスの層と熱伝導性シリコーン樹脂組成物の層とが積層する形態、即ち帯状ガラスクロスの層や硬化性樹脂組成物の層の数に制限はない。但し、一般には、熱伝導性シリコーン樹脂組成物の層が最も外側に積層される形態が好ましい。複数の帯状ガラスクロスの層を有する場合、帯状ガラスクロスは全て同じ種類でなくてもよい。また組成の種類やその配合比率が異なるシリコーン樹脂組成物の層を重ね合わせたりするなど、ひとつの熱伝導性シリコーン樹脂組成物の層の内部は必ずしも均一でなくてもよい。一般には、1層の帯状ガラスクロスの層の両面に、熱伝導性シリコーン樹脂組成物の層が積層する形態が好ましい。 Further, there is no limitation on the form in which the layer of the strip-shaped glass cloth and the layer of the thermally conductive silicone resin composition are laminated, that is, the number of the layers of the strip-shaped glass cloth and the layer of the curable resin composition is limited. However, in general, it is preferable that the layers of the thermally conductive silicone resin composition are laminated on the outermost side. When having a plurality of layers of strip-shaped glass cloth, the strip-shaped glass cloth does not have to be all of the same type. Further, the inside of one layer of the thermally conductive silicone resin composition does not necessarily have to be uniform, such as by superimposing layers of silicone resin compositions having different composition types and blending ratios thereof. In general, it is preferable that a layer of a heat conductive silicone resin composition is laminated on both sides of one layer of a strip-shaped glass cloth.
また、前記熱伝導性シリコーン樹脂組成物中に含まれる、熱伝導性充填材の種類に、特に制限はないが、窒化ホウ素粉末、窒化アルミニウム粉末、酸化アルミニウム粉末、窒化ケイ素粉末、酸化ケイ素粉末、酸化亜鉛粉末等が使用可能であるが、熱伝導性および加工性の理由により、六方晶窒化ホウ素粉末が好ましい。さらに前記六方晶窒化ホウ素粉末の形態は、良好な熱伝導性を有する、鱗片状の一次粒子が配向せずに凝集してなるアグリゲート状であることが好ましい。 The type of the heat conductive filler contained in the heat conductive silicone resin composition is not particularly limited, but boron nitride powder, aluminum nitride powder, aluminum oxide powder, silicon nitride powder, silicon oxide powder, and the like. Zinc oxide powder or the like can be used, but hexagonal boron nitride powder is preferable because of thermal conductivity and processability. Further, the form of the hexagonal boron nitride powder is preferably an aggregate shape in which scaly primary particles having good thermal conductivity are aggregated without being oriented.
熱伝導性シリコーン樹脂組成物においては、硬化性シリコーン樹脂成分の合計100質量部に対して、熱伝導性充填材を100〜1300質量部含有するものであることが好ましく、より好ましくは240〜730質量部である。熱伝導性充填材が100質量部未満の場合は、熱伝導率が低くなり、放熱性が低下する。一方、熱伝導性充填材が1300質量部より大きい場合は、硬化性シリコーン樹脂と熱伝導性充填材の混合が良好でなく、熱伝導性シリコーン樹脂組成物の層の厚みが不均一となることがある。 The heat conductive silicone resin composition preferably contains 100 to 1300 parts by mass of the heat conductive filler with respect to a total of 100 parts by mass of the curable silicone resin component, and more preferably 240 to 730 parts by mass. It is a mass part. When the heat conductive filler is less than 100 parts by mass, the thermal conductivity is lowered and the heat dissipation is lowered. On the other hand, when the heat conductive filler is larger than 1300 parts by mass, the mixture of the curable silicone resin and the heat conductive filler is not good, and the thickness of the layer of the heat conductive silicone resin composition becomes non-uniform. There is.
また熱伝導性シリコーン樹脂組成物中には、本発明の実施を妨げない限り、及び放熱シート製品の物性低下を招かない限り、シランカップリング剤、着色剤、硬化性シリコーン樹脂の硬化触媒、過酸化物等を加えることも可能である。 Further, in the heat conductive silicone resin composition, a silane coupling agent, a colorant, a curing catalyst of a curable silicone resin, and a peroxide, as long as the implementation of the present invention is not hindered and the physical properties of the heat radiating sheet product are not deteriorated. It is also possible to add oxides and the like.
帯状ガラスクロスの層と熱伝導性シリコーン樹脂組成物の層とを積層させる方法としては、例えば帯状ガラスクロスの表面に、有機溶剤をさらに含むスラリー状の熱伝導性シリコーン樹脂組成物を塗布し、そのあとで加熱乾燥して有機溶剤を除去する方法が一般には好ましい。さらに、乾燥と同時に、硬化性シリコーン樹脂の硬化反応を進めることも可能である。 As a method of laminating the layer of the band-shaped glass cloth and the layer of the heat conductive silicone resin composition, for example, a slurry-like heat conductive silicone resin composition further containing an organic solvent is applied to the surface of the band-shaped glass cloth. After that, a method of heating and drying to remove the organic solvent is generally preferable. Further, it is possible to proceed with the curing reaction of the curable silicone resin at the same time as drying.
前記スラリー状の熱伝導性シリコーン樹脂組成物中に含まれる、有機溶剤の種類は、硬化性シリコーン樹脂や熱伝導性充填剤と反応したり、分離しなければ特に制約はないが、スラリーの安定性や、有機溶剤の除去しやすさの観点から、例えばトルエンが好ましく用いられる。 The type of organic solvent contained in the slurry-like thermally conductive silicone resin composition is not particularly limited as long as it does not react with or separate from the curable silicone resin or the thermally conductive filler, but the slurry is stable. For example, toluene is preferably used from the viewpoint of properties and ease of removing the organic solvent.
前記スラリー状の熱伝導性シリコーン樹脂組成物においては、硬化性シリコーン樹脂成分の合計100質量部に対して、有機溶剤を200〜250質量部含有するものであることが好ましく、より好ましくは220〜240質量部である。有機溶剤が200質量部未満の場合は、熱伝導性充填剤の割合が必要最小限の場合においても、熱伝導性シリコーン樹脂組成物の粘度が高すぎて、所定の厚みに塗布することが困難である。一方、有機溶剤が250質量部より大きい場合は、熱伝導性充填剤の割合が最大限添加した場合においても熱伝導性シリコーン樹脂組成物の粘度が低く、帯状ガラスクロスから液だれするため放熱シートの製造が困難である。 The slurry-like thermally conductive silicone resin composition preferably contains 200 to 250 parts by mass of an organic solvent with respect to a total of 100 parts by mass of the curable silicone resin component, and more preferably 220 to 220 parts by mass. It is 240 parts by mass. When the amount of the organic solvent is less than 200 parts by mass, even when the ratio of the heat conductive filler is the minimum necessary, the viscosity of the heat conductive silicone resin composition is too high and it is difficult to apply it to a predetermined thickness. Is. On the other hand, when the amount of the organic solvent is larger than 250 parts by mass, the viscosity of the heat conductive silicone resin composition is low even when the ratio of the heat conductive filler is added to the maximum, and the heat radiating sheet is dripping from the strip-shaped glass cloth. Is difficult to manufacture.
帯状ガラスクロス表面への、前記スラリー状の熱伝導性シリコーン樹脂組成物を塗布する方法は、コンマコーター法、ロールコーター法等の公知の塗布方法を採用することができるが、熱伝導性シリコーン樹脂組成物の層の厚み精度を考慮すると、コンマコーター法が好ましい。なお、本発明では、スラリー状の熱伝導性シリコーン樹脂組成物は、帯状ガラスクロスの表裏両面に、同時に塗布しても、片面ずつ塗布してもよい。 As a method for applying the slurry-like thermally conductive silicone resin composition to the surface of the strip-shaped glass cloth, a known coating method such as a comma coater method or a roll coater method can be adopted, but the thermally conductive silicone resin Considering the thickness accuracy of the layer of the composition, the comma coater method is preferable. In the present invention, the slurry-like thermally conductive silicone resin composition may be applied to both the front and back surfaces of the strip-shaped glass cloth at the same time or one side at a time.
帯状ガラスクロスに塗布した、スラリー状の熱伝導性シリコーン樹脂組成物中に含まれる有機溶剤を、加熱乾燥して除去する方法に特に制限はないが、恒温器を用い、加熱乾燥する方法を好ましく採用することができる。 The method for removing the organic solvent contained in the slurry-like thermally conductive silicone resin composition applied to the strip-shaped glass cloth by heating and drying is not particularly limited, but a method of heating and drying using a thermostat is preferable. Can be adopted.
帯状ガラスクロスの表面に塗布または積層させた、熱伝導性シリコーン樹脂組成物を所定範囲の硬化度まで予備硬化させる方法に特に制限はないが、恒温器での加熱乾燥する方法を好ましく採用することができる。従って、スラリー状の熱伝導性シリコーン樹脂組成物中に含まれる有機溶剤を加熱乾燥すると同時に予備硬化させることも可能である。なお、本願でいう熱伝導性シリコーン樹脂組成物の硬化度は相対的な指数であり、
プレス加工処理する前の前駆シート、即ち熱伝導性シリコーン樹脂組成物を完全に硬化する前の硬度の測定値を、熱伝導性シリコーン樹脂組成物を完全硬化させて得られた放熱シート素材の硬度の測定値で除することにより得た値である。なお、ここでいう完全硬化させて得られた放熱シート素材とは、前駆シートをプレス加工処理し、同シートをさらに150℃で4時間加熱して得られた放熱シート素材である。なお、帯状ガラスクロスの層は、熱伝導性シリコーン樹脂組成物の層に比べて相対的に著しく硬度が高いため、本願でいう硬化度は、熱伝導性シリコーン樹脂組成物の硬化の進行程度にのみ反映され、前駆シートのガラスクロスの層の厚みや、硬化性シリコーン樹脂の厚みが変化したり、前駆シートを重ねて硬度を測定しても、普遍的な値として算出される。
The method of pre-curing the thermally conductive silicone resin composition coated or laminated on the surface of the strip-shaped glass cloth to a predetermined degree of curing is not particularly limited, but a method of heating and drying in an incubator is preferably adopted. Can be done. Therefore, the organic solvent contained in the slurry-like thermally conductive silicone resin composition can be heat-dried and pre-cured at the same time. The degree of curing of the thermally conductive silicone resin composition referred to in the present application is a relative index.
The hardness of the heat-dissipating sheet material obtained by completely curing the thermally conductive silicone resin composition based on the measured value of the hardness of the precursor sheet before the press processing, that is, before completely curing the thermally conductive silicone resin composition. It is a value obtained by dividing by the measured value of. The heat-dissipating sheet material obtained by completely curing here is a heat-dissipating sheet material obtained by pressing a precursor sheet and further heating the sheet at 150 ° C. for 4 hours. Since the band-shaped glass cloth layer has a relatively significantly higher hardness than the layer of the heat conductive silicone resin composition, the degree of curing referred to in the present application is about the degree of progress of curing of the heat conductive silicone resin composition. Even if the thickness of the glass cloth layer of the precursor sheet or the thickness of the curable silicone resin changes, or the hardness is measured by stacking the precursor sheets, it is calculated as a universal value.
本発明の高熱伝導性ロール状放熱シート素材の製造方法においては、ロールプレス装置を用いてプレス加工処理する前の前駆シートの硬化度が70〜95%、好ましくは75〜85%となるように予備硬化させておく。前駆シートの予備硬化度が70%より小さい場合は、熱伝導性シリコーン樹脂組成物と、ロールプレス装置に備わるロールまたはロール付着防止用フィルムとが密着して剥がせなくなり、ロールプレス装置を用いた放熱シート素材の製造は困難である。なお、前記ロール付着防止用フィルムは、プレス加工処理時に、熱伝導性シリコーン樹脂組成物がロールに付着することを防止するために、予備硬化させたシリコーン樹脂組成物の表面を一時的に覆う、例えばポリエチレン樹脂製のフィルムである。前記ロール付着防止用フィルムは、シリコーン樹脂組成物に対しては剥離容易である特性を有し、本願の高熱伝導性ロール状放熱シート素材の製造方法でも好ましく用いることができる。一方、前駆シートの予備硬化度が95%より大きい場合は、ロールプレス装置によるプレス加工処理を行っても熱伝導性シリコーン樹脂組成物内の微少な空隙を減少させることができず、放熱シート素材の電気絶縁性の向上が望めない。 In the method for producing a highly thermally conductive roll-shaped heat-dissipating sheet material of the present invention, the degree of curing of the precursor sheet before press working using the roll press device is 70 to 95%, preferably 75 to 85%. Pre-cured. When the degree of pre-curing of the precursor sheet was less than 70%, the heat conductive silicone resin composition and the roll provided in the roll press device or the film for preventing roll adhesion could not be peeled off, and the roll press device was used. Manufacture of heat-dissipating sheet material is difficult. The roll adhesion prevention film temporarily covers the surface of the pre-cured silicone resin composition in order to prevent the heat conductive silicone resin composition from adhering to the roll during the press processing. For example, a film made of polyethylene resin. The roll adhesion prevention film has a property of being easily peeled off from the silicone resin composition, and can be preferably used in the method for producing a highly thermally conductive roll-shaped heat radiating sheet material of the present application. On the other hand, when the pre-curing degree of the precursor sheet is greater than 95%, it is not possible to reduce the minute voids in the heat conductive silicone resin composition even if the press working process is performed by the roll press device, and the heat radiation sheet material No improvement in electrical insulation can be expected.
本発明の高熱伝導性ロール状放熱シート素材の製造方法においては、帯状ガラスクロスへのスラリー状の熱伝導性シリコーン樹脂組成物の塗布及び塗布後の熱伝導性シリコーン樹脂組成物の乾燥及び予備硬化の順序は特に制限はない。例えば、塗布及び乾燥と予備硬化を片面ずつ実施しても良く、或いは両面同時に並列的に塗布及び乾燥と予備硬化を実施してもよい。 In the method for producing a highly thermally conductive roll-shaped heat-dissipating sheet material of the present invention, the slurry-like thermally conductive silicone resin composition is applied to a strip-shaped glass cloth, and the thermally conductive silicone resin composition is dried and pre-cured after the application. The order of is not particularly limited. For example, coating, drying and pre-curing may be carried out one side at a time, or both sides may be simultaneously coated, dried and pre-cured.
本発明の高熱伝導性ロール状放熱シート素材の製造方法において、ロールプレス装置を用いたプレス加工処理には、通常2本のロールを上下に備える装置が好ましく用いられる。前記ロールの直径や幅に特に制約はないが、十分にプレス加工処理するためには、一般にロールの直径200mm〜600mmであることが好ましい。また、プレス加工処理時のロール表面の周速に特に制約はないが、一般には0.1m/秒〜10m/秒であることが好ましい。0.1m/秒以下では生産性が低いといった問題があり、10m/秒以上では十分にプレス加工処理ができないという問題がある。さらにロールの表面温度は、通常0℃〜100℃であることが好ましい。0℃以下では前駆シートの熱伝導性シリコーン樹脂組成物の硬化が進まず、100℃以上では、熱伝導性シリコーン樹脂組成物の硬化が逆に過度に進むため、プレス加工処理中に空隙を減少させることができず、放熱シートの電気絶縁性の向上が望めない。 In the method for producing a highly thermally conductive roll-shaped heat radiating sheet material of the present invention, an apparatus having two rolls on the upper and lower sides is usually preferably used for the press working process using the roll press apparatus. The diameter and width of the roll are not particularly limited, but the diameter of the roll is generally preferably 200 mm to 600 mm for sufficient press working. Further, the peripheral speed of the roll surface during the press working process is not particularly limited, but is generally preferably 0.1 m / sec to 10 m / sec. There is a problem that the productivity is low at 0.1 m / sec or less, and there is a problem that the press working process cannot be sufficiently performed at 10 m / sec or more. Further, the surface temperature of the roll is usually preferably 0 ° C to 100 ° C. At 0 ° C. or lower, the heat conductive silicone resin composition of the precursor sheet does not cure, and at 100 ° C. or higher, the heat conductive silicone resin composition cures excessively, so that voids are reduced during the press processing. It is not possible to improve the electrical insulation of the heat dissipation sheet.
また本発明において、プレス加工処理時のロールの線圧は、50N/mm〜300N/mmに設定する。ロールの線圧が50N/mmより小さいとプレス加工処理しても熱伝導性シリコーン樹脂組成物内の微少空隙を減少させることができず、放熱シート製品の電気絶縁性の向上が望めない。ロールの線圧が300N/mmより大きいと、放熱シート素材の補強材として用いている帯状ガラスクロスが破壊される。なお、前記ロールの線圧とは、ロールによるプレス荷重(単位;N)を、ロールの幅(単位:mm)で除した値であり、一般に用いられている装置ではプレス加工処理中においても変動を常に抑えるように自動制御されている。 Further, in the present invention, the linear pressure of the roll during the press working process is set to 50 N / mm to 300 N / mm. If the linear pressure of the roll is less than 50 N / mm, it is not possible to reduce the minute voids in the thermally conductive silicone resin composition even by press working, and it is not expected to improve the electrical insulation of the heat radiating sheet product. If the linear pressure of the roll is larger than 300 N / mm, the strip-shaped glass cloth used as a reinforcing material for the heat radiating sheet material is destroyed. The linear pressure of the roll is a value obtained by dividing the press load (unit: N) by the roll by the width of the roll (unit: mm), and is fluctuated even during the press working in a generally used apparatus. Is automatically controlled so as to always suppress.
プレス加工処理した後の放熱シート素材の厚みは特に限定されないが、0.1〜1mm程度が一般的であり、薄すぎると電気絶縁性が低下し、厚すぎると熱伝導性が不足することから0.2〜0.45mmが好ましい。 The thickness of the heat radiating sheet material after the press working is not particularly limited, but it is generally about 0.1 to 1 mm. If it is too thin, the electrical insulation property is lowered, and if it is too thick, the thermal conductivity is insufficient. It is preferably 0.2 to 0.45 mm.
本発明の高熱伝導性ロール状放熱シート素材の製造方法において、プレス加工処理が完了した段階における熱伝導性シリコーン樹脂組成物の硬化度は、80%〜100%であることが好ましい。80%以下であると輸送時などにシリコーン樹脂組成物表面に傷が生じる恐れがある。なお、プレス加工処理が終了した後に、シリコーン樹脂組成物完全に硬化してない(即ち硬化度が95%以上100%未満)場合には、さらにこれを二次加熱させて硬化度をさらに上げることも可能である。最終的な硬化度は98〜100%であることが好ましい。放熱シート素材のシリコーン樹脂組成物を最終的に好ましい硬化度まで硬化させる方法としては、一般的には二次加熱することが好ましい。例えば放熱シート素材を恒温器中に置いたり、温風加熱が好ましい。また、二次加熱は、放熱シー素材の表面間が融着しなければ、ロール状とした後に実施しても構わない。 In the method for producing a highly thermally conductive roll-shaped heat-dissipating sheet material of the present invention, the degree of curing of the thermally conductive silicone resin composition at the stage when the press working process is completed is preferably 80% to 100%. If it is 80% or less, the surface of the silicone resin composition may be scratched during transportation. If the silicone resin composition is not completely cured (that is, the degree of curing is 95% or more and less than 100%) after the press working process is completed, the silicone resin composition is further secondarily heated to further increase the degree of curing. Is also possible. The final degree of curing is preferably 98 to 100%. As a method for finally curing the silicone resin composition of the heat radiating sheet material to a preferable degree of curing, secondary heating is generally preferable. For example, it is preferable to place the heat radiating sheet material in an incubator or heat it with warm air. Further, the secondary heating may be performed after forming a roll as long as the surfaces of the heat radiating sea material are not fused.
本発明の高熱伝導性ロール状放熱シート素材の製造方法において、ロールプレス装置を用いて得た、長尺帯状の放熱シートを巻き取る方法に特に制約はない。公知の巻取り機を好適に使用して、ロール状に巻き取ることができる。 In the method for producing a highly thermally conductive roll-shaped heat-dissipating sheet material of the present invention, there is no particular limitation on the method for winding a long strip-shaped heat-dissipating sheet obtained by using a roll press device. A known winder can be preferably used to wind the product in a roll shape.
以下、本発明を実施例、比較例を挙げて更に具体的に説明するが、これらは本発明及びその利点をより良く理解するために記載するものであり、本発明を限定することを意図するものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but these are described in order to better understand the present invention and its advantages, and are intended to limit the present invention. It's not a thing.
実施例1〜11、比較例1〜4
熱硬化性シリコーン樹脂であるポリオルガノシロキサンベースポリマー(旭化成・ワッカーシリコーン社製 商品名「LR3303/20」)100質量部と、熱伝導性充填剤であるアグリゲート状窒化ホウ素粉末(商品名「SGPS」、デンカ社製)350質量部と、有機溶剤であるトルエン500質量部とを攪拌機で15時間混合して分散させ、スラリー状の熱伝導性シリコーン樹脂組成物を調製した。
Examples 1-11, Comparative Examples 1-4
100 parts by mass of polyorganosiloxane-based polymer (trade name "LR3303 / 20" manufactured by Asahi Kasei Wacker Silicone Co., Ltd.), which is a thermosetting silicone resin, and aggregated boron nitride powder (trade name "SGPS"), which is a thermally conductive filler. , (Manufactured by Denka Co., Ltd.) 350 parts by mass and 500 parts by mass of toluene, which is an organic solvent, were mixed and dispersed with a stirrer for 15 hours to prepare a slurry-like thermosetting silicone resin composition.
連続塗工機(製品名「コンマコーター(登録商標)」、ヒラノテクシード社製)を用いて、厚さ0.04mm、幅54cm、長さ50mのガラスクロス(製品名「H 25 F104」、ユニチカ社製)の片面(1層目)上に、前記スラリー状の熱伝導性シリコーン樹脂組成物を、塗布厚みが0.175mm、塗布幅が約50cmになるよう塗布し、さらに表1、2の条件で乾燥させた。その後、塗布した層とは反対側の面(2層目)に、前記シリコーン樹脂組成物を、1層目と同じ方法で、塗布厚みが0.175mm、塗布幅が約30cmになるよう塗布し、表1、2の条件で乾燥し、ロールプレス前の前駆シートを得た。 Using a continuous coating machine (product name "Commacoater (registered trademark)", manufactured by Hirano Texseed), a glass cloth with a thickness of 0.04 mm, a width of 54 cm, and a length of 50 m (product name "H 25 F104", Unitika) The slurry-like thermally conductive silicone resin composition is applied onto one side (first layer) of (manufactured by) so that the coating thickness is 0.175 mm and the coating width is about 50 cm, and the conditions of Tables 1 and 2 are further applied. It was dried with. Then, the silicone resin composition is applied to the surface (second layer) opposite to the applied layer by the same method as the first layer so that the coating thickness is 0.175 mm and the coating width is about 30 cm. , Dried under the conditions shown in Tables 1 and 2 to obtain a precursor sheet before roll pressing.
前記プレス加工処理前の前駆シートを、直径30cmのロールプレス装置を用い、表1、2に示した条件でプレス加工処理して厚さ0.2mmとし、これを直径10cmの管に巻き取り後、さらに恒温器中で150℃で4時間加熱し、最終的なロール状放熱シート素材を得た。 The precursor sheet before the press working was pressed using a roll press device having a diameter of 30 cm under the conditions shown in Tables 1 and 2 to obtain a thickness of 0.2 mm, which was wound into a tube having a diameter of 10 cm. Further, the material was further heated at 150 ° C. for 4 hours in an incubator to obtain a final roll-shaped heat radiating sheet material.
試作された実施例1〜11、比較例1〜4の放熱シート素材に関し、下記(1)〜(3)の項目について評価した。その結果を表1及び2に示す。 The following items (1) to (3) were evaluated with respect to the heat-dissipating sheet materials of Examples 1 to 11 and Comparative Examples 1 to 4 that were prototyped. The results are shown in Tables 1 and 2.
(1)樹脂硬化度
ロールプレス装置によるプレス加工処理後、さらに150℃で4時間の加熱を行った後の放熱シート素材の硬度に対して、プレス加工処理前の前駆シートの硬度を除した値を樹脂硬化度(%)として算出した。それぞれの硬度は、25mm×25mmのサイズに切った前記放熱シート素材を高さ12mm以上となるように重ね、デュロメータタイプA(ミツトヨ社製)を用いて測定した。
(1) Degree of cure of resin A value obtained by dividing the hardness of the precursor sheet before the press working by the hardness of the heat radiating sheet material after the press working with the roll press device and further heating at 150 ° C. for 4 hours. Was calculated as the resin hardness (%). The hardness of each was measured by stacking the heat radiating sheet materials cut into a size of 25 mm × 25 mm so as to have a height of 12 mm or more, and using a durometer type A (manufactured by Mitutoyo Co., Ltd.).
(2)絶縁破壊電圧
JIS C2110に記載の方法に準拠し、実施例及び比較例の放熱シート素材の絶縁破壊電圧を、短時間破壊試験にて評価した。
(2) Dielectric breakdown voltage The dielectric breakdown voltage of the heat-dissipating sheet materials of Examples and Comparative Examples was evaluated by a short-time breakdown test in accordance with the method described in JIS C2110.
(3)熱伝導率
放熱シート素材の熱伝導率H(W/(m・K))は、放熱シート素材の厚み方向に対して評価した値であり、熱拡散率A(m2/sec)と密度B(kg/m3)、比熱容量C(J/(kg・K))から、H=A×B×Cとして算出した値である。
熱拡散率Aは、レーザーフラッシュ法により求めた。測定装置として、キセノンフラッシュアナライザー(「LFA447NanoFlash」NETZSCH社製)を用いた。なお、実施例、比較例の各放熱シート素材の測定用試料には、測定用レーザー光の反射防止のため両面にカーボンブラックを塗布し、幅10mm×長さ10mmに切り出し加工したものを用いた。
密度Bは、アルキメデス法を用いて求めた。
比熱容量Cは、JIS K 7123:1987に記載の方法に準拠して求めた。
(3) Thermal conductivity The thermal conductivity H (W / (m · K)) of the heat radiating sheet material is a value evaluated with respect to the thickness direction of the heat radiating sheet material, and has a thermal diffusivity A (m 2 / sec). It is a value calculated as H = A × B × C from the density B (kg / m 3 ) and the specific heat capacity C (J / (kg · K)).
The thermal diffusivity A was determined by the laser flash method. A xenon flash analyzer (“LFA447NanoFlash” manufactured by NETZSCH) was used as the measuring device. For the measurement samples of the heat dissipation sheet materials of Examples and Comparative Examples, carbon black was applied to both sides to prevent reflection of the measurement laser light, and the samples were cut out to a width of 10 mm and a length of 10 mm. ..
Density B was determined using Archimedes' method.
The specific heat capacity C was determined according to the method described in JIS K 7123: 1987.
表1の実施例と表2の比較例から、本発明の高熱伝導性ロール状放熱シート素材は、高い熱伝導性と優れた電気絶縁性(絶縁破壊電圧)を示していることがわかる。 From the examples in Table 1 and the comparative examples in Table 2, it can be seen that the high thermal conductivity roll-shaped heat radiating sheet material of the present invention exhibits high thermal conductivity and excellent electrical insulation (dielectric breakdown voltage).
本発明の高熱伝導性ロール状放熱シート素材は、高い熱伝導性と優れた電気絶縁性を有することから、急速に高性能化が進み作動温度が高まる電子部品から熱を効率よく放出させるためのTIM(Thermal Interface Material)などに使用できる。またロール状であることから、放熱シート製品とするための工業的な2次加工も効率的に実施することが可能である。
Since the high thermal conductivity roll-shaped heat radiating sheet material of the present invention has high thermal conductivity and excellent electrical insulation, it is necessary to efficiently release heat from an electronic component whose performance is rapidly improved and the operating temperature is increased. It can be used for TIM (Thermal Interface Material) and the like. Further, since it is in a roll shape, it is possible to efficiently carry out industrial secondary processing for making a heat dissipation sheet product.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016059767A JP6831179B2 (en) | 2016-03-24 | 2016-03-24 | Manufacturing method of heat-dissipating sheet material with high thermal conductivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016059767A JP6831179B2 (en) | 2016-03-24 | 2016-03-24 | Manufacturing method of heat-dissipating sheet material with high thermal conductivity |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017170769A JP2017170769A (en) | 2017-09-28 |
JP6831179B2 true JP6831179B2 (en) | 2021-02-17 |
Family
ID=59971678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016059767A Active JP6831179B2 (en) | 2016-03-24 | 2016-03-24 | Manufacturing method of heat-dissipating sheet material with high thermal conductivity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6831179B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019146926A1 (en) * | 2018-01-29 | 2019-08-01 | 주식회사 엘지화학 | Rechargeable battery and insulation plate for rechargeable battery |
WO2019146927A1 (en) * | 2018-01-29 | 2019-08-01 | 주식회사 엘지화학 | Insulation plate for rechargeable battery and method for manufacturing same |
KR102268405B1 (en) * | 2018-01-29 | 2021-06-24 | 주식회사 엘지에너지솔루션 | Top Insulator For Secondary Battery And The Method For Manufacturing Thereof |
KR20210027975A (en) | 2019-09-03 | 2021-03-11 | 삼성전자주식회사 | Electronic device incuding radiation structure |
WO2021060320A1 (en) | 2019-09-26 | 2021-04-01 | デンカ株式会社 | Heat-dissipating sheet |
US20220346280A1 (en) | 2019-09-26 | 2022-10-27 | Denka Company Limited | Heat dissipation sheet |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3461651B2 (en) * | 1996-01-24 | 2003-10-27 | 電気化学工業株式会社 | Hexagonal boron nitride powder and its use |
JP5474460B2 (en) * | 2009-09-11 | 2014-04-16 | 旭化成イーマテリアルズ株式会社 | Thermally conductive resin composition and thermal conductive sheet using the same |
JP5530318B2 (en) * | 2010-09-10 | 2014-06-25 | 電気化学工業株式会社 | Hexagonal boron nitride powder and high thermal conductivity and high moisture resistance heat dissipation sheet using the same |
JP5673444B2 (en) * | 2010-10-19 | 2015-02-18 | 信越化学工業株式会社 | Silicone rubber sheet for thermocompression bonding and joining method of electrical / electronic equipment parts |
JP6136952B2 (en) * | 2013-02-28 | 2017-05-31 | 信越化学工業株式会社 | Thermally conductive composite silicone rubber sheet |
JP5684360B2 (en) * | 2013-11-01 | 2015-03-11 | 本多産業株式会社 | Silicone rubber multilayer sheet |
JP6214094B2 (en) * | 2014-06-10 | 2017-10-18 | 信越化学工業株式会社 | Thermally conductive sheet |
-
2016
- 2016-03-24 JP JP2016059767A patent/JP6831179B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017170769A (en) | 2017-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6831179B2 (en) | Manufacturing method of heat-dissipating sheet material with high thermal conductivity | |
TWI658550B (en) | Manufacturing method of heat conductive sheet, heat conductive sheet, and heat radiation member | |
JP5423455B2 (en) | HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET | |
US11618247B2 (en) | Thermally conductive sheet and production method for same | |
TWI770063B (en) | Heat sink with high load resistance and high thermal conductivity | |
WO2008053843A1 (en) | Heat conducting sheet, process for producing the same, and radiator utilizing the sheet | |
JP2010149509A (en) | Heat diffusion sheet and its mounting method | |
JPWO2007126133A1 (en) | Carbon fiber composite sheet | |
JP7233564B2 (en) | Heat dissipation sheet and its manufacturing method | |
WO2015190270A1 (en) | Heat-conductive sheet | |
JP6739478B2 (en) | Method for manufacturing heat conductive sheet | |
JP6559136B2 (en) | Insulating sheet | |
WO2019164002A1 (en) | Insulating heat dissipation sheet | |
JP6465368B2 (en) | Heat dissipation material using mixed graphite and method for producing the same | |
EP4039471A1 (en) | Thermally conductive sheet and manufacturing method thereof | |
CN106332521A (en) | Manufacturing method for double-sided adhesive graphite flake | |
JP5586210B2 (en) | Graphite film and graphite composite film | |
JP5830082B2 (en) | Method for producing graphite film and graphite composite film | |
TW202035634A (en) | Heat conduction sheet manufacture method | |
JP2017092345A (en) | Heat conduction sheet and method of manufacturing the same, and semiconductor device | |
KR101626237B1 (en) | Method for manufacturing thermally conductive sheet | |
TWI780200B (en) | Heat sink with high thermal conductivity and high insulation | |
CN105860868A (en) | Preparation process of heat dissipation lamination film | |
WO2024090364A1 (en) | Multilayer body and method for producing same | |
JP7339073B2 (en) | Heat dissipation sheet and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191112 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20200107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200729 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210128 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6831179 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |