JP6804413B2 - C方向において+/−15度より少ないミスカットを有するm面基板上の半極性iii族窒化物光電子デバイス - Google Patents
C方向において+/−15度より少ないミスカットを有するm面基板上の半極性iii族窒化物光電子デバイス Download PDFInfo
- Publication number
- JP6804413B2 JP6804413B2 JP2017177712A JP2017177712A JP6804413B2 JP 6804413 B2 JP6804413 B2 JP 6804413B2 JP 2017177712 A JP2017177712 A JP 2017177712A JP 2017177712 A JP2017177712 A JP 2017177712A JP 6804413 B2 JP6804413 B2 JP 6804413B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- ingan
- plane
- type
- semi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000004767 nitrides Chemical class 0.000 title claims description 69
- 230000005693 optoelectronics Effects 0.000 title claims description 59
- 239000000758 substrate Substances 0.000 title claims description 15
- 229910002601 GaN Inorganic materials 0.000 claims description 112
- 239000013078 crystal Substances 0.000 claims description 111
- 229910052738 indium Inorganic materials 0.000 claims description 90
- 229910052782 aluminium Inorganic materials 0.000 claims description 56
- 229910052733 gallium Inorganic materials 0.000 claims description 55
- 238000000034 method Methods 0.000 claims description 38
- 239000000203 mixture Substances 0.000 claims description 37
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 36
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 36
- 230000012010 growth Effects 0.000 claims description 25
- 238000000151 deposition Methods 0.000 claims description 16
- 238000000407 epitaxy Methods 0.000 claims description 16
- 239000004065 semiconductor Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 230000031700 light absorption Effects 0.000 claims description 5
- 239000004038 photonic crystal Substances 0.000 claims description 5
- 238000013507 mapping Methods 0.000 claims description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 13
- 230000000694 effects Effects 0.000 description 8
- 230000010287 polarization Effects 0.000 description 8
- 239000012299 nitrogen atmosphere Substances 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000005401 electroluminescence Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 229910052984 zinc sulfide Inorganic materials 0.000 description 3
- 229910001199 N alloy Inorganic materials 0.000 description 2
- 230000005699 Stark effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001194 electroluminescence spectrum Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000003631 wet chemical etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3202—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34333—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02389—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02609—Crystal orientation
-
- H01L31/03044—
-
- H01L31/036—
-
- H01L31/0735—
-
- H01L33/0025—
-
- H01L33/0045—
-
- H01L33/06—
-
- H01L33/16—
-
- H01L33/32—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2004—Confining in the direction perpendicular to the layer structure
- H01S5/2018—Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
- H01S5/2031—Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3202—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
- H01S5/320275—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth semi-polar orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2304/00—Special growth methods for semiconductor lasers
- H01S2304/04—MOCVD or MOVPE
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/0014—Measuring characteristics or properties thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2004—Confining in the direction perpendicular to the layer structure
- H01S5/2009—Confining in the direction perpendicular to the layer structure by using electron barrier layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/305—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
- H01S5/3054—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping
- H01S5/3063—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping using Mg
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/3403—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
- H01S5/3404—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation influencing the polarisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Materials Engineering (AREA)
- Geometry (AREA)
- Sustainable Energy (AREA)
- Semiconductor Lasers (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Description
本願は、同時係属および同一人に譲渡されたPo Shan Hsu、Kathryn M.Kelchner、Robert M.Farrell、Daniel Haeger、Hiroaki Ohta、Anurag Tyagi、Shuji Nakamura、Steven P.DenBaars、およびJames S.Speckによる米国仮特許出願第61/310,638号(名称「SEMI−POLAR III−NITRIDE OPTOELECTRONIC DEVICES ON M−PLANE SUBSTRATES WITH MISCUTS LESS THAN +/− 15 DEGREES IN THE C−DIRECTION」、2010年3月4日出願、代理人整理番号30794.366−US−P1(2010−543−1))の米国特許法第119条第(e)項に基づく利益を主張する。上記出願は、本明細書に参照することによって援用される。
Daniel F.Feezell、Mathew C.Schmidt、Kwang Choong Kim、Robert M.Farrell、Daniel A.Cohen、James S.Speck、Steven P.DenBaars,およびShuji Nakamuraによる米国特許出願第12/030,117号(名称「Al(x)Ga(1−x)N−CLADDING−FREE NONPOLAR GAN−BASED LASER DIODES AND LEDS」、2008年2月12日出願、代理人整理番号30794.222−US−U1(2007−424))。この出願は、Daniel F.Feezell、Mathew C.Schmidt、Kwang Choong Kim、Robert M.Farrell、Daniel A.Cohen、James S.Speck、Steven P.DenBaars、およびShuji Nakamuraによる米国仮特許出願第60/889,510号(名称「Al(x)Ga(1−x)N−CLADDING−FREE NONPOLAR GAN−BASED LASER DIODES AND LEDS」、2007年2月12日出願、代理人整理番号30794.222−US−P1(2007−424−1))の米国特許法第119条第(e)項に基づく利益を主張する;
Arpan Chakraborty、You−Da Lin、Shuji Nakamura、およびSteven P.DenBaarsよるPCT国際特許出願第US2010/37629号(名称「ASYMMETRICALLY CLADDED LASER DIODE」、2010年6月7日出願、代理人整理番号30794.314−US−WO(2009−614−2))。この出願は、Arpan Chakraborty、You−Da Lin、Shuji Nakamura、およびSteven P.DenBaarsによる米国仮特許出願第61/184,668号(名称「ASYMMETRICALLY CLADDED LASER DIODE」、2009年6月5日出願、代理人整理番号30794.314−US−P1(2009−614−1))の米国特許法第119条第(e)項に基づく利益を主張する;
および、 Arpan Chakraborty、You−Da Lin、Shuji Nakamura、およびSteven P.DenBaarsによる米国特許出願第12/795,390号(名称「LONG WAVELENGTH NONPOLAR AND SEMIPOLAR (Al,Ga,In)N BASED LASER DIODES」、2010年6月7日出願、代理人整理番号30794.315−US−U1(2009−616−2))。この出願は、同時係属および同一人に譲渡されたArpan Chakraborty、You−Da Lin、Shuji Nakamura、およびSteven P.DenBaarsによる米国仮特許出願第61/184,729号(名称「LONG WAVELENGTH m−PLANE (Al,Ga,In)N BASED LASER DIODES」、2009年6月5日出願、代理人整理番号30794.315−US−P1(2009−616−1))の米国特許法第119条第(e)項に基づく利益を主張する。
本発明は、半極性光電子デバイスおよびそれらの製造方法に関し、より具体的に、c方向において+/−15度より少ないミスカットを有するm面基板上の半極性III族窒化物光電子デバイスに関する。
(注記:本願は、括弧内の1つ以上の参照番号(例えば、[x])によって、本明細書を通して指示されるように、いくつかの異なる刊行物を参照する。このような参照番号に従って順序付けられたこれらの異なる刊行物の一覧は、以下の「参考文献」の項に列挙される。これらの刊行物はそれぞれ、参照することによって本明細書に組み込まれる。)
次世代ディスプレイテクノロジー(例えば、ミニチュアモバイルプロジェクターおよび高精細度飛点ディスプレイ)に対して期待された高い市販需要は、直接放射の緑色レーザーダイオード(LD)の開発を著しく加速させた。このような用途に対する技術基準は、LDが高効率、信頼性、コンパクト、および変調応答能力を有することを要求する[1]。ウルツ鉱(Al,Ga,In)Nベースの材料システムは、緑色光電子デバイスの先行候補として広く賛同されているが、その結晶面のエピタキシー成長に対する最適化が依然達成されていないことが一般的な合意である。
本発明は、m面から、c方向にx度のミスカットを有するGaN基板上に成長された半極性(Al,Ga,In)Nベースの光電子デバイスを開示する(ここで、−15<x<−1および1<x<15)。
例えば、本願発明は以下の項目を提供する。
(項目1)
光電子デバイスであって、該光電子デバイスは、
GaNの半極性結晶面上にエピタキシー成長された1つ以上のIII族窒化物層を含み、
該半極性結晶面は、該GaNのm面から、該GaNのc方向に、x度で配向されており、ここで、−15<x<−1および1<x<15である、デバイス。
(項目2)
前記半極性結晶面は、{30−31}面、{30−3−1}面、{40−41}面、または{40−4−1}面である、項目1に記載のデバイス。
(項目3)
前記半極性結晶面は、微斜面、ミスカット、または軸外フリースタンディングGaN基板の上表面である、項目1に記載のデバイス。
(項目4)
前記III族窒化物層は、Mathews−Blakeslee臨界厚さ以上の厚さを有する1つ以上のInGaN層を含み、該臨界厚さは、GaNのm面から、該GaNのc方向に、15度以上で配向された該GaNの半極性結晶面上に蒸着されたInGaN層に対するものである、項目1に記載のデバイス。
(項目5)
前記光電子デバイスは、レーザーダイオードであり、前記1つ以上のInGaN層は、モーダル閉じ込めを該レーザーダイオードに提供するInGaN導波管を含む、項目4に記載のデバイス。
(項目6)
前記III族窒化物は、1つ以上のInGaN量子井戸を含む光を放射するInGaN活性層をさらに含み、該量子井戸のうちの1つ以上は、少なくとも16%のインジウム組成と、4nmより大きい厚さとを有する、項目5に記載のデバイス。
(項目7)
前記InGaN層は、少なくとも7%のインジウム組成を有する、項目4に記載のデバイス。
(項目8)
前記光電子デバイスは、GaN基板のミスカットまたは微斜面の表面上に成長され、該ミスカットまたは微斜面の表面は、前記半極性結晶面を含み、前記III族窒化物層は、
1つ以上のn型(Al,In,Ga)N層と、
1つ以上のp型(Al,In,Ga)N層と、
該n型(Al,In,Ga)N層と該1つ以上のp型(Al,In,Ga)N層との間の1つ以上のInGaN量子井戸層を含むInGaN活性層と
をさらに含み、
該n型(Al,In,Ga)N層、該p型(Al,In,Ga)N層、および該InGaN量子井戸層は、該半極性結晶面の半極性配向を有し、該InGaN量子井戸層は、少なくとも477nmの波長においてピーク光放射またはピーク光吸収を有している、項目1に記載のデバイス。
(項目9)
前記光電子デバイスは、レーザーダイオードであり、前記III族窒化物層は、
前記半極性結晶面の上または上方のn型GaN層と、
該n型GaN層の上または上方のn型InGaN導波管層であって、該n型InGaN導波管層は、少なくとも50nmの厚さと、7%以上のインジウム組成とを有する、n型InGaN導波管層と、
該n型InGaN導波管層の上または上方のInGaN活性層であって、該InGaN活性層は、少なくとも7%のインジウム組成と、4nmより大きい厚さとを有する1つ以上のInGaN量子井戸層を含む、InGaN活性層と、
該InGaN活性層の上または上方のp型InGaN導波管層と、
該p型InGaN導波管層の上または上方のp型GaN層であって、該p型InGaN導波管層は、少なくとも50nmの厚さと、7%以上のインジウム組成とを有する、p型GaN層と
を含み、
該III族窒化物層は、該半極性結晶面の半極性配向を有する、項目1に記載のデバイス。
(項目10)
前記半極性結晶面が、原子的特定面を含むことにより、前記III族窒化物層の平坦なエピタキシー成長が達成される、項目1に記載のデバイス。
(項目11)
前記半極性結晶面上に成長された前記デバイスは、レーザーダイオード、レーザー放射ダイオード、超放射ダイオード、半導体増幅器、フォトニック結晶レーザー、VCSELレーザー、太陽電池、または光検出器を含む、項目1に記載のデバイス。
(項目12)
前記デバイスは、前記半極性結晶面上に成長されたレーザーダイオードであり、該レーザーダイオードは、より高いゲインのために、該レーザーダイオードのc投影方向に配向された導波管を含む、項目1に記載のデバイス。
(項目13)
前記III族窒化物層のうちの1つ以上は、0.75nm以下の表面ラフネスを有する、項目1に記載のデバイス。
(項目14)
光電子デバイスを製造する方法であって、該方法は、
半極性結晶面上にIII族窒化物層をエピタキシー蒸着することを含み、
該半極性結晶面は、GaNのm面から、該GaNのc方向に、x度で配向されており、ここで、−15<x<−1および1<x<15である、方法。
(項目15)
前記半極性結晶面は、{30−31}面、{30−3−1}面、{40−41}面、または{40−4−1}面である、項目14に記載の方法。
(項目16)
前記半極性結晶面は、微斜面、ミスカット、または軸外フリースタンディングGaN基板の上表面である、項目14に記載の方法。
(項目17)
前記III族窒化物層を蒸着することは、Mathews−Blakeslee臨界厚さ以上の厚さを有する1つ以上のInGaN層を蒸着することを含み、該臨界厚さは、GaNのm面から、該GaNのc方向に、15度以上で配向された該GaNの半極性結晶面上に蒸着されたInGaN層に対するものである、項目14に記載の方法。
(項目18)
前記光電子デバイスは、レーザーダイオードであり、前記1つ以上のInGaN層は、モーダル閉じ込めを該レーザーダイオードに提供するInGaN導波管を含み、該レーザーダイオードは、少なくとも460nmの波長においてレージングピークを有している、項目17に記載の方法。
(項目19)
前記III族窒化物を蒸着することは、1つ以上のInGaN量子井戸を含む光を放射するInGaN活性層を蒸着することをさらに含み、該量子井戸のうちの1つ以上は、少なくとも16%のインジウム組成と、4nmより大きい厚さとを有する、項目18に記載の方法。
(項目20)
前記InGaN層は、少なくとも7%のインジウム組成を有する、項目18に記載の方法。
(項目21)
前記光電子デバイスは、GaN基板のミスカットまたは微斜面の表面上に蒸着され、該ミスカットまたは微斜面の表面は、前記半極性GaN結晶面を含み、前記III族窒化物層を蒸着することは、
該半極性結晶面上に1つ以上のn型(Al,In,Ga)N層を蒸着することと、
該1つ以上のn型(Al,In,Ga)N層の上または上方に、1つ以上のInGaN量子井戸層を含むInGaN活性層を蒸着することと、
該InGaN量子井戸層上に1つ以上のp型(Al,In,Ga)N層を蒸着することと
をさらに含み、
該n型(Al,In,Ga)N層、該p型(Al,In,Ga)N層、および該InGaN量子井戸層は、該半極性結晶面の半極性配向を有し、該InGaN量子井戸層は、少なくとも477nmの波長においてピーク光放射またはピーク光吸収を有している、項目14に記載の方法。
(項目22)
前記光電子デバイスは、レーザーダイオードであり、前記III族窒化物層を蒸着することは、
前記半極性結晶面の上または上方にn型GaN層を蒸着することと、
該n型GaN層の上または上方にn型InGaN導波管層を蒸着することであって、該n型InGaN導波管層は、少なくとも50nmの厚さと、7%以上のインジウム組成とを有する、ことと、
該n型InGaN導波管層の上または上方にInGaN活性層を蒸着することであって、該InGaN活性層は、少なくとも7%のインジウム組成と、4nmより大きい厚さとを有する1つ以上のInGaN量子井戸層を含む、ことと、
該InGaN活性層の上または上方にp型InGaN導波管層を蒸着することと、
該p型InGaN導波管層の上または上方にp型GaN層を蒸着することであって、該p型InGaN導波管層は、少なくとも50nmの厚さと、7%以上のインジウム組成とを有する、ことと
を含み、
該III族窒化物層は、該半極性結晶面の半極性配向を有する、項目14に記載の方法。
(項目23)
前記半極性結晶面が、原子的特定面を含むことにより、前記III族窒化物層の平坦なエピタキシー成長が達成される、項目14に記載の方法。
(項目24)
前記半極性GaN結晶面上に蒸着された前記光電子デバイスは、レーザーダイオード、レーザー放射ダイオード、超放射ダイオード、半導体増幅器、フォトニック結晶レーザー、VCSELレーザー、太陽電池、または光検出器を含む、項目14に記載の方法。
(項目25)
前記光電子デバイスは、前記半極性結晶面上に成長されたレーザーダイオードであり、該レーザーダイオードは、より高いゲインのために、該レーザーダイオードのc投影方向に配向された導波管を含む、項目14に記載の方法。
(項目26)
前記半極性結晶面上に成長された前記III族窒化物層の臨界厚さを増大させるために、該半極性結晶面を選択することをさらに含む、項目14に記載の方法。
(項目27)
前記半極性結晶面および前記蒸着する状態は、前記III族窒化物層のうちの1つ以上が0.75nm以下の表面ラフネスを有するようなものである、項目14に記載の方法。
(Al,Ga,In)N光電子デバイスは、極性{0001}、非極性{11−20}および{10−10}、並びに半極性{10−1−1}、{11−22}および{20−21}のGaN結晶面上に成長される。
に難しい格子整合されたAlInGaNクラッド層を使用する。
GaN、アルミニウムおよびインジウムを取り込むその3元および4元化合物(AlGaN、InGaN、AlInGaN)が、本明細書に使用される場合、共通に用語(Al,Ga,In)N、III族窒化物、III族窒化物のグループ、窒化物、Al(1−x−y)InyGaxN(ここで、0<x<1、0<y<1)、またはAlInGaNを使用することを言う。これらの用語のすべては、単一種(Al、Ga、およびIn)のそれぞれの窒化物も、このIII族の金属種の2元、3元および4元組成も含むように等価的かつ広く構成されることが意図されている。従って、これらの用語は、化合物AlN、GaN、およびInNも、この命名法に含まれる種のように、3元化合物AlGaN、GaInN、およびAlInN、並びに4元族化合物AlGaInNも含む。(Ga,Al,In)構成種のうちの2つ以上が存在する場合に、(組成に存在する(Ga,Al,In)構成種の各々の相対的モル比の表示に対して)化学量論比も「非化学量論」比も含む可能な組成のすべては、本発明の広い範囲内に使用されることが可能である。従って、GaN材料への主要な参照において、本明細書の後の本発明の議論は、さまざまな他の(Al,Ga,In)N材料種の形成に適用可能であることが認識される。さらに、本発明の範囲内の(Ga,Al,In)N材料は、微粒のドーパントおよび/または他の不純物または包括的な材料をさらに含み得る。ホウ素(B)も含まれ得る。
基底(0001)面上の事前に存在するスレッディング転移(TD)のすべりによるヘテロ界面における応力解放のミスフィット転移(MD)の形成の可能性のために、半極性GaN結晶面上のLD構造の設計は、特有である[19]。このようなTDすべりのための駆動力は、基底面上の分解せん断応力に起因し、その大きさは、基底(0001)面から離れる半極性面の傾斜角の増加につれて減少する[20]。それ故、(c面に対して)80度と90度との間の傾斜角を有する半極性面上の歪(Al,Ga,In)N層のヘテロエピタキシー成長は、基底面上の分解せん断応力の急減な減少と、エピタキシー層の臨界厚さの同時の増加につながるはずである。
を用いて計算される。
図2は、デバイスを製造する方法を例示する。方法は、以下のステップを含み得る。
(形態品質および構造品質)
LD構造の形態的品質および構造的品質は、別個の(30−31)GaN基板上で同じ成長状態を反復することによって特徴付けられた。別個のMOCVD成長の間の不一致は、光ルミネセンス測定を介して最小限度まで示された。
電気測定およびルミネセンス測定のすべては、コーティングされていないミラーファセットを有するデバイスについてなされた。
バリエーションは、さまざまな可能なエピタキシー成長技術、レーザーデバイス構造、異なるドライエッチング技術を含み、誘導結合プラズマ(ICP)、反応イオンエッチング(RIE)、集光イオンビーム(FIB)、CMP、化学的補助イオンビームエッチング(CAIBE)、劈開によるファセットミラーの形成、レーザー切断によるファセットミラーの形成、導波管構造のバリエーション、2種類のエッチング技術または異なる角度によって作られたファセット(超放射ダイオード(SLD))、および同じ/2種類の誘電体を用いてコーディングされたファセットミラー等を含む。
・ミスカットは、{30−31}、{30−3−1}、{40−41}および{40−4−1}面等を含むが、それらに限定しない。他のミラー指数を有する数多くの半極性面が可能である。(30−31)、(30−3−1)、(40−41)、および(40−4−1)は、例として列挙されることに過ぎない。原子的特定面を用いて、平坦なエピタキシー成長が可能である。
現存の(Al,Ga,In)Nレーザーは、一般的に極性{0001}面、非極性{10−10}および{11−20}面、または半極性{11−22}および{20−21}面上に成長される。極性面および非極性面上に成長されたレーザーは、デバイス性能を劣化させる量子井戸内の分極関連電場という欠点を有する。非極性{10−10}デバイスおよび{11−20}デバイスには、分極関連効果がないが、{10−10}における高インジウム濃度の組込み、および{11−20}デバイスの高品質結晶成長が難しいことが知られている。
以下の参考文献は、参照することによって、本明細書に組み込まれる。
(結論)
ここで、本発明の好ましい実施形態の説明を結論付ける。本発明の1つ以上の実施形態の上述の説明は、例示および説明の目的のために提示されている。本発明を包括的または開示される正確な形態に制限することを意図するものではない。多くの修正例および変形例が、上述の教示に照らして可能である。本発明の範囲は、本発明を実施するための形態によってではなく、本明細書に添付の請求項によって制限されることが意図される。
Claims (17)
- 光電子デバイスであって、前記光電子デバイスは、
半極性結晶面上にエピタキシー成長された1つ以上の半極性のIII族窒化物層を含み、前記半極性結晶面は、GaN基板の表面を含み、前記GaN基板の表面は、前記GaN基板のm面から前記GaN基板のc方向にx度で配向され、−15<x<−1、1<x<15であり、前記半極性結晶面は、c面から80度の傾斜角または前記c面に対して80度と90度との間の傾斜角を有し、
前記III族窒化物層は、
インジウム組成を有するInGaN層を含む1つ以上のn型(Al,In,Ga)N層と、
1つ以上のp型(Al,In,Ga)N層と、
前記1つ以上のn型(Al,In,Ga)N層と前記1つ以上のp型(Al,In,Ga)N層との間の1つ以上のInGaN量子井戸層を含むInGaN活性層と
を含み、
前記InGaN層は、GaNの{11−22}結晶面上に堆積された同一のインジウム組成を有するInGaN層に対して臨界厚さ以上の厚さを有する、光電子デバイス。 - 前記半極性結晶面は、{30−31}面、{30−3−1}面、{40−41}面、または{40−4−1}面である、請求項1に記載の光電子デバイス。
- 前記半極性結晶面は、前記GaN基板の上表面である、請求項1に記載の光電子デバイス。
- 前記光電子デバイスは、レーザーダイオードであり、前記レーザーダイオードは、少なくとも4.9%の前記レーザーダイオードのためのモーダル閉じ込めを提供する前記InGaN層を含む導波管を含み、前記レーザーダイオードは、少なくとも444.7nmの波長においてレージングピークを有する、請求項1に記載の光電子デバイス。
- 前記1つ以上のInGaN量子井戸層の1つ以上の量子井戸は、少なくとも16%のインジウム組成と、4nmより大きい厚さとを有する、請求項1に記載の光電子デバイス。
- 前記InGaN層は、少なくとも7%のインジウム組成を含む、請求項1に記載の光電子デバイス。
- 前記光電子デバイスは、GaN基板のミスカットまたは微斜面の表面上に成長され、前記ミスカットまたは微斜面の表面は、前記半極性結晶面を含み、
前記1つ以上のInGaN量子井戸層は、少なくとも477nmの波長においてピーク光放射またはピーク光吸収を有している、請求項1に記載の光電子デバイス。 - 前記光電子デバイスは、レーザーダイオードであり、
前記1つ以上のn型(Al,In,Ga)N層は、前記半極性結晶面の上または上方のn型GaN層を含み、
前記InGaN層は、前記n型GaN層の上または上方のn型InGaN導波管層を含み、前記n型InGaN導波管層は、少なくとも50nmの厚さと、7%以上のインジウム組成とを有し、
前記InGaN活性層は、前記n型InGaN導波管層の上または上方にあり、前記InGaN活性層は、少なくとも7%のインジウム組成と、4nmより大きい厚さとを有する1つ以上のInGaN量子井戸層を含み、
前記1つ以上のp型(Al,In,Ga)N層は、前記InGaN活性層の上または上方のp型InGaN導波管層と、前記p型InGaN導波管層の上または上方のp型GaN層とを含み、前記p型InGaN導波管層は、少なくとも50nmの厚さと、7%以上のインジウム組成とを有し、
前記III族窒化物層は、前記半極性結晶面の半極性配向を有する、請求項1に記載の光電子デバイス。 - 前記半極性結晶面は、ミラー指数結晶面を含み、前記ミラー指数結晶面は、少なくとも2つの非ゼロのh、i、またはkミラー指数と、1つの非ゼロのlミラー指数とを有し、これにより、前記III族窒化物層の平坦なエピタキシー成長が達成される、請求項1に記載の光電子デバイス。
- 前記半極性結晶面上に成長された前記光電子デバイスは、レーザーダイオード、発光ダイオード、超放射ダイオード、半導体増幅器、フォトニック結晶レーザー、VCSELレーザー、太陽電池、または光検出器を含む、請求項1に記載の光電子デバイス。
- 前記光電子デバイスは、前記半極性結晶面上に成長されたレーザーダイオードであり、前記レーザーダイオードは、より高いゲインのために、前記レーザーダイオードのc投影方向に配向された導波管を含む、請求項1に記載の光電子デバイス。
- 前記光電子デバイスは、12.2kA/cm2以下の閾値電流密度を有するレーザーダイオードであり、前記レーザーダイオードは、x線逆格子空間マッピングのQx軸上に垂直に並ぶ前記III族窒化物層の各々に対するBraggピークによって測定されるコヒーレント的に歪んだ構造を含む、請求項1に記載の光電子デバイス。
- 光電子デバイスを製造する方法であって、前記方法は、
半極性結晶面上に1つ以上の半極性のIII族窒化物層をエピタキシーに堆積することを含み、前記半極性結晶面は、GaN基板のm面から前記GaN基板のc方向にx度で配向された表面を含み、−15<x<−1、1<x<15であり、前記半極性結晶面は、c面から80度の傾斜角または前記c面に対して80度と90度との間の傾斜角を有し、
前記III族窒化物層は、
インジウム組成を有するInGaN層を含む1つ以上のn型(Al,In,Ga)N層と、
1つ以上のp型(Al,In,Ga)N層と、
前記1つ以上のn型(Al,In,Ga)N層と前記1つ以上のp型(Al,In,Ga)N層との間の1つ以上のInGaN量子井戸層を含むInGaN活性層と
を含み、
前記InGaN層は、GaNの{11−22}結晶面上に堆積された同一のインジウム組成を有するInGaN層に対して臨界厚さ以上の厚さを有する、方法。 - 前記半極性結晶面は、{30−31}面、{30−3−1}面、{40−41}面、または{40−4−1}面である、請求項13に記載の方法。
- 前記半極性結晶面は、窒化ガリウム(GaN)基板の上表面である、請求項13に記載の方法。
- 前記光電子デバイスは、レーザーダイオードであり、前記レーザーダイオードは、少なくとも4.9%の前記レーザーダイオードのためのモーダル閉じ込めを提供する前記InGaN層を含む導波管を含み、前記レーザーダイオードは、少なくとも444.7nmの波長においてレージングピークを有する、請求項13に記載の方法。
- 前記1つ以上のInGaN量子井戸層の1つ以上の量子井戸は、少なくとも16%のインジウム組成と、4nmより大きい厚さとを有する、請求項13に記載の方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US31063810P | 2010-03-04 | 2010-03-04 | |
US61/310,638 | 2010-03-04 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016074168A Division JP2016129266A (ja) | 2010-03-04 | 2016-04-01 | C方向において+/−15度より少ないミスカットを有するm面基板上の半極性iii族窒化物光電子デバイス |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017216484A JP2017216484A (ja) | 2017-12-07 |
JP6804413B2 true JP6804413B2 (ja) | 2020-12-23 |
Family
ID=44531316
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012556269A Active JP5972798B2 (ja) | 2010-03-04 | 2011-03-04 | C方向において+/−15度より少ないミスカットを有するm面基板上の半極性iii族窒化物光電子デバイス |
JP2016074168A Withdrawn JP2016129266A (ja) | 2010-03-04 | 2016-04-01 | C方向において+/−15度より少ないミスカットを有するm面基板上の半極性iii族窒化物光電子デバイス |
JP2017177712A Active JP6804413B2 (ja) | 2010-03-04 | 2017-09-15 | C方向において+/−15度より少ないミスカットを有するm面基板上の半極性iii族窒化物光電子デバイス |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012556269A Active JP5972798B2 (ja) | 2010-03-04 | 2011-03-04 | C方向において+/−15度より少ないミスカットを有するm面基板上の半極性iii族窒化物光電子デバイス |
JP2016074168A Withdrawn JP2016129266A (ja) | 2010-03-04 | 2016-04-01 | C方向において+/−15度より少ないミスカットを有するm面基板上の半極性iii族窒化物光電子デバイス |
Country Status (7)
Country | Link |
---|---|
US (3) | US9077151B2 (ja) |
EP (1) | EP2543119B1 (ja) |
JP (3) | JP5972798B2 (ja) |
KR (1) | KR101854419B1 (ja) |
CN (2) | CN102782966B (ja) |
TW (1) | TWI560963B (ja) |
WO (1) | WO2011109754A1 (ja) |
Families Citing this family (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9077151B2 (en) | 2007-02-12 | 2015-07-07 | The Regents Of The University Of California | Semi-polar III-nitride optoelectronic devices on M-plane substrates with miscuts less than +/-15 degrees in the C-direction |
US8847249B2 (en) | 2008-06-16 | 2014-09-30 | Soraa, Inc. | Solid-state optical device having enhanced indium content in active regions |
US8767787B1 (en) | 2008-07-14 | 2014-07-01 | Soraa Laser Diode, Inc. | Integrated laser diodes with quality facets on GaN substrates |
US8805134B1 (en) | 2012-02-17 | 2014-08-12 | Soraa Laser Diode, Inc. | Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices |
US8143148B1 (en) | 2008-07-14 | 2012-03-27 | Soraa, Inc. | Self-aligned multi-dielectric-layer lift off process for laser diode stripes |
US8124996B2 (en) | 2008-08-04 | 2012-02-28 | Soraa, Inc. | White light devices using non-polar or semipolar gallium containing materials and phosphors |
US8284810B1 (en) | 2008-08-04 | 2012-10-09 | Soraa, Inc. | Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods |
US8247886B1 (en) | 2009-03-09 | 2012-08-21 | Soraa, Inc. | Polarization direction of optical devices using selected spatial configurations |
US8422525B1 (en) | 2009-03-28 | 2013-04-16 | Soraa, Inc. | Optical device structure using miscut GaN substrates for laser applications |
US8837545B2 (en) | 2009-04-13 | 2014-09-16 | Soraa Laser Diode, Inc. | Optical device structure using GaN substrates and growth structures for laser applications |
WO2010120819A1 (en) | 2009-04-13 | 2010-10-21 | Kaai, Inc. | Optical device structure using gan substrates for laser applications |
US8634442B1 (en) | 2009-04-13 | 2014-01-21 | Soraa Laser Diode, Inc. | Optical device structure using GaN substrates for laser applications |
US8791499B1 (en) | 2009-05-27 | 2014-07-29 | Soraa, Inc. | GaN containing optical devices and method with ESD stability |
US10108079B2 (en) | 2009-05-29 | 2018-10-23 | Soraa Laser Diode, Inc. | Laser light source for a vehicle |
US9250044B1 (en) | 2009-05-29 | 2016-02-02 | Soraa Laser Diode, Inc. | Gallium and nitrogen containing laser diode dazzling devices and methods of use |
US9800017B1 (en) | 2009-05-29 | 2017-10-24 | Soraa Laser Diode, Inc. | Laser device and method for a vehicle |
US8509275B1 (en) | 2009-05-29 | 2013-08-13 | Soraa, Inc. | Gallium nitride based laser dazzling device and method |
US9829780B2 (en) | 2009-05-29 | 2017-11-28 | Soraa Laser Diode, Inc. | Laser light source for a vehicle |
US8247887B1 (en) | 2009-05-29 | 2012-08-21 | Soraa, Inc. | Method and surface morphology of non-polar gallium nitride containing substrates |
US8427590B2 (en) | 2009-05-29 | 2013-04-23 | Soraa, Inc. | Laser based display method and system |
US7933303B2 (en) * | 2009-06-17 | 2011-04-26 | Sumitomo Electric Industries, Ltd. | Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device |
JP5206699B2 (ja) | 2010-01-18 | 2013-06-12 | 住友電気工業株式会社 | Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法 |
JP5234022B2 (ja) * | 2009-07-15 | 2013-07-10 | 住友電気工業株式会社 | 窒化物系半導体発光素子 |
US9000466B1 (en) | 2010-08-23 | 2015-04-07 | Soraa, Inc. | Methods and devices for light extraction from a group III-nitride volumetric LED using surface and sidewall roughening |
US8750342B1 (en) | 2011-09-09 | 2014-06-10 | Soraa Laser Diode, Inc. | Laser diodes with scribe structures |
US8355418B2 (en) | 2009-09-17 | 2013-01-15 | Soraa, Inc. | Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates |
US9583678B2 (en) | 2009-09-18 | 2017-02-28 | Soraa, Inc. | High-performance LED fabrication |
US8933644B2 (en) | 2009-09-18 | 2015-01-13 | Soraa, Inc. | LED lamps with improved quality of light |
US9293644B2 (en) | 2009-09-18 | 2016-03-22 | Soraa, Inc. | Power light emitting diode and method with uniform current density operation |
US10147850B1 (en) | 2010-02-03 | 2018-12-04 | Soraa, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US8905588B2 (en) | 2010-02-03 | 2014-12-09 | Sorra, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US9927611B2 (en) | 2010-03-29 | 2018-03-27 | Soraa Laser Diode, Inc. | Wearable laser based display method and system |
US8451876B1 (en) | 2010-05-17 | 2013-05-28 | Soraa, Inc. | Method and system for providing bidirectional light sources with broad spectrum |
US8189639B2 (en) * | 2010-05-28 | 2012-05-29 | Corning Incorporated | GaN-based laser diodes with misfit dislocations displaced from the active region |
US9450143B2 (en) | 2010-06-18 | 2016-09-20 | Soraa, Inc. | Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices |
US8816319B1 (en) | 2010-11-05 | 2014-08-26 | Soraa Laser Diode, Inc. | Method of strain engineering and related optical device using a gallium and nitrogen containing active region |
US9048170B2 (en) | 2010-11-09 | 2015-06-02 | Soraa Laser Diode, Inc. | Method of fabricating optical devices using laser treatment |
US9595813B2 (en) | 2011-01-24 | 2017-03-14 | Soraa Laser Diode, Inc. | Laser package having multiple emitters configured on a substrate member |
US8786053B2 (en) | 2011-01-24 | 2014-07-22 | Soraa, Inc. | Gallium-nitride-on-handle substrate materials and devices and method of manufacture |
US9318875B1 (en) | 2011-01-24 | 2016-04-19 | Soraa Laser Diode, Inc. | Color converting element for laser diode |
US9025635B2 (en) | 2011-01-24 | 2015-05-05 | Soraa Laser Diode, Inc. | Laser package having multiple emitters configured on a support member |
US9093820B1 (en) | 2011-01-25 | 2015-07-28 | Soraa Laser Diode, Inc. | Method and structure for laser devices using optical blocking regions |
US9236530B2 (en) * | 2011-04-01 | 2016-01-12 | Soraa, Inc. | Miscut bulk substrates |
US9287684B2 (en) | 2011-04-04 | 2016-03-15 | Soraa Laser Diode, Inc. | Laser package having multiple emitters with color wheel |
US8686431B2 (en) | 2011-08-22 | 2014-04-01 | Soraa, Inc. | Gallium and nitrogen containing trilateral configuration for optical devices |
US9646827B1 (en) | 2011-08-23 | 2017-05-09 | Soraa, Inc. | Method for smoothing surface of a substrate containing gallium and nitrogen |
US8971370B1 (en) * | 2011-10-13 | 2015-03-03 | Soraa Laser Diode, Inc. | Laser devices using a semipolar plane |
US8912025B2 (en) | 2011-11-23 | 2014-12-16 | Soraa, Inc. | Method for manufacture of bright GaN LEDs using a selective removal process |
EP2823515A4 (en) | 2012-03-06 | 2015-08-19 | Soraa Inc | LIGHT-EMITTING DIODES WITH MATERIAL LAYERS WITH LOW BREAKING INDEX TO REDUCE LIGHT PIPE EFFECTS |
US9020003B1 (en) | 2012-03-14 | 2015-04-28 | Soraa Laser Diode, Inc. | Group III-nitride laser diode grown on a semi-polar orientation of gallium and nitrogen containing substrates |
EP2832901A4 (en) | 2012-03-30 | 2015-07-08 | Mitsubishi Chem Corp | GROUP 13 METAL NITRIDE CRYSTALS OF THE PERIODIC TABLE OF ELEMENTS AND PROCESS FOR THE MANUFACTURE OF GROUP 13 METAL NITRIDE CRYSTALS OF THE PERIODIC TABLE OF ELEMENTS |
US9343871B1 (en) | 2012-04-05 | 2016-05-17 | Soraa Laser Diode, Inc. | Facet on a gallium and nitrogen containing laser diode |
US20130322481A1 (en) * | 2012-05-31 | 2013-12-05 | Rajaram Bhat | Laser diodes including substrates having semipolar surface plane orientations and nonpolar cleaved facets |
US9099843B1 (en) | 2012-07-19 | 2015-08-04 | Soraa Laser Diode, Inc. | High operating temperature laser diodes |
US8971368B1 (en) | 2012-08-16 | 2015-03-03 | Soraa Laser Diode, Inc. | Laser devices having a gallium and nitrogen containing semipolar surface orientation |
US9978904B2 (en) | 2012-10-16 | 2018-05-22 | Soraa, Inc. | Indium gallium nitride light emitting devices |
WO2014078070A1 (en) * | 2012-11-06 | 2014-05-22 | The Regents Of The University Of California | (ai, in, b, ga) n based laser diodes with polished facets |
US8802471B1 (en) | 2012-12-21 | 2014-08-12 | Soraa, Inc. | Contacts for an n-type gallium and nitrogen substrate for optical devices |
US9166372B1 (en) | 2013-06-28 | 2015-10-20 | Soraa Laser Diode, Inc. | Gallium nitride containing laser device configured on a patterned substrate |
US8994033B2 (en) | 2013-07-09 | 2015-03-31 | Soraa, Inc. | Contacts for an n-type gallium and nitrogen substrate for optical devices |
WO2015057771A1 (en) * | 2013-10-15 | 2015-04-23 | The Penn State Research Foundation | Light emitting diodes and photodetectors |
US9379525B2 (en) | 2014-02-10 | 2016-06-28 | Soraa Laser Diode, Inc. | Manufacturable laser diode |
US9368939B2 (en) | 2013-10-18 | 2016-06-14 | Soraa Laser Diode, Inc. | Manufacturable laser diode formed on C-plane gallium and nitrogen material |
US9520695B2 (en) | 2013-10-18 | 2016-12-13 | Soraa Laser Diode, Inc. | Gallium and nitrogen containing laser device having confinement region |
US9362715B2 (en) | 2014-02-10 | 2016-06-07 | Soraa Laser Diode, Inc | Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material |
US9419189B1 (en) | 2013-11-04 | 2016-08-16 | Soraa, Inc. | Small LED source with high brightness and high efficiency |
US9368582B2 (en) * | 2013-11-04 | 2016-06-14 | Avogy, Inc. | High power gallium nitride electronics using miscut substrates |
WO2015089379A1 (en) * | 2013-12-13 | 2015-06-18 | The Regents Of The University Of California | High power semipolar {30-3-1} light-emitting diodes with low current droop and low thermal droop |
US9209596B1 (en) | 2014-02-07 | 2015-12-08 | Soraa Laser Diode, Inc. | Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates |
US9871350B2 (en) | 2014-02-10 | 2018-01-16 | Soraa Laser Diode, Inc. | Manufacturable RGB laser diode source |
US9520697B2 (en) | 2014-02-10 | 2016-12-13 | Soraa Laser Diode, Inc. | Manufacturable multi-emitter laser diode |
US9564736B1 (en) | 2014-06-26 | 2017-02-07 | Soraa Laser Diode, Inc. | Epitaxial growth of p-type cladding regions using nitrogen gas for a gallium and nitrogen containing laser diode |
US9246311B1 (en) | 2014-11-06 | 2016-01-26 | Soraa Laser Diode, Inc. | Method of manufacture for an ultraviolet laser diode |
US12126143B2 (en) | 2014-11-06 | 2024-10-22 | Kyocera Sld Laser, Inc. | Method of manufacture for an ultraviolet emitting optoelectronic device |
US9653642B1 (en) | 2014-12-23 | 2017-05-16 | Soraa Laser Diode, Inc. | Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes |
US9666677B1 (en) | 2014-12-23 | 2017-05-30 | Soraa Laser Diode, Inc. | Manufacturable thin film gallium and nitrogen containing devices |
US11437774B2 (en) | 2015-08-19 | 2022-09-06 | Kyocera Sld Laser, Inc. | High-luminous flux laser-based white light source |
US10879673B2 (en) | 2015-08-19 | 2020-12-29 | Soraa Laser Diode, Inc. | Integrated white light source using a laser diode and a phosphor in a surface mount device package |
US11437775B2 (en) | 2015-08-19 | 2022-09-06 | Kyocera Sld Laser, Inc. | Integrated light source using a laser diode |
US10938182B2 (en) | 2015-08-19 | 2021-03-02 | Soraa Laser Diode, Inc. | Specialized integrated light source using a laser diode |
US9787963B2 (en) | 2015-10-08 | 2017-10-10 | Soraa Laser Diode, Inc. | Laser lighting having selective resolution |
WO2017159311A1 (ja) * | 2016-03-15 | 2017-09-21 | 三菱ケミカル株式会社 | GaN結晶の製造方法 |
CN109476501B (zh) | 2016-06-29 | 2021-11-09 | 住友大阪水泥股份有限公司 | 氧化钛粒子、以及使用其的氧化钛粒子分散液及化妆料 |
US10771155B2 (en) | 2017-09-28 | 2020-09-08 | Soraa Laser Diode, Inc. | Intelligent visible light with a gallium and nitrogen containing laser source |
US10222474B1 (en) | 2017-12-13 | 2019-03-05 | Soraa Laser Diode, Inc. | Lidar systems including a gallium and nitrogen containing laser light source |
CN108389942A (zh) * | 2018-02-07 | 2018-08-10 | 赛富乐斯股份有限公司 | 发光装置及其制造方法 |
US10551728B1 (en) | 2018-04-10 | 2020-02-04 | Soraa Laser Diode, Inc. | Structured phosphors for dynamic lighting |
US11402672B2 (en) * | 2018-05-03 | 2022-08-02 | X Development Llc | Quantum confined nanostructures with improved homogeneity and methods for making the same |
US11421843B2 (en) | 2018-12-21 | 2022-08-23 | Kyocera Sld Laser, Inc. | Fiber-delivered laser-induced dynamic light system |
US11239637B2 (en) | 2018-12-21 | 2022-02-01 | Kyocera Sld Laser, Inc. | Fiber delivered laser induced white light system |
US12000552B2 (en) | 2019-01-18 | 2024-06-04 | Kyocera Sld Laser, Inc. | Laser-based fiber-coupled white light system for a vehicle |
US11884202B2 (en) | 2019-01-18 | 2024-01-30 | Kyocera Sld Laser, Inc. | Laser-based fiber-coupled white light system |
GB2580956B (en) * | 2019-01-31 | 2023-01-25 | Exalos Ag | Amplified Spontaneous Emission Semiconductor Source |
US10903623B2 (en) | 2019-05-14 | 2021-01-26 | Soraa Laser Diode, Inc. | Method and structure for manufacturable large area gallium and nitrogen containing substrate |
US11228158B2 (en) | 2019-05-14 | 2022-01-18 | Kyocera Sld Laser, Inc. | Manufacturable laser diodes on a large area gallium and nitrogen containing substrate |
US11195973B1 (en) * | 2019-05-17 | 2021-12-07 | Facebook Technologies, Llc | III-nitride micro-LEDs on semi-polar oriented GaN |
US11175447B1 (en) | 2019-08-13 | 2021-11-16 | Facebook Technologies, Llc | Waveguide in-coupling using polarized light emitting diodes |
EP4083670A1 (en) | 2021-04-30 | 2022-11-02 | Nokia Solutions and Networks Oy | Optical waveguide circuits having laterally tilted waveguide cores |
Family Cites Families (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3011708A (en) | 1956-10-19 | 1961-12-05 | Howard A Reed | Reset unit for voting machines |
US6849472B2 (en) | 1997-09-30 | 2005-02-01 | Lumileds Lighting U.S., Llc | Nitride semiconductor device with reduced polarization fields |
US6163557A (en) * | 1998-05-21 | 2000-12-19 | Xerox Corporation | Fabrication of group III-V nitrides on mesas |
TW480751B (en) * | 2001-04-09 | 2002-03-21 | Uni Light Technology Inc | Semiconductor light emitting diode based on off-cut substrate |
US6833564B2 (en) | 2001-11-02 | 2004-12-21 | Lumileds Lighting U.S., Llc | Indium gallium nitride separate confinement heterostructure light emitting devices |
US6683327B2 (en) | 2001-11-13 | 2004-01-27 | Lumileds Lighting U.S., Llc | Nucleation layer for improved light extraction from light emitting devices |
JP3951013B2 (ja) * | 2002-05-07 | 2007-08-01 | 独立行政法人産業技術総合研究所 | 固体ターゲットパルスレーザ蒸着法によるGaN結晶性薄膜の作製方法及び同法で作製した薄膜 |
US7122734B2 (en) | 2002-10-23 | 2006-10-17 | The Boeing Company | Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers |
US7118813B2 (en) | 2003-11-14 | 2006-10-10 | Cree, Inc. | Vicinal gallium nitride substrate for high quality homoepitaxy |
JP3816942B2 (ja) | 2004-10-27 | 2006-08-30 | 三菱電機株式会社 | 半導体素子の製造方法 |
JP2006332370A (ja) | 2005-05-26 | 2006-12-07 | Sumitomo Electric Ind Ltd | 窒化物半導体発光素子 |
US8148713B2 (en) | 2008-04-04 | 2012-04-03 | The Regents Of The University Of California | Method for fabrication of semipolar (Al, In, Ga, B)N based light emitting diodes |
US8044417B2 (en) | 2008-02-01 | 2011-10-25 | The Regents Of The University Of California | Enhancement of optical polarization of nitride light-emitting diodes by increased indium incorporation |
JP5048236B2 (ja) * | 2005-11-10 | 2012-10-17 | 住友電気工業株式会社 | 半導体発光素子、および半導体発光素子を作製する方法 |
US7691658B2 (en) * | 2006-01-20 | 2010-04-06 | The Regents Of The University Of California | Method for improved growth of semipolar (Al,In,Ga,B)N |
CN101009346A (zh) * | 2006-01-27 | 2007-08-01 | 中国科学院物理研究所 | 硅衬底上生长的非极性a面氮化物薄膜及其制法和用途 |
KR100837404B1 (ko) | 2006-10-18 | 2008-06-12 | 삼성전자주식회사 | 반도체 광전 소자 |
JP5332168B2 (ja) | 2006-11-17 | 2013-11-06 | 住友電気工業株式会社 | Iii族窒化物結晶の製造方法 |
TWI492411B (zh) * | 2006-12-11 | 2015-07-11 | Univ California | 非極性與半極性發光裝置 |
CN101652832B (zh) * | 2007-01-26 | 2011-06-22 | 晶体公司 | 厚的赝晶氮化物外延层 |
US9077151B2 (en) | 2007-02-12 | 2015-07-07 | The Regents Of The University Of California | Semi-polar III-nitride optoelectronic devices on M-plane substrates with miscuts less than +/-15 degrees in the C-direction |
JP2008285364A (ja) | 2007-05-17 | 2008-11-27 | Sumitomo Electric Ind Ltd | GaN基板、それを用いたエピタキシャル基板及び半導体発光素子 |
TWI604512B (zh) | 2007-06-15 | 2017-11-01 | 美國加利福尼亞大學董事會 | 非極性三族氮化物膜、使用其製造之裝置及生長其之方法 |
US20090039356A1 (en) | 2007-08-08 | 2009-02-12 | The Regents Of The University Of California | Planar nonpolar m-plane group iii-nitride films grown on miscut substrates |
WO2009039408A1 (en) * | 2007-09-19 | 2009-03-26 | The Regents Of The University Of California | Method for increasing the area of non-polar and semi-polar nitride substrates |
JP2011505700A (ja) * | 2007-11-30 | 2011-02-24 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 表面ラフニングによる高い光抽出効率の窒化物ベースの発光ダイオード |
JP2009152276A (ja) | 2007-12-19 | 2009-07-09 | Mitsubishi Electric Corp | 窒化物半導体レーザの製造方法 |
KR20100107054A (ko) * | 2008-02-01 | 2010-10-04 | 더 리전츠 오브 더 유니버시티 오브 캘리포니아 | 웨이퍼 비축 절단에 의한 질화물 발광 다이오드들의 광학 편광의 강화 |
JP2009252861A (ja) * | 2008-04-03 | 2009-10-29 | Rohm Co Ltd | 半導体レーザ素子 |
TW200950162A (en) * | 2008-04-04 | 2009-12-01 | Univ California | Method for fabrication of semipolar (Al, In, Ga, B)N based light emitting diodes |
EP2281076A1 (en) * | 2008-06-04 | 2011-02-09 | Sixpoint Materials, Inc. | Methods for producing improved crystallinty group iii-nitride crystals from initial group iii-nitride seed by ammonothermal growth |
JP5295871B2 (ja) * | 2008-07-03 | 2013-09-18 | 古河機械金属株式会社 | Iii族窒化物半導体基板の製造方法 |
JP4572963B2 (ja) | 2008-07-09 | 2010-11-04 | 住友電気工業株式会社 | Iii族窒化物系半導体発光素子、及びエピタキシャルウエハ |
US8284810B1 (en) * | 2008-08-04 | 2012-10-09 | Soraa, Inc. | Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods |
JP4475358B1 (ja) | 2008-08-04 | 2010-06-09 | 住友電気工業株式会社 | GaN系半導体光素子、GaN系半導体光素子を作製する方法、及びエピタキシャルウエハ |
JP5077303B2 (ja) * | 2008-10-07 | 2012-11-21 | 住友電気工業株式会社 | 窒化ガリウム系半導体発光素子、窒化ガリウム系半導体発光素子を作製する方法、窒化ガリウム系発光ダイオード、エピタキシャルウエハ、及び窒化ガリウム系発光ダイオードを作製する方法 |
JP2010123920A (ja) * | 2008-10-20 | 2010-06-03 | Sumitomo Electric Ind Ltd | 窒化物系半導体発光素子を作製する方法、及びエピタキシャルウエハを作製する方法 |
JP4775455B2 (ja) * | 2009-02-17 | 2011-09-21 | 住友電気工業株式会社 | Iii族窒化物半導体レーザ、及びiii族窒化物半導体レーザを作製する方法 |
CN102449737A (zh) * | 2009-03-02 | 2012-05-09 | 加利福尼亚大学董事会 | 生长于非极性或半极性(Ga,Al,In,B)N衬底上的装置 |
WO2010120819A1 (en) * | 2009-04-13 | 2010-10-21 | Kaai, Inc. | Optical device structure using gan substrates for laser applications |
JP5195613B2 (ja) * | 2009-04-23 | 2013-05-08 | 日立電線株式会社 | 窒化物半導体自立基板の製造方法 |
US8749030B2 (en) * | 2009-05-29 | 2014-06-10 | Soraa, Inc. | Surface morphology of non-polar gallium nitride containing substrates |
US8247887B1 (en) * | 2009-05-29 | 2012-08-21 | Soraa, Inc. | Method and surface morphology of non-polar gallium nitride containing substrates |
WO2010141943A1 (en) * | 2009-06-05 | 2010-12-09 | The Regents Of The University Of California | LONG WAVELENGTH NONPOLAR AND SEMIPOLAR (Al,Ga,In)N BASED LASER DIODES |
US8355418B2 (en) * | 2009-09-17 | 2013-01-15 | Soraa, Inc. | Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates |
JP5515575B2 (ja) * | 2009-09-30 | 2014-06-11 | 住友電気工業株式会社 | Iii族窒化物半導体光素子、エピタキシャル基板、及びiii族窒化物半導体光素子を作製する方法 |
WO2011070760A1 (ja) | 2009-12-09 | 2011-06-16 | パナソニック株式会社 | 半導体素子の製造方法 |
JP2011187579A (ja) * | 2010-03-05 | 2011-09-22 | Sony Corp | モードロック半導体レーザ素子及びその駆動方法 |
CN101847578B (zh) * | 2010-04-23 | 2011-09-21 | 西安电子科技大学 | 基于m面Al2O3衬底上半极性GaN的生长方法 |
US20120100650A1 (en) * | 2010-10-26 | 2012-04-26 | The Regents Of The University Of California | Vicinal semipolar iii-nitride substrates to compensate tilt of relaxed hetero-epitaxial layers |
EP2633592A1 (en) * | 2010-10-26 | 2013-09-04 | The Regents of the University of California | Limiting strain relaxation in iii-nitride heterostructures by substrate and epitaxial layer patterning |
WO2012058584A1 (en) * | 2010-10-29 | 2012-05-03 | The Regents Of The University Of California | Strain compensated short-period superlattices on semipolar or nonpolar gan for defect reduction and stress engineering |
WO2012149531A2 (en) * | 2011-04-29 | 2012-11-01 | The Regents Of The University Of California | High indium uptake and high polarization ratio for group-iii nitride optoelectronic devices fabricated on a semipolar (20-2-1) plane of a gallium nitride substrate |
JP2014520388A (ja) * | 2011-05-13 | 2014-08-21 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 非c−平面(Al,Ga,In)に対するシリコン(Si)ドーピングによる、傾斜欠陥形成の抑制および臨界厚の増加 |
CN102420277B (zh) * | 2011-11-15 | 2013-06-05 | 南京大学 | 一种制备高密度氮化镓量子点有源层结构的方法 |
FR3003397B1 (fr) * | 2013-03-15 | 2016-07-22 | Soitec Silicon On Insulator | Structures semi-conductrices dotées de régions actives comprenant de l'INGAN |
CN106159671B (zh) * | 2015-04-10 | 2018-11-09 | 中国科学院苏州纳米技术与纳米仿生研究所 | Ⅲ族氮化物HEMT与GaN激光器的集成单片及其制作方法 |
CN106711764B (zh) * | 2015-11-16 | 2019-07-05 | 中国科学院苏州纳米技术与纳米仿生研究所 | GaN基激光器和超辐射发光二极管及其制备方法 |
-
2011
- 2011-03-04 US US13/041,120 patent/US9077151B2/en active Active
- 2011-03-04 WO PCT/US2011/027267 patent/WO2011109754A1/en active Application Filing
- 2011-03-04 CN CN201180012048.9A patent/CN102782966B/zh active Active
- 2011-03-04 JP JP2012556269A patent/JP5972798B2/ja active Active
- 2011-03-04 TW TW100107424A patent/TWI560963B/zh active
- 2011-03-04 CN CN201710215977.9A patent/CN106972346B/zh active Active
- 2011-03-04 EP EP11751456.2A patent/EP2543119B1/en active Active
- 2011-03-04 KR KR1020127025915A patent/KR101854419B1/ko active IP Right Grant
-
2015
- 2015-05-26 US US14/721,729 patent/US9917422B2/en active Active
-
2016
- 2016-04-01 JP JP2016074168A patent/JP2016129266A/ja not_active Withdrawn
-
2017
- 2017-09-15 JP JP2017177712A patent/JP6804413B2/ja active Active
-
2018
- 2018-01-26 US US15/880,999 patent/US11552452B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP2543119B1 (en) | 2020-02-12 |
WO2011109754A1 (en) | 2011-09-09 |
JP2013521665A (ja) | 2013-06-10 |
JP5972798B2 (ja) | 2016-08-17 |
US20180152004A1 (en) | 2018-05-31 |
EP2543119A4 (en) | 2015-08-12 |
US9077151B2 (en) | 2015-07-07 |
KR20130005281A (ko) | 2013-01-15 |
US20150255959A1 (en) | 2015-09-10 |
EP2543119A1 (en) | 2013-01-09 |
CN106972346B (zh) | 2019-12-10 |
KR101854419B1 (ko) | 2018-05-03 |
CN106972346A (zh) | 2017-07-21 |
TW201136080A (en) | 2011-10-16 |
JP2017216484A (ja) | 2017-12-07 |
JP2016129266A (ja) | 2016-07-14 |
CN102782966B (zh) | 2017-04-26 |
US11552452B2 (en) | 2023-01-10 |
CN102782966A (zh) | 2012-11-14 |
TWI560963B (en) | 2016-12-01 |
US9917422B2 (en) | 2018-03-13 |
US20110216795A1 (en) | 2011-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6804413B2 (ja) | C方向において+/−15度より少ないミスカットを有するm面基板上の半極性iii族窒化物光電子デバイス | |
KR102085919B1 (ko) | 에칭된 미러들을 구비하는 반극성 {20-21} ⅲ-족 질화물 레이저 다이오드들 | |
US20100309943A1 (en) | LONG WAVELENGTH NONPOLAR AND SEMIPOLAR (Al,Ga,In)N BASED LASER DIODES | |
TW201205863A (en) | Aluminum gallium nitride barriers and separate confinement heterostructure (SCH) layers for semipolar plane III-nitride semiconductor-based light emitting diodes and laser diodes | |
KR20120104985A (ko) | 결정 식각에 의한 초발광 다이오드 | |
WO2018035322A1 (en) | Contact architectures for tunnel junction devices | |
JP2013211587A (ja) | 半極性{11−2n}バルク窒化ガリウム基板上で成長したへき開型ファセットの(Ga,Al,In)N端面放射型レーザダイオード | |
US20120273796A1 (en) | High indium uptake and high polarization ratio for group-iii nitride optoelectronic devices fabricated on a semipolar (20-2-1) plane of a gallium nitride substrate | |
CN107851969B (zh) | 氮化物半导体激光元件 | |
Hsu et al. | InGaN/GaN blue laser diode grown on semipolar (3031) free-standing GaN substrates | |
US20130105762A1 (en) | Nitride semiconductor light emitting device, method of fabricating nitride semiconductor light emitting device | |
US20130322481A1 (en) | Laser diodes including substrates having semipolar surface plane orientations and nonpolar cleaved facets | |
US9356431B2 (en) | High power blue-violet III-nitride semipolar laser diodes | |
Strittmatter et al. | Optically‐pumped lasing of semi‐polar InGaN/GaN (1122) heterostructures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180817 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20181108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190719 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20191017 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200616 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200910 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201202 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6804413 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |