Nothing Special   »   [go: up one dir, main page]

JP6805836B2 - Emergency vehicle traffic support device, emergency vehicle traffic support program, and emergency vehicle traffic support system - Google Patents

Emergency vehicle traffic support device, emergency vehicle traffic support program, and emergency vehicle traffic support system Download PDF

Info

Publication number
JP6805836B2
JP6805836B2 JP2017005997A JP2017005997A JP6805836B2 JP 6805836 B2 JP6805836 B2 JP 6805836B2 JP 2017005997 A JP2017005997 A JP 2017005997A JP 2017005997 A JP2017005997 A JP 2017005997A JP 6805836 B2 JP6805836 B2 JP 6805836B2
Authority
JP
Japan
Prior art keywords
vehicle
emergency
emergency vehicle
deceleration
following
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017005997A
Other languages
Japanese (ja)
Other versions
JP2018116409A (en
Inventor
謙一郎 今井
謙一郎 今井
章公 伊神
章公 伊神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017005997A priority Critical patent/JP6805836B2/en
Publication of JP2018116409A publication Critical patent/JP2018116409A/en
Application granted granted Critical
Publication of JP6805836B2 publication Critical patent/JP6805836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Description

この明細書による開示は、自動運転機能によって自車両を緊急車両の予定走行経路から待避させることにより、緊急車両の通行を支援する緊急車両の通行支援技術に関する。 The disclosure according to this specification relates to an emergency vehicle passage support technology that supports the passage of an emergency vehicle by evacuating the own vehicle from the planned travel route of the emergency vehicle by an automatic driving function.

従来、例えば特許文献1に開示の緊急車両通行支援システムは、複数の一般車両と緊急車両とが同じ道路、且つ、同じ方向に走行している場合に、各一般車両に搭載された車両制御手段の制御により、これらの一般車両を道路の路肩近傍に順次停車させる。このように、緊急車両の前方を走行する複数の一般車両が自動運転によって路肩近傍に待避することで、緊急車両は、一般車両に通行を妨げられることなく、一般車両の近傍を通過可能になる。 Conventionally, for example, the emergency vehicle passage support system disclosed in Patent Document 1 is a vehicle control means mounted on each general vehicle when a plurality of general vehicles and the emergency vehicle are traveling on the same road and in the same direction. Under the control of, these general vehicles are sequentially stopped near the shoulder of the road. In this way, a plurality of general vehicles traveling in front of the emergency vehicle evacuate to the vicinity of the shoulder by automatic driving, so that the emergency vehicle can pass in the vicinity of the general vehicle without being obstructed by the general vehicle. ..

特開2014−154128号公報Japanese Unexamined Patent Publication No. 2014-154128

さて、特許文献1に開示の緊急車両通行支援システムは、路肩近傍への移動を運転者に代わって実施可能な車両制御手段等の自動運転システムを各一般車両が搭載していることを前提としている。しかし、実際の道路では、自動運転システムによって自動走行している車両だけでなく、運転者による手動走行状態にある車両も混在している。 By the way, the emergency vehicle traffic support system disclosed in Patent Document 1 is based on the premise that each general vehicle is equipped with an automatic driving system such as a vehicle control means capable of moving to the vicinity of the shoulder on behalf of the driver. There is. However, on an actual road, not only vehicles that are automatically driven by an automatic driving system but also vehicles that are manually driven by a driver are mixed.

ここで、車両を手動走行させている運転者は、例えば緊急車両から発せられるサイレン音等により、緊急車両の接近を認識する。一方で、自動運転システムは、例えば車車間通信等により、緊急車両の接近を判断できる。故に、手動運転中の運転者が緊急車両の接近を認識するタイミングは、自動運転システムが緊急車両の接近を判断するタイミングよりも、遅くなる傾向にある。そのため、手動運転状態の車両の前方で自動運転システムが待避のための急な減速を開始してしまうと、手動運転状態の車両は、減速された前走車に急接近してしまう。その結果、交通流を乱してしまう事態の発生が想定され得た。 Here, the driver who manually drives the vehicle recognizes the approach of the emergency vehicle by, for example, a siren sound emitted from the emergency vehicle. On the other hand, the automatic driving system can determine the approach of an emergency vehicle by, for example, vehicle-to-vehicle communication. Therefore, the timing at which the driver during manual driving recognizes the approach of the emergency vehicle tends to be later than the timing at which the automatic driving system determines the approach of the emergency vehicle. Therefore, if the automatic driving system starts a sudden deceleration for evacuating in front of the vehicle in the manually driven state, the vehicle in the manually driven state suddenly approaches the decelerated vehicle in front. As a result, it could be expected that a situation would occur that would disturb the traffic flow.

本開示は、上記問題点に鑑みてなされたものであり、その目的は、自動走行状態の車両と手動運転状態の車両とが混在している走行環境においても、交通流を乱すことなく緊急車両に進路を譲ることが可能な緊急車両の通行支援技術を提供することにある。 The present disclosure has been made in view of the above problems, and the purpose of the present disclosure is to provide an emergency vehicle without disturbing the traffic flow even in a driving environment in which a vehicle in an automatic driving state and a vehicle in a manually driving state are mixed. The purpose is to provide traffic support technology for emergency vehicles that can give way to.

上記目的を達成するため、開示された第一の態様は、自動運転機能によって自車両(A1)を緊急車両(EV)の予定走行経路から待避させることにより、緊急車両の通行を支援する緊急車両通行支援装置であって、緊急車両の自車両への接近を判断する接近判断部(23)と、緊急車両が自車両に接近している場合に、緊急車両の予定走行経路から待避するよう自動運転機能によって自車両を停車させる待避行動計画を作成する計画作成部(27)と、自車両の周囲を走行する他車両のうちで、少なくとも自車両と同じ車線の所定距離以内を走行し、且つ、後続の先頭に位置する後続車両(A2)について、自動走行状態か手動運転状態かを判別する走行状態判別部(25)と、を備え、計画作成部は、自動走行状態か手動運転状態かを判別した判別結果が後続車両手動運転状態を示す場合に、判別結果が後続車両自動走行状態を示す場合よりも、自車両を緩やかに減速させる待避行動計画を作成する緊急車両通行支援装置とされる。
また開示された第二の態様は、自動運転機能によって自車両(A1)を緊急車両(EV)の予定走行経路から待避させることにより、緊急車両の通行を支援する緊急車両通行支援装置であって、緊急車両の自車両への接近を判断する接近判断部(23)と、緊急車両が自車両に接近している場合に、緊急車両の予定走行経路から待避するよう自動運転機能によって自車両を停車させる待避行動計画を作成する計画作成部(27)と、自車両の周囲を走行する他車両のうちで、少なくとも自車両と同じ車線の所定距離以内を走行し、且つ、後続の先頭に位置する後続車両(A2)について、自動走行状態か手動運転状態かを判別する走行状態判別部(25)と、を備え、計画作成部は、後続車両が手動運転状態である場合に、後続車両が自動走行状態である場合よりも、自車両を停止させる目標停止位置(TSP)に対し離れた位置から、自車両を緩やかに減速させる待避行動計画を作成する緊急車両通行支援装置とされる。
In order to achieve the above object, the first aspect disclosed is an emergency vehicle that supports the passage of the emergency vehicle by evacuating the own vehicle (A1) from the planned travel route of the emergency vehicle (EV) by the automatic driving function. It is a traffic support device and has an approach judgment unit (23) that determines the approach of the emergency vehicle to the own vehicle, and automatically avoids the emergency vehicle from the planned travel route when the emergency vehicle is approaching the own vehicle. Of the planning unit (27) that creates a refuge action plan that stops the own vehicle by the driving function and other vehicles that run around the own vehicle, the vehicle travels at least within a predetermined distance in the same lane as the own vehicle, and The following vehicle (A2) located at the head of the trailing vehicle is provided with a traveling state determination unit (25) for determining whether it is in an automatic driving state or a manual driving state , and the planning unit is in an automatic driving state or a manual driving state. If the determination discriminant result indicates manual operation state of the following vehicle, the determination result is than when an automatic traveling state of the following vehicle, an emergency vehicle traffic assist apparatus for creating retraction action plan to gradually decelerate the vehicle It is said that.
The second aspect disclosed is an emergency vehicle passage support device that supports the passage of an emergency vehicle by evacuating the own vehicle (A1) from the planned travel route of the emergency vehicle (EV) by an automatic driving function. , The approach judgment unit (23) that determines the approach of the emergency vehicle to the own vehicle, and the automatic driving function to evacuate the emergency vehicle from the planned travel route when the emergency vehicle is approaching the own vehicle Of the planning unit (27) that creates a refuge action plan to stop and other vehicles that run around the own vehicle, the vehicle travels at least within a predetermined distance in the same lane as the own vehicle, and is positioned at the beginning of the following. A traveling state determination unit (25) for determining whether the following vehicle (A2) is in an automatic driving state or a manual driving state is provided, and the planning unit is provided with a planning unit when the following vehicle is in the manual driving state. It is an emergency vehicle traffic support device that creates a refuge action plan that gently decelerates the own vehicle from a position farther from the target stop position (TSP) at which the own vehicle is stopped than in the case of the automatic running state.

また開示された第の態様は、自動運転機能によって自車両(A1)を緊急車両(EV)の予定走行経路から待避させることにより、緊急車両の通行を支援する緊急車両通行支援装置(10)と、自車両の周囲を走行している他車両を監視する周辺監視装置(30)と、を含む緊急車両通行支援システムであって、緊急車両通行支援装置は、緊急車両の自車両への接近を判断する接近判断部(23)、緊急車両が自車両に接近している場合に、緊急車両の予定走行経路から待避するよう自動運転機能によって自車両を停車させる待避行動計画を作成する計画作成部(27)、他車両のうちで、少なくとも自車両と同じ車線の所定距離以内を走行し且つ後続の先頭に位置する後続車両(A2)について、自動走行状態か手動運転状態かを判別する走行状態判別部(25)、を有し、計画作成部は、自動走行状態か手動運転状態かを判別した判別結果が後続車両手動運転状態を示す場合に、判別結果が後続車両自動走行状態を示す場合よりも、自車両を緩やかに減速させる待避行動計画を作成する緊急車両通行支援システムとされる。
また開示された第四の態様は、自動運転機能によって自車両(A1)を緊急車両(EV)の予定走行経路から待避させることにより、緊急車両の通行を支援する緊急車両通行支援装置(10)と、自車両の周囲を走行している他車両を監視する周辺監視装置(30)と、を含む緊急車両通行支援システムであって、緊急車両通行支援装置は、緊急車両の自車両への接近を判断する接近判断部(23)、緊急車両が自車両に接近している場合に、緊急車両の予定走行経路から待避するよう自動運転機能によって自車両を停車させる待避行動計画を作成する計画作成部(27)、他車両のうちで、少なくとも自車両と同じ車線の所定距離以内を走行し且つ後続の先頭に位置する後続車両(A2)について、自動走行状態か手動運転状態かを判別する走行状態判別部(25)、を有し、計画作成部は、後続車両が手動運転状態である場合に、後続車両が自動走行状態である場合よりも、自車両を停止させる目標停止位置(TSP)に対し離れた位置から、自車両を緩やかに減速させる待避行動計画を作成する緊急車両通行支援システムとされる。
The third aspect disclosed is an emergency vehicle passage support device (10) that supports the passage of an emergency vehicle by evacuating the own vehicle (A1) from the planned travel route of the emergency vehicle (EV) by an automatic driving function. An emergency vehicle traffic support system including a peripheral monitoring device (30) that monitors other vehicles traveling around the own vehicle, and the emergency vehicle traffic support device is an approach of the emergency vehicle to the own vehicle. Approach determination unit (23), which determines whether the emergency vehicle is approaching the own vehicle, creates a plan to create a evasion action plan to stop the own vehicle by the automatic driving function so as to evacuate from the planned travel route of the emergency vehicle. Part (27), among other vehicles, traveling within a predetermined distance in the same lane as the own vehicle and determining whether the following vehicle (A2) located at the head of the following vehicle is in the automatic driving state or the manual driving state. The planning unit has a state determination unit (25), and when the determination result of determining whether the vehicle is in the automatic driving state or the manual driving state indicates the manual driving state of the following vehicle, the discrimination result is the automatic driving state of the following vehicle. It is said to be an emergency vehicle traffic support system that creates a refuge action plan that slows down the own vehicle more slowly than in the case of indicating .
Further, the fourth aspect disclosed is an emergency vehicle passage support device (10) that supports the passage of an emergency vehicle by evacuating the own vehicle (A1) from the planned travel route of the emergency vehicle (EV) by an automatic driving function. An emergency vehicle traffic support system including a peripheral monitoring device (30) that monitors other vehicles traveling around the own vehicle, and the emergency vehicle traffic support device is an approach of the emergency vehicle to the own vehicle. Approach determination unit (23), which determines whether the emergency vehicle is approaching the own vehicle, creates a plan to create a evasion action plan to stop the own vehicle by the automatic driving function so as to evacuate from the planned travel route of the emergency vehicle. Part (27), among other vehicles, traveling within a predetermined distance in the same lane as the own vehicle and determining whether the following vehicle (A2) located at the head of the following vehicle is in the automatic driving state or the manual driving state. It has a state determination unit (25), and the planning unit has a target stop position (TSP) for stopping the own vehicle when the following vehicle is in the manual driving state, as compared with the case where the following vehicle is in the automatic traveling state. It is an emergency vehicle traffic support system that creates a refuge action plan that slowly decelerates the own vehicle from a distance from the vehicle.

さらに開示された第の態様は、自動運転機能によって自車両(A1)を緊急車両(EV)の予定走行経路から待避させることにより、緊急車両の通行を支援する制御を処理部(11,12)に実行させる緊急車両通行支援プログラムであって、緊急車両の自車両への接近を判断し(S102〜S104)、緊急車両が自車両に接近している場合に、緊急車両の予定走行経路から待避するよう自動運転機能によって自車両を停車させる待避行動計画を作成し(S143)、自車両の周囲を走行する他車両のうちで、少なくとも自車両と同じ車線の所定距離以内を走行し且つ後続の先頭に位置する後続車両(A2)について、自動走行状態か手動運転状態かを判別し(S134)、自動走行状態か手動運転状態かを判別した判別結果が後続車両手動運転状態を示す場合に、判別結果が後続車両自動走行状態を示す場合よりも、自車両を緩やかに減速させる待避行動計画を作成する(S148)緊急車両通行支援プログラムとされる。
また開示された第六の態様は、自動運転機能によって自車両(A1)を緊急車両(EV)の予定走行経路から待避させることにより、緊急車両の通行を支援する制御を処理部(11,12)に実行させる緊急車両通行支援プログラムであって、緊急車両の自車両への接近を判断し(S102〜S104)、緊急車両が自車両に接近している場合に、緊急車両の予定走行経路から待避するよう自動運転機能によって自車両を停車させる待避行動計画を作成し(S143)、自車両の周囲を走行する他車両のうちで、少なくとも自車両と同じ車線の所定距離以内を走行し且つ後続の先頭に位置する後続車両(A2)について、自動走行状態か手動運転状態かを判別し(S134)、後続車両が手動運転状態である場合に、後続車両が自動走行状態である場合よりも、自車両を停止させる目標停止位置(TSP)に対し離れた位置から、自車両を緩やかに減速させる待避行動計画を作成する(S148)緊急車両通行支援プログラムとされる。
Further, the fifth aspect disclosed is a control unit (11, 12) that supports the passage of the emergency vehicle by evacuating the own vehicle (A1) from the planned traveling route of the emergency vehicle (EV) by the automatic driving function. ) Is an emergency vehicle traffic support program that determines the approach of the emergency vehicle to the own vehicle (S102 to S104), and when the emergency vehicle is approaching the own vehicle, from the planned travel route of the emergency vehicle Create a evasion action plan to stop the own vehicle by the automatic driving function so as to evacuate (S143), and among other vehicles traveling around the own vehicle, travel at least within a predetermined distance in the same lane as the own vehicle and follow. When the following vehicle (A2) located at the head of the above is determined to be in the automatic driving state or the manual driving state (S134), and the determination result of determining whether the following vehicle is in the automatic driving state or the manual driving state indicates the manual driving state of the following vehicle. In addition, it is an emergency vehicle traffic support program that creates a evasion action plan that slows down the own vehicle more slowly than when the determination result indicates the automatic running state of the following vehicle (S148).
Further, the sixth aspect disclosed is a control unit (11, 12) that supports the passage of the emergency vehicle by evacuating the own vehicle (A1) from the planned traveling route of the emergency vehicle (EV) by the automatic driving function. ) Is an emergency vehicle traffic support program that determines the approach of the emergency vehicle to the own vehicle (S102 to S104), and when the emergency vehicle is approaching the own vehicle, from the planned travel route of the emergency vehicle Create a evasion action plan to stop the own vehicle by the automatic driving function so as to evacuate (S143), and among other vehicles traveling around the own vehicle, travel at least within a predetermined distance in the same lane as the own vehicle and follow. For the following vehicle (A2) located at the head of the above, it is determined whether the following vehicle is in the automatic driving state or the manual driving state (S134), and when the following vehicle is in the manual driving state, the following vehicle is in the automatic driving state. It is an emergency vehicle traffic support program that creates a refuge action plan that gently decelerates the own vehicle from a position away from the target stop position (TSP) at which the own vehicle is stopped (S148).

これらの態様によれば、緊急車両の予定走行経路から待避するために自車両を停車させる待避行動計画では、後続車両が手動運転状態である場合に、後続車両が自動走行状態である場合よりも、緩やかな減速が予定される。故に、自動走行状態の車両と手動運転状態の車両とが混在している走行環境においても、自車両は、交通流を乱すことなく、緊急車両に進路を譲ることが可能になる。 According to these aspects, in the shunting action plan in which the own vehicle is stopped in order to evacuate from the planned traveling route of the emergency vehicle, when the following vehicle is in the manual driving state, the following vehicle is in the automatic driving state, as compared with the case where the following vehicle is in the automatic driving state. , A gradual deceleration is planned. Therefore, even in a driving environment in which a vehicle in an automatic driving state and a vehicle in a manually driving state coexist, the own vehicle can give way to an emergency vehicle without disturbing the traffic flow.

尚、上記括弧内の参照番号は、後述する実施形態における具体的な構成との対応関係の一例を示すものにすぎず、技術的範囲を何ら制限するものではない。 The reference numbers in parentheses are merely examples of the correspondence with the specific configuration in the embodiment described later, and do not limit the technical scope at all.

自車両に搭載された自動運転システムの全体像を示すブロック図である。It is a block diagram which shows the whole picture of the automatic driving system mounted on the own vehicle. 自動運転ECUの構成の一例を示す図である。It is a figure which shows an example of the structure of the automatic operation ECU. 緊急車両の待避支援を実現するメイン処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the main processing which realizes the escape support of an emergency vehicle. 待避判断処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the escape determination process. 待避行動選択処理の詳細を、図6及び図7と共に示すフローチャートである。It is a flowchart which shows the details of the escape action selection process together with FIG. 6 and FIG. 待避行動選択処理の詳細を、図5及び図7と共に示すフローチャートである。It is a flowchart which shows the details of the escape action selection process together with FIG. 5 and FIG. 待避行動選択処理の詳細を、図5及び図6と共に示すフローチャートである。It is a flowchart which shows the details of the escape action selection process together with FIG. 5 and FIG. パターン1の待避行動を実現するフローチャートである。It is a flowchart which realizes the escape action of pattern 1. パターン2の待避行動を実現するフローチャートである。It is a flowchart which realizes the escape behavior of pattern 2. パターン3の待避行動を実現するフローチャートである。It is a flowchart which realizes the escape behavior of pattern 3. パターン4の待避行動を実現するフローチャートである。It is a flowchart which realizes the escape behavior of pattern 4. 待避シーンAの詳細を示す図である。It is a figure which shows the detail of the escape scene A. 待避シーンBの詳細を示す図である。It is a figure which shows the detail of the escape scene B. 待避シーンCの詳細を示す図である。It is a figure which shows the detail of the escape scene C. 待避シーンDの詳細を示す図である。It is a figure which shows the detail of the escape scene D. 待避シーンEの詳細を示す図である。It is a figure which shows the detail of the escape scene E. 待避シーンFの詳細を示す図である。It is a figure which shows the detail of the escape scene F. 待避シーンGの詳細を示す図である。It is a figure which shows the detail of the escape scene G. 待避シーンHの詳細を示す図である。It is a figure which shows the detail of the escape scene H. 待避シーンIの詳細を示す図である。It is a figure which shows the detail of the escape scene I. 待避シーンJの詳細を示す図である。It is a figure which shows the detail of the escape scene J. 待避回避シーンKの詳細を示す図である。It is a figure which shows the detail of the escape avoidance scene K. 待避回避シーンLの詳細を示す図である。It is a figure which shows the detail of the escape avoidance scene L. 待避回避シーンMの詳細を示す図である。It is a figure which shows the detail of the escape avoidance scene M. 待避回避シーンNの詳細を示す図である。It is a figure which shows the detail of the escape avoidance scene N.

本開示の一実施形態による自動運転ECU10は、図1に示すように、車両(以下、「自車両A1」)に搭載されている。自車両A1は、運転者に代わって運転操作を実施可能な自動運転機能を備えている。自動運転機能は、自動運転ECU10を主体とする自動運転システム100によって実現される。自動運転システム100及び自動運転ECU10は、自動運転機能によって緊急車両EVの予定走行経路から自車両A1を待避させることにより、緊急車両EVの通行を支援する緊急車両通行支援システム及び緊急車両通行支援装置として機能する。 As shown in FIG. 1, the automatic driving ECU 10 according to the embodiment of the present disclosure is mounted on a vehicle (hereinafter, “own vehicle A1”). The own vehicle A1 has an automatic driving function capable of performing a driving operation on behalf of the driver. The automatic driving function is realized by the automatic driving system 100 mainly composed of the automatic driving ECU 10. The automatic driving system 100 and the automatic driving ECU 10 are an emergency vehicle traffic support system and an emergency vehicle traffic support device that support the passage of the emergency vehicle EV by evacuating the own vehicle A1 from the planned travel route of the emergency vehicle EV by the automatic driving function. Functions as.

詳記すると、自動運転システム100は、緊急用務中(緊急走行中)である緊急車両EVの予定走行経路の情報を、通信によって取得可能である。緊急車両EVには、例えば消防用自動車、救急用自動車、及び警察車両等が少なくとも含まれる。緊急車両EVは、緊急用務の際に、路車間通信、車車間通信、及び移動体通信等の少なくとも一つを用いて、走行を予定している予定走行経路の情報を、交通管理センタのサーバ及び他の一般車両等へ向けて送信可能である。自動運転システム100は、緊急車両EVから配信された予定走行経路の情報を無線通信によって取得し、緊急車両EVの予定走行経路、より詳細には予定走行経路の設定された車線が確保されるように、自車両A1を路肩近傍等に待避させる。尚、以下の説明における「緊急車両EV」は、特に説明が無い場合には、緊急用務中の緊急車両EVを示す。 More specifically, the automatic driving system 100 can acquire information on the planned travel route of the emergency vehicle EV during emergency service (during emergency travel) by communication. The emergency vehicle EV includes, for example, a fire-fighting vehicle, an emergency vehicle, a police vehicle, and the like. The emergency vehicle EV uses at least one of road-to-vehicle communication, vehicle-to-vehicle communication, mobile communication, etc. at the time of emergency business to provide information on the planned travel route to be traveled by the server of the traffic management center. And can be transmitted to other general vehicles. The automatic driving system 100 acquires the information of the planned travel route delivered from the emergency vehicle EV by wireless communication, so that the planned travel route of the emergency vehicle EV, more specifically, the lane in which the planned travel route is set is secured. In addition, the own vehicle A1 is evacuated to the vicinity of the road shoulder or the like. The "emergency vehicle EV" in the following description indicates an emergency vehicle EV during emergency service unless otherwise specified.

以上の緊急車両EVの通行支援を可能にするため、自車両A1には、周辺監視装置30、車車間通信装置40、車載ネットワーク50、及び車両制御装置60が自動運転ECU10と共に搭載されている。以下、自車両A1の待避行動を実現している各車載構成の詳細を説明する。 In order to enable the passage support of the emergency vehicle EV as described above, the own vehicle A1 is equipped with a peripheral monitoring device 30, an inter-vehicle communication device 40, an in-vehicle network 50, and a vehicle control device 60 together with an automatic driving ECU 10. Hereinafter, details of each in-vehicle configuration that realizes the shunting behavior of the own vehicle A1 will be described.

周辺監視装置30は、自車両A1の周囲の有体物を検出する装置である。周辺監視装置30は、例えば歩行者、人間以外の動物、自転車、オートバイ、及び他車両のような移動物体、さらに路上の落下物、交通信号、ガードレール、縁石、道路標識、道路標示、区画線、及び樹木のような静止物体を検出可能である。周辺監視装置30は、カメラ31、ミリ波レーダ32、超音波センサ33、及びライダ34等の外界センサに加えて、マイクロホン35を有している。各外界センサは、検出した移動物体及び静止物体の相対位置及び相対速度等を示す検出物情報を、自動運転ECU10へ向けて逐次出力する。 The peripheral monitoring device 30 is a device that detects tangible objects around the own vehicle A1. Peripheral monitoring device 30 includes moving objects such as pedestrians, non-human animals, bicycles, motorcycles, and other vehicles, as well as falling objects on the road, traffic signals, guardrails, curbs, road signs, road markings, lane markings, etc. And stationary objects such as trees can be detected. The peripheral monitoring device 30 includes a microphone 35 in addition to an external sensor such as a camera 31, a millimeter wave radar 32, an ultrasonic sensor 33, and a rider 34. Each external sensor sequentially outputs detected object information indicating the relative position, relative speed, etc. of the detected moving object and stationary object toward the automatic driving ECU 10.

カメラ31は、自車両A1の前方領域、後方領域、前後左右の各側方領域を撮影する複数の撮像素子を有している。カメラ31は、各撮像素子によって撮像された画像を解析する処理により、各領域の画像に写る移動物体及び静止物体を抽出することで、検出物情報を取得する。加えてカメラ31は、各画像から緊急車両EVを抽出し、緊急車両EVの存在を示す緊急車両情報として、自動運転ECU10に提供する。 The camera 31 has a plurality of image pickup elements that capture the front region, the rear region, and the front, rear, left, and right lateral regions of the own vehicle A1. The camera 31 acquires the detected object information by extracting the moving object and the stationary object appearing in the image of each region by the process of analyzing the image captured by each image sensor. In addition, the camera 31 extracts the emergency vehicle EV from each image and provides it to the autonomous driving ECU 10 as emergency vehicle information indicating the existence of the emergency vehicle EV.

ミリ波レーダ32は、自車両A1の進行方向及び背後方向等へ向けてミリ波を照射し、各照射方向の移動物体及び静止物体等で反射されたミリ波を受信することにより、検出物情報を取得する。超音波センサ33は、自車両A1の周辺領域へ向けて超音波を発信し、周辺領域に存在する移動物体及び静止物体等で反射された超音波を受信することにより、検出物情報を取得する。ライダ34は、自車両A1の周囲の各領域へ向けてレーザ光を照射し、各照射方向の移動物体及び静止物体等で反射されたレーザ光を受信することにより、検出物情報を取得する。 The millimeter wave radar 32 irradiates the millimeter wave toward the traveling direction and the back direction of the own vehicle A1 and receives the millimeter wave reflected by the moving object and the stationary object in each irradiation direction to obtain the detected object information. To get. The ultrasonic sensor 33 transmits ultrasonic waves toward the peripheral region of the own vehicle A1 and receives ultrasonic waves reflected by moving objects, stationary objects, etc. existing in the peripheral region to acquire detected object information. .. The rider 34 irradiates laser light toward each region around the own vehicle A1 and receives the laser light reflected by a moving object, a stationary object, or the like in each irradiation direction to acquire detected object information.

マイクロホン35は、自車両A1の周囲の環境音を集音する集音器である。自車両A1の周辺を緊急車両EVが走行している場合、マイクロホン35によって集音された環境音には、緊急車両EVによって鳴らされている特定のサイレン音が含まれている。マイクロホン35は、環境音、又は環境音からサイレン音が抽出されている旨の情報の少なくとも一方を、集音情報として自動運転ECU10へ向けて逐次出力する。 The microphone 35 is a sound collector that collects environmental sounds around the own vehicle A1. When the emergency vehicle EV is traveling around the own vehicle A1, the environmental sound collected by the microphone 35 includes a specific siren sound sounded by the emergency vehicle EV. The microphone 35 sequentially outputs at least one of the environmental sound and the information indicating that the siren sound is extracted from the environmental sound to the automatic operation ECU 10 as sound collecting information.

車車間通信装置40は、緊急車両EV及び他の一般車両に搭載された車車間通信装置と、直接的又は間接的に情報を送受信できる。車車間通信装置40は、アンテナ41、無線機42、及びGNSS受信機43を有している。アンテナ41及び無線機42は、無線通信を通じて、緊急車両EVの現在位置情報及び予定走行経路情報等を含む緊急車両情報と、他の一般車両の現在位置情報及び自動運転機能の作動状態を示す情報を含む他車両情報等とを取得する。 The vehicle-to-vehicle communication device 40 can directly or indirectly transmit / receive information to / from the vehicle-to-vehicle communication device mounted on the emergency vehicle EV and other general vehicles. The vehicle-to-vehicle communication device 40 includes an antenna 41, a radio 42, and a GNSS receiver 43. Through wireless communication, the antenna 41 and the radio 42 provide emergency vehicle information including the current position information of the emergency vehicle EV and planned travel route information, and information indicating the current position information of other general vehicles and the operating state of the automatic driving function. Acquire other vehicle information including.

GNSS(Global Navigation Satellite System)受信機43は、複数の人工衛星からの測位信号を受信し、受信した測位信号に基づいて自車両A1の現在位置を計測する。車車間通信装置40は、自車両A1の現在位置情報、緊急車両情報、及び他車両情報等と、自車両A1及び緊急車両EVの各現在位置に関連する地図情報とを、自動運転ECU10へ向けて逐次出力する。尚、以下の説明では、緊急用務中の緊急車両EVを除く他の一般車両を「他車両」と記載する。緊急用務中ではない通常走行中の緊急車両EVも「他車両」に含まれる。 The GNSS (Global Navigation Satellite System) receiver 43 receives positioning signals from a plurality of artificial satellites, and measures the current position of the own vehicle A1 based on the received positioning signals. The vehicle-to-vehicle communication device 40 directs the current position information, emergency vehicle information, other vehicle information, etc. of the own vehicle A1 and the map information related to each current position of the own vehicle A1 and the emergency vehicle EV to the automatic driving ECU 10. And output sequentially. In the following description, other general vehicles other than the emergency vehicle EV during emergency service will be referred to as "other vehicle". "Other vehicles" also include emergency vehicle EVs that are not in emergency service and are in normal operation.

車載ネットワーク50の通信バスには、自車両A1に搭載された種々の車載センサが直接的又は間接的に電気接続されている。車載ネットワーク50には、各車載センサによって検出された自車両情報が出力される。自車両情報には、例えば車速情報等が含まれている。自車両情報は、自動運転ECU10及び車車間通信装置40等に逐次提供される。 Various in-vehicle sensors mounted on the own vehicle A1 are directly or indirectly electrically connected to the communication bus of the in-vehicle network 50. The own vehicle information detected by each in-vehicle sensor is output to the in-vehicle network 50. The own vehicle information includes, for example, vehicle speed information and the like. The own vehicle information is sequentially provided to the automatic driving ECU 10, the vehicle-to-vehicle communication device 40, and the like.

車両制御装置60は、自車両A1の挙動を制御する制御装置である。車両制御装置60は、プロセッサ、RAM、及び記憶媒体等を有するコンピュータと、複数のアクチュエータとを含む構成である。車両制御装置60は、自動運転ECU10から出力される走行制御情報に基づいて各アクチュエータを統合的に制御する。以上により、車両制御装置60は、自動運転ECU10によって作成された走行計画に従って自車両A1を自動走行させる。 The vehicle control device 60 is a control device that controls the behavior of the own vehicle A1. The vehicle control device 60 includes a computer having a processor, RAM, a storage medium, and the like, and a plurality of actuators. The vehicle control device 60 controls each actuator in an integrated manner based on the travel control information output from the automatic driving ECU 10. As described above, the vehicle control device 60 automatically travels the own vehicle A1 according to the travel plan created by the automatic driving ECU 10.

車両制御装置60は、自車両A1の挙動を制御するアクチュエータとして、スロットルアクチュエータ61、ブレーキアクチュエータ62、及びステアリングアクチュエータ63を有している。加えて車両制御装置60には、ハザードランプ64、ホーン65等の他の機器が設けられている。スロットルアクチュエータ61は、自車両A1の加速を制御可能である。ブレーキアクチュエータ62は、自車両A1の制動を制御可能である。ステアリングアクチュエータ63は、自車両A1の操舵を制御可能である。ハザードランプ64は、例えば後述するように、緊急車両EVの予定走行経路から待避する待避行動中において、運転者の操作によらないで作動状態とされる。 The vehicle control device 60 has a throttle actuator 61, a brake actuator 62, and a steering actuator 63 as actuators for controlling the behavior of the own vehicle A1. In addition, the vehicle control device 60 is provided with other devices such as a hazard lamp 64 and a horn 65. The throttle actuator 61 can control the acceleration of the own vehicle A1. The brake actuator 62 can control the braking of the own vehicle A1. The steering actuator 63 can control the steering of the own vehicle A1. As will be described later, the hazard lamp 64 is put into an operating state regardless of the driver's operation during the shunting action of evacuating from the planned traveling route of the emergency vehicle EV.

自動運転ECU10は、車両制御装置60との連携によって自車両A1の加減速制御及び操舵制御を行うことにより、自車両A1の自動走行を実現する。図2に示すように、自動運転ECU10は、メインプロセッサ11、グラフィックプロセッサ12、RAM13、記憶媒体14、及び入出力インターフェース15を有するコンピュータを主体に構成されている。記憶媒体14には、自動運転に関連する複数のプログラムが、各プロセッサ11,12によって実行可能な状態で格納されている。 The automatic driving ECU 10 realizes automatic traveling of the own vehicle A1 by performing acceleration / deceleration control and steering control of the own vehicle A1 in cooperation with the vehicle control device 60. As shown in FIG. 2, the automatic operation ECU 10 is mainly composed of a computer having a main processor 11, a graphic processor 12, a RAM 13, a storage medium 14, and an input / output interface 15. A plurality of programs related to automatic operation are stored in the storage medium 14 in a state in which they can be executed by the processors 11 and 12.

複数のプログラムには、緊急車両EVの予定走行経路から自車両A1を待避させる緊急車両通行支援プログラムが含まれている。緊急車両通行支援プログラムの実行により、自動運転ECU10には、図1に示す車間情報取得部21、通信制御部22、接近判断部23、通信機能判別部24、走行モード判別部25、認知判断部26、及び待避行動作成部27等の機能ブロックが構築される。 The plurality of programs include an emergency vehicle traffic support program for evacuating the own vehicle A1 from the planned travel route of the emergency vehicle EV. By executing the emergency vehicle traffic support program, the automatic driving ECU 10 has the inter-vehicle information acquisition unit 21, the communication control unit 22, the approach determination unit 23, the communication function determination unit 24, the driving mode determination unit 25, and the cognitive determination unit shown in FIG. Functional blocks such as 26 and the escape action creation unit 27 are constructed.

車間情報取得部21は、周辺監視装置30及び車車間通信装置40から、自車両A1の周囲を走行する他車両情報を取得する。他車両情報には、各他車両の現在位置情報、車速情報、及び相対速度情報等が含まれている。加えて車間情報取得部21は、車載ネットワーク50から車速情報等の自車両情報を取得する。車間情報取得部21は、取得した各情報に基づき、自車両A1と各他車両との間の車間距離、自車両A1に対する各他車両の相対速度及び車間時間等を、車間情報として算出する。 The inter-vehicle information acquisition unit 21 acquires information on other vehicles traveling around the own vehicle A1 from the peripheral monitoring device 30 and the inter-vehicle communication device 40. The other vehicle information includes the current position information, vehicle speed information, relative speed information, and the like of each other vehicle. In addition, the inter-vehicle information acquisition unit 21 acquires own vehicle information such as vehicle speed information from the in-vehicle network 50. Based on each acquired information, the inter-vehicle distance information acquisition unit 21 calculates the inter-vehicle distance between the own vehicle A1 and each other vehicle, the relative speed of each other vehicle with respect to the own vehicle A1, the inter-vehicle time, and the like as inter-vehicle distance information.

加えて車間情報取得部21は、特に後続車両A2が存在する場合に、後続車両A2の車間情報に基づき、後続車両A2の自車両A1への急接近を監視し、追突の可能性の有無を判断する。車間情報取得部21は、追突可能性についての判断結果を含む後続車両A2の監視情報と、各他車両についての車間情報とを、通信機能判別部24に逐次提供する。尚、後続車両A2は、自車両A1と同一の道路及び同一の車線を走行する車両であって、自車両A1の後方に存在する車両のうちで最も先頭に位置する一台である。 In addition, the inter-vehicle distance information acquisition unit 21 monitors the sudden approach of the following vehicle A2 to the own vehicle A1 based on the inter-vehicle distance information of the following vehicle A2, particularly when the following vehicle A2 is present, and determines whether or not there is a possibility of a rear-end collision. to decide. The inter-vehicle distance information acquisition unit 21 sequentially provides the communication function determination unit 24 with monitoring information of the following vehicle A2 including a determination result of a rear-end collision possibility and inter-vehicle distance information about each other vehicle. The following vehicle A2 is a vehicle traveling on the same road and the same lane as the own vehicle A1, and is one of the vehicles existing behind the own vehicle A1 and located at the foremost position.

通信制御部22は、車車間通信装置40による車車間通信を制御する。通信制御部22は、車車間通信装置40から逐次出力される現在位置情報、緊急車両情報、及び他車両情報を逐次取得する。通信制御部22は、自車両A1の現在位置及び予定走行経路等の情報を、車車間通信装置40から緊急車両EV及び他車両等へ向けて送信させる。加えて、自車両A1が待避行動を実施する場合、通信制御部22は、待避行動作成部27によって作成される待避行動計画を、少なくとも後続車両A2へ向けて送信させる。自車両A1の待避行動の予定を認知した後続車両A2は、認知した旨の応答を自車両A1へ向けて送信できる。通信制御部22は、車車間通信による後続車両A2からの応答を取得すると、後続車両A2からの応答があった旨の情報を、認知判断部26に提供する。 The communication control unit 22 controls vehicle-to-vehicle communication by the vehicle-to-vehicle communication device 40. The communication control unit 22 sequentially acquires the current position information, the emergency vehicle information, and the other vehicle information that are sequentially output from the vehicle-to-vehicle communication device 40. The communication control unit 22 causes the inter-vehicle communication device 40 to transmit information such as the current position of the own vehicle A1 and the planned travel route to the emergency vehicle EV and other vehicles. In addition, when the own vehicle A1 executes the shunting action, the communication control unit 22 causes the shunting action plan created by the shunting action creating unit 27 to be transmitted to at least the following vehicle A2. The following vehicle A2, which has recognized the schedule of the shunting action of the own vehicle A1, can transmit a response to that effect to the own vehicle A1. When the communication control unit 22 acquires the response from the following vehicle A2 by the inter-vehicle communication, the communication control unit 22 provides the cognitive determination unit 26 with information that there is a response from the following vehicle A2.

接近判断部23は、カメラ31及び車車間通信装置40から提供される緊急車両情報、及びマイクロホン35から出力される集音情報等を取得する。接近判断部23は、取得した各情報に基づき、緊急車両EVの自車両A1への接近を判断する。接近判断部23は、自車両A1の予定走行経路と、緊急車両EVの予定走行経路とを比較し、自車両A1の予定走行経路と緊急車両EVの予定走行経路とが重なるか否かを判定する。 The approach determination unit 23 acquires emergency vehicle information provided by the camera 31 and the vehicle-to-vehicle communication device 40, sound collection information output from the microphone 35, and the like. The approach determination unit 23 determines that the emergency vehicle EV is approaching its own vehicle A1 based on the acquired information. The approach determination unit 23 compares the planned travel route of the own vehicle A1 with the planned travel route of the emergency vehicle EV, and determines whether or not the planned travel route of the own vehicle A1 and the planned travel route of the emergency vehicle EV overlap. To do.

加えて接近判断部23は、緊急車両EVが自車両A1に接近している方向を判別する。具体的に、接近判断部23は、緊急車両EVについて、自車両A1と同一の道路を走行し、且つ、自車両A1に後方から接近しているか否かを判断する。また接近判断部23は、緊急車両EVについて、自車両A1と同一の道路を走行し、且つ、自車両A1に前方から接近しているか否かを判断する。さらに接近判断部23は、緊急車両EVについて、自車両A1の走行する道路と交差する交差道路を走行し、且つ、自車両A1の進行方向にある交差点CP(図24参照)に接近しているか否かを判断する。 In addition, the approach determination unit 23 determines the direction in which the emergency vehicle EV is approaching the own vehicle A1. Specifically, the approach determination unit 23 determines whether or not the emergency vehicle EV is traveling on the same road as the own vehicle A1 and is approaching the own vehicle A1 from behind. Further, the approach determination unit 23 determines whether or not the emergency vehicle EV is traveling on the same road as the own vehicle A1 and is approaching the own vehicle A1 from the front. Further, whether the approach determination unit 23 is traveling on the intersection road intersecting the road on which the own vehicle A1 is traveling and is approaching the intersection CP (see FIG. 24) in the traveling direction of the own vehicle A1 with respect to the emergency vehicle EV. Judge whether or not.

尚、上記の緊急車両EVの認知は、自車両A1と緊急車両EVとの直接的な車車間通信によっても可能であり、又は緊急車両EVの接近を認知した他車両と自車両A1との間接的な車車間通信によっても可能である。 The above-mentioned recognition of the emergency vehicle EV is also possible by direct vehicle-to-vehicle communication between the own vehicle A1 and the emergency vehicle EV, or indirectly between the other vehicle and the own vehicle A1 that recognize the approach of the emergency vehicle EV. It is also possible by standard vehicle-to-vehicle communication.

通信機能判別部24は、自車両A1の周囲を走行する他車両について、車車間通信の機能を搭載した搭載車両Aoであるか、車車間通信の機能を搭載していない非搭載車両Axであるかを判断する。通信機能判別部24は、少なくとも後続車両A2及び後側方車両A3について、搭載車両Ao及び非搭載車両Axのいずれであるかを判断する。尚、後側方車両A3は、自車両A1の走行する車線に隣接した隣接車線を走行する車両であって、自車両A1の後側方の所定距離以内を走行し、且つ、所定距離以内に存在する車両のうちで最も先頭に位置する一台である。 The communication function determination unit 24 is an on-board vehicle Ao equipped with a vehicle-to-vehicle communication function or a non-equipped vehicle Ax not equipped with a vehicle-to-vehicle communication function for other vehicles traveling around the own vehicle A1. To judge. The communication function determination unit 24 determines whether the following vehicle A2 and the rear side vehicle A3 are the mounted vehicle Ao or the non-mounted vehicle Ax. The rear side vehicle A3 is a vehicle that travels in an adjacent lane adjacent to the lane in which the own vehicle A1 travels, travels within a predetermined distance on the rear side of the own vehicle A1, and is within a predetermined distance. It is one of the most advanced vehicles in existence.

具体的に、通信機能判別部24は、車車間通信装置40によって取得される他車両情報と、周辺監視装置30によって取得される検出物情報(特に車間情報)とを比較することにより、搭載車両Aoと非搭載車両Axとを区別する。通信機能判別部24は、他車両情報及び検出物情報の両方にて存在が確認される他車両を、搭載車両Aoと判別する。一方で、通信機能判別部24は、検出物情報には存在しているものの、他車両情報には存在していない他車両を、非搭載車両Axと判別する。 Specifically, the communication function determination unit 24 compares the other vehicle information acquired by the vehicle-to-vehicle communication device 40 with the detected object information (particularly the vehicle-to-vehicle information) acquired by the peripheral monitoring device 30, and thereby the mounted vehicle. Distinguish between Ao and non-equipped vehicle Ax. The communication function discriminating unit 24 discriminates the other vehicle whose existence is confirmed by both the other vehicle information and the detected object information as the mounted vehicle Ao. On the other hand, the communication function discriminating unit 24 discriminates another vehicle that exists in the detected object information but does not exist in the other vehicle information as the non-equipped vehicle Ax.

走行モード判別部25は、車車間通信によって取得する他車両情報に基づき、自車両A1の周囲を走行する各他車両について、自動運転モード(自動走行状態)か手動運転モード(手動運転状態)かを判別する。自動運転モードは、各車両に搭載された自動運転機能が走行を制御している運転モード(運転状態)である。手動運転モードは、各車両の運転者が車両を走行させている運転状態である。走行モード判別部25は、後続車両A2及び後側方車両A3が存在している場合、少なくとも後続車両A2及び後側方車両A3について運転モードを判別する。 The driving mode determining unit 25 determines whether each other vehicle traveling around the own vehicle A1 is in an automatic driving mode (automatic driving state) or a manual driving mode (manual driving state) based on the other vehicle information acquired by vehicle-to-vehicle communication. To determine. The automatic driving mode is a driving mode (driving state) in which the automatic driving function installed in each vehicle controls driving. The manual driving mode is a driving state in which the driver of each vehicle is driving the vehicle. When the following vehicle A2 and the rear side vehicle A3 are present, the traveling mode determination unit 25 determines the driving mode for at least the following vehicle A2 and the rear side vehicle A3.

尚、自動運転機能が作動している場合、運転者の操作が受け付けられる状態であっても、運転モードは、自動運転モードと判別される。また、非搭載車両Axは、全て手動運転モードとみなされる。以下の説明では、自動運転起動が停止状態にある手動運転モードの車両、及び自動運転機能を搭載していない車両は、共に手動運転状態の車両と記載する。また、自動運転モードで走行中の車両は、「自動走行車両APC」と記載する。 When the automatic driving function is activated, the driving mode is determined to be the automatic driving mode even if the driver's operation is accepted. In addition, all non-equipped vehicles Ax are considered to be in the manual driving mode. In the following description, a vehicle in the manual driving mode in which the automatic driving start is stopped and a vehicle not equipped with the automatic driving function are both described as vehicles in the manual driving state. Further, the vehicle traveling in the automatic driving mode is described as "automatic driving vehicle APC".

認知判断部26は、待避行動作成部27にて予定される自車両A1の待避行動の実施が後続車両A2によって認知されたか否かを判断する。認知判断部26は、後続車両A2から送信される応答に基づき、自車両A1の待避行動の実施を後続車両A2が認知したと判断する。加えて認知判断部26は、後続車両A2の監視情報に基づき、待避行動に伴う自車両A1の減速に応じて後続車両A2が車間時間を確保するような減速を開始した場合にも、後続車両A2が自車両A1の待避行動の実施を認知したと判断する。 The cognitive determination unit 26 determines whether or not the execution of the escape action of the own vehicle A1 scheduled by the escape action creation unit 27 is recognized by the following vehicle A2. The cognitive determination unit 26 determines that the following vehicle A2 has recognized the execution of the shunting action of the own vehicle A1 based on the response transmitted from the following vehicle A2. In addition, the cognitive determination unit 26 also starts deceleration such that the following vehicle A2 secures the inter-vehicle time in response to the deceleration of the own vehicle A1 due to the evasion action based on the monitoring information of the following vehicle A2. It is determined that A2 has recognized the implementation of the evasion action of the own vehicle A1.

待避行動作成部27は、周辺監視装置30から取得する検出物情報に基づき、自車両A1の自動走行させる走行計画を作成する。走行計画により、自車両A1の予定走行経路が設定される。待避行動作成部27は、予定走行経路に沿った自車両A1の走行を指令する走行制御情報を、車両制御装置60へ向けて逐次出力する。 The shunting action creation unit 27 creates a traveling plan for automatically traveling the own vehicle A1 based on the detected object information acquired from the peripheral monitoring device 30. The planned travel route of the own vehicle A1 is set according to the travel plan. The shunting action creation unit 27 sequentially outputs travel control information instructing the vehicle A1 to travel along the planned travel route toward the vehicle control device 60.

待避行動作成部27は、自車両A1の予定走行経路と、緊急車両EVの予定走行経路とを比較することにより、待避行動の要否を判断する。待避行動作成部27は、緊急車両EVの接近によって待避行動が必要と判断した場合、走行計画の一つとして、待避行動計画を作成する。待避行動計画に基づく車両制御装置60の制御により、自車両A1は、緊急車両EVの予定走行経路から待避するよう減速し、例えば交差点の手前等で路肩近傍に停止する。待避行動作成部27は、パターンの異なる複数の待避行動計画を作成可能である。 The shunting action creation unit 27 determines whether or not the shunting action is necessary by comparing the planned traveling route of the own vehicle A1 with the scheduled traveling route of the emergency vehicle EV. When the shunting action creation unit 27 determines that the shunting action is necessary due to the approach of the emergency vehicle EV, it creates a shunting action plan as one of the traveling plans. Under the control of the vehicle control device 60 based on the evasion action plan, the own vehicle A1 decelerates so as to evacuate from the planned travel route of the emergency vehicle EV, and stops near the shoulder of the road, for example, just before the intersection. The escape action creation unit 27 can create a plurality of escape action plans having different patterns.

以上説明したように、自動運転ECU10は、緊急車両EVの接近方向及び他車両の状況等に基づき、現状に最適な待避行動計画を選択し、車両制御装置60と協働で待避行動を実行する。こうした待避行動を実現する各処理の詳細を、図3〜図11に基づき、図1を参照しつつ説明する。待避行動に係るメイン処理は、運転者等の操作によって自動運転機能が起動されたことに基づき、自動運転ECU10によって開始される。 As described above, the autonomous driving ECU 10 selects the optimum evacuation action plan for the current situation based on the approaching direction of the emergency vehicle EV, the situation of other vehicles, and the like, and executes the evacuation action in cooperation with the vehicle control device 60. .. The details of each process for realizing such a shunting behavior will be described with reference to FIGS. 1 and 11 based on FIGS. 3 to 11. The main process related to the shunting action is started by the automatic driving ECU 10 based on the activation of the automatic driving function by the operation of the driver or the like.

S101では、自車両A1の運転モードを自動走行モードに設定し、S102に進む。S102〜S104では、複数の方法を組み合わせて緊急車両EVの接近を判断する。具体的にS102では、緊急車両EVとの車車間通信、又は緊急車両EVを検出した他車両との車車間通信により、緊急車両EVを認知しているか否かを判別する。車車間通信によって緊急車両EVを認知している場合、S102からS106に進む。一方で、緊急車両EVを認知していない場合、S102からS103に進む。 In S101, the driving mode of the own vehicle A1 is set to the automatic driving mode, and the process proceeds to S102. In S102 to S104, the approach of the emergency vehicle EV is determined by combining a plurality of methods. Specifically, in S102, it is determined whether or not the emergency vehicle EV is recognized by the vehicle-to-vehicle communication with the emergency vehicle EV or the vehicle-to-vehicle communication with another vehicle that has detected the emergency vehicle EV. If the emergency vehicle EV is recognized by vehicle-to-vehicle communication, the process proceeds from S102 to S106. On the other hand, if the emergency vehicle EV is not recognized, the process proceeds from S102 to S103.

S103では、マイクロホン35からの集音情報に基づき、サイレン音によって緊急車両EVを認知しているか否かを判別する。サイレン音によって緊急車両EVを認知している場合、S103からS106に進む。一方で、サイレン音によっても緊急車両EVを認知できない場合、S103からS104に進む。 In S103, it is determined whether or not the emergency vehicle EV is recognized by the siren sound based on the sound collection information from the microphone 35. If the emergency vehicle EV is recognized by the siren sound, the process proceeds from S103 to S106. On the other hand, if the emergency vehicle EV cannot be recognized even by the siren sound, the process proceeds from S103 to S104.

S104では、カメラ31の画像の解析により、緊急車両EVを認知できているか否かを判別する。S104にて、カメラ31の画像から緊急車両EVを認知できている場合、S106に進む。一方で、カメラ31の画像から緊急車両EVを認知できない場合、S104からS105に進む。 In S104, it is determined whether or not the emergency vehicle EV can be recognized by analyzing the image of the camera 31. If the emergency vehicle EV can be recognized from the image of the camera 31 in S104, the process proceeds to S106. On the other hand, if the emergency vehicle EV cannot be recognized from the image of the camera 31, the process proceeds from S104 to S105.

S105では、自動運転が解除された否かを判定する。S105にて、自動運転モードが継続中であると判断した場合には、S102に戻る。一方で、自動運転機能の停止によって手動運転モードへの切り替えが実施されていた場合、メイン処理を終了する。 In S105, it is determined whether or not the automatic operation is canceled. If it is determined in S105 that the automatic operation mode is continuing, the process returns to S102. On the other hand, if the automatic operation function is stopped and the mode is switched to the manual operation mode, the main process is terminated.

緊急車両EVが認知された場合のS106では、待避判断処理(図4参照)の実施により、待避行動の要否を判定して、S107に進む。S106にて待避行動が不要と判断した場合、S107からS102に戻る。一方で、S106にて待避行動が必要と判断した場合、S107からS108に進む。 In S106 when the emergency vehicle EV is recognized, the necessity of the shunting action is determined by executing the shunting determination process (see FIG. 4), and the process proceeds to S107. If it is determined in S106 that the escape action is unnecessary, the process returns from S107 to S102. On the other hand, if it is determined in S106 that the escape action is necessary, the process proceeds from S107 to S108.

S108では、待避行動選択処理(図5〜図7参照)の実施により、実施する待避行動のパターンを選択して、S109に進む。S109では、自動運転が解除された否かを判定し、自動運転モードが継続している場合には、S102に戻る。一方で、自動運転機能の停止によって手動運転モードへの切り替えが実施された場合、メイン処理を終了する。 In S108, the pattern of the shunting action to be executed is selected by executing the shunting action selection process (see FIGS. 5 to 7), and the process proceeds to S109. In S109, it is determined whether or not the automatic operation is canceled, and if the automatic operation mode is continued, the process returns to S102. On the other hand, when the automatic operation function is stopped and the mode is switched to the manual operation mode, the main process is terminated.

次に、S107にて実施される待避判断処理の詳細を、図4に基づいて説明する。 Next, the details of the shunting determination process performed in S107 will be described with reference to FIG.

S111では、自車両A1の予定走行経路と緊急車両EVの予定走行経路とを比較し、互いの予定走行経路が重なるか否かを判定する。S111にて、予定走行経路が重ならないと判定した場合、S120にて待避不要と判定し、メイン処理のS107(図3参照)に戻る。この場合、後述の待避回避シーンN(図25参照)に例示するように、自車両A1は、待避行動を行わずに自動走行を継続できる。一方で、S111にて、相互の予定走行経路が重なると判定した場合、S112に進む。 In S111, the planned travel route of the own vehicle A1 and the planned travel route of the emergency vehicle EV are compared, and it is determined whether or not the planned travel routes of the own vehicle overlap each other. If it is determined in S111 that the planned travel routes do not overlap, it is determined in S120 that shunting is unnecessary, and the process returns to S107 (see FIG. 3) of the main process. In this case, as illustrated in the escape avoidance scene N (see FIG. 25) described later, the own vehicle A1 can continue the automatic traveling without performing the escape action. On the other hand, if it is determined in S111 that the planned traveling routes overlap each other, the process proceeds to S112.

S112では、緊急車両EVについて、自車両A1と同一の道路を走行し、且つ、自車両A1に後方から接近しているか否かを判断する。S112にて、緊急車両EVの接近する方向が自車両A1の後方ではないと判断した場合、S115に進む。一方で、緊急車両EVが自車両A1の後方から接近していると判断した場合、S112からS113に進む。 In S112, it is determined whether or not the emergency vehicle EV is traveling on the same road as the own vehicle A1 and is approaching the own vehicle A1 from behind. If it is determined in S112 that the approaching direction of the emergency vehicle EV is not behind the own vehicle A1, the process proceeds to S115. On the other hand, if it is determined that the emergency vehicle EV is approaching from behind the own vehicle A1, the process proceeds from S112 to S113.

S113では、自車両A1と緊急車両EVとの間の車間時間と、自車両A1が待避行動に要する時間とを比較する。S113にて、車間時間が待避行動に必要な時間(待避車間時間)よりも長いと判断した場合、S120にて待避不要と判定し、メイン処理のS107(図3参照)に戻る。この場合、後述の待避回避シーンK(図22参照)に例示するように、自車両A1は、待避行動を行わずに自動走行を継続できる。 In S113, the inter-vehicle time between the own vehicle A1 and the emergency vehicle EV is compared with the time required for the own vehicle A1 to evacuate. If it is determined in S113 that the inter-vehicle time is longer than the time required for the shunting action (inter-vehicle shunting time), it is determined in S120 that shunting is unnecessary, and the process returns to S107 (see FIG. 3) of the main process. In this case, as illustrated in the escape avoidance scene K (see FIG. 22) described later, the own vehicle A1 can continue the automatic traveling without performing the escape action.

一方、S113にて、緊急車両EVとの車間時間が待避行動に要する時間以下であると判断した場合、S114に進む。S114では、待避が必要と判断したうえで、緊急車両EVに追いつかれると予想した位置を、待避を完了しなければならない目標停止位置TSPに設定し、メイン処理のS107(図3参照)に戻る。 On the other hand, if it is determined in S113 that the time between the vehicle and the emergency vehicle EV is less than or equal to the time required for the shunting action, the process proceeds to S114. In S114, after determining that shunting is necessary, the position predicted to be overtaken by the emergency vehicle EV is set as the target stop position TSP in which shunting must be completed, and the process returns to S107 (see FIG. 3) of the main process. ..

S115では、緊急車両EVについて、自車両A1と同一の道路を走行し、且つ、自車両A1の前方から接近しているか否かを判断する。S115にて、緊急車両EVの接近する方向が自車両A1の前方ではないと判断した場合、S119に進む。一方で、緊急車両EVが自車両A1に前方から接近していると判断した場合、S115からS116に進む。 In S115, it is determined whether or not the emergency vehicle EV is traveling on the same road as the own vehicle A1 and is approaching from the front of the own vehicle A1. If it is determined in S115 that the approaching direction of the emergency vehicle EV is not in front of the own vehicle A1, the process proceeds to S119. On the other hand, if it is determined that the emergency vehicle EV is approaching the own vehicle A1 from the front, the process proceeds from S115 to S116.

S116では、地図情報に基づき、自車両A1と緊急車両EVとの間に交差点CPが存在するか否かを判定する。S116にて、交差点CPが存在しないと判定した場合、S120にて待避不要と判定し、メイン処理のS107(図3参照)に戻る。一方で、S116にて、交差点CPが存在すると判定した場合、S117に進む。 In S116, it is determined whether or not there is an intersection CP between the own vehicle A1 and the emergency vehicle EV based on the map information. When it is determined in S116 that the intersection CP does not exist, it is determined in S120 that shunting is unnecessary, and the process returns to S107 (see FIG. 3) of the main process. On the other hand, if it is determined in S116 that the intersection CP exists, the process proceeds to S117.

S117では、自車両A1よりも緊急車両EVの方が交差点CP(図23参照)に近いか否かを判定する。或いはS117では、緊急車両EVが自車両A1よりも先に交差点CPに到達すると予測できるか否を判定してもよい。S117にて、自車両A1の方が交差点CPに近いと判定した場合、又は自車両A1が先に交差点CPに進入又は到達すると予測した場合、S120にて待避不要と判定し、メイン処理のS107(図3参照)に戻る。この場合、後述の待避回避シーンL(図23参照)に例示するように、自車両A1は、待避行動を行わずに自動走行の継続によって交差点CPを通過する。 In S117, it is determined whether or not the emergency vehicle EV is closer to the intersection CP (see FIG. 23) than the own vehicle A1. Alternatively, in S117, it may be determined whether or not it can be predicted that the emergency vehicle EV will reach the intersection CP before the own vehicle A1. If it is determined in S117 that the own vehicle A1 is closer to the intersection CP, or if it is predicted that the own vehicle A1 will enter or reach the intersection CP first, it is determined in S120 that shunting is unnecessary, and the main process S107 Return to (see FIG. 3). In this case, as illustrated in the escape avoidance scene L (see FIG. 23) described later, the own vehicle A1 passes through the intersection CP by continuing automatic traveling without performing the escape action.

一方、S117にて、緊急車両EVの方が交差点CPに近いと判定した場合、又は緊急車両EVが先に交差点CPに進入又は到達すると予測した場合、S118に進む。S118では、待避が必要と判断したうえで、交差点CPの停止線を、待避を完了しなければならない目標停止位置TSPに設定し、メイン処理のS107(図3参照)に戻る。 On the other hand, if it is determined in S117 that the emergency vehicle EV is closer to the intersection CP, or if it is predicted that the emergency vehicle EV will enter or reach the intersection CP first, the process proceeds to S118. In S118, after determining that shunting is necessary, the stop line of the intersection CP is set at the target stop position TSP where shunting must be completed, and the process returns to S107 (see FIG. 3) of the main process.

S119では、緊急車両EVについて、自車両A1の走行する道路と交差する交差道路を走行し、且つ、自車両A1の進行方向にある交差点CP(図24参照)に接近しているか否かを判断する。S119にて、緊急車両EVが交差点CPに接近していないと判断した場合、S120にて待避不要と判定し、メイン処理のS107に(図3参照)戻る。 In S119, it is determined whether or not the emergency vehicle EV is traveling on an intersection road intersecting the road on which the own vehicle A1 is traveling and is approaching an intersection CP (see FIG. 24) in the traveling direction of the own vehicle A1. To do. If it is determined in S119 that the emergency vehicle EV is not approaching the intersection CP, it is determined in S120 that shunting is unnecessary, and the process returns to S107 in the main process (see FIG. 3).

一方で、S119にて、緊急車両EVが交差点CPに接近していると判断した場合、S117に進む。S117にて、例えば自車両A1が緊急車両EVよりも先に交差点CPに進入又は到達すると予測した場合、S120にて待避不要と判定し、メイン処理のS107(図3参照)に戻る。この場合、後述の待避回避シーンM(図24参照)に例示するように、自車両A1は、待避行動を行わずに自動走行の継続によって交差点CPを通過する。対して、緊急車両EVが自車両A1よりも先に交差点CPに進入又は到達すると予測した場合、S118にて、交差点CPの停止線を目標停止位置TSPとして設定し、メイン処理のS107(図3参照)に戻る。 On the other hand, if it is determined in S119 that the emergency vehicle EV is approaching the intersection CP, the process proceeds to S117. In S117, for example, when it is predicted that the own vehicle A1 will enter or reach the intersection CP before the emergency vehicle EV, it is determined in S120 that shunting is unnecessary, and the process returns to S107 (see FIG. 3) of the main process. In this case, as illustrated in the escape avoidance scene M (see FIG. 24) described later, the own vehicle A1 passes through the intersection CP by continuing automatic traveling without performing the escape action. On the other hand, when it is predicted that the emergency vehicle EV will enter or reach the intersection CP before the own vehicle A1, the stop line of the intersection CP is set as the target stop position TSP in S118, and the main process S107 (FIG. 3). See).

次に、S109にて実施される待避行動選択処理の詳細を、図5〜図7に基づいて説明する。 Next, the details of the escape action selection process performed in S109 will be described with reference to FIGS. 5 to 7.

S131では、自車両A1が走行する車線に後続車両A2が存在するか否かを判定する。S131にて、後続車両A2が存在しないと判定した場合、S137に進む。S137では、後続車両A2が存在しない場合の待避行動として、パターン1の待避行動(図8参照)を選択し、メイン処理のS109(図3参照)に戻る。この場合、自車両A1は、後述の待避シーンA(図12参照)に例示するような待避行動を実行する。 In S131, it is determined whether or not the following vehicle A2 exists in the lane in which the own vehicle A1 travels. If it is determined in S131 that the following vehicle A2 does not exist, the process proceeds to S137. In S137, the shunting action of pattern 1 (see FIG. 8) is selected as the shunting action when the following vehicle A2 does not exist, and the process returns to S109 (see FIG. 3) of the main process. In this case, the own vehicle A1 executes a shunting action as illustrated in the shunting scene A (see FIG. 12) described later.

一方、後続車両A2が存在していると判定した場合、S131からS132に進む。S132では、自車両A1と同一車線を走行する後続車両A2について、車車間通信の機能を搭載した搭載車両Aoであるか否かを判定する。S132にて、後続車両A2が非搭載車両Axであると判定した場合、S133に進む。一方で、S132にて、後続車両A2が搭載車両Aoであると判定した場合、S134に進む。 On the other hand, if it is determined that the following vehicle A2 exists, the process proceeds from S131 to S132. In S132, it is determined whether or not the following vehicle A2 traveling in the same lane as the own vehicle A1 is the mounted vehicle Ao equipped with the inter-vehicle communication function. If it is determined in S132 that the following vehicle A2 is a non-equipped vehicle Ax, the process proceeds to S133. On the other hand, if it is determined in S132 that the following vehicle A2 is the mounted vehicle Ao, the process proceeds to S134.

S133では、自車両A1が走行する車線に隣接する隣接車線について、自車両A1の後方(後側方)の所定距離以内に後側方車両A3が存在するか否かを判定する。S133にて、後側方車両A3が存在しないと判定した場合、S137にてパターン1の待避行動(図8参照)を選択し、メイン処理のS109(図3参照)に戻る。一方で、S133にて、後側方車両A3が存在していると判定した場合、S138に進む。 In S133, it is determined whether or not the rear side vehicle A3 exists within a predetermined distance behind (rear side) of the own vehicle A1 in the adjacent lane adjacent to the lane in which the own vehicle A1 travels. If it is determined in S133 that the rear side vehicle A3 does not exist, the shunting action of pattern 1 (see FIG. 8) is selected in S137, and the process returns to S109 (see FIG. 3) of the main process. On the other hand, if it is determined in S133 that the rear side vehicle A3 exists, the process proceeds to S138.

S134では、後続車両A2が自動走行モードであるか否かを判別する。S134にて、後続車両A2が自動運転モードであると判別した場合、S141に進む。一方で、後続車両A2が手動運転中であると判別した場合、S135に進む。 In S134, it is determined whether or not the following vehicle A2 is in the automatic traveling mode. If it is determined in S134 that the following vehicle A2 is in the automatic driving mode, the process proceeds to S141. On the other hand, if it is determined that the following vehicle A2 is in manual driving, the process proceeds to S135.

S135では、S133と同様に、後側方車両A3が存在するか否かを判定する。S135にて、後側方車両A3が存在しないと判定した場合、S136に進む。S136では、後側方車両A3が存在しない隣接車線への車線変更を実行し、S137に進む。S137にて、パターン1の待避行動(図8参照)を選択し、メイン処理のS109(図3参照)に戻る。この場合、自車両A1は、後述の待避シーンI(図20参照)に例示するような待避行動を実行する。一方で、後側方車両A3が存在していると判定した場合、S135からS139に進む。 In S135, similarly to S133, it is determined whether or not the rear side vehicle A3 exists. If it is determined in S135 that the rear side vehicle A3 does not exist, the process proceeds to S136. In S136, the lane change to the adjacent lane in which the rear side vehicle A3 does not exist is executed, and the process proceeds to S137. In S137, the shunting action of pattern 1 (see FIG. 8) is selected, and the process returns to S109 (see FIG. 3) of the main process. In this case, the own vehicle A1 executes a shunting action as illustrated in the shunting scene I (see FIG. 20) described later. On the other hand, if it is determined that the rear side vehicle A3 exists, the process proceeds from S135 to S139.

図6に示すS138及びS139では、後側方車両A3について自動走行モードであるか否かを判別する。S138及びS139にて、後側方車両A3が自動運転モードであると判別した場合、S140に進む。一方で、S138にて、後側方車両A3が手動運転状態であると判別した場合、S144に進む。同様に、S139にて、後側方車両A3が手動運転状態であると判別した場合、S146に進む。 In S138 and S139 shown in FIG. 6, it is determined whether or not the rear side vehicle A3 is in the automatic traveling mode. If it is determined in S138 and S139 that the rear side vehicle A3 is in the automatic driving mode, the process proceeds to S140. On the other hand, if it is determined in S138 that the rear side vehicle A3 is in the manual driving state, the process proceeds to S144. Similarly, if it is determined in S139 that the rear side vehicle A3 is in the manual driving state, the process proceeds to S146.

S140では、自動走行中の後側方車両A3がいる隣接車線への車線変更を実行し、S143に進む。S140の車線変更により、自動運転モードにて走行中の後側方車両A3は、自車両A1の後続車両A2になる。S143では、後続車両A2が自動運転モードである場合の待避行動として、パターン2の待避行動(図9参照)を選択し、メイン処理のS109(図3参照)に戻る。この場合、自車両A1は、後述の待避シーンG(図18参照)に例示するような待避行動を実行する。 In S140, the lane is changed to the adjacent lane in which the rear side vehicle A3 during automatic traveling is located, and the process proceeds to S143. Due to the lane change of S140, the rear side vehicle A3 traveling in the automatic driving mode becomes the following vehicle A2 of the own vehicle A1. In S143, the shunting action of pattern 2 (see FIG. 9) is selected as the shunting action when the following vehicle A2 is in the automatic driving mode, and the process returns to S109 (see FIG. 3) of the main process. In this case, the own vehicle A1 executes a shunting action as illustrated in the shunting scene G (see FIG. 18) described later.

S141では、自動走行中の後続車両A2から自車両A1までの車間時間と、自動走行中の後側方車両A3から自車両A1までの車間時間とを取得し、これら二つの車間時間を比較する。そして、自動走行中である後続車両A2及び後側方車両A3のうちで、自車両A1からの車間時間を長く確保可能な一方を選択する。S141にて、二つの車間時間のうちで、後側方車両A3の方が長い車間時間を確保できると判定した場合、S142に進む。 In S141, the inter-vehicle time from the following vehicle A2 during automatic traveling to the own vehicle A1 and the inter-vehicle time from the rear side vehicle A3 during automatic traveling to the own vehicle A1 are acquired, and the inter-vehicle time between these two vehicles is compared. .. Then, one of the following vehicle A2 and the rear side vehicle A3 that are automatically traveling is selected, which can secure a long inter-vehicle time from the own vehicle A1. If it is determined in S141 that the rear side vehicle A3 can secure a longer inter-vehicle time out of the two inter-vehicle times, the process proceeds to S142.

S142では、車間時間をより長く確保できる隣接車線への車線変更を実行し、S143に進む。S142の車線変更により、自動運転モードで走行中の後側方車両A3が、自車両A1の後続車両A2になる。S143では、パターン2の待避行動(図9参照)を選択し、メイン処理のS109(図3参照)に戻る。この場合、自車両A1は、後述の待避シーンJ(図21参照)に例示するような待避行動を実行する。 In S142, the lane change to the adjacent lane that can secure a longer inter-vehicle time is executed, and the process proceeds to S143. Due to the lane change of S142, the rear side vehicle A3 traveling in the automatic driving mode becomes the following vehicle A2 of the own vehicle A1. In S143, the shunting action of pattern 2 (see FIG. 9) is selected, and the process returns to S109 (see FIG. 3) of the main process. In this case, the own vehicle A1 executes a shunting action as illustrated in the shunting scene J (see FIG. 21) described later.

一方、S141にて、現在の後続車両A2の方が長い車間時間を確保できると判定した場合、S143に進み、パターン2の待避行動(図9参照)を選択して、メイン処理のS109(図3参照)に戻る。この場合、自車両A1は、後述の待避シーンH(図19参照)に例示するような待避行動を実行する。 On the other hand, if it is determined in S141 that the current following vehicle A2 can secure a longer inter-vehicle time, the process proceeds to S143, the shunting action of pattern 2 (see FIG. 9) is selected, and the main process S109 (FIG. 9). 3). In this case, the own vehicle A1 executes a shunting action as illustrated in the shunting scene H (see FIG. 19) described later.

図7に示すS144では、手動運転状態の後側方車両A3について、搭載車両Aoか非搭載車両Axかを判別する。S144にて、後側方車両A3が搭載車両Aoであると判別した場合、S145に進む。S145では、搭載車両Aoの走行する隣接車線への車線変更を実行し、S148に進む。S145の車線変更により、搭載車両Aoである側方車両A3が自車両A1の後続車両A2になる。S148では、後続車両A2が手動運転状態の搭載車両Aoである場合の待避行動として、パターン3の待避行動(図10参照)を選択し、メイン処理のS109(図3参照)に戻る。この場合、自車両A1は、後述の待避シーンC(図14参照)に例示するような待避行動を実行する。パターン3の待避行動では、パターン2の待避行動よりも、自車両A1を緩やかに減速させる計画が作成される。 In S144 shown in FIG. 7, it is determined whether the rear side vehicle A3 in the manually operated state is the mounted vehicle Ao or the non-mounted vehicle Ax. If it is determined in S144 that the rear side vehicle A3 is the mounted vehicle Ao, the process proceeds to S145. In S145, the lane is changed to the adjacent lane in which the mounted vehicle Ao travels, and the process proceeds to S148. Due to the lane change in S145, the side vehicle A3, which is the mounted vehicle Ao, becomes the following vehicle A2 of the own vehicle A1. In S148, the shunting action of pattern 3 (see FIG. 10) is selected as the shunting action when the following vehicle A2 is the mounted vehicle Ao in the manually operated state, and the process returns to S109 (see FIG. 3) of the main process. In this case, the own vehicle A1 executes a shunting action as illustrated in the shunting scene C (see FIG. 14) described later. In the shunting action of the pattern 3, a plan for decelerating the own vehicle A1 more slowly than the shunting action of the pattern 2 is created.

S146では、後続車両A2から自車両A1までの車間時間と、後側方車両A3から自車両A1までの車間時間とを取得し、これら二つの車間時間を比較する。そして、手動運転状態の搭載車両Aoである後続車両A2及び後側方車両A3のうちで、自車両A1からの車間時間を長く確保可能な一方を選択する。S146にて、二つの車間時間のうちで、後側方車両A3の方が長い車間時間を確保できると判定した場合、S147に進む。 In S146, the inter-vehicle time from the following vehicle A2 to the own vehicle A1 and the inter-vehicle time from the rear side vehicle A3 to the own vehicle A1 are acquired, and the inter-vehicle time between these two is compared. Then, one of the following vehicle A2 and the rear side vehicle A3, which are the mounted vehicles Ao in the manually operated state, that can secure a long inter-vehicle time from the own vehicle A1 is selected. If it is determined in S146 that the rear side vehicle A3 can secure a longer inter-vehicle time out of the two inter-vehicle times, the process proceeds to S147.

S147では、車間時間をより長く確保できる隣接車線への車線変更を実行し、S148に進む。S147の車線変更により、後側方車両A3が自車両A1の後続車両A2になる。S148では、パターン3の待避行動(図9参照)を選択し、メイン処理のS109(図3参照)に戻る。この場合、自車両A1は、後述の待避シーンJ(図21参照)に例示するような待避行動を実行する。 In S147, the lane change to the adjacent lane that can secure a longer inter-vehicle time is executed, and the process proceeds to S148. Due to the lane change in S147, the rear side vehicle A3 becomes the following vehicle A2 of the own vehicle A1. In S148, the shunting action of pattern 3 (see FIG. 9) is selected, and the process returns to S109 (see FIG. 3) of the main process. In this case, the own vehicle A1 executes a shunting action as illustrated in the shunting scene J (see FIG. 21) described later.

一方、S146にて、現在の後続車両A2の方が長い車間時間を確保できると判定した場合、S148に進み、パターン3の待避行動(図9参照)を選択して、メイン処理のS109(図3参照)に戻る。この場合、自車両A1は、後述の待避シーンJ(図21参照)に例示するような待避行動を実行する。 On the other hand, if it is determined in S146 that the current following vehicle A2 can secure a longer inter-vehicle time, the process proceeds to S148, the shunting action of pattern 3 (see FIG. 9) is selected, and the main process S109 (FIG. 9). 3). In this case, the own vehicle A1 executes a shunting action as illustrated in the shunting scene J (see FIG. 21) described later.

S144にて、後側方車両A3が非搭載車両Axであると判別した場合、S149に進む。S149では、後続車両A2から自車両A1までの車間時間と、後側方車両A3から自車両A1までの車間時間とを取得し、これら二つの車間時間を比較する。そして、手動運転状態の非搭載車両Axである後続車両A2及び後側方車両A3のうちで、自車両A1からの車間時間を長く確保可能な一方を選択する。S149にて、二つの車間時間のうちで、後側方車両A3の方が長い車間時間を確保できると判定した場合、S150に進む。 If it is determined in S144 that the rear side vehicle A3 is a non-equipped vehicle Ax, the process proceeds to S149. In S149, the inter-vehicle time from the following vehicle A2 to the own vehicle A1 and the inter-vehicle time from the rear side vehicle A3 to the own vehicle A1 are acquired, and the inter-vehicle time between these two is compared. Then, one of the following vehicle A2 and the rear side vehicle A3, which are the non-equipped vehicles Ax in the manually operated state, is selected so that the inter-vehicle time from the own vehicle A1 can be long. If it is determined in S149 that the rear side vehicle A3 can secure a longer inter-vehicle time out of the two inter-vehicle times, the process proceeds to S150.

S150では、車間時間をより長く確保できる隣接車線への車線変更を実行し、S151に進む。S150の車線変更により、後側方車両A3が自車両A1の後続車両A2になる。S150では、後続車両A2が手動運転モード且つ非搭載車両Axである場合の待避行動として、パターン4の待避行動(図11参照)を選択し、メイン処理のS109(図3参照)に戻る。この場合も、自車両A1は、後述の待避シーンJ(図21参照)に例示するような待避行動を実行する。 In S150, the lane change to the adjacent lane that can secure a longer inter-vehicle time is executed, and the process proceeds to S151. Due to the lane change of S150, the rear side vehicle A3 becomes the following vehicle A2 of the own vehicle A1. In S150, the shunting action of pattern 4 (see FIG. 11) is selected as the shunting action when the following vehicle A2 is in the manual driving mode and the non-equipped vehicle Ax, and the process returns to S109 (see FIG. 3) of the main process. Also in this case, the own vehicle A1 executes the shunting action as illustrated in the shunting scene J (see FIG. 21) described later.

一方、S149にて、現在の後続車両A2の方が長い車間時間を確保できると判定した場合、S150に進む。S150では、パターン4の待避行動(図11参照)を選択し、メイン処理のS109(図3参照)に戻る。この場合、自車両A1は、後述の待避シーンB(図13参照)に例示するような待避行動を実行する。 On the other hand, if it is determined in S149 that the current following vehicle A2 can secure a longer inter-vehicle time, the process proceeds to S150. In S150, the shunting action of pattern 4 (see FIG. 11) is selected, and the process returns to S109 (see FIG. 3) of the main process. In this case, the own vehicle A1 executes a shunting action as illustrated in the shunting scene B (see FIG. 13) described later.

次に、待避行動選択処理のS137、S143、S148、及びS151にて作成される待避行動計画に基づいて実施される各待避行動の詳細を、図8〜図11に基づいて、順に説明する。 Next, the details of each shunting action implemented based on the shunting action plan created in S137, S143, S148, and S151 of the shunting action selection process will be described in order with reference to FIGS. 8 to 11.

図8に示すパターン1の待避行動のS201では、車速情報に基づき、下記の(式1)を用いて、自車両A1が停車までに必要とする制動距離を算出する。そして、S114又はS118(図4参照)にて設定した目標停止位置で停止するための減速開始位置DSPを設定し、S202に進む。尚、規定減速度PDは、自車両A1を減速させる方向の加速度のため、マイナスの値となる。規定減速度PDは、例えば−0.2G程度に予め規定されている。 In the shunting action S201 of the pattern 1 shown in FIG. 8, the braking distance required for the own vehicle A1 to stop is calculated by using the following (Equation 1) based on the vehicle speed information. Then, the deceleration start position DSP for stopping at the target stop position set in S114 or S118 (see FIG. 4) is set, and the process proceeds to S202. The specified deceleration PD has a negative value because of the acceleration in the direction of decelerating the own vehicle A1. The specified deceleration PD is predetermined to be, for example, about −0.2 G.

(式1) 制動距離=−(速度)^2/(2×規定減速度PD)
S202では、GNSS受信機43にて計測された位置情報に基づき、自車両A1が減速開始位置DSPに到達したか否かを判定する。S202にて、減速開始位置DSPに到達していないと判定した場合、S204に進む。一方で、S202にて、減速開始位置DSPに到達したと判定した場合、S203に進む。S203では、規定減速度PDでの減速を開始し、S204に進む。
(Equation 1) Braking distance =-(speed) ^ 2 / (2 x specified deceleration PD)
In S202, it is determined whether or not the own vehicle A1 has reached the deceleration start position DSP based on the position information measured by the GNSS receiver 43. If it is determined in S202 that the deceleration start position DSP has not been reached, the process proceeds to S204. On the other hand, if it is determined in S202 that the deceleration start position DSP has been reached, the process proceeds to S203. In S203, deceleration at the specified deceleration PD is started, and the process proceeds to S204.

S204では、自車両A1が走行する車線への他車両の車線変更等により、同一車線後方の所定距離以内に他車両が入ってきたか否かを判定する。S204にて、後続車両A2が発生したと判定した場合、再び待避行動選択処理(図5参照)を実施する。一方で、後続車両A2の発生が無い場合、S205に進む。 In S204, it is determined whether or not another vehicle has entered within a predetermined distance behind the same lane due to a lane change of another vehicle to the lane in which the own vehicle A1 is traveling. When it is determined in S204 that the following vehicle A2 has occurred, the escape action selection process (see FIG. 5) is performed again. On the other hand, if the following vehicle A2 does not occur, the process proceeds to S205.

S205では、緊急車両EVを継続して認知しているか否かを確認する。S205にて、緊急車両EVが認知できなくなったと判定した場合、S207に進む。S207では、待避行動を解除し、メイン処理(図4参照)に戻る。以上により、自車両A1は、通常の自動走行モードでの自動走行に戻る。 In S205, it is confirmed whether or not the emergency vehicle EV is continuously recognized. If it is determined in S205 that the emergency vehicle EV can no longer be recognized, the process proceeds to S207. In S207, the shunting action is canceled and the process returns to the main process (see FIG. 4). As described above, the own vehicle A1 returns to the automatic driving in the normal automatic driving mode.

一方、S205にて、緊急車両EVの認知が継続していると判定した場合、S206に進む。S206では、緊急車両EVが自車両A1を追い抜いたか、又は緊急車両EVが自車両A1より先に交差点CPを通過したか、について判定を行う。緊急車両EVに追い抜かれた場合、又は緊急車両EVが先に交差点CPを通過した場合、S206からS207に進み、待避行動を解除する。一方で、緊急車両EVの追い抜き及び交差点CPの先行通過等が生じていない場合、S206からS202に戻る。 On the other hand, if it is determined in S205 that the recognition of the emergency vehicle EV is continuing, the process proceeds to S206. In S206, it is determined whether the emergency vehicle EV has overtaken the own vehicle A1 or whether the emergency vehicle EV has passed the intersection CP before the own vehicle A1. If the emergency vehicle EV is overtaken, or if the emergency vehicle EV passes the intersection CP first, the process proceeds from S206 to S207 to cancel the evasion action. On the other hand, if the emergency vehicle EV is not overtaken or the intersection CP is not passed ahead, the vehicle returns from S206 to S202.

図9に示すパターン2の待避行動のS211では、S201(図8参照)と同様に、上記の式1を用いて、制動距離の算出と減速開始位置DSPの設定とを行い、S212に進む。S212では、S114又はS118(図4参照)にて設定した目標停止位置TSPに到達するまでの到達時間を計算する。そして、待避行動のために減速を何秒後に開始するか等の情報を、待避行動の実施予告として、後続車両A2を含む周囲の他車両に通知し、S213に進む。以上の車車間通信により、後続車両A2等は、減速開始のタイミングを取得できる。 In the shunting action S211 of the pattern 2 shown in FIG. 9, the braking distance is calculated and the deceleration start position DSP is set by using the above equation 1 in the same manner as in S201 (see FIG. 8), and the process proceeds to S212. In S212, the arrival time until reaching the target stop position TSP set in S114 or S118 (see FIG. 4) is calculated. Then, information such as how many seconds later the deceleration is started for the shunting action is notified to other surrounding vehicles including the following vehicle A2 as a notice of the implementation of the shunting action, and the process proceeds to S213. Through the above inter-vehicle communication, the following vehicle A2 and the like can acquire the timing of starting deceleration.

S213では、自車両A1が減速開始位置DSPに到達したか否かを判定する。S213にて、減速開始位置DSPに到達していないと判定した場合、S216に進む。一方で、S213にて、減速開始位置DSPに到達したと判定した場合、S214に進む。S214では、規定減速度PDでの減速を開始し、S215に進む。S215では、緊急車両EVに進路を譲るために減速していることを、車車間通信を用いて他車両にさらに通知し、S216に進む。 In S213, it is determined whether or not the own vehicle A1 has reached the deceleration start position DSP. If it is determined in S213 that the deceleration start position DSP has not been reached, the process proceeds to S216. On the other hand, if it is determined in S213 that the deceleration start position DSP has been reached, the process proceeds to S214. In S214, deceleration at the specified deceleration PD is started, and the process proceeds to S215. In S215, the other vehicle is further notified that the vehicle is decelerating in order to give way to the emergency vehicle EV, and the vehicle proceeds to S216.

S216では、自車両A1の後方の所定距離以内に他車両が入ってきたか否かを判定する。S216にて、同一車線に後続車両A2が発生したと判定した場合、再び待避行動選択処理(図5参照)を実施する。一方で、後続車両A2の発生が無い場合、S217に進む。 In S216, it is determined whether or not another vehicle has entered within a predetermined distance behind the own vehicle A1. When it is determined in S216 that the following vehicle A2 has occurred in the same lane, the shunting action selection process (see FIG. 5) is performed again. On the other hand, if the following vehicle A2 does not occur, the process proceeds to S217.

S217では、緊急車両EVを継続して認知しているか否かを確認する。S217にて、緊急車両EVが認知できなくなったと判定した場合、S219に進む。S219では、待避行動を解除し、メイン処理(図4参照)に戻る。以上により、自車両A1は、通常の自動走行モードでの自動走行に戻る。 In S217, it is confirmed whether or not the emergency vehicle EV is continuously recognized. If it is determined in S217 that the emergency vehicle EV can no longer be recognized, the process proceeds to S219. In S219, the escape action is canceled and the process returns to the main process (see FIG. 4). As described above, the own vehicle A1 returns to the automatic driving in the normal automatic driving mode.

一方、S217にて、緊急車両EVの認知が継続していると判定した場合、S218に進む。S218にて、緊急車両EVに追い抜かれた、又は緊急車両EVが先に交差点CPを通過したと判定した場合、S219に進み、待避行動を解除する。一方で、緊急車両EVの追い抜き及び交差点CPの先行通過等が生じていない場合、S218からS213に戻る。 On the other hand, if it is determined in S217 that the recognition of the emergency vehicle EV is continuing, the process proceeds to S218. If it is determined in S218 that the emergency vehicle EV has been overtaken or that the emergency vehicle EV has passed the intersection CP first, the process proceeds to S219 and the evasion action is canceled. On the other hand, if the emergency vehicle EV is not overtaken or the intersection CP is not passed ahead, the vehicle returns from S218 to S213.

図10に示すパターン3の待避行動のS231では、車速情報に基づき、下記の(式2)を用いて、目標停止位置TSPに自車両A1を停止させるための目標減速度TDを算出する。そして、算出した目標減速度TDでの減速を現在位置から直ちに開始し、S232に進む。 In the shunting action S231 of the pattern 3 shown in FIG. 10, the target deceleration TD for stopping the own vehicle A1 at the target stop position TSP is calculated by using the following (Equation 2) based on the vehicle speed information. Then, the deceleration at the calculated target deceleration TD is immediately started from the current position, and the process proceeds to S232.

(式2) 目標減速度TD=−(速度)^2/(2×目標停止位置TSPまでの距離)
S232では、緊急車両EVに進路を譲るために減速していることを、車車間通信を用いて他車両に通知し、S233に進む。S233では、自車両A1と同一車線を走行する後続車両A2について、車線変更等によって他の車線に移動したか否かを判定する。S233にて、後続車両A2が車線変更を行ったと判定した場合、再び待避行動選択処理(図5参照)を実施する。この場合、自車両A1は、後述の待避シーンD(図15参照)に例示するような待避行動を実行する。
(Equation 2) Target deceleration TD =-(speed) ^ 2 / (2 x distance to target stop position TSP)
In S232, the other vehicle is notified that the vehicle is decelerating in order to give way to the emergency vehicle EV, and the vehicle proceeds to S233. In S233, it is determined whether or not the following vehicle A2 traveling in the same lane as the own vehicle A1 has moved to another lane due to a lane change or the like. When it is determined in S233 that the following vehicle A2 has changed lanes, the shunting action selection process (see FIG. 5) is performed again. In this case, the own vehicle A1 executes a shunting action as illustrated in the shunting scene D (see FIG. 15) described later.

一方、後続車両A2の車線変更が確認できない場合、S233からS234に進む。S234では、S232にて送信した通知に対し、車車間通信による応答が後続車両A2からあったか否かを判定する。S234にて、後続車両A2からの応答があったと判定した場合、パターン2の待避行動(図9参照)へ移行する。この場合、自車両A1は、後述の待避シーンE(図16参照)に例示するような待避行動を実行する。 On the other hand, if the lane change of the following vehicle A2 cannot be confirmed, the process proceeds from S233 to S234. In S234, it is determined whether or not there is a response by vehicle-to-vehicle communication from the following vehicle A2 in response to the notification transmitted in S232. When it is determined in S234 that there is a response from the following vehicle A2, the process shifts to the shunting action of pattern 2 (see FIG. 9). In this case, the own vehicle A1 executes a shunting action as illustrated in the shunting scene E (see FIG. 16) described later.

S234にて、後続車両A2からの応答が無いと判定した場合、S235に進む。S235では、自車両A1の減速に追従して後続車両A2が減速したか否かを判定する。S235にて、後続車両A2が減速したと判定した場合、パターン2の待避行動(図9参照)へ移行する。一方で、S235にて、後続車両A2の減速が確認できない場合、S236に進む。 If it is determined in S234 that there is no response from the following vehicle A2, the process proceeds to S235. In S235, it is determined whether or not the following vehicle A2 has decelerated following the deceleration of the own vehicle A1. When it is determined in S235 that the following vehicle A2 has decelerated, the process shifts to the shunting action of pattern 2 (see FIG. 9). On the other hand, if the deceleration of the following vehicle A2 cannot be confirmed in S235, the process proceeds to S236.

S236では、後続車両A2と自車両A1との車間時間等に基づき、後続車両A2の自車両A1への急接近を監視し、後続車両A2の追突の可能性を判断する。S236にて、追突の可能性が実質的に無いと判断できる場合、S238に進む。一方で、追突の可能性があると判断した場合、S236からS237に進む。S237では、S231にて開始した減速を一時的に解除し、再び待避行動選択処理(図5参照)を実施する。この場合、自車両A1は、後述の待避シーンF(図17参照)に例示するような待避行動を実行する。S237による減速の中断により、自車両A1から後続車両A2までの車間時間の減少が緩和される。 In S236, the sudden approach of the following vehicle A2 to the own vehicle A1 is monitored based on the inter-vehicle time between the following vehicle A2 and the own vehicle A1, and the possibility of a rear-end collision of the following vehicle A2 is determined. If it can be determined in S236 that there is virtually no possibility of a rear-end collision, the process proceeds to S238. On the other hand, if it is determined that there is a possibility of a rear-end collision, the process proceeds from S236 to S237. In S237, the deceleration started in S231 is temporarily released, and the escape action selection process (see FIG. 5) is performed again. In this case, the own vehicle A1 executes a shunting action as illustrated in the shunting scene F (see FIG. 17) described later. Due to the interruption of deceleration by S237, the decrease in the inter-vehicle time from the own vehicle A1 to the following vehicle A2 is alleviated.

S238では、自車両A1と後続車両A2との間に車線変更によって他車両が入ってきたか否かを判定する。S238にて、新たに後続車両A2となる別の他車両が発生し、後続車両A2が変更されたと判定した場合、再び待避行動選択処理(図5参照)を実施する。一方で、後続車両A2の変更がない場合、S239に進む。 In S238, it is determined whether or not another vehicle has entered between the own vehicle A1 and the following vehicle A2 by changing lanes. When it is determined in S238 that another vehicle that becomes the following vehicle A2 is newly generated and the following vehicle A2 is changed, the shunting action selection process (see FIG. 5) is performed again. On the other hand, if there is no change in the following vehicle A2, the process proceeds to S239.

S239では、S205(図8参照)等と同様に、緊急車両EVを継続して認知しているか否かを確認する。S239にて、緊急車両EVが認知できなくなったと判定した場合、S241に進む。S241では、待避行動を解除し、メイン処理(図4参照)に戻る。以上により、自車両A1は、通常の自動走行モードでの自動走行に戻る。 In S239, similarly to S205 (see FIG. 8) and the like, it is confirmed whether or not the emergency vehicle EV is continuously recognized. If it is determined in S239 that the emergency vehicle EV can no longer be recognized, the process proceeds to S241. In S241, the shunting action is canceled and the process returns to the main process (see FIG. 4). As described above, the own vehicle A1 returns to the automatic driving in the normal automatic driving mode.

一方、S239にて、緊急車両EVの認知が継続していると判定した場合、S240に進む。S240にて、緊急車両EVに追い抜かれた、又は緊急車両EVが先に交差点CPを通過したと判定した場合、S241にて、待避行動を解除する。一方で、緊急車両EVの追い抜き及び交差点CPの先行通過等が生じていない場合、S240からS233に戻る。 On the other hand, if it is determined in S239 that the recognition of the emergency vehicle EV is continuing, the process proceeds to S240. If it is determined in S240 that the emergency vehicle EV has been overtaken by the emergency vehicle EV or that the emergency vehicle EV has passed the intersection CP first, the evacuation action is canceled in S241. On the other hand, if the emergency vehicle EV is not overtaken or the intersection CP is not passed in advance, the vehicle returns from S240 to S233.

図11に示すパターン4の待避行動のS251では、S231(図10参照)と同様に、上記の(式2)を用いて、目標停止位置TSPにて停止するための目標減速度TDを算出し、算出した目標減速度TDでの減速を現在位置から直ちに開始し、S252に進む。S252では、緊急車両EVに進路を譲るために減速していることを、ハザードランプ64の作動によって非搭載車両Axである後続車両A2等に通知し、S253に進む。S252では、S232(図10参照)と同様に、車車間通信を用いた他車両への通知も実施される。 In S251 of the shunting action of pattern 4 shown in FIG. 11, the target deceleration TD for stopping at the target stop position TSP is calculated by using the above (Equation 2) in the same manner as in S231 (see FIG. 10). , The deceleration at the calculated target deceleration TD is immediately started from the current position, and the process proceeds to S252. In S252, the hazard lamp 64 is activated to notify the following vehicle A2, which is the non-equipped vehicle Ax, that the vehicle is decelerating in order to give way to the emergency vehicle EV, and proceeds to S253. In S252, as in S232 (see FIG. 10), notification to other vehicles using vehicle-to-vehicle communication is also carried out.

S253では、後続車両A2が他の車線に移動したか否かを判定する。S253にて、後続車両A2が車線変更を行ったと判定した場合、再び待避行動選択処理(図5参照)を実施する。この場合、自車両A1は、後述の待避シーンD(図15参照)に例示するような待避行動を実行する。 In S253, it is determined whether or not the following vehicle A2 has moved to another lane. When it is determined in S253 that the following vehicle A2 has changed lanes, the shunting action selection process (see FIG. 5) is performed again. In this case, the own vehicle A1 executes a shunting action as illustrated in the shunting scene D (see FIG. 15) described later.

一方で、S253にて、後続車両A2の車線変更が確認できない場合には、S254に進む。S254では、後続車両A2が減速したか否かを判定する。S254にて、後続車両A2が減速したと判定した場合、パターン1の待避行動(図8参照)へ移行する。一方で、S254にて、後続車両A2の減速が確認できない場合、S255に進む。 On the other hand, if the lane change of the following vehicle A2 cannot be confirmed in S253, the process proceeds to S254. In S254, it is determined whether or not the following vehicle A2 has decelerated. When it is determined in S254 that the following vehicle A2 has decelerated, the process shifts to the shunting action of pattern 1 (see FIG. 8). On the other hand, if the deceleration of the following vehicle A2 cannot be confirmed in S254, the process proceeds to S255.

S255では、後続車両A2の自車両A1への追突の可能性を判定する。S255にて、追突の可能性が実質的に無いと判断できる場合、S257に進む。一方で、追突の可能性があると判断した場合、S255からS256に進む。S256では、S251にて開始した減速を一時的に解除し、再び待避行動選択処理(図5参照)を実施する。この場合、自車両A1は、後述の待避シーンF(図17参照)に例示するような待避行動を実行する。 In S255, the possibility of the following vehicle A2 colliding with the own vehicle A1 is determined. If it can be determined in S255 that there is virtually no possibility of a rear-end collision, the process proceeds to S257. On the other hand, if it is determined that there is a possibility of a rear-end collision, the process proceeds from S255 to S256. In S256, the deceleration started in S251 is temporarily released, and the escape action selection process (see FIG. 5) is performed again. In this case, the own vehicle A1 executes a shunting action as illustrated in the shunting scene F (see FIG. 17) described later.

S257では、別の後続車両A2が発生したか否かを判定する。S257にて、新たに後続車両A2となる別の他車両が発生し、後続車両A2が変更されたと判定した場合、再び待避行動選択処理(図5参照)を実施する。一方で、後続車両A2の変更が生じていない場合、S258に進む。 In S257, it is determined whether or not another following vehicle A2 has occurred. When it is determined in S257 that another vehicle that becomes the following vehicle A2 is newly generated and the following vehicle A2 is changed, the shunting action selection process (see FIG. 5) is performed again. On the other hand, if the following vehicle A2 has not been changed, the process proceeds to S258.

S258では、緊急車両EVを継続して認知しているか否かを確認し、判定結果に基づき、S260又はS259に進む。緊急車両EVが認知できなくなった場合のS260では、待避行動を解除し、メイン処理(図4参照)に戻る。以上により、自車両A1は、通常の自動走行モードでの自動走行に戻る。一方、緊急車両EVの認知が継続している場合のS259では、S240(図4参照)と実質同一の判定に基づき、待避行動の継続又は解除が選択される。 In S258, it is confirmed whether or not the emergency vehicle EV is continuously recognized, and based on the determination result, the process proceeds to S260 or S259. In S260 when the emergency vehicle EV cannot be recognized, the shunting action is canceled and the process returns to the main process (see FIG. 4). As described above, the own vehicle A1 returns to the automatic driving in the normal automatic driving mode. On the other hand, in S259 when the recognition of the emergency vehicle EV is continued, the continuation or cancellation of the escape action is selected based on the determination substantially the same as that of S240 (see FIG. 4).

次に、後続車両A2の有無及び後続車両A2の状況等に応じた待避シーン及び待避回避シーンの例を、図12〜図25に基づき、図1を参照しつつ、以下順に説明する。尚、各シーンにおける自車両A1は、全て自動走行車両APCである。 Next, examples of the shunting scene and the shunting avoidance scene according to the presence / absence of the following vehicle A2 and the situation of the following vehicle A2 will be described in the following order with reference to FIGS. 1 and 25 based on FIGS. 12 to 25. The own vehicle A1 in each scene is an automatic traveling vehicle APC.

<待避シーンA 通常の待避行動>
図12に示す待避シーンAは、パターン1の待避行動が選択される場合の一例である。待避シーンAでは、後続車両A2が存在していない。故に、自動運転ECU10は、緊急車両EVの接近を認知すると、自車両A1の現在の速度及び規定減速度PDに基づき、目標停止位置TSPで停止するための減速開始位置DSPを計算する。制動距離は、上記の(式1)に基づいて算出可能である。減速開始位置DSPは、目標停止位置TSPから概ね制動距離分だけ自車両A1側に設定される。
<Escape scene A Normal escape behavior>
The escape scene A shown in FIG. 12 is an example in which the escape action of pattern 1 is selected. In the escape scene A, the following vehicle A2 does not exist. Therefore, when the automatic driving ECU 10 recognizes the approach of the emergency vehicle EV, it calculates the deceleration start position DSP for stopping at the target stop position TSP based on the current speed of the own vehicle A1 and the specified deceleration PD. The braking distance can be calculated based on the above (Equation 1). The deceleration start position DSP is set on the own vehicle A1 side by approximately the braking distance from the target stop position TSP.

自動走行車両APCである自車両A1は、減速開始位置DSPに到達するまで実質的に定速走行を継続し、減速開始位置DSPに到達したタイミングで規定減速度PDでの減速を開始する。尚、減速開始位置DSPから自動走行車両APCまでの区間において自車両A1に作用する減速度は、常に一定である必要はない。減速度は、減速開始時及び車両停止時等にて乗員へのショックを緩和するように適宜調整されてよい。 The own vehicle A1 which is an automatic traveling vehicle APC continues substantially constant speed traveling until it reaches the deceleration start position DSP, and starts deceleration at the specified deceleration PD at the timing when the deceleration start position DSP is reached. The deceleration acting on the own vehicle A1 in the section from the deceleration start position DSP to the automatic traveling vehicle APC does not have to be constant at all times. The deceleration may be appropriately adjusted so as to alleviate the shock to the occupant at the start of deceleration, the stop of the vehicle, and the like.

<待避シーンB 後続車両A2が手動走行中>
図13に示す待避シーンBは、パターン4の待避行動が選択される場合の一例である。待避シーンBでは、手動運転状態の後続車両A2が存在している。後続車両A2が存在するシーンでは、この後続車両A2が緊急車両EVの接近に気付いていない場合に、自車両A1の急減速に伴い、後続車両A2の自車両A1への急接近が生じ得る。そこで、後続車両A2が手動走行中である場合、自動運転ECU10は、緊急車両EVの接近を認知すると、現在位置から目標停止位置TSPまでの距離を取得し、目標減速度TDを算出する。目標減速度TDは、現在位置から減速を開始したと場合、自車両A1を目標停止位置TSPに停止させるために必要な減速度である。自動運転ECU10は、緊急車両EVを認知した現在位置から、目標減速度TDでの減速を直ちに開始する。以上のように、後続車両A2が手動運転状態である場合の待避行動計画では、規定減速度PD(図12参照)で減速するよりも、自車両A1に生じる減速度を小さくできるため、自車両A1は、緩やかに減速するようになる。その結果、後続車両A2と自車両A1との間の相対速度変化が小さくなり、後続車両A2に急接近される可能性を低く抑えることができる。
<Escape scene B The following vehicle A2 is running manually>
The escape scene B shown in FIG. 13 is an example in which the escape action of the pattern 4 is selected. In the escape scene B, the following vehicle A2 in the manually operated state exists. In the scene where the following vehicle A2 exists, if the following vehicle A2 is not aware of the approach of the emergency vehicle EV, the following vehicle A2 may suddenly approach the own vehicle A1 due to the sudden deceleration of the own vehicle A1. Therefore, when the following vehicle A2 is manually traveling, when the automatic driving ECU 10 recognizes the approach of the emergency vehicle EV, it acquires the distance from the current position to the target stop position TSP and calculates the target deceleration TD. The target deceleration TD is a deceleration required to stop the own vehicle A1 at the target stop position TSP when deceleration is started from the current position. The automatic driving ECU 10 immediately starts deceleration at the target deceleration TD from the current position where the emergency vehicle EV is recognized. As described above, in the shunting action plan when the following vehicle A2 is in the manual driving state, the deceleration that occurs in the own vehicle A1 can be made smaller than the deceleration by the specified deceleration PD (see FIG. 12). A1 gradually decelerates. As a result, the relative speed change between the following vehicle A2 and the own vehicle A1 becomes small, and the possibility of sudden approach to the following vehicle A2 can be suppressed to a low level.

<待避シーンC 搭載車両Aoの前方に車線変更する場合>
図14に示す待避シーンCは、パターン3の待避行動が選択される場合の一例である。待避シーンCでは、自車両A1の後続車両A2が車車間通信の機能を搭載していない非搭載車両Axであり、自車両A1の後側方車両A3が車車間通信の機能を搭載している搭載車両Aoとなっている。尚、後続車両A2及び後側方車両A3は、共に手動運転状態である。
<When changing lanes in front of vehicle Ao equipped with escape scene C>
The escape scene C shown in FIG. 14 is an example in which the escape action of the pattern 3 is selected. In the shunting scene C, the following vehicle A2 of the own vehicle A1 is a non-equipped vehicle Ax that does not have the inter-vehicle communication function, and the rear side vehicle A3 of the own vehicle A1 has the inter-vehicle communication function. It is an on-board vehicle Ao. The following vehicle A2 and the rear side vehicle A3 are both in a manual driving state.

自動運転ECU10は、緊急車両EVの接近を認知すると、待避行動を行う上で好条件となる隣接車線に車線変更し、搭載車両Aoの前方に移動する。そして自動運転ECU10は、現在位置から目標停止位置TSPまでの距離に基づいて目標減速度TDを算出し、算出した目標減速度TD(図13参照)での減速を直ちに開始する。こうして自車両A1は、路肩近傍又は交差点CPの手前に設定された目標停止位置TSPに停止する。 When the automatic driving ECU 10 recognizes the approach of the emergency vehicle EV, it changes lanes to the adjacent lane, which is a favorable condition for performing the evacuation action, and moves in front of the mounted vehicle Ao. Then, the automatic operation ECU 10 calculates the target deceleration TD based on the distance from the current position to the target stop position TSP, and immediately starts deceleration at the calculated target deceleration TD (see FIG. 13). In this way, the own vehicle A1 stops at the target stop position TSP set near the shoulder of the road or in front of the intersection CP.

以上のように、自車両A1の車線変更によって後続車両A2となった搭載車両Aoにおいて、運転者は、待避行動に伴う自車両A1の減速を、車車間通信を通じて早期に認知できる。故に、搭載車両Aoが自車両A1に急接近する事態は、非搭載車両Axが自車両A1に急接近する事態よりも発生し難くなる。したがって、搭載車両Aoの走行する隣接車線に車線変更することで、後続車両A2に急接近される可能性を低く抑えることができる。 As described above, in the mounted vehicle Ao which has become the following vehicle A2 due to the lane change of the own vehicle A1, the driver can recognize the deceleration of the own vehicle A1 due to the evasion action at an early stage through vehicle-to-vehicle communication. Therefore, the situation where the mounted vehicle Ao suddenly approaches the own vehicle A1 is less likely to occur than the situation where the non-mounted vehicle Ax suddenly approaches the own vehicle A1. Therefore, by changing the lane to the adjacent lane in which the mounted vehicle Ao travels, the possibility of sudden approach to the following vehicle A2 can be suppressed to a low level.

<待避シーンD 後続車両A2が存在しなくなった場合>
図15に示す待避シーンDは、パターン3又はパターン4の待避行動が一旦選択された後で、パターン2又はパターン1の待避行動に遷移する場合の一例である。待避シーンDでは、手動運転状態の後続車両A2が存在している。自動運転ECU10は、緊急車両EVの接近を認知すると、待避シーンBと同様に、目標減速度TDを算出し、緊急車両EVを認知した現在位置から目標減速度TDでの減速を直ちに開始する。
<Escape scene D When the following vehicle A2 no longer exists>
The shunting scene D shown in FIG. 15 is an example of a case where the shunting action of pattern 3 or pattern 4 is once selected and then transitions to the shunting action of pattern 2 or pattern 1. In the escape scene D, the following vehicle A2 in the manually operated state exists. Upon recognizing the approach of the emergency vehicle EV, the automatic driving ECU 10 calculates the target deceleration TD as in the evasion scene B, and immediately starts deceleration at the target deceleration TD from the current position where the emergency vehicle EV is recognized.

待避シーンDでは、後続車両A2が、車線変更等により、自車両A1の後方の所定距離以内から居なくなる。自動運転ECU10は、減速を一旦解除し、パターン2又はパターン1の待避行動に移行して、目標停止位置TSP及び規定減速度PDに基づき、減速開始位置DSPを新たに設定する。自動運転ECU10は、減速開始位置DSPまで自車両A1を定速走行させたうえで、減速開始位置DSPから規定減速度PDでの減速を再開させる。このように、必要以上の減速を実施しないことで、自動走行の価値向上を図りつつ、交通流への影響を抑えることができる。 In the escape scene D, the following vehicle A2 disappears from within a predetermined distance behind the own vehicle A1 due to a lane change or the like. The automatic operation ECU 10 temporarily releases the deceleration, shifts to the shunting action of the pattern 2 or the pattern 1, and newly sets the deceleration start position DSP based on the target stop position TSP and the specified deceleration PD. The automatic driving ECU 10 causes the own vehicle A1 to travel at a constant speed to the deceleration start position DSP, and then restarts deceleration at the specified deceleration PD from the deceleration start position DSP. In this way, by not decelerating more than necessary, it is possible to improve the value of automatic driving and suppress the influence on the traffic flow.

<待避シーンE 後続車両A2の応答に基づき減速解除>
図16に示す待避シーンEは、パターン3の待避行動が一旦選択された後で、パターン2の待避行動に遷移する場合の一例である。待避シーンEでは、手動運転状態の搭載車両Aoである後続車両A2が存在している。自動運転ECU10は、緊急車両EVの接近を認知すると、待避シーンDと同様に、目標減速度TDを算出し、緊急車両EVを認知した現在位置から目標減速度TDでの減速を直ちに開始する。加えて自動運転ECU10は、待避行動により減速中である旨を車車間通信によって搭載車両Aoである後続車両A2に通知する。
<Escape scene E Release deceleration based on the response of the following vehicle A2>
The shunting scene E shown in FIG. 16 is an example of a case where the shunting action of the pattern 3 is once selected and then transitions to the shunting action of the pattern 2. In the escape scene E, the following vehicle A2, which is the mounted vehicle Ao in the manually operated state, exists. Upon recognizing the approach of the emergency vehicle EV, the automatic driving ECU 10 calculates the target deceleration TD as in the evasion scene D, and immediately starts deceleration at the target deceleration TD from the current position where the emergency vehicle EV is recognized. In addition, the automatic driving ECU 10 notifies the following vehicle A2, which is the on-board vehicle Ao, of the fact that the vehicle is decelerating due to the shunting action by inter-vehicle communication.

自車両A1からの通知を受信した後続車両A2は、例えば運転者の応答操作に基づき、待避行動の実施を認知した旨を、車車間通信によって自車両A1に通知する。自車両A1の自動運転ECU10は、後続車両A2からの応答を受信すると、減速を一旦解除し、パターン2の待避行動に移行して、目標停止位置TSP及び規定減速度PDに基づき、減速開始位置DSPを新たに設定する。そして自動運転ECU10は、減速開始位置DSPまで自車両A1を定速走行させたうえで、減速開始位置DSPから規定減速度PDでの減速を再開させる。 The following vehicle A2, which has received the notification from the own vehicle A1, notifies the own vehicle A1 by inter-vehicle communication that, for example, the following vehicle A2 has acknowledged the execution of the shunting action based on the driver's response operation. When the automatic driving ECU 10 of the own vehicle A1 receives the response from the following vehicle A2, the deceleration is temporarily released, the process shifts to the evasion action of the pattern 2, and the deceleration start position is based on the target stop position TSP and the specified deceleration PD. Set a new DSP. Then, the automatic driving ECU 10 causes the own vehicle A1 to travel at a constant speed to the deceleration start position DSP, and then restarts the deceleration at the specified deceleration PD from the deceleration start position DSP.

<待避シーンF 後続車両A2の急接近に基づき減速解除>
図17に示す待避シーンFは、パターン3又はパターン4の待避行動が一旦選択された後で、待避行動選択処理が再び実施される場合の一例である。待避シーンFでは、手動運転状態の後続車両A2が存在している。自動運転ECU10は、緊急車両EVの接近を認知すると、目標減速度TDを算出し、目標減速度TDでの減速を直ちに開始する。このとき、自車両A1は、ハザードランプ64等の作動により、待避行動の為の減速中である旨を周囲の他車両に通知する。
<Escape scene F Deceleration released based on the sudden approach of the following vehicle A2>
The escape scene F shown in FIG. 17 is an example of a case where the escape action selection process is executed again after the escape action of pattern 3 or pattern 4 is once selected. In the escape scene F, the following vehicle A2 in the manually operated state exists. Upon recognizing the approach of the emergency vehicle EV, the automatic driving ECU 10 calculates the target deceleration TD and immediately starts deceleration at the target deceleration TD. At this time, the own vehicle A1 notifies other surrounding vehicles that the vehicle is decelerating for the escape action by operating the hazard lamp 64 or the like.

自車両A1が目標減速度TDでの減速を開始した後、後続車両A2が減速しない場合、又は後続車両A2の減速度が自車両A1の減速度よりも顕著に小さい場合、後続車両A2は、自車両A1に急接近する。自動運転ECU10は、所定時間内に後続車両A2の追突が発生すると推定した場合、自車両A1の減速を一時的に解除する。以上により、自車両A1から後続車両A2までの車間時間の急激な減少は、緩和される。その結果、待避行動のための自車両A1の減速実施を後続車両A2に気づかせる時間を稼ぐことが可能になる。 If the following vehicle A2 does not decelerate after the own vehicle A1 starts decelerating at the target deceleration TD, or if the deceleration of the following vehicle A2 is significantly smaller than the deceleration of the own vehicle A1, the following vehicle A2 Quickly approach the own vehicle A1. The automatic driving ECU 10 temporarily releases the deceleration of the own vehicle A1 when it is estimated that a rear-end collision of the following vehicle A2 will occur within a predetermined time. As described above, the sudden decrease in the inter-vehicle time from the own vehicle A1 to the following vehicle A2 is alleviated. As a result, it is possible to gain time for the following vehicle A2 to notice the deceleration of the own vehicle A1 for the shunting action.

自車両A1の定速走行は、例えば後続車両A2までの車間時間が確保されるまで継続される。そして自動運転ECU10は、車間時間が確保されたタイミングにて、目標減速度TDを再び算出し、算出した目標減速度TDでの減速を再開し、後続車両A2との車間時間を確保しつつ、自車両A1を目標停止位置TSPに停止させる。 The constant speed running of the own vehicle A1 is continued until, for example, the inter-vehicle time to the following vehicle A2 is secured. Then, the automatic driving ECU 10 recalculates the target deceleration TD at the timing when the inter-vehicle time is secured, restarts the deceleration at the calculated target deceleration TD, and secures the inter-vehicle time with the following vehicle A2. The own vehicle A1 is stopped at the target stop position TSP.

<待避シーンG 自動走行車両APCの前方に車線変更する場合>
図18に示す待避シーンGは、パターン2の待避行動が選択される場合の一例である。待避シーンGでは、自車両A1の後続車両A2が手動走行中の車両であり、自車両A1の後側方車両A3が自動走行車両APCとなっている。自動運転ECU10は、緊急車両EVの接近を認知すると、待避行動を行う上で好条件となる隣接車線に車線変更し、自動走行車両APCの前方に移動する。そして自動運転ECU10は、自車両A1の車速と目標停止位置TSPとに基づき、減速開始位置DSP(図12参照)を設定する。自動運転ECU10は、自動走行によって減速開始位置DSPまで定速走行を継続させ、自車両A1が減速開始位置DSPに到達したタイミングで、規定減速度PD(図12参照)での減速を開始させる。以上により、自車両A1は、路肩近傍又は交差点CPの手前に設定された目標停止位置TSPに停止する。
<When changing lanes in front of the escape scene G autonomous vehicle APC>
The escape scene G shown in FIG. 18 is an example in which the escape action of pattern 2 is selected. In the evasion scene G, the following vehicle A2 of the own vehicle A1 is a vehicle that is manually traveling, and the rear side vehicle A3 of the own vehicle A1 is an automatic traveling vehicle APC. When the autonomous driving ECU 10 recognizes the approach of the emergency vehicle EV, it changes lanes to an adjacent lane, which is a favorable condition for performing the evacuating action, and moves in front of the autonomous driving vehicle APC. Then, the automatic driving ECU 10 sets the deceleration start position DSP (see FIG. 12) based on the vehicle speed of the own vehicle A1 and the target stop position TSP. The automatic driving ECU 10 continues the constant speed running to the deceleration start position DSP by automatic running, and starts deceleration at the specified deceleration PD (see FIG. 12) at the timing when the own vehicle A1 reaches the deceleration start position DSP. As described above, the own vehicle A1 stops at the target stop position TSP set near the road shoulder or in front of the intersection CP.

以上のように、自車両A1の車線変更によって後続車両A2となった自動走行車両APCは、待避行動に伴う自車両A1の減速を早期に認知して、前走車(自車両A1)との車間時間を適切に確保できる。故に、自動走行車両APCの走行する隣接車線への車線変更は、後続車両A2の急接近の防止に有効となる。 As described above, the automatic traveling vehicle APC, which has become the following vehicle A2 due to the lane change of the own vehicle A1, recognizes the deceleration of the own vehicle A1 due to the evasion action at an early stage, and with the preceding vehicle (own vehicle A1). The time between vehicles can be secured appropriately. Therefore, changing the lane to the adjacent lane in which the self-driving vehicle APC travels is effective in preventing the following vehicle A2 from suddenly approaching.

<待避シーンH 後続車両A2が自動走行車両APC>
図19に示す待避シーンHは、パターン2の待避行動が選択される場合の一例である。待避シーンHでは、自車両A1の同一車線後方の所定距離以内に後続車両A2が存在しており、この後続車両A2は、自動走行車両APCである。自動運転ECU10は、緊急車両EVの接近を認知すると、自車両A1の車速と目標停止位置TSPとに基づき、減速開始位置DSPを設定する。自動運転ECU10は、自動走行によって減速開始位置DSPまで定速走行を継続させ、自車両A1が減速開始位置DSPに到達したタイミングで、規定減速度PDでの減速を開始させる。以上により、自車両A1は、路肩近傍又は交差点CPの手前等に設定された目標停止位置TSPに停止する。
<Escape scene H The following vehicle A2 is an autonomous vehicle APC>
The escape scene H shown in FIG. 19 is an example in which the escape action of the pattern 2 is selected. In the shunting scene H, the following vehicle A2 exists within a predetermined distance behind the same lane of the own vehicle A1, and the following vehicle A2 is an automatic traveling vehicle APC. Upon recognizing the approach of the emergency vehicle EV, the automatic driving ECU 10 sets the deceleration start position DSP based on the vehicle speed of the own vehicle A1 and the target stop position TSP. The automatic driving ECU 10 continues the constant speed running to the deceleration start position DSP by automatic running, and starts deceleration at the specified deceleration PD at the timing when the own vehicle A1 reaches the deceleration start position DSP. As described above, the own vehicle A1 stops at the target stop position TSP set near the shoulder of the road or in front of the intersection CP.

以上のように、自動走行車両APCである後続車両A2は、緊急車両EVを認知している可能性が高い。加えて、自動走行車両APCは、車車間通信による自車両A1からの待避行動の通知も受信可能である。故に、規定減速度PDにて減速しても、後続車両A2は、自車両A1に急接近することなく、自車両A1と協調して待避行動を取ることができる。 As described above, it is highly possible that the following vehicle A2, which is the self-driving vehicle APC, recognizes the emergency vehicle EV. In addition, the self-driving vehicle APC can also receive a notification of the shunting action from the own vehicle A1 by vehicle-to-vehicle communication. Therefore, even if the vehicle decelerates at the specified deceleration PD, the following vehicle A2 can take a shunting action in cooperation with the own vehicle A1 without suddenly approaching the own vehicle A1.

<待避シーンI 隣接車線に他車両が存在しない場合>
図20に示す待避シーンIは、パターン1の待避行動が選択される場合の一例である。待避シーンIでは、自車両A1の走行する車線に後続車両A2が存在する一方で、隣接車線にて自車両A1の後方所定距離以内には、他車両が存在していない。自動運転ECU10は、緊急車両EVの接近を認知すると、待避行動を行う上で好条件となる隣接車線に車線変更し、後続車両A2の存在しない状態で待避行動を実施する。具体的に、自動運転ECU10は、隣接車線への車線変更と減速開始位置DSP(図12参照)の設定とを実施し、減速開始位置DSPに到達したタイミングで規定減速度PD(図12参照)での自車両A1の減速を開始させる。以上により、自車両A1は、後続車両A2の存在しない走行環境下で、路肩近傍又は交差点CPの手前に設定された目標停止位置TSPに停止する。
<Escape scene I when there is no other vehicle in the adjacent lane>
The escape scene I shown in FIG. 20 is an example in which the escape action of pattern 1 is selected. In the escape scene I, the following vehicle A2 exists in the lane in which the own vehicle A1 travels, while no other vehicle exists within a predetermined distance behind the own vehicle A1 in the adjacent lane. Upon recognizing the approach of the emergency vehicle EV, the autonomous driving ECU 10 changes lanes to the adjacent lane, which is a favorable condition for performing the evasion action, and executes the evasion action in the absence of the following vehicle A2. Specifically, the automatic driving ECU 10 changes the lane to the adjacent lane and sets the deceleration start position DSP (see FIG. 12), and when the deceleration start position DSP is reached, the specified deceleration PD (see FIG. 12). Starts deceleration of the own vehicle A1 at. As described above, the own vehicle A1 stops at the target stop position TSP set near the road shoulder or in front of the intersection CP in the traveling environment where the following vehicle A2 does not exist.

<待避シーンJ 車間時間が確保できる車線へ移動>
図21に示す待避シーンJは、パターン3の待避行動が選択される場合の一例である。待避シーンJでは、自車両A1と同一車線に自車両A1が存在している。加えて、自車両A1の走行する車線の両側の隣接車線にも、それぞれ後側方車両A3が存在している。後続車両A2及び二台の後側方車両A3は、共に搭載車両Aoである。
<Escape scene J Move to the lane where the inter-vehicle time can be secured>
The escape scene J shown in FIG. 21 is an example in which the escape action of the pattern 3 is selected. In the escape scene J, the own vehicle A1 exists in the same lane as the own vehicle A1. In addition, the rear side vehicle A3 also exists in the adjacent lanes on both sides of the lane in which the own vehicle A1 travels. The following vehicle A2 and the two rear side vehicles A3 are both mounted vehicles Ao.

自動運転ECU10は、緊急車両EVの接近を認知すると、待避行動を行う上で好条件となる隣接車線に車線変更を選択する。待避シーンJのように、後続車両A2及び各後側方車両A3の車両条件が互いに同一である場合、自動運転ECU10は、三つの車線のうちで、自車両A1から後方先頭の他車両までの車間時間が最も短くなる車線に自車両A1を車線変更させる。 Upon recognizing the approach of the emergency vehicle EV, the autonomous driving ECU 10 selects a lane change to the adjacent lane, which is a favorable condition for performing the evacuating action. When the vehicle conditions of the following vehicle A2 and each rear side vehicle A3 are the same as in the shunting scene J, the automatic driving ECU 10 extends from the own vehicle A1 to the other vehicle at the rear lead among the three lanes. Change the lane of the own vehicle A1 to the lane where the inter-vehicle time is the shortest.

そして自動運転ECU10は、待避行動に好条件となる隣接車線への車線変更により、車間時間の確保される搭載車両Aoの前方に移動して、目標減速度TD(図13参照)による減速を直ちに開始させる。以上により、自車両A1は、移動先の車線に設定された目標停止位置TSPの手前で停止し、緊急車両EVを先行させることができる。 Then, the automatic driving ECU 10 moves in front of the on-board vehicle Ao where the inter-vehicle time is secured by changing the lane to the adjacent lane, which is a favorable condition for the shunting action, and immediately decelerates by the target deceleration TD (see FIG. 13). Let's get started. As described above, the own vehicle A1 can stop before the target stop position TSP set in the destination lane, and the emergency vehicle EV can be preceded.

上記の車両条件は、待避行動に関連する条件であって、例えば、車車間通信機能を搭載しているか否か、及び自動走行車両APC(図19等参照)か否か等である。換言すれば、車両条件は、他車両と連携して待避行動を遂行する機能の有無である。自動運転ECU10は、隣接車線の後方所定距離以内を走行する後側方車両A3と、自車両A1の同一車線後方を走行する後続車両A2との各車両条件を比較する。そして自動運転ECU10は、車両条件が互いに同一であった場合、現在の車線よりも車間時間の確保される車線を探索し、車間時間の確保できる車線への車線変更を行うことができる。 The above-mentioned vehicle conditions are conditions related to the shunting behavior, such as whether or not the vehicle-to-vehicle communication function is installed, and whether or not the self-driving vehicle APC (see FIG. 19 and the like). In other words, the vehicle condition is the presence or absence of a function of performing a shunting action in cooperation with another vehicle. The autonomous driving ECU 10 compares the vehicle conditions of the rear side vehicle A3 traveling within a predetermined distance behind the adjacent lane and the following vehicle A2 traveling behind the same lane of the own vehicle A1. Then, when the vehicle conditions are the same, the automatic driving ECU 10 can search for a lane in which the inter-vehicle time is secured more than the current lane, and can change the lane to the lane in which the inter-vehicle time can be secured.

<待避回避シーンK 追い付かれない場合の待避行動の不実施>
図22に示す待避回避シーンKは、待避行動の実行が回避される場合の一例である。待避回避シーンKでは、緊急車両EVが、自車両A1の走行する同一道路の後方から接近している。しかし、自車両A1は、緊急車両EVに進路を譲る状況になる前に、緊急車両EVから遠ざかっていく予定である。具体的には、自車両A1が交差点CPを直進方向に通過する一方で、緊急車両EVが交差点CPを右折又は左折するケースである。
<Escape avoidance scene K Non-execution of escape action when catching up>
The escape avoidance scene K shown in FIG. 22 is an example of a case where the execution of the escape action is avoided. In the escape avoidance scene K, the emergency vehicle EV is approaching from behind the same road on which the own vehicle A1 is traveling. However, the own vehicle A1 is scheduled to move away from the emergency vehicle EV before the situation of giving way to the emergency vehicle EV. Specifically, this is a case where the own vehicle A1 passes straight through the intersection CP, while the emergency vehicle EV turns right or left at the intersection CP.

こうしたケースでは、自動運転ECU10は、待避行動を完了するまでの時間に相当する待避車間時間にて、緊急車両EVに近づかれない否かを判定し、緊急車両EVに近づかれないと判定した場合に、待避行動の実行を見送る。以上のように、待避行動を実施しなくてもよいことが予測される場合、待避行動を取らないことで不要な減速を生じさせる機会を減らすことが可能になる。 In such a case, when the automatic driving ECU 10 determines whether or not the emergency vehicle EV can be approached in the inter-vehicle time corresponding to the time until the evacuation action is completed, and determines that the emergency vehicle EV cannot be approached. In addition, the execution of the evacuation action is postponed. As described above, when it is predicted that the shunting action does not need to be performed, it is possible to reduce the chance of causing unnecessary deceleration by not taking the shunting action.

<待避回避シーンL 自車両A1が先に交差点CPを通過(直進方向)>
図23に示す待避回避シーンLは、待避行動の実行が回避される場合の別の一例である。待避回避シーンLでは、緊急車両EVが、自車両A1の走行する同一道路の前方から接近している。自車両A1と緊急車両EVとの間には、交差点CPが存在している。自動運転ECU10は、自車両A1及び緊急車両EVのうちで、交差点CPを先に通過すると予測される一方を判定する。
<Escape avoidance scene L Own vehicle A1 passes the intersection CP first (straight direction)>
The escape avoidance scene L shown in FIG. 23 is another example of the case where the execution of the escape action is avoided. In the escape avoidance scene L, the emergency vehicle EV is approaching from the front of the same road on which the own vehicle A1 travels. There is an intersection CP between the own vehicle A1 and the emergency vehicle EV. The automatic driving ECU 10 determines which of the own vehicle A1 and the emergency vehicle EV is predicted to pass the intersection CP first.

具体的に、自動運転ECU10は、自車両A1の車速(40km/h)及び交差点CPまでの距離(20m)と、緊急車両EVの車速(50km/h)及び交差点CPまでの距離(50m)とを取得する。これらの情報に基づき、自車両A1が次に走行する交差点CPに、緊急車両EVよりも自車両A1の方が先に進入すると判定した場合、自動運転ECU10は、待避行動の実行を見送る。以上のように、待避行動を実施しなくてもよいことが予測される場合、待避行動を取らないことで不要な減速を生じさせる機会を減らすことが可能になる。尚、上記の括弧内に記載した各車速及び各距離は、一例である。 Specifically, the automatic driving ECU 10 includes the vehicle speed (40 km / h) of the own vehicle A1 and the distance to the intersection CP (20 m), the vehicle speed of the emergency vehicle EV (50 km / h), and the distance to the intersection CP (50 m). To get. Based on this information, when it is determined that the own vehicle A1 enters the intersection CP where the own vehicle A1 travels next before the emergency vehicle EV, the automatic driving ECU 10 suspends the execution of the evasion action. As described above, when it is predicted that the shunting action does not need to be performed, it is possible to reduce the chance of causing unnecessary deceleration by not taking the shunting action. The vehicle speeds and distances described in parentheses above are examples.

<待避回避シーンM 自車両A1が先に交差点CPを通過(交差方向)>
図24に示す待避回避シーンMは、待避行動の実行が回避される場合のさらに別の一例である。待避回避シーンMでは、緊急車両EVが、自車両A1の走行する道路と交差する道路から接近している。自車両A1と緊急車両EVとの間には、交差点CPが存在している。自動運転ECU10は、待避回避シーンL(図23参照)と同様に、自車両A1及び緊急車両EVのうちで、交差点CPを先に通過すると予測される一方を判定する。
<Escape avoidance scene M Own vehicle A1 passes the intersection CP first (intersection direction)>
The escape avoidance scene M shown in FIG. 24 is still another example of the case where the execution of the escape action is avoided. In the escape avoidance scene M, the emergency vehicle EV is approaching from the road intersecting the road on which the own vehicle A1 is traveling. There is an intersection CP between the own vehicle A1 and the emergency vehicle EV. Similar to the escape avoidance scene L (see FIG. 23), the automatic driving ECU 10 determines which of the own vehicle A1 and the emergency vehicle EV is predicted to pass the intersection CP first.

具体的に、自動運転ECU10は、自車両A1の車速(40km/h)及び交差点CPまでの距離(20m)と、緊急車両EVの車速(20km/h)及び交差点CPまでの距離(20m)とを取得する。これらの情報に基づき、緊急車両EVよりも自車両A1の方が先に交差点CPに進入すると判定した場合、自動運転ECU10は、待避行動の実行を見送る。以上の待避行動の回避により、不要な減速を生じさせる機会を減らすことが可能になる。尚、自車両A1よりも緊急車両EVが先に交差点CPに進入する場合、自車両A1は、交差点CPの手前で停止する待避行動を実施する。 Specifically, the automatic driving ECU 10 includes the vehicle speed (40 km / h) of the own vehicle A1 and the distance to the intersection CP (20 m), the vehicle speed of the emergency vehicle EV (20 km / h), and the distance to the intersection CP (20 m). To get. Based on this information, if it is determined that the own vehicle A1 enters the intersection CP earlier than the emergency vehicle EV, the automatic driving ECU 10 suspends the execution of the evasion action. By avoiding the above escape behavior, it is possible to reduce the chance of causing unnecessary deceleration. When the emergency vehicle EV enters the intersection CP before the own vehicle A1, the own vehicle A1 performs a shunting action to stop before the intersection CP.

<待避回避シーンN 予定走行経路が重ならない場合>
図25に示す待避回避シーンNは、待避行動の実行が回避される場合のさらに別の一例である。待避回避シーンNでは、一台以上の緊急車両EVの各予定走行経路と、自車両A1の走行予定経路とが、自動運転ECU10によって緊急車両EVに接近を認知されたタイミングで比較される。そして、緊急車両EVの各予定走行経路と、自車両A1の走行予定経路とが重ならない場合に、自動運転ECU10は、待避行動の実行を見送る。以上の待避行動の実施回避によっても、不要な減速を生じさせる機会を減らすことが可能になる。
<Escape avoidance scene N When the planned travel routes do not overlap>
The escape avoidance scene N shown in FIG. 25 is still another example of the case where the execution of the escape action is avoided. In the escape avoidance scene N, the planned travel routes of one or more emergency vehicle EVs and the scheduled travel routes of the own vehicle A1 are compared at the timing when the automatic driving ECU 10 recognizes the approach to the emergency vehicle EV. Then, when the planned travel routes of the emergency vehicle EV and the scheduled travel routes of the own vehicle A1 do not overlap, the automatic driving ECU 10 suspends the execution of the evasion action. By avoiding the implementation of the above escape behavior, it is possible to reduce the chance of causing unnecessary deceleration.

ここまで説明した本実施形態にて作成される待避行動計画では、後続車両A2が手動運転状態である場合に、後続車両A2が自動運転モードにて走行している場合よりも、緩やかな減速が予定される。故に、自動走行車両APCと手動運転状態の車両とが混在している走行環境においても、自車両A1は、交通流を乱すことなく、緊急車両EVに進路を譲ることが可能になる。 In the shunting action plan created in the present embodiment described so far, when the following vehicle A2 is in the manual driving state, the deceleration is slower than when the following vehicle A2 is traveling in the automatic driving mode. Scheduled. Therefore, even in a traveling environment in which the automatic traveling vehicle APC and the vehicle in the manually operated state coexist, the own vehicle A1 can give way to the emergency vehicle EV without disturbing the traffic flow.

加えて本実施形態では、後続車両A2が車車間通信を搭載した搭載車両Aoか否かに基づき、待避行動のパターンが変更される。以上のように、後続車両A2が搭載車両Aoであれば、後続車両A2の運転者は、車車間通信を通じて自動運転可能な車両と同等の情報を取得できる。故に、搭載車両Aoか否かに応じて待避行動を変更すれば、待避行動の実施に伴う交通流への影響をさらに小さく抑えることが可能になる。 In addition, in the present embodiment, the pattern of the shunting behavior is changed based on whether or not the following vehicle A2 is the mounted vehicle Ao equipped with vehicle-to-vehicle communication. As described above, if the following vehicle A2 is the mounted vehicle Ao, the driver of the following vehicle A2 can acquire information equivalent to that of a vehicle that can be automatically driven through inter-vehicle communication. Therefore, if the shunting behavior is changed depending on whether or not the vehicle is equipped with the vehicle Ao, it is possible to further reduce the influence of the shunting behavior on the traffic flow.

また本実施形態では、後続車両A2が搭載車両Aoである場合、自車両A1の減速の実施は、車車間通信を通じて後続車両A2の運転者に早期に認知され得る。故に、後続車両A2の運転者は、余裕を持って前走車(自車両A1)の減速に備えることができ、前走車両の減速に追従して、過不足の無い減速を実施し得る。以上によれば、交通流の乱れを小さく抑えることが可能になる。 Further, in the present embodiment, when the following vehicle A2 is the mounted vehicle Ao, the deceleration of the own vehicle A1 can be recognized early by the driver of the following vehicle A2 through inter-vehicle communication. Therefore, the driver of the following vehicle A2 can prepare for the deceleration of the preceding vehicle (own vehicle A1) with a margin, and can follow the deceleration of the preceding vehicle and perform deceleration without excess or deficiency. Based on the above, it is possible to keep the traffic flow turbulence small.

さらに本実施形態では、後続車両A2が手動運転状態である場合には、特定の減速開始位置DSPを設定することなく、現在位置から直ちに減速が開始され得る。こうした待避行動計画であれば、自車両A1の減速度は、減速開始位置DSPが設定される場合よりも小さくなる。故に、手動運転状態の後続車両A2が自車両A1に急接近する虞は、いっそう低くなる。 Further, in the present embodiment, when the following vehicle A2 is in the manual driving state, deceleration can be started immediately from the current position without setting a specific deceleration start position DSP. With such a shunting action plan, the deceleration of the own vehicle A1 is smaller than when the deceleration start position DSP is set. Therefore, the possibility that the following vehicle A2 in the manually operated state suddenly approaches the own vehicle A1 is further reduced.

加えて本実施形態では、後続車両A2が非搭載車両Axである一方で、隣接車線を走行する後側方車両A3が搭載車両Aoである場合に、自車両A1は、隣接車線への車線変更を行ったうえで、減速を開始する。上述したように、搭載車両Aoの運転者の方が、非搭載車両Axの運転者よりも、自車両A1の減速を早期に認知し得る。故に、搭載車両Aoの前方へ車線変更すれば、待避行動に伴う交通流の乱れを抑制しつつ、緊急車両に進路を譲ることが可能になる。 In addition, in the present embodiment, when the following vehicle A2 is the non-equipped vehicle Ax while the rear side vehicle A3 traveling in the adjacent lane is the equipped vehicle Ao, the own vehicle A1 changes lanes to the adjacent lane. After doing, start deceleration. As described above, the driver of the mounted vehicle Ao can recognize the deceleration of the own vehicle A1 earlier than the driver of the non-mounted vehicle Ax. Therefore, if the lane is changed to the front of the mounted vehicle Ao, it is possible to give way to the emergency vehicle while suppressing the turbulence of the traffic flow due to the shunting action.

また本実施形態では、後続車両A2が搭載車両Aoの場合でも、手動運転状態であれば、自車両A1は、現在位置から直ちに減速を開始する。こうした待避行動であれば、減速開始位置DSPを設定する場合よりも減速度を小さくし得る。故に、後続車両A2が自車両A1に急速に接近する事態は、いっそう生じ難くなる。 Further, in the present embodiment, even when the following vehicle A2 is the mounted vehicle Ao, the own vehicle A1 immediately starts decelerating from the current position if it is in the manual driving state. With such a shunting action, the deceleration can be made smaller than when the deceleration start position DSP is set. Therefore, the situation in which the following vehicle A2 rapidly approaches the own vehicle A1 is less likely to occur.

さらに本実施形態では、車線変更等によって手動運転状態の後続車両A2が存在しなくなった場合に、一旦開始された減速が解除される。このように、後続車両A2の消失によれば、後続車両A2が自車両A1に急接近するリスクも消失する。故に、既に開始されていた減速を不必要な減速として解除し、新たに設定した減速開始位置DSPまで自動走行すれば、待避行動に伴う交通流への影響は、いっそう抑制される。 Further, in the present embodiment, when the following vehicle A2 in the manually operated state no longer exists due to a lane change or the like, the deceleration once started is released. In this way, according to the disappearance of the following vehicle A2, the risk that the following vehicle A2 suddenly approaches the own vehicle A1 also disappears. Therefore, if the deceleration that has already been started is released as an unnecessary deceleration and the vehicle automatically travels to the newly set deceleration start position DSP, the influence of the shunting behavior on the traffic flow is further suppressed.

加えて本実施形態では、後続車両A2の運転者が自車両A1の待避行動の実施を認知した場合に、後続車両A2の自車両A1への急接近の虞が無くなったとみなして、一旦開始された減速は、解除される。このように、不必要な減速を解除して減速開始位置DSPまで自動走行すれ制御によれば、待避行動に伴う交通流への影響は、いっそう抑制される。 In addition, in the present embodiment, when the driver of the following vehicle A2 recognizes the implementation of the evasion action of the own vehicle A1, it is considered that the risk of the following vehicle A2 suddenly approaching the own vehicle A1 has disappeared, and the operation is temporarily started. The deceleration is canceled. In this way, according to the automatic running control to release the unnecessary deceleration to the deceleration start position DSP, the influence of the shunting behavior on the traffic flow is further suppressed.

また本実施形態では、待避行動のための減速が開始された後、後続車両A2が自車両A1に急接近している場合には、自車両A1の減速が一時的に解除される。以上のような減速制御の中断によれば、自車両A1の待避行動の実施を後続車両A2の運転者に気づかせる時間を稼ぐことが可能になる。 Further, in the present embodiment, when the following vehicle A2 is suddenly approaching the own vehicle A1 after the deceleration for the shunting action is started, the deceleration of the own vehicle A1 is temporarily released. By interrupting the deceleration control as described above, it is possible to gain time for the driver of the following vehicle A2 to notice the execution of the evacuating action of the own vehicle A1.

さらに本実施形態では、後続車両A2が手動運転状態である一方、隣接車線を走行する後側方車両A3が自動走行車両APCである場合に、自車両A1は、隣接車線への車線変更を行ったうえで減速を開始する。以上によれば、自車両A1と後続車両A2とが協調し、交通流の乱れを抑制しつつ緊急車両EVに進路を譲ることが可能になる。 Further, in the present embodiment, when the following vehicle A2 is in the manual driving state and the rear side vehicle A3 traveling in the adjacent lane is the automatic traveling vehicle APC, the own vehicle A1 changes lanes to the adjacent lane. Then start decelerating. According to the above, the own vehicle A1 and the following vehicle A2 can cooperate with each other to suppress the turbulence of the traffic flow and give way to the emergency vehicle EV.

加えて本実施形態では、後続車両A2が自動走行車両APCである場合に、減速開始位置DSPが設定され、自車両A1の減速は、減速開始位置DSPに到達したタイミングで開始される。以上のように、後続車両A2が自動走行車両APCである場合、減速開始位置DSPまで減速の開始を遅らせれば、交通流への影響を小さく抑えることが可能になる。加えて、減速の開始を遅らせても、自車両A1及び後続車両A2のシステムが協調することで、自車両A1及び後続車両A2は、目標停止位置TSPに並んで停止して、緊急車両EVに円滑に進路を譲ることができる。 In addition, in the present embodiment, when the following vehicle A2 is the automatic traveling vehicle APC, the deceleration start position DSP is set, and the deceleration of the own vehicle A1 is started at the timing when the deceleration start position DSP is reached. As described above, when the following vehicle A2 is the self-driving vehicle APC, if the start of deceleration is delayed to the deceleration start position DSP, the influence on the traffic flow can be suppressed to a small extent. In addition, even if the start of deceleration is delayed, the systems of the own vehicle A1 and the following vehicle A2 cooperate, so that the own vehicle A1 and the following vehicle A2 stop side by side with the target stop position TSP and become an emergency vehicle EV. You can give way smoothly.

また本実施形態では、隣接車線の後方の所定距離以内に他車両が存在しない場合、自車両A1は、隣接車線への車線変更を実施したうえで、減速を開始する。以上の制御によれば、自車両A1は、後続車両A2に配慮することなく、交通流への影響の少ない待避行動を実施できる。 Further, in the present embodiment, when there is no other vehicle within a predetermined distance behind the adjacent lane, the own vehicle A1 changes lanes to the adjacent lane and then starts deceleration. According to the above control, the own vehicle A1 can carry out the shunting action with less influence on the traffic flow without considering the following vehicle A2.

さらに本実施形態では、後続車両A2の車両条件と後側方車両A3の車両条件が実質的に同一の場合に、自車両A1は、車間時間を確保可能な車線に車線変更する。こうした制御によって車間時間が確保されれば、自車両A1は、交通流の乱れを抑えつつ、目標停止位置TSPへ向けた減速を行うことができる。 Further, in the present embodiment, when the vehicle conditions of the following vehicle A2 and the vehicle conditions of the rear side vehicle A3 are substantially the same, the own vehicle A1 changes lanes to a lane in which the inter-vehicle time can be secured. If the inter-vehicle time is secured by such control, the own vehicle A1 can decelerate toward the target stop position TSP while suppressing the turbulence of the traffic flow.

加えて本実施形態では、緊急車両EVが自車両A1に後方から接近していても、緊急車両EVが自車両A1に追い付かないのであれば、待避行動は、実施されない。また、自車両A1が次に走行する交差点CPに、緊急車両EVよりも自車両A1が先に進入又は到達する場合も、待避行動は、実施されない。さらに、自車両A1及び緊急車両EVの各予定走行経路が重ならない場合も、待避行動は、実施されない。以上のように、待避行動の実施が適切に見送られれば、不要な待避行動の実施に起因した交通流の乱れの発生が回避される。 In addition, in the present embodiment, even if the emergency vehicle EV is approaching the own vehicle A1 from behind, if the emergency vehicle EV cannot catch up with the own vehicle A1, the shunting action is not carried out. Further, even when the own vehicle A1 enters or reaches the intersection CP where the own vehicle A1 travels next before the emergency vehicle EV, the evacuating action is not carried out. Further, even if the planned travel routes of the own vehicle A1 and the emergency vehicle EV do not overlap, the shunting action is not carried out. As described above, if the implementation of the shunting action is appropriately postponed, the occurrence of traffic flow turbulence due to the implementation of the unnecessary shunting action can be avoided.

尚、本実施形態において、自動運転ECU10が「緊急車両通行支援装置」に相当し、メインプロセッサ11及びグラフィックプロセッサ12が「処理部」に相当し、自動運転システム100が「緊急車両通行支援システム」に相当する。また、車間情報取得部21が「後方監視部」に相当し、通信制御部22が「通知部」に相当し、走行モード判別部25が「走行状態判別部」に相当し、待避行動作成部27が「計画作成部」に相当する。 In the present embodiment, the automatic driving ECU 10 corresponds to the "emergency vehicle traffic support device", the main processor 11 and the graphic processor 12 correspond to the "processing unit", and the automatic driving system 100 corresponds to the "emergency vehicle traffic support system". Corresponds to. Further, the inter-vehicle information acquisition unit 21 corresponds to the "rear monitoring unit", the communication control unit 22 corresponds to the "notification unit", the driving mode determination unit 25 corresponds to the "driving state determination unit", and the escape action creation unit. 27 corresponds to the "planning department".

(他の実施形態)
以上、本開示の一実施形態について説明したが、本開示は、上記実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
(Other embodiments)
Although one embodiment of the present disclosure has been described above, the present disclosure is not construed as being limited to the above embodiment, and is applied to various embodiments and combinations without departing from the gist of the present disclosure. be able to.

上記実施形態では、待避行動が実行される待避シーン及び待避行動が見送られる待避回避シーンのそれぞれを複数例示したが、待避シーン及び待避回避シーンは、上記実施形態で例示したシーンに限定されない。 In the above embodiment, a plurality of shunting scenes in which the shunting action is executed and shunting avoidance scenes in which the shunting action is postponed are exemplified, but the shunting scene and the shunting avoidance scene are not limited to the scenes exemplified in the above embodiment.

上記実施形態では、互いに異なる四つの待避行動のパターンから一つが選択されていた。しかし、自動運転ECUに設定される待避行動のパターンの数、換言すれば、待避行動計画のバリエーションの数は、四つに限定されない。例えば、搭載車両Aoか否かでパターン分けされることなく、後続車両A2が手動運転状態の場合には、同一の待避行動計画に基づく待避行動が実行されてよい。 In the above embodiment, one is selected from four patterns of shunting behavior that are different from each other. However, the number of patterns of evasion action set in the automatic driving ECU, in other words, the number of variations of the evasion action plan is not limited to four. For example, when the following vehicle A2 is in the manual driving state without being patterned according to whether or not it is the mounted vehicle Ao, the shunting action based on the same shunting action plan may be executed.

また、各パターンの減速態様も、適宜変更されてよい。例えば、後続車両A2がいなくなった場合に、減速を完全に解除することなく、減速を緩める等の制御が実施されてもよい。また、後続車両A2が急接近した場合、減速の解除に留まらず、後続車両A2との車間距離を一時的に維持できるように、自車両A1の車速が調整されてもよい。 Further, the deceleration mode of each pattern may be changed as appropriate. For example, when the following vehicle A2 disappears, control such as relaxing the deceleration may be performed without completely releasing the deceleration. Further, when the following vehicle A2 approaches suddenly, the vehicle speed of the own vehicle A1 may be adjusted so that the inter-vehicle distance from the following vehicle A2 can be temporarily maintained as well as the deceleration is released.

さらに、各パターンの待避行動で用いられる規定減速度PD及び目標減速度TDは、減速の開始から終了までの期間において、乗員の不快感を惹起しないように、又は、周囲の他車両に接近しないように、適宜調整されてよい。但し、減速の開始から終了までの期間における目標減速度TDの平均値及び中央値は、規定減速度PDの平均値及び中央値よりも絶対値の小さい値となることが望ましい。 Furthermore, the prescribed deceleration PD and target deceleration TD used in each pattern of shunting behavior do not cause discomfort to the occupants or approach other vehicles in the vicinity during the period from the start to the end of deceleration. As such, it may be adjusted as appropriate. However, it is desirable that the average value and the median value of the target deceleration TD during the period from the start to the end of deceleration are smaller than the average value and the median value of the specified deceleration PD.

上記実施形態では、後続車両A2が手動運転状態の車両である場合、緊急車両EVを認知すると、直ちに減速が開始されていた。こうした減速開始のタイミングは、適宜調整されてよい。上記実施形態のように、減速は、目標減速度TDの設定後に可及的速やかに開始されてもよく、又は緊急車両EVの認知から所定の遅れ時間の経過後に開始されてもよい。 In the above embodiment, when the following vehicle A2 is a vehicle in a manually operated state, deceleration is started immediately when the emergency vehicle EV is recognized. The timing of starting such deceleration may be adjusted as appropriate. As in the above embodiment, the deceleration may be started as soon as possible after the target deceleration TD is set, or may be started after a predetermined delay time has elapsed from the recognition of the emergency vehicle EV.

上記実施形態では、自車両A1と緊急車両EVの位置関係又は予定走行経路等から、待避行動の要否が判断されていた。しかし、緊急車両EVの通行を確実に優先するために、緊急車両EVの接近が確認された場合には、設定した目標停止位置TSPへ自車両A1を停車させる待避行動が常に実施されてもよい。 In the above embodiment, the necessity of the escape action is determined from the positional relationship between the own vehicle A1 and the emergency vehicle EV, the planned travel route, and the like. However, in order to ensure that the passage of the emergency vehicle EV is prioritized, when the approach of the emergency vehicle EV is confirmed, a shunting action to stop the own vehicle A1 at the set target stop position TSP may always be carried out. ..

上記実施形態における自動運転機能は、自動緊急ブレーキのように他車両が顕著に接近した場合にのみ作動する機能ではなく、他車両との間に十分な距離が確保されている状態で作動する機能である。自動運転機能は、制動制御機能に加えて、自車両A1を路肩近傍に寄せるような操舵機能を備えるものとする。こうした自動運転機能は、自動緊急ブレーキが作動するよりも遥かに早いタイミングで、周囲の他車両の状態に応じて自車両A1の待避行動計画を柔軟に変更できる。その結果、交通流への影響を小さく抑えつつ、緊急車両EVに進路を譲ることが可能になる。 The automatic driving function in the above embodiment is not a function that operates only when another vehicle is remarkably approached like an automatic emergency brake, but a function that operates in a state where a sufficient distance is secured from the other vehicle. Is. In addition to the braking control function, the automatic driving function is provided with a steering function that brings the own vehicle A1 closer to the shoulder of the road. Such an automatic driving function can flexibly change the shunting action plan of the own vehicle A1 according to the state of other vehicles in the vicinity at a timing much earlier than the automatic emergency brake is activated. As a result, it becomes possible to give way to the emergency vehicle EV while keeping the influence on the traffic flow small.

上記実施形態の緊急車両通行支援装置の機能は、自動運転ECUによって果たされていた。しかし、緊急車両通行支援装置の機能を発揮する構成は、車両に搭載された種々の演算装置、又は車両と通信可能に設けられた種々の演算装置であってよい。さらに、複数の演算装置が協働で緊急車両通行支援装置の機能を発揮してもよい。また、各演算装置に設けられたフラッシュメモリ及びハードディスク等の種々の非遷移的実体的記憶媒体が、緊急車両通行支援プログラムを記憶する記憶媒体として採用可能である。 The function of the emergency vehicle passage support device of the above embodiment is fulfilled by the automatic driving ECU. However, the configuration that exerts the function of the emergency vehicle traffic support device may be various arithmetic units mounted on the vehicle or various arithmetic units provided so as to be able to communicate with the vehicle. Further, a plurality of arithmetic units may cooperate to exert the function of the emergency vehicle traffic support device. Further, various non-transitional substantive storage media such as a flash memory and a hard disk provided in each arithmetic unit can be adopted as a storage medium for storing an emergency vehicle passage support program.

10 自動運転ECU(緊急車両通行支援装置)、11 メインプロセッサ(処理部)、12 グラフィックプロセッサ(処理部)、21 車間情報取得部(後方監視部)、22 通信制御部(通知部)、23 接近判断部、24 通信機能判別部、25 走行モード判別部(走行状態判別部)、26 認知判断部、27 待避行動作成部(計画作成部)、30 周辺監視装置、100 自動運転システム(緊急車両通行支援システム)、A1 自車両、A2 後続車両、A3 後側方車両、Ao 搭載車両、Ax 非搭載車両、CP 交差点、DSP 減速開始位置、EV 緊急車両、PD 規定減速度、TD 目標減速度、TSP 目標停止位置 10 Automatic driving ECU (emergency vehicle traffic support device), 11 Main processor (processing unit), 12 Graphic processor (processing unit), 21 Inter-vehicle information acquisition unit (rear monitoring unit), 22 Communication control unit (notification unit), 23 Approach Judgment unit, 24 communication function discrimination unit, 25 driving mode discrimination unit (driving state discrimination unit), 26 cognitive judgment unit, 27 evasion behavior creation unit (planning creation unit), 30 peripheral monitoring device, 100 automatic driving system (emergency vehicle traffic) Support system), A1 own vehicle, A2 following vehicle, A3 rear side vehicle, Ao equipped vehicle, Ax non-equipped vehicle, CP intersection, DSP deceleration start position, EV emergency vehicle, PD specified deceleration, TD target deceleration, TSP Target stop position

Claims (22)

自動運転機能によって自車両(A1)を緊急車両(EV)の予定走行経路から待避させることにより、前記緊急車両の通行を支援する緊急車両通行支援装置であって、
前記緊急車両の前記自車両への接近を判断する接近判断部(23)と、
前記緊急車両が前記自車両に接近している場合に、前記緊急車両の予定走行経路から待避するよう前記自動運転機能によって前記自車両を停車させる待避行動計画を作成する計画作成部(27)と、
前記自車両の周囲を走行する他車両のうちで、少なくとも前記自車両と同じ車線の所定距離以内を走行し、且つ、後続の先頭に位置する後続車両(A2)について、自動走行状態か手動運転状態かを判別する走行状態判別部(25)と、を備え、
前記計画作成部は、自動走行状態か手動運転状態かを判別した判別結果が前記後続車両手動運転状態を示す場合に、前記判別結果が前記後続車両自動走行状態を示す場合よりも、前記自車両を緩やかに減速させる前記待避行動計画を作成する緊急車両通行支援装置。
It is an emergency vehicle passage support device that supports the passage of the emergency vehicle by evacuating the own vehicle (A1) from the planned travel route of the emergency vehicle (EV) by the automatic driving function.
An approach determination unit (23) for determining the approach of the emergency vehicle to the own vehicle, and
With the planning creation unit (27) that creates a evasion action plan for stopping the own vehicle by the automatic driving function so as to evacuate from the planned traveling route of the emergency vehicle when the emergency vehicle is approaching the own vehicle. ,
Among other vehicles traveling around the own vehicle, the following vehicle (A2), which travels at least within a predetermined distance in the same lane as the own vehicle and is located at the head of the following, is in an automatic driving state or manually driven. It is provided with a running state determination unit (25) for determining whether it is in a state.
The planning unit, when the determination result of determining whether automatic traveling state or the manual operation state indicates a manual operation state of the following vehicle, than when the determination result indicates automatic traveling state of the following vehicle, wherein An emergency vehicle traffic support device that creates the evacuation action plan that slowly decelerates the own vehicle.
前記後続車両が車車間通信の機能を搭載した搭載車両(Ao)か否かを判別する通信機能判別部(24)、をさらに備え、
前記計画作成部は、手動運転状態にある前記後続車両が前記搭載車両であるか否かに基づき、待避行動を変更する請求項1に記載の緊急車両通行支援装置。
Further provided with a communication function determination unit (24) for determining whether or not the following vehicle is an on-board vehicle (Ao) equipped with an inter-vehicle communication function.
The emergency vehicle passage support device according to claim 1, wherein the planning unit changes the shunting behavior based on whether or not the following vehicle in the manually operated state is the mounted vehicle.
前記後続車両が前記搭載車両である場合に、前記待避行動計画に基づく待避の実施を前記後続車両へ向けて通知する通知部(22)、をさらに備える請求項2に記載の緊急車両通行支援装置。 The emergency vehicle passage support device according to claim 2, further comprising a notification unit (22) for notifying the following vehicle of the execution of shunting based on the shunting action plan when the following vehicle is the mounted vehicle. .. 前記計画作成部は、前記後続車両が手動運転状態であって車車間通信の機能を搭載しない非搭載車両(Ax)である場合に、待避を完了しなければならない目標停止位置(TSP)及び現在位置から前記目標停止位置に停止するために必要な目標減速度(TD)を算出し、当該目標減速度での減速を前記自動運転機能に開始させる請求項2又は3に記載の緊急車両通行支援装置。 The planning unit has a target stop position (TSP) and a current state in which the evasion must be completed when the following vehicle is in a manual driving state and is a non-equipped vehicle (Ax) that does not have the inter-vehicle communication function. The emergency vehicle traffic support according to claim 2 or 3, wherein the target deceleration (TD) required to stop at the target stop position is calculated from the position, and the automatic driving function starts deceleration at the target deceleration. apparatus. 前記走行状態判別部は、前記自車両の走行する車線に隣接した隣接車線を走行する前記他車両のうちで、前記自車両の後側方の所定距離以内を走行し、且つ、後側方の先頭に位置する後側方車両(A3)について、自動走行状態か手動運転状態かを判別し、
前記通信機能判別部は、前記後側方車両が前記搭載車両か否かを判別し、
前記計画作成部は、前記後側方車両が手動運転状態にある前記搭載車両である場合に、この後側方車両が走行する前記隣接車線への車線変更を実施した後で、前記目標減速度での減速により前記自車両を前記目標停止位置に停止させる前記待避行動計画を作成する請求項4に記載の緊急車両通行支援装置。
The traveling state determination unit travels within a predetermined distance on the rear side of the own vehicle among the other vehicles traveling in the adjacent lane adjacent to the traveling lane of the own vehicle, and is on the rear side. For the rear side vehicle (A3) located at the beginning, it is determined whether it is in the automatic driving state or the manual driving state.
The communication function discriminating unit determines whether or not the rear side vehicle is the mounted vehicle, and determines whether or not the rear side vehicle is the mounted vehicle.
When the rear side vehicle is the mounted vehicle in the manual driving state, the planning unit changes the lane to the adjacent lane in which the rear side vehicle travels, and then performs the target deceleration. The emergency vehicle traffic support device according to claim 4, wherein the evacuation action plan for stopping the own vehicle at the target stop position by deceleration in the vehicle is created.
前記計画作成部は、前記後続車両が手動運転状態の前記搭載車両である場合に、待避を完了しなければならない目標停止位置(TSP)及び現在位置から前記目標停止位置に停止するために必要な目標減速度(TD)を算出し、当該目標減速度での減速を前記自動運転機能に開始させる請求項2又は3に記載の緊急車両通行支援装置。 The planning unit is required to stop from the target stop position (TSP) and the current position where the evasion must be completed when the following vehicle is the mounted vehicle in the manually operated state. The emergency vehicle traffic support device according to claim 2 or 3, which calculates a target deceleration (TD) and causes the automatic driving function to start deceleration at the target deceleration. 前記計画作成部は、前記目標減速度での減速が開始された後で前記後続車両が存在しなくなった場合に、前記目標減速度での減速を解除し、前記目標停止位置と予め規定された規定減速度(PD)とに基づいて減速を再開する減速開始位置(DSP)を算出する請求項4〜6のいずれか一項に記載の緊急車両通行支援装置。 When the following vehicle disappears after the deceleration at the target deceleration is started, the planning unit cancels the deceleration at the target deceleration and predefines the target stop position. The emergency vehicle traffic support device according to any one of claims 4 to 6, which calculates a deceleration start position (DSP) for resuming deceleration based on a specified deceleration (PD). 前記自車両の待避行動の実施が前記後続車両によって認知されたか否かを判断する認知判断部(26)、をさらに備え、
前記計画作成部は、前記自車両における待避行動の実施が前記後続車両に認知されたと判断された場合に、前記目標減速度での減速を解除し、前記目標停止位置と予め規定された規定減速度(PD)とに基づいて減速を再開する減速開始位置(DSP)を算出する請求項4〜7のいずれか一項に記載の緊急車両通行支援装置。
A cognitive determination unit (26) for determining whether or not the execution of the shunting action of the own vehicle has been recognized by the following vehicle is further provided.
When it is determined that the execution of the evasion action in the own vehicle is recognized by the following vehicle, the planning unit releases the deceleration at the target deceleration, and sets the target stop position and the predetermined reduction. The emergency vehicle traffic support device according to any one of claims 4 to 7, which calculates a deceleration start position (DSP) for resuming deceleration based on a speed (PD).
前記後続車両の前記自車両への急接近を監視する後方監視部(21)、をさらに備え、
前記計画作成部は、前記後続車両が前記自車両に急接近している場合に、減速を一時的に解除したうえで、現在位置から前記目標停止位置に停止するために必要な前記目標減速度を再び算出し、当該目標減速度による減速を開始させる請求項4〜8のいずれか一項に記載の緊急車両通行支援装置。
A rear monitoring unit (21) for monitoring the sudden approach of the following vehicle to the own vehicle is further provided.
The planning unit temporarily releases the deceleration when the following vehicle is approaching the own vehicle, and then decelerates the target, which is necessary to stop the vehicle from the current position to the target stop position. The emergency vehicle traffic support device according to any one of claims 4 to 8, wherein the speed is calculated again and deceleration due to the target deceleration is started.
前記走行状態判別部は、前記自車両の走行する車線に隣接した隣接車線を走行する前記他車両のうちで、前記自車両の後側方の所定距離以内を走行し、且つ、後側方の先頭に位置する後側方車両(A3)について、自動走行状態か手動運転状態かを判別し、
前記計画作成部は、前記後側方車両が自動走行状態にある場合に、この後側方車両が走行する前記隣接車線への車線変更を実施した後で、前記目標停止位置と予め規定された規定減速度(PD)とに基づいて算出した減速開始位置(DSP)から当該規定減速度での減速を開始させる前記待避行動計画を作成する請求項4又は6に記載の緊急車両通行支援装置。
The traveling state determination unit travels within a predetermined distance on the rear side of the own vehicle among the other vehicles traveling in the adjacent lane adjacent to the traveling lane of the own vehicle, and is on the rear side. For the rear side vehicle (A3) located at the beginning, it is determined whether it is in the automatic driving state or the manual driving state.
When the rear side vehicle is in the automatic traveling state, the planning unit predefines the target stop position after changing the lane to the adjacent lane in which the rear side vehicle travels. The emergency vehicle traffic support device according to claim 4 or 6, which creates the evasion action plan for starting deceleration at the specified deceleration from the deceleration start position (DSP) calculated based on the specified deceleration (PD).
前記計画作成部は、前記後続車両が自動走行状態である場合に、待避を完了しなければならない目標停止位置(TSP)と予め規定された規定減速度(PD)とに基づいて算出した減速開始位置から当該規定減速度での減速を開始させる前記待避行動計画を作成する請求項1〜3のいずれか一項に記載の緊急車両通行支援装置。 The planning unit calculates the deceleration start based on the target stop position (TSP) at which the evasion must be completed and the predetermined deceleration (PD) when the following vehicle is in the automatic traveling state. The emergency vehicle passage support device according to any one of claims 1 to 3, which creates the evasion action plan for starting deceleration at the specified deceleration from a position. 前記計画作成部は、前記自車両の走行する車線に隣接した隣接車線において、前記自車両の後側方の所定距離以内に前記他車両が存在しない場合に、前記隣接車線への車線変更を実施し、前記目標停止位置と予め規定された規定減速度(PD)とに基づいて算出した減速開始位置(DSP)から当該規定減速度での減速を開始させる前記待避行動計画を作成する請求項4,6,11のいずれか一項に記載の緊急車両通行支援装置。 The planning unit changes the lane to the adjacent lane when the other vehicle does not exist within a predetermined distance behind the own vehicle in the adjacent lane adjacent to the lane in which the own vehicle travels. 4. Claim 4 to create the refuge action plan to start deceleration at the specified deceleration from the deceleration start position (DSP) calculated based on the target stop position and the predetermined deceleration (PD). , 6, 11. The emergency vehicle traffic support device according to any one of the following items. 前記走行状態判別部は、前記自車両の走行する車線に隣接した隣接車線を走行する前記他車両のうちで、前記自車両の後側方の所定距離以内を走行し、且つ、後側方の先頭に位置する後側方車両(A3)について、自動走行状態か手動運転状態かを判別し、
前記計画作成部は、前記後続車両及び前記後側方車両について待避行動に係る車両条件が互いに同一である場合に、前記後続車両よりも前記後側方車両に対して前記自車両からの車間時間が確保されることを条件に、前記隣接車線への車線変更を実施させる前記待避行動計画を作成する請求項4,6,11のいずれか一項に記載の緊急車両通行支援装置。
The traveling state determination unit travels within a predetermined distance on the rear side of the own vehicle among the other vehicles traveling in the adjacent lane adjacent to the traveling lane of the own vehicle, and is on the rear side. For the rear side vehicle (A3) located at the beginning, it is determined whether it is in the automatic driving state or the manual driving state.
When the vehicle conditions related to the evacuation behavior are the same for the following vehicle and the rear side vehicle, the planning unit determines the inter-vehicle time from the own vehicle with respect to the rear side vehicle rather than the following vehicle. The emergency vehicle traffic support device according to any one of claims 4, 6 and 11 for creating the evasion action plan for carrying out a lane change to the adjacent lane on the condition that the above is secured.
自動運転機能によって自車両(A1)を緊急車両(EV)の予定走行経路から待避させることにより、前記緊急車両の通行を支援する緊急車両通行支援装置であって、
前記緊急車両の前記自車両への接近を判断する接近判断部(23)と、
前記緊急車両が前記自車両に接近している場合に、前記緊急車両の予定走行経路から待避するよう前記自動運転機能によって前記自車両を停車させる待避行動計画を作成する計画作成部(27)と、
前記自車両の周囲を走行する他車両のうちで、少なくとも前記自車両と同じ車線の所定距離以内を走行し、且つ、後続の先頭に位置する後続車両(A2)について、自動走行状態か手動運転状態かを判別する走行状態判別部(25)と、を備え、
前記計画作成部は、前記後続車両が手動運転状態である場合に、前記後続車両が自動走行状態である場合よりも、前記自車両を停止させる目標停止位置(TSP)に対し離れた位置から、前記自車両を緩やかに減速させる前記待避行動計画を作成する緊急車両通行支援装置。
It is an emergency vehicle passage support device that supports the passage of the emergency vehicle by evacuating the own vehicle (A1) from the planned travel route of the emergency vehicle (EV) by the automatic driving function.
An approach determination unit (23) for determining the approach of the emergency vehicle to the own vehicle, and
With the planning creation unit (27) that creates a evasion action plan for stopping the own vehicle by the automatic driving function so as to evacuate from the planned traveling route of the emergency vehicle when the emergency vehicle is approaching the own vehicle. ,
Among other vehicles traveling around the own vehicle, the following vehicle (A2), which travels at least within a predetermined distance in the same lane as the own vehicle and is located at the head of the following, is in an automatic driving state or manually driven. It is provided with a running state determination unit (25) for determining whether it is in a state.
When the following vehicle is in the manual driving state, the planning unit is from a position farther from the target stop position (TSP) for stopping the own vehicle than when the following vehicle is in the automatic driving state . An emergency vehicle traffic support device that creates the evacuation action plan that slowly decelerates the own vehicle.
前記接近判断部は、前記緊急車両について、前記自車両と同一の道路を走行し、且つ、前記自車両に後方から接近しているか否かを判断し、
前記計画作成部は、前記緊急車両が前記自車両に後方から接近している場合、緊急車両の予定走行経路から自車両が外れるまでに必要とされる時間を待避車間時間として算出し、前記待避車間時間のうちに前記自車両が前記緊急車両に追い付かれない場合には、待避行動を実施させない請求項1〜14のいずれか一項に記載の緊急車両通行支援装置。
The approach determination unit determines whether or not the emergency vehicle is traveling on the same road as the own vehicle and is approaching the own vehicle from behind.
The planning unit, if the emergency vehicle is approaching from behind the vehicle, is calculated as a retreat time headway between when the planned travel route of the emergency vehicle Ru is required before the vehicle is out, the The emergency vehicle passage support device according to any one of claims 1 to 14 , wherein the evacuation action is not carried out when the own vehicle cannot catch up with the emergency vehicle within the time between the evacuation vehicles.
前記接近判断部は、前記緊急車両について、前記自車両と同一の道路を走行し、且つ、前記自車両の前方から接近しているか否かを判断し、
前記計画作成部は、前記緊急車両が前記自車両に前方から接近している場合、前記自車両が次に走行する交差点に前記緊急車両よりも前記自車両が先に進入することを条件に、待避行動を実施させず、次に走行する交差点を通過させる請求項1〜15のいずれか一項に記載の緊急車両通行支援装置。
The approach determination unit determines whether or not the emergency vehicle is traveling on the same road as the own vehicle and is approaching from the front of the own vehicle.
When the emergency vehicle is approaching the own vehicle from the front, the planning unit prepares the vehicle on the condition that the own vehicle enters the intersection where the own vehicle travels next before the emergency vehicle. The emergency vehicle traffic support device according to any one of claims 1 to 15 , wherein the vehicle passes through an intersection to be driven next without carrying out a shelter action.
前記接近判断部は、前記緊急車両について、前記自車両の走行する道路と交差する交差道路を走行し、且つ、前記自車両の進行方向にある交差点(CP)に接近しているか否かを判断し、
前記計画作成部は、前記緊急車両が前記交差点に接近している場合に、前記緊急車両よりも前記自車両が前記交差点に先に進入することを条件に、待避行動を実施させず、進行方向にある前記交差点を通過させる請求項1〜16のいずれか一項に記載の緊急車両通行支援装置。
The approach determination unit determines whether or not the emergency vehicle is traveling on an intersection road that intersects with the road on which the own vehicle is traveling and is approaching an intersection (CP) in the traveling direction of the own vehicle. And
When the emergency vehicle is approaching the intersection, the planning unit does not perform the evacuation action on the condition that the own vehicle enters the intersection earlier than the emergency vehicle , and the traveling direction. The emergency vehicle traffic support device according to any one of claims 1 to 16 for passing through the intersection in the above .
前記接近判断部は、前記緊急車両の予定走行経路を取得し、
前記計画作成部は、前記緊急車両が前記自車両に接近していても、前記自車両の予定走行経路と前記緊急車両の予定走行経路とが重ならないと場合には、待避行動を実施させない請求項1〜17のいずれか一項に記載の緊急車両通行支援装置。
The approach determination unit acquires the planned travel route of the emergency vehicle and obtains the planned travel route.
Even if the emergency vehicle is close to the own vehicle, the planning unit does not perform the escape action when the planned travel route of the own vehicle and the planned travel route of the emergency vehicle do not overlap. The emergency vehicle traffic support device according to any one of items 1 to 17 .
自動運転機能によって自車両(A1)を緊急車両(EV)の予定走行経路から待避させることにより、前記緊急車両の通行を支援する緊急車両通行支援装置(10)と、
前記自車両の周囲を走行している他車両を監視する周辺監視装置(30)と、を含む緊急車両通行支援システムであって、
前記緊急車両通行支援装置は、
前記緊急車両の前記自車両への接近を判断する接近判断部(23)、
前記緊急車両が前記自車両に接近している場合に、前記緊急車両の予定走行経路から待避するよう前記自動運転機能によって前記自車両を停車させる待避行動計画を作成する計画作成部(27)、
前記他車両のうちで、少なくとも前記自車両と同じ車線の所定距離以内を走行し且つ後続の先頭に位置する後続車両(A2)について、自動走行状態か手動運転状態かを判別する走行状態判別部(25)、を有し、
前記計画作成部は、自動走行状態か手動運転状態かを判別した判別結果が前記後続車両手動運転状態を示す場合に、前記判別結果が前記後続車両自動走行状態を示す場合よりも、前記自車両を緩やかに減速させる前記待避行動計画を作成する緊急車両通行支援システム。
An emergency vehicle passage support device (10) that supports the passage of the emergency vehicle by evacuating the own vehicle (A1) from the planned travel route of the emergency vehicle (EV) by the automatic driving function.
An emergency vehicle traffic support system that includes a peripheral monitoring device (30) that monitors other vehicles traveling around the own vehicle.
The emergency vehicle traffic support device is
Approach determination unit (23), which determines the approach of the emergency vehicle to the own vehicle,
A planning unit (27), which creates a evasion action plan for stopping the own vehicle by the automatic driving function so as to evacuate from the planned traveling route of the emergency vehicle when the emergency vehicle is approaching the own vehicle.
Among the other vehicles, a traveling state determination unit that determines whether the following vehicle (A2), which travels within a predetermined distance in the same lane as the own vehicle and is located at the head of the following vehicle, is in an automatic driving state or a manual driving state. (25), and
The planning unit, when the determination result of determining whether automatic traveling state or the manual operation state indicates a manual operation state of the following vehicle, than when the determination result indicates automatic traveling state of the following vehicle, wherein An emergency vehicle traffic support system that creates the evacuation action plan that slowly decelerates the own vehicle.
自動運転機能によって自車両(A1)を緊急車両(EV)の予定走行経路から待避させることにより、前記緊急車両の通行を支援する緊急車両通行支援装置(10)と、
前記自車両の周囲を走行している他車両を監視する周辺監視装置(30)と、を含む緊急車両通行支援システムであって、
前記緊急車両通行支援装置は、
前記緊急車両の前記自車両への接近を判断する接近判断部(23)、
前記緊急車両が前記自車両に接近している場合に、前記緊急車両の予定走行経路から待避するよう前記自動運転機能によって前記自車両を停車させる待避行動計画を作成する計画作成部(27)、
前記他車両のうちで、少なくとも前記自車両と同じ車線の所定距離以内を走行し且つ後続の先頭に位置する後続車両(A2)について、自動走行状態か手動運転状態かを判別する走行状態判別部(25)、を有し、
前記計画作成部は、前記後続車両が手動運転状態である場合に、前記後続車両が自動走行状態である場合よりも、前記自車両を停止させる目標停止位置(TSP)に対し離れた位置から、前記自車両を緩やかに減速させる前記待避行動計画を作成する緊急車両通行支援システム。
An emergency vehicle passage support device (10) that supports the passage of the emergency vehicle by evacuating the own vehicle (A1) from the planned travel route of the emergency vehicle (EV) by the automatic driving function.
An emergency vehicle traffic support system that includes a peripheral monitoring device (30) that monitors other vehicles traveling around the own vehicle.
The emergency vehicle traffic support device is
Approach determination unit (23), which determines the approach of the emergency vehicle to the own vehicle,
A planning unit (27), which creates a evasion action plan for stopping the own vehicle by the automatic driving function so as to evacuate from the planned traveling route of the emergency vehicle when the emergency vehicle is approaching the own vehicle.
Among the other vehicles, a traveling state determination unit that determines whether the following vehicle (A2), which travels within a predetermined distance in the same lane as the own vehicle and is located at the head of the following vehicle, is in an automatic driving state or a manual driving state. (25), and
When the following vehicle is in the manual driving state, the planning unit is from a position farther from the target stop position (TSP) for stopping the own vehicle than when the following vehicle is in the automatic driving state . An emergency vehicle traffic support system that creates the evacuation action plan that slowly decelerates the own vehicle.
自動運転機能によって自車両(A1)を緊急車両(EV)の予定走行経路から待避させることにより、前記緊急車両の通行を支援する制御を処理部(11,12)に実行させる緊急車両通行支援プログラムであって、
前記緊急車両の前記自車両への接近を判断し(S102〜S104)、
前記緊急車両が前記自車両に接近している場合に、前記緊急車両の予定走行経路から待避するよう前記自動運転機能によって前記自車両を停車させる待避行動計画を作成し(S143)、
前記自車両の周囲を走行する他車両のうちで、少なくとも前記自車両と同じ車線の所定距離以内を走行し且つ後続の先頭に位置する後続車両(A2)について、自動走行状態か手動運転状態かを判別し(S134)、
自動走行状態か手動運転状態かを判別した判別結果が前記後続車両手動運転状態を示す場合に、前記判別結果が前記後続車両自動走行状態を示す場合よりも、前記自車両を緩やかに減速させる前記待避行動計画を作成する(S148)、緊急車両通行支援プログラム。
An emergency vehicle passage support program that causes the processing unit (11, 12) to execute control to support the passage of the emergency vehicle by evacuating the own vehicle (A1) from the planned travel route of the emergency vehicle (EV) by the automatic driving function. And
Judging that the emergency vehicle is approaching the own vehicle (S102 to S104),
When the emergency vehicle is approaching the own vehicle, a shunting action plan for stopping the own vehicle by the automatic driving function is created so as to evacuate from the planned traveling route of the emergency vehicle (S143).
Among other vehicles traveling around the own vehicle, at least the following vehicle (A2) that travels within a predetermined distance in the same lane as the own vehicle and is located at the head of the following is in an automatic driving state or a manual driving state. (S134),
When the discrimination result of discriminating between the automatic driving state and the manual driving state indicates the manual driving state of the following vehicle, the own vehicle is decelerated more slowly than when the discrimination result indicates the automatic driving state of the following vehicle. An emergency vehicle traffic support program for creating the evacuation action plan (S148).
自動運転機能によって自車両(A1)を緊急車両(EV)の予定走行経路から待避させることにより、前記緊急車両の通行を支援する制御を処理部(11,12)に実行させる緊急車両通行支援プログラムであって、
前記緊急車両の前記自車両への接近を判断し(S102〜S104)、
前記緊急車両が前記自車両に接近している場合に、前記緊急車両の予定走行経路から待避するよう前記自動運転機能によって前記自車両を停車させる待避行動計画を作成し(S143)、
前記自車両の周囲を走行する他車両のうちで、少なくとも前記自車両と同じ車線の所定距離以内を走行し且つ後続の先頭に位置する後続車両(A2)について、自動走行状態か手動運転状態かを判別し(S134)、
前記後続車両が手動運転状態である場合に、前記後続車両が自動走行状態である場合よりも、前記自車両を停止させる目標停止位置(TSP)に対し離れた位置から、前記自車両を緩やかに減速させる前記待避行動計画を作成する(S148)、緊急車両通行支援プログラム。
An emergency vehicle passage support program that causes the processing unit (11, 12) to execute control to support the passage of the emergency vehicle by evacuating the own vehicle (A1) from the planned travel route of the emergency vehicle (EV) by the automatic driving function. And
Judging that the emergency vehicle is approaching the own vehicle (S102 to S104),
When the emergency vehicle is approaching the own vehicle, a shunting action plan for stopping the own vehicle by the automatic driving function is created so as to evacuate from the planned traveling route of the emergency vehicle (S143).
Among other vehicles traveling around the own vehicle, at least the following vehicle (A2) that travels within a predetermined distance in the same lane as the own vehicle and is located at the head of the following is in an automatic driving state or a manual driving state. (S134),
When the following vehicle is in the manual driving state, the own vehicle is gently moved from a position farther from the target stop position (TSP) for stopping the own vehicle than when the following vehicle is in the automatic driving state. An emergency vehicle traffic support program that creates the refuge action plan to slow down (S148).
JP2017005997A 2017-01-17 2017-01-17 Emergency vehicle traffic support device, emergency vehicle traffic support program, and emergency vehicle traffic support system Active JP6805836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017005997A JP6805836B2 (en) 2017-01-17 2017-01-17 Emergency vehicle traffic support device, emergency vehicle traffic support program, and emergency vehicle traffic support system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017005997A JP6805836B2 (en) 2017-01-17 2017-01-17 Emergency vehicle traffic support device, emergency vehicle traffic support program, and emergency vehicle traffic support system

Publications (2)

Publication Number Publication Date
JP2018116409A JP2018116409A (en) 2018-07-26
JP6805836B2 true JP6805836B2 (en) 2020-12-23

Family

ID=62985570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017005997A Active JP6805836B2 (en) 2017-01-17 2017-01-17 Emergency vehicle traffic support device, emergency vehicle traffic support program, and emergency vehicle traffic support system

Country Status (1)

Country Link
JP (1) JP6805836B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6981941B2 (en) * 2018-08-29 2021-12-17 ヤフー株式会社 Driving control device, driving control method and driving control program
JP2020050109A (en) * 2018-09-26 2020-04-02 本田技研工業株式会社 Vehicle control device, vehicle control method, and program
US11208107B2 (en) * 2018-11-26 2021-12-28 Toyota Research Institute, Inc. Systems and methods for selecting among different driving modes for autonomous driving of a vehicle
JP7271958B2 (en) * 2019-01-15 2023-05-12 トヨタ自動車株式会社 Vehicle and Emergency Response Method
US10796571B2 (en) * 2019-01-31 2020-10-06 StradVision, Inc. Method and device for detecting emergency vehicles in real time and planning driving routes to cope with situations to be expected to be occurred by the emergency vehicles
WO2021149560A1 (en) * 2020-01-23 2021-07-29 株式会社小糸製作所 Lighting system, automobile, driving assistance device, and traffic system
JP7106588B2 (en) * 2020-02-10 2022-07-26 ソフトバンク株式会社 Information processing device, method and traffic risk reduction program
KR102426917B1 (en) * 2020-09-28 2022-07-29 (주)에이아이엠컴 Compensation system for concessinary driving to improving traffic congestion
JPWO2023170910A1 (en) * 2022-03-11 2023-09-14
WO2024172121A1 (en) * 2023-02-17 2024-08-22 株式会社デンソー Automatic driving control device, automatic driving control program, and automatic driving control method
WO2024172118A1 (en) * 2023-02-17 2024-08-22 株式会社デンソー Vehicle control device, vehicle control program, and vehicle control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008146168A (en) * 2006-12-06 2008-06-26 Toyota Motor Corp Cruise control device
JP2015010887A (en) * 2013-06-27 2015-01-19 株式会社デンソー Vehicle use information provision device
US20170043784A1 (en) * 2014-06-06 2017-02-16 Hitachi Automotive Systems, Ltd. Vehicle Travel Control Device
JP6375237B2 (en) * 2015-01-28 2018-08-15 日立オートモティブシステムズ株式会社 Automatic operation control device

Also Published As

Publication number Publication date
JP2018116409A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP6805836B2 (en) Emergency vehicle traffic support device, emergency vehicle traffic support program, and emergency vehicle traffic support system
JP7180436B2 (en) Behavior control method and behavior control device
JP5919150B2 (en) Driving assistance device
JP6358409B2 (en) Vehicle driving support control method and control device
CN109421713B (en) Vehicle control device, vehicle control method, and storage medium
JP6222137B2 (en) Vehicle control device
JP6394687B2 (en) Driving change control device and driving change control method
JP6429202B2 (en) Vehicle, vehicle control apparatus, vehicle control method, and vehicle control program
JP6413962B2 (en) Travel control device
JP6575413B2 (en) Evacuation instruction apparatus and evacuation instruction method
JP2018144720A (en) Vehicle evacuation device and vehicle evacuation method
JP7017443B2 (en) Vehicle control devices, vehicle control methods, and programs
JP6711329B2 (en) Driving support device
US11449060B2 (en) Vehicle, apparatus for controlling same, and control method therefor
US11679762B2 (en) Active rear collision avoidance apparatus and method
JP2019156144A (en) Vehicle controller, vehicle control method and program
JP2019156269A (en) Vehicle controller, vehicle control method and program
US20210107482A1 (en) Vehicle control apparatus
US20180362047A1 (en) Information processing device and recording medium
JP2007316827A (en) Intersection traffic control system
JP2022037421A (en) Vehicle travel control device
JP2007299193A (en) Intersection traffic control system
US20190265727A1 (en) Vehicle control device
JP2019148908A (en) Vehicle control device
US20190266895A1 (en) Vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R151 Written notification of patent or utility model registration

Ref document number: 6805836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250