JP6866923B2 - Manufacturing method of polyarylene sulfide resin - Google Patents
Manufacturing method of polyarylene sulfide resin Download PDFInfo
- Publication number
- JP6866923B2 JP6866923B2 JP2019526915A JP2019526915A JP6866923B2 JP 6866923 B2 JP6866923 B2 JP 6866923B2 JP 2019526915 A JP2019526915 A JP 2019526915A JP 2019526915 A JP2019526915 A JP 2019526915A JP 6866923 B2 JP6866923 B2 JP 6866923B2
- Authority
- JP
- Japan
- Prior art keywords
- mol
- dehydration
- polyarylene sulfide
- range
- sulfide resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims description 86
- 229920005989 resin Polymers 0.000 title claims description 81
- 239000011347 resin Substances 0.000 title claims description 81
- 229920000412 polyarylene Polymers 0.000 title claims description 73
- 238000004519 manufacturing process Methods 0.000 title claims description 39
- 238000006297 dehydration reaction Methods 0.000 claims description 119
- 230000018044 dehydration Effects 0.000 claims description 110
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 100
- 238000006243 chemical reaction Methods 0.000 claims description 68
- -1 aliphatic cyclic compound Chemical class 0.000 claims description 46
- 239000007788 liquid Substances 0.000 claims description 41
- 238000006116 polymerization reaction Methods 0.000 claims description 41
- 239000000203 mixture Substances 0.000 claims description 36
- 150000001875 compounds Chemical class 0.000 claims description 34
- 239000003795 chemical substances by application Substances 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 28
- 125000004434 sulfur atom Chemical group 0.000 claims description 23
- 239000002994 raw material Substances 0.000 claims description 20
- 150000001491 aromatic compounds Chemical class 0.000 claims description 19
- 230000007062 hydrolysis Effects 0.000 claims description 17
- 238000006460 hydrolysis reaction Methods 0.000 claims description 17
- 239000011342 resin composition Substances 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 16
- 239000002002 slurry Substances 0.000 claims description 14
- 229920001971 elastomer Polymers 0.000 claims description 12
- 239000000806 elastomer Substances 0.000 claims description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 11
- 125000000524 functional group Chemical group 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 11
- 239000010936 titanium Substances 0.000 claims description 11
- 229910052977 alkali metal sulfide Inorganic materials 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 10
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 9
- 238000000465 moulding Methods 0.000 claims description 8
- 229910052783 alkali metal Inorganic materials 0.000 claims description 7
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 7
- 229920005992 thermoplastic resin Polymers 0.000 claims description 7
- 238000004898 kneading Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 4
- 239000000945 filler Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 2
- 229910001093 Zr alloy Inorganic materials 0.000 claims description 2
- 239000003495 polar organic solvent Substances 0.000 claims description 2
- 208000005156 Dehydration Diseases 0.000 description 100
- 229910052751 metal Inorganic materials 0.000 description 25
- 239000002184 metal Substances 0.000 description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 24
- 238000004821 distillation Methods 0.000 description 22
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 19
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 15
- 239000004734 Polyphenylene sulfide Substances 0.000 description 15
- 229920000069 polyphenylene sulfide Polymers 0.000 description 15
- 238000003756 stirring Methods 0.000 description 14
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 13
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 12
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 12
- 229910052804 chromium Inorganic materials 0.000 description 12
- 239000011651 chromium Substances 0.000 description 12
- 230000006837 decompression Effects 0.000 description 12
- 238000001514 detection method Methods 0.000 description 12
- 229910052750 molybdenum Inorganic materials 0.000 description 12
- 239000011733 molybdenum Substances 0.000 description 12
- 229910052759 nickel Inorganic materials 0.000 description 12
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 12
- 239000000047 product Substances 0.000 description 11
- 239000000155 melt Substances 0.000 description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000010419 fine particle Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229910001182 Mo alloy Inorganic materials 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229920002725 thermoplastic elastomer Polymers 0.000 description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 125000001309 chloro group Chemical group Cl* 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 125000003700 epoxy group Chemical group 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 description 3
- 229910052979 sodium sulfide Inorganic materials 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 125000000816 ethylene group Polymers [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000012765 fibrous filler Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000004088 foaming agent Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000006082 mold release agent Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000002954 polymerization reaction product Substances 0.000 description 2
- ZOCLAPYLSUCOGI-UHFFFAOYSA-M potassium hydrosulfide Chemical compound [SH-].[K+] ZOCLAPYLSUCOGI-UHFFFAOYSA-M 0.000 description 2
- DPLVEEXVKBWGHE-UHFFFAOYSA-N potassium sulfide Chemical compound [S-2].[K+].[K+] DPLVEEXVKBWGHE-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- CPRMKOQKXYSDML-UHFFFAOYSA-M rubidium hydroxide Chemical compound [OH-].[Rb+] CPRMKOQKXYSDML-UHFFFAOYSA-M 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 239000000326 ultraviolet stabilizing agent Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- ZPQOPVIELGIULI-UHFFFAOYSA-N 1,3-dichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1 ZPQOPVIELGIULI-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 1
- 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 description 1
- OKISUZLXOYGIFP-UHFFFAOYSA-N 4,4'-dichlorobenzophenone Chemical compound C1=CC(Cl)=CC=C1C(=O)C1=CC=C(Cl)C=C1 OKISUZLXOYGIFP-UHFFFAOYSA-N 0.000 description 1
- GPAPPPVRLPGFEQ-UHFFFAOYSA-N 4,4'-dichlorodiphenyl sulfone Chemical compound C1=CC(Cl)=CC=C1S(=O)(=O)C1=CC=C(Cl)C=C1 GPAPPPVRLPGFEQ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 238000003109 Karl Fischer titration Methods 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- ZWXPDGCFMMFNRW-UHFFFAOYSA-N N-methylcaprolactam Chemical compound CN1CCCCCC1=O ZWXPDGCFMMFNRW-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 125000004018 acid anhydride group Chemical group 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- IBSGAWQJFSDRBJ-UHFFFAOYSA-M cesium sulfanide Chemical compound [SH-].[Cs+] IBSGAWQJFSDRBJ-UHFFFAOYSA-M 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- QTNDMWXOEPGHBT-UHFFFAOYSA-N dicesium;sulfide Chemical compound [S-2].[Cs+].[Cs+] QTNDMWXOEPGHBT-UHFFFAOYSA-N 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- WHGNXNCOTZPEEK-UHFFFAOYSA-N dimethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](C)(OC)CCCOCC1CO1 WHGNXNCOTZPEEK-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 description 1
- HXQGSILMFTUKHI-UHFFFAOYSA-M lithium;sulfanide Chemical compound S[Li] HXQGSILMFTUKHI-UHFFFAOYSA-M 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000010128 melt processing Methods 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- PZYDAVFRVJXFHS-UHFFFAOYSA-N n-cyclohexyl-2-pyrrolidone Chemical compound O=C1CCCN1C1CCCCC1 PZYDAVFRVJXFHS-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- LXOXXUIVMOYGST-UHFFFAOYSA-M rubidium(1+);sulfanide Chemical compound [SH-].[Rb+] LXOXXUIVMOYGST-UHFFFAOYSA-M 0.000 description 1
- AHKSSQDILPRNLA-UHFFFAOYSA-N rubidium(1+);sulfide Chemical compound [S-2].[Rb+].[Rb+] AHKSSQDILPRNLA-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 150000007934 α,β-unsaturated carboxylic acids Chemical class 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/025—Preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/02—Polythioethers; Polythioether-ethers
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、線状高分子量のポリアリーレンスルフィド樹脂の高効率な製造方法に関する。 The present invention relates to a highly efficient method for producing a linear high molecular weight polyarylene sulfide resin.
ポリフェニレンスルフィド樹脂(以下、これを「PPS樹脂」と略記する場合がある。)に代表されるポリアリーレンスルフィド樹脂(以下、これを「PAS樹脂」と略記する場合がある。)は、耐熱性、耐薬品性等に優れ、電気電子部品、自動車部品、給湯機部品、繊維、フィルム用途等に幅広く利用されている。 Polyphenylene sulfide resin (hereinafter, this may be abbreviated as "PAS resin") represented by polyphenylene sulfide resin (hereinafter, this may be abbreviated as "PPS resin") has heat resistance. It has excellent chemical resistance and is widely used in electrical and electronic parts, automobile parts, water heater parts, textiles, film applications, etc.
ポリアリーレンスルフィド樹脂の製造方法として、例えば、含水アルカリ金属硫化物または該含水アルカリ金属硫化物1モル当たり1モル未満のN−メチルピロリドン、及び、ポリハロ芳香族化合物を混合し、該混合物を共沸脱水することで微粒子状の無水アルカリ金属硫化物を含むスラリー状物を得、次いで、これを加熱して重合反応させる方法が知られている(例えば、特許文献1、2参照)。前記方法は、副反応を誘発する反応系内に残留する微量の結晶水等の水分を除去してから、重合反応を行うことで効率よく高分子量のポリアリーレンスルフィド樹脂を製造することが可能であるものの、塩基性の強いスルフィド化剤を高温で脱水処理する必要があることから、反応容器等の反応装置における原料との接触部が腐食しやすく、このため、チタン、ジルコニウムといった腐食に強い金属部材を用いざるを得なかった。しかし、それでもなお、該金属部材が腐食し、該金属部材の消耗を促進することが知られていた。このため、該金属部材の消耗を抑えるポリアリーレンスルフィド樹脂の製造方法が求められていた。 As a method for producing a polyarylene sulfide resin, for example, a hydrous alkali metal sulfide or N-methylpyrrolidone less than 1 mol per mol of the hydrous alkali metal sulfide and a polyhaloaromatic compound are mixed, and the mixture is co-boiled. A method is known in which a slurry containing finely divided anhydrous alkali metal sulfide is obtained by dehydration, and then this is heated to cause a polymerization reaction (see, for example, Patent Documents 1 and 2). In the above method, it is possible to efficiently produce a high-molecular-weight polyarylene sulfide resin by performing a polymerization reaction after removing a small amount of water such as water of crystallization remaining in the reaction system that induces a side reaction. However, since it is necessary to dehydrate a strongly basic sulfide agent at a high temperature, the contact portion with the raw material in the reaction apparatus such as a reaction vessel is easily corroded, and therefore, a corrosion-resistant metal such as titanium or zirconium. I had to use a member. However, it was still known that the metal member corrodes and accelerates the consumption of the metal member. Therefore, there has been a demand for a method for producing a polyarylene sulfide resin that suppresses consumption of the metal member.
さらに、得られたポリアリーレンスルフィド樹脂は、前記接触部の金属部材の消耗により溶出した金属部材由来の金属原子を含むこととなるが、通常の洗浄操作では、これら金属原子を取り除くことも困難であった。特に、近年、ポリアリーレンスルフィド樹脂を用いた成形品の薄肉化も進んでおり、従来よりも高品質のポリアリーレンスルフィド樹脂が求められており、ポリアリーレンスルフィド樹脂中の、反応装置に由来する金属原子含有量の低減は喫緊の課題となっていた。 Further, the obtained polyarylene sulfide resin contains metal atoms derived from the metal member eluted due to wear of the metal member at the contact portion, but it is difficult to remove these metal atoms by a normal cleaning operation. there were. In particular, in recent years, the thickness of molded products using a polyarylene sulfide resin has been thinned, and a higher quality polyarylene sulfide resin than before has been demanded, and a metal derived from a reaction device in the polyarylene sulfide resin. Reducing the atomic content has been an urgent issue.
そこで本発明が解決しようとする課題は、加水分解によって開環し得る脂肪族系環状化合物の存在下で、ジハロ芳香族化合物と、スルフィド化剤とを重合反応させるポリアリーレンスルフィド樹脂の製造方法において、製造装置の腐食を抑え、得られるポリアリーレンスルフィド樹脂中の、製造装置由来の金属原子の含有量を低減する方法を提供することにある。 Therefore, the problem to be solved by the present invention is in a method for producing a polyarylene sulfide resin in which a dihaloaromatic compound and a sulfidizing agent are polymerized in the presence of an aliphatic cyclic compound that can be opened by hydrolysis. It is an object of the present invention to provide a method for suppressing corrosion of a manufacturing apparatus and reducing the content of a metal atom derived from the manufacturing apparatus in the obtained polyaromatic sulfide resin.
本発明者らは上記課題を解決する為、鋭意努力した結果、ジハロ芳香族化合物の存在下、水を含むスルフィド化剤と、加水分解によって開環し得る脂肪族系環状化合物とを、脱水する際に、減圧下で行うことにおり、従来と比べて、すなわち、大気圧下で行う場合と対べて、前記接触部の腐食を低減でき、さらに得られるポリアリーレンスルフィド樹脂中の、製造装置由来の金属原子の含有量を低減することができることを見出し、本発明を完成するに至った。 As a result of diligent efforts to solve the above problems, the present inventors dehydrate a sulfidizing agent containing water and an aliphatic cyclic compound that can be opened by hydrolysis in the presence of a dihaloaromatic compound. In this case, it is decided to carry out under reduced pressure, and as compared with the case where it is carried out under atmospheric pressure, corrosion of the contact portion can be reduced, and further, a manufacturing apparatus in the obtained polyaromatic sulfide resin. They have found that the content of derived metal atoms can be reduced, and have completed the present invention.
すなわち、本発明は、加水分解によって開環し得る脂肪族系環状化合物の存在下で、ジハロ芳香族化合物と、スルフィド化剤とを反応させるポリアリーレンスルフィド樹脂の製造方法であって、
水を含むスルフィド化剤と、加水分解によって開環し得る脂肪族系環状化合物とを、液温が90℃以上から150℃以下の範囲となるまで、30〔kPa abs〕以上から大気圧以下の範囲の圧力下で脱水させながら反応させた後、さらに、ジハロ芳香族化合物を加えて、液温が90℃以上から170℃以下の範囲に加熱し、圧力が30〔kPa abs〕以上から80〔kPa abs〕以下の範囲で脱水させながら反応させて、混合物を得る脱水工程(1)を有することを特徴とするポリアリーレンスルフィド樹脂の製造方法に関する。That is, the present invention is a method for producing a polyarylene sulfide resin in which a dihaloaromatic compound is reacted with a sulfidizing agent in the presence of an aliphatic cyclic compound that can be ring-opened by hydrolysis.
The sulfidizing agent containing water and the aliphatic cyclic compound that can be opened by hydrolysis are kept at a temperature of 30 [kPa abs] or more and atmospheric pressure or less until the liquid temperature is in the range of 90 ° C. or higher and 150 ° C. or lower. After reacting while dehydrating under a pressure in the range, a dihaloaromatic compound is further added, and the liquid temperature is heated to a range of 90 ° C. or higher to 170 ° C. or lower, and the pressure is 30 [kPa abs] or higher to 80 [kPa abs] or higher. kPa abs] The present invention relates to a method for producing a polyarylene sulfide resin, which comprises a dehydration step (1) of obtaining a mixture by reacting while dehydrating in the following range.
さらに本発明は、前記の製造方法によりポリアリーレンスルフィド樹脂を製造する工程と、得られたポリアリーレンスルフィド樹脂と、充填剤、前記ポリアリーレンスルフィド樹脂以外の熱可塑性樹脂、エラストマー、2以上の官能基を有する架橋性樹脂及びシランカップリング剤からなる群より選ばれる、少なくとも1種の他の成分と、を配合し、前記ポリアリーレンスルフィド樹脂の融点以上に加熱して、溶融混練する工程を有することを特徴とするポリアリーレンスルフィド樹脂組成物の製造方法に関する。 Further, the present invention comprises a step of producing a polyarylene sulfide resin by the above-mentioned production method, a obtained polyarylene sulfide resin, a filler, a thermoplastic resin other than the polyarylene sulfide resin, an elastomer, and two or more functional groups. It has a step of blending with at least one other component selected from the group consisting of a crosslinkable resin having the above and a silane coupling agent, heating the polyarylene sulfide resin to a temperature equal to or higher than the melting point, and melt-kneading. The present invention relates to a method for producing a polyarylene sulfide resin composition.
さらに本発明は、前記の製造方法によりポリアリーレンスルフィド樹脂組成物を製造する工程と、得られたポリアリーレンスルフィド樹脂組成物を溶融成形する工程とを有することを特徴とするポリアリーレンスルフィド樹脂成形品の製造方法に関する。 Further, the present invention is characterized by having a step of producing a polyarylene sulfide resin composition by the above-mentioned production method and a step of melt-molding the obtained polyarylene sulfide resin composition. Regarding the manufacturing method of.
本発明により加水分解によって開環し得る脂肪族系環状化合物の存在下で、ジハロ芳香族化合物と、スルフィド化剤とを重合反応させるポリアリーレンスルフィド樹脂の製造方法において、製造装置の腐食を抑え、得られるポリアリーレンスルフィド樹脂中の、製造装置由来の金属原子の含有量を低減する方法を提供することができる。 In the method for producing a polyarylene sulfide resin in which a dihaloaromatic compound and a sulfidizing agent are polymerized in the presence of an aliphatic cyclic compound that can be opened by hydrolysis according to the present invention, corrosion of the production apparatus is suppressed. It is possible to provide a method for reducing the content of metal atoms derived from a manufacturing apparatus in the obtained polyaromatic sulfide resin.
本発明のポリアリーレンスルフィド樹脂の製造方法は、
水を含むスルフィド化剤と、加水分解によって開環し得る脂肪族系環状化合物とを、液温が90℃以上から150℃以下の範囲となるまで、30〔kPa abs〕以上から大気圧以下の範囲の圧力下で脱水させながら反応させた後、さらに、ジハロ芳香族化合物を加えて、液温が90℃以上から170℃以下の範囲に加熱し、圧力が30〔kPa abs〕以上から80〔kPa abs〕以下の範囲で脱水させながら反応させて、混合物を得る脱水工程(1)を有することを特徴とする。以下、詳述する。The method for producing a polyarylene sulfide resin of the present invention is:
The sulfidizing agent containing water and the aliphatic cyclic compound that can be opened by hydrolysis are kept at a temperature of 30 [kPa abs] or more and atmospheric pressure or less until the liquid temperature is in the range of 90 ° C. or higher and 150 ° C. or lower. After reacting while dehydrating under a pressure in the range, a dihaloaromatic compound is further added, and the liquid temperature is heated to a range of 90 ° C. or higher to 170 ° C. or lower, and the pressure is 30 [kPa abs] or higher to 80 [kPa abs] or higher. kPa abs] It is characterized by having a dehydration step (1) of obtaining a mixture by reacting while dehydrating in the following range. The details will be described below.
・脱水工程(1)
本発明は、水を含むスルフィド化剤と、加水分解によって開環し得る脂肪族系環状化合物とを、液温が90℃以上から150℃以下の範囲となるまで、30〔kPa abs〕以上から大気圧以下の範囲の圧力下で脱水させながら反応させた後、さらに、ジハロ芳香族化合物を加えて、液温が90℃以上から150℃以下の範囲に加熱し、圧力が30〔kPa abs〕以上から80〔kPa abs〕以下の範囲で脱水させながら反応させて、混合物を得る脱水工程(1)を必須として有する。・ Dehydration process (1)
In the present invention, a sulfidizing agent containing water and an aliphatic cyclic compound that can be opened by hydrolysis are prepared from 30 [kPa abs] or more until the liquid temperature is in the range of 90 ° C. or higher to 150 ° C. or lower. After reacting while dehydrating under a pressure in the range of atmospheric pressure or less, a dihaloaromatic compound is further added and the liquid temperature is heated in the range of 90 ° C. or higher to 150 ° C. or lower, and the pressure is 30 [kPa abs]. From the above, the dehydration step (1) of obtaining a mixture by reacting while dehydrating in the range of 80 [kPa abs] or less is essential.
脱水工程(1)は、ジハロ芳香族化合物の存在下、水を含むスルフィド化剤と、加水分解によって開環し得る脂肪族系環状化合物とを、脱水させながら反応させる工程である。この工程により、反応系内に現存する水分量を効率よく系外へ除去するとともに、前記脂肪族系環状化合物の加水分解を促進し、少なくとも、無水のスルフィド化剤および前記脂肪族系環状化合物の加水分解物のアルカリ金属塩を含む混合物を形成する工程である。本発明では、脱水を減圧下で行うことによって、大気圧以上の圧力条件下で行う場合と対比して、反応用装置の、原料ないし該混合物との接触部における腐食を低減でき、得られるポリアリーレンスルフィド樹脂中の、該接触部に由来する、金属原子の含有量を低減することができる。 The dehydration step (1) is a step of reacting a sulfidizing agent containing water with an aliphatic cyclic compound that can be ring-opened by hydrolysis in the presence of a dihaloaromatic compound while dehydrating. By this step, the amount of water existing in the reaction system is efficiently removed from the system, and the hydrolysis of the aliphatic cyclic compound is promoted, and at least the anhydrous sulfidating agent and the aliphatic cyclic compound are used. This is a step of forming a mixture containing an alkali metal salt of a hydrolyzate. In the present invention, by performing dehydration under reduced pressure, corrosion at the contact portion of the reaction apparatus with the raw material or the mixture can be reduced as compared with the case where dehydration is performed under a pressure condition of atmospheric pressure or higher, and the obtained poly The content of metal atoms derived from the contact portion in the allylene sulfide resin can be reduced.
本発明に用いるジハロ芳香族化合物は、脱水工程(1)において、得られる混合物の流動性を担保する溶媒として作用するが、その後の重合工程において重合原料として使用することができる。本発明において用いられるジハロ芳香族化合物としては、例えば、p−ジハロベンゼン、m−ジハロベンゼン、o−ジハロベンゼン、2,5−ジハロトルエン、1,4−ジハロナフタレン、1−メトキシ−2,5−ジハロベンゼン、4,4’−ジハロビフェニル、3,5−ジハロ安息香酸、2,4−ジハロ安息香酸、2,5−ジハロニトロベンゼン、2,4−ジハロニトロベンゼン、2,4−ジハロアニソール、p,p’−ジハロジフェニルエーテル、4,4’−ジハロベンゾフェノン、4,4’−ジハロジフェニルスルホン、4,4’−ジハロジフェニルスルホキシド、4,4’−ジハロジフェニルスルフィド、及び、上記各化合物の芳香環に炭素原子数1以上から18以下の範囲のアルキル基を核置換基として有する化合物が挙げられる。なお、上記各化合物中に含まれるハロゲン原子は、塩素原子、臭素原子であることが望ましく、特に塩素原子であることがより望ましい。 The dihalo aromatic compound used in the present invention acts as a solvent for ensuring the fluidity of the obtained mixture in the dehydration step (1), but can be used as a polymerization raw material in the subsequent polymerization step. Examples of the dihaloaromatic compound used in the present invention include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, and the like. 4,4'-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p. , P'-dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4'-dihalodiphenyl sulfone, 4,4'-dihalodiphenyl sulfoxide, 4,4'-dihalodiphenyl sulfide, and above. Examples thereof include compounds having an alkyl group in the range of 1 to 18 carbon atoms as a nuclear substituent in the aromatic ring of each compound. The halogen atom contained in each of the above compounds is preferably a chlorine atom or a bromine atom, and more preferably a chlorine atom.
前記ジハロ芳香族化合物の中でも、線状のポリアリーレンスルフィド樹脂を効率的に製造する場合、とりわけ最終的に得られるポリアリーレンスルフィド樹脂の機械的強度や成形性が良好となる点からp−ジクロロベンゼン、m−ジクロロベンゼン、4,4’−ジクロロベンゾフェノン及び4,4’−ジクロロジフェニルスルホンが好ましく、特にp−ジクロロベンゼンが好ましい。 Among the dihaloaromatic compounds, p-dichlorobenzene is used when a linear polyarylene sulfide resin is efficiently produced, and in particular, the mechanical strength and moldability of the finally obtained polyarylene sulfide resin are improved. , M-dichlorobenzene, 4,4'-dichlorobenzophenone and 4,4'-dichlorodiphenyl sulfone are preferred, and p-dichlorobenzene is particularly preferred.
また、線状のポリアリーレンスルフィド樹脂のポリマー構造の一部に分岐構造を持たせたい場合には、上記ジハロ芳香族化合物と共に、1,2,3−トリハロベンゼン、1,2,4−トリハロベンゼン、1,3,5−トリハロベンゼン、1,2,3,5−テトラハロベンゼン、1,2,4,5−テトラハロベンゼン、又は1,4,6−トリハロナフタレンを一部併用することが好ましい。なお、上記各化合物中に含まれるハロゲン原子も、塩素原子、臭素原子であることが望ましく、特に塩素原子であることがより望ましい。併用する際は、ゲル化に注意しながら、ジハロ芳香族化合物100モルに対して、0.001モル以上から3モル以下の範囲で用いることが好ましい。 If it is desired to have a branched structure in a part of the polymer structure of the linear polyarylene sulfide resin, 1,2,3-trihalobenzene and 1,2,4-trihalobenzene should be provided together with the above dihaloaromatic compound. , 1,3,5-trihalobenzene, 1,2,3,5-tetrahalobenzene, 1,2,4,5-tetrahalobenzene, or 1,4,6-trihalonaphthalene may be used in combination. preferable. The halogen atom contained in each of the above compounds is also preferably a chlorine atom or a bromine atom, and more preferably a chlorine atom. When used in combination, it is preferable to use in the range of 0.001 mol or more and 3 mol or less with respect to 100 mol of the dihalo aromatic compound, paying attention to gelation.
脱水工程(1)において、ジハロ芳香族化合物の添加量は、スルフィド化剤の硫黄原子1モルに対して、好ましくは0.2モル以上、より好ましくは0.3モル以上から、好ましくは5.0モル以下、より好ましくは2.0モル以下の範囲である。0.2モル以上であれば、前記混合物の流動性を担保する観点から好ましく、5.0モル以下の範囲であれば、加熱に必要な総熱量を抑えられ、生産性に優れる観点から好ましい。 In the dehydration step (1), the amount of the dihalo aromatic compound added is preferably 0.2 mol or more, more preferably 0.3 mol or more, and preferably 5. The range is 0 mol or less, more preferably 2.0 mol or less. If it is 0.2 mol or more, it is preferable from the viewpoint of ensuring the fluidity of the mixture, and if it is in the range of 5.0 mol or less, the total amount of heat required for heating can be suppressed, and it is preferable from the viewpoint of excellent productivity.
本発明に用いるスルフィド化剤としては、アルカリ金属硫化物、またはアルカリ金属水硫化物およびアルカリ金属水酸化物が挙げられる。一般的に、アルカリ金属硫化物やアルカリ金属水硫化物は、結晶水を含む、いわゆる水和物としてポリアリーレンスルフィド樹脂の原料として用いられるが、その際、固形分濃度が、好ましくは10質量%以上、より好ましくは35質量%以上から、好ましくは80質量%以下、より好ましくは65質量%以下の範囲の液状又は固体状の水和物のものを用いる。 Examples of the sulfidizing agent used in the present invention include alkali metal sulfides, alkali metal hydrosulfides and alkali metal hydroxides. Generally, alkali metal sulfides and alkali metal hydrosulfides are used as raw materials for polyarylene sulfide resins as so-called hydrates containing water of crystallization, and the solid content concentration is preferably 10% by mass. As described above, liquid or solid hydrates in the range of 35% by mass or more, preferably 80% by mass or less, and more preferably 65% by mass or less are used.
本発明に用いるアルカリ金属硫化物としては、例えば硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウム等の化合物が挙げられる。これらはそれぞれ単独で用いてもよいし、2種以上を混合して用いてもよい。これらアルカリ金属硫化物の中では硫化ナトリウムと硫化カリウムが好ましく、特に硫化ナトリウムが好ましい。 Examples of the alkali metal sulfide used in the present invention include compounds such as lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, and cesium sulfide. These may be used alone or in combination of two or more. Among these alkali metal sulfides, sodium sulfide and potassium sulfide are preferable, and sodium sulfide is particularly preferable.
また、アルカリ金属硫化物を、アルカリ金属水硫化物とアルカリ金属水酸化物とを反応させることによっても得られるが、脱水工程(1)と同じ反応系内にて調製されたものを用いてもかまわないし、脱水工程(1)とは異なる反応系で事前に調製されたものを用いてもかまわない。アルカリ金属水酸化物の具体例としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウムが挙げられる。これらの中でも特に水酸化リチウムと水酸化ナトリウム及び水酸化カリウムが好ましく、特に水酸化ナトリウムが好ましい。アルカリ金属水酸化物は、水溶液として用いることが好ましく、その濃度は10質量%以上から50質量%以下となる範囲が好ましい。また、本発明で用いるアルカリ金属水硫化物としては、例えば、水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化ルビジウムまたは水硫化セシウム等が挙げられる。これらはそれぞれ単独で用いてもよいし、2種以上を混合して用いてもよい。これらアルカリ金属水硫化物の中では水硫化ナトリウムと水硫化カリウムが好ましく、特に水硫化ナトリウムが好ましい。また、さらに、アルカリ金属水硫化物を、硫化水素とアルカリ金属水酸化物とを反応させることによっても得られるが、反応系外で事前に調製されたものを用いてもかまわない。 It can also be obtained by reacting an alkali metal sulfide with an alkali metal hydroxide and an alkali metal hydroxide, but it is also possible to use one prepared in the same reaction system as in the dehydration step (1). It does not matter, and a reaction system prepared in advance in a reaction system different from the dehydration step (1) may be used. Specific examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide. Among these, lithium hydroxide, sodium hydroxide and potassium hydroxide are particularly preferable, and sodium hydroxide is particularly preferable. The alkali metal hydroxide is preferably used as an aqueous solution, and its concentration is preferably in the range of 10% by mass or more to 50% by mass or less. Examples of the alkali metal hydrosulfide used in the present invention include lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide and the like. These may be used alone or in combination of two or more. Among these alkali metal hydrosulfides, sodium hydrosulfide and potassium hydrosulfide are preferable, and sodium hydrosulfide is particularly preferable. Further, the alkali metal hydrosulfide can be obtained by reacting hydrogen sulfide with the alkali metal hydroxide, but those prepared in advance outside the reaction system may be used.
本発明で用いる脂肪族系環状化合物としては、加水分解によって開環し得るものであれば公知のものを特に限定されることなく用いることができるが、このような脂肪族系環状化合物の具体例としてはN−メチル−2−ピロリドン(以下、NMPと略記することがある。)、N−シクロヘキシル−2−ピロリドン、N−メチル−ε−カプロラクタム、ホルムアミド、アセトアミド、N−メチルホルムアミド、N,N−ジメチルアセトアミド、2−ピロリドン、ε−カプロラクタム、ヘキサメチルホスホルアミド、テトラメチル尿素、N−ジメチルプロピレン尿素、1,3−ジメチル−2−イミダゾリジノン酸などの脂肪族環状アミド化合物、アミド尿素、及びラクタム類が挙げられる。これらの中でも反応性が良好である点から脂肪族環状アミド化合物、特にNMPが好ましい。 As the aliphatic cyclic compound used in the present invention, any known compound can be used as long as it can be opened by hydrolysis, and specific examples of such an aliphatic cyclic compound can be used. N-methyl-2-pyrrolidone (hereinafter, may be abbreviated as NMP), N-cyclohexyl-2-pyrrolidone, N-methyl-ε-caprolactam, formamide, acetamide, N-methylformamide, N, N. An aliphatic cyclic amide compound such as −dimethylacetamide, 2-pyrrolidone, ε-caprolactam, hexamethylphosphoramide, tetramethylurea, N-dimethylpropyleneurea, 1,3-dimethyl-2-imidazolidinone acid, amidourea. , And lactams. Among these, an aliphatic cyclic amide compound, particularly NMP, is preferable from the viewpoint of good reactivity.
その際、該脂肪族環状化合物の仕込み量は、スルフィド化剤の硫黄原子1モルに対して、好ましくは0.01モル以上から4.0モル以下の範囲の割合であることが好ましいが、さらに高分子量のポリアリーレンスルフィド樹脂を製造する場合には、スルフィド化剤の硫黄原子1モルに対して、好ましくは0.01以上の範囲から、好ましくは0.9モルの範囲、より好ましくは0.9モル未満、さらに好ましくは0.5モル以下の範囲である。 At that time, the amount of the aliphatic cyclic compound charged is preferably in the range of 0.01 mol or more and 4.0 mol or less with respect to 1 mol of the sulfur atom of the sulfidizing agent. In the case of producing a high molecular weight polyarylene sulfide resin, it is preferably in the range of 0.01 or more, preferably in the range of 0.9 mol, more preferably 0. It is in the range of less than 9 mol, more preferably 0.5 mol or less.
脱水工程(1)において、脱水は減圧下で進行させる。より具体的には、水を含むスルフィド化剤と、加水分解によって開環し得る脂肪族系環状化合物とを、液温が90℃以上、好ましくは110℃以上、より好ましくは120℃以上の範囲から、150℃以下、好ましくは140℃以下、より好ましくは130℃以下の範囲になるよう加熱しつつ、かつ、圧力が30〔kPa abs〕以上から大気圧以下の範囲の圧力下、好ましくは大気圧下で脱水させながら反応させた後、さらに、ジハロ芳香族化合物を加えて、液温が90℃以上、好ましくは110℃以上、より好ましくは120℃以上、さらに好ましくは130℃以上の範囲から、170℃以下、好ましくは160℃以下、より好ましくは150℃以下、特に好ましくは150℃未満の範囲になるよう加熱しつつ、かつ、30〔kPa abs〕以上、好ましくは35〔kPa abs〕以上、より好ましくは40〔kPa abs〕以上の範囲から、80〔kPa abs〕以下、好ましくは70〔kPa abs〕以下、より好ましくは60〔kPa abs〕以下の範囲になるよう減圧することにより、脱水を行う方法が挙げられる。 In the dehydration step (1), dehydration proceeds under reduced pressure. More specifically, the sulfidizing agent containing water and the aliphatic cyclic compound that can be opened by hydrolysis have a liquid temperature in the range of 90 ° C. or higher, preferably 110 ° C. or higher, more preferably 120 ° C. or higher. Therefore, while heating so as to be in the range of 150 ° C. or lower, preferably 140 ° C. or lower, more preferably 130 ° C. or lower, and under a pressure in the range of 30 [kPa abs] or higher to atmospheric pressure or lower, preferably large. After reacting while dehydrating under atmospheric pressure, a dihaloaromatic compound is further added, and the liquid temperature is in the range of 90 ° C. or higher, preferably 110 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 130 ° C. or higher. , 170 ° C. or lower, preferably 160 ° C. or lower, more preferably 150 ° C. or lower, particularly preferably less than 150 ° C., and 30 [kPa abs] or higher, preferably 35 [kPa abs] or higher. , More preferably from the range of 40 [kPa abs] or more to 80 [kPa abs] or less, preferably 70 [kPa abs] or less, more preferably 60 [kPa abs] or less by depressurizing. There is a way to do this.
前記脱水工程(1)において、前記ジハロ芳香族化合物の添加時期は、特に限定されないが、脱水進行度が、好ましくは30%以上、より好ましくは40%以上の範囲から70%以下、より好ましくは60%以下の範囲の時点であることがより好ましい。 In the dehydration step (1), the timing of adding the dihalo aromatic compound is not particularly limited, but the degree of dehydration progress is preferably 30% or more, more preferably 40% or more to 70% or less, more preferably. It is more preferable that the time point is in the range of 60% or less.
なお、脱水進行度とは、脱水工程(1)開始前の反応系内の全水分量を測定しておき、目標とする脱水工程(1)終了後の反応系内の全水分量を差し引いて、目標とする留去水の水分量(以下、目標留去水分量という)を設定しておき、脱水工程における脱水の進行程度に応じた現在の留去水の水分量(以下、現在留去水分量という)を測定して、「現在留去水分量」/「目標留去水分量」×100(%)として求めることができる。ただし、反応系内から蒸気として排出され、蒸留装置内において、蒸留され分離されるまでに係るタイムラグがあるため、±20%の誤差範囲は許容されるものとする。 The degree of dehydration is defined by measuring the total amount of water in the reaction system before the start of the dehydration step (1) and subtracting the total amount of water in the reaction system after the target dehydration step (1) is completed. , The target water content of the distilled water (hereinafter referred to as the target distilled water content) is set, and the current water content of the distilled water according to the degree of dehydration in the dehydration process (hereinafter referred to as the current distillation water content). It can be obtained by measuring (referred to as the amount of water) as "current amount of water distilled off" / "target amount of water distilled off" x 100 (%). However, since there is a time lag between being discharged as steam from the reaction system and being distilled and separated in the distillation apparatus, an error range of ± 20% is allowed.
脱水は、上記の範囲に液温と圧力を制御しながら、反応系から蒸留装置に通じる配管のバルブ(弁)を開け、脂肪族系環状化合物と水とジハロ芳香族化合物の混合物を蒸留することにより行われる。該蒸留は、脂肪族系環状化合物を単離した後、水とジハロ芳香族化合物を主成分とする混合蒸気をコンデンサーで凝縮、デカンター等で水とジハロ芳香族化合物とを分離し共沸留出したジハロ芳香族化合物を反応系内に戻す方法などが挙げられる。なお、単離した脂肪族系環状化合物や、脂肪族系環状化合物や水と分離したジハロ芳香族化合物は反応系内に戻すことが好ましいが、戻さない場合は、共沸留出した量に相当する量の脂肪族環状化合物ないしジハロ芳香族化合物を追加仕込みするか、あるいは、共沸留去する量を勘案した上で、脂肪族環状化合物ないしジハロ芳香族化合物を予め過剰に仕込んでおいてもよい。 Dehydration involves distilling a mixture of aliphatic cyclic compound, water and dihalo aromatic compound by opening the valve of the pipe leading from the reaction system to the distillation apparatus while controlling the liquid temperature and pressure within the above range. Is done by. In the distillation, after isolating the aliphatic cyclic compound, water and a mixed vapor containing the dihalo aromatic compound as a main component are condensed with a condenser, and water and the dihalo aromatic compound are separated by a decanter or the like and co-boiling distilled. Examples thereof include a method of returning the dihalo aromatic compound to the reaction system. The isolated aliphatic cyclic compound, the aliphatic cyclic compound, and the dihaloaromatic compound separated from water are preferably returned to the reaction system, but if they are not returned, they correspond to the amount co-boiling. The amount of the aliphatic cyclic compound or the dihalo aromatic compound to be added may be additionally charged, or the amount of the aliphatic cyclic compound or the dihalo aromatic compound may be excessively charged in advance in consideration of the amount of co-boiling distillation. Good.
このように本発明の脱水工程(1)は、脱水処理によって水が反応系外に排出されると共に、加水分解によって開環し得る脂肪族系環状化合物が加水分解され、同時に無水のスルフィド化剤、好ましくは、無水のアルカリ金属硫化物が生成する工程である。脱水処理後に反応系内に過剰な水分が存在した場合、その後の重合工程において、副生成物が多量に生成し、成長末端停止反応を誘発して、ポリアリーレンスルフィド樹脂の鎖長延長反応を、ひいては粘度増加ないし高分子量化を阻害する傾向となる。従って、脱水工程(1)後の反応系内の全水分量は極力少ない方が好ましく、具体的には、脱水工程(1)で用いたスルフィド化剤の硫黄原子1モル当たり、好ましくは0.1モル超え、より好ましくは0.6モル以上から、好ましくは0.99モル以下、より好ましくは0.96モル以下の範囲となるような水分量である。ここで「反応系内の全水分量」とは、前記脂肪族系環状化合物の加水分解に消費された水、スルフィド化剤中に微量残存する結晶水、及びその他反応系内に存在する水分の全ての合計質量である。 As described above, in the dehydration step (1) of the present invention, water is discharged out of the reaction system by the dehydration treatment, and the aliphatic cyclic compound which can be opened by hydrolysis is hydrolyzed, and at the same time, an anhydrous sulfidating agent. , Preferably, a step of producing an anhydrous alkali metal sulfide. When excess water is present in the reaction system after the dehydration treatment, a large amount of by-products are generated in the subsequent polymerization step to induce a growth end termination reaction to carry out a chain length extension reaction of the polyarylene sulfide resin. As a result, it tends to inhibit the increase in viscosity or the increase in molecular weight. Therefore, it is preferable that the total amount of water in the reaction system after the dehydration step (1) is as small as possible. Specifically, per mole of the sulfur atom of the sulfide agent used in the dehydration step (1), preferably 0. The water content is in the range of more than 1 mol, more preferably 0.6 mol or more, preferably 0.99 mol or less, and more preferably 0.96 mol or less. Here, the "total water content in the reaction system" refers to water consumed for hydrolysis of the aliphatic cyclic compound, water of crystallization remaining in a trace amount in the sulfidizing agent, and other water existing in the reaction system. The total mass of all.
更に、脱水工程(1)後の、反応系内に現存する水分量が反応系内のスルフィド化剤の硫黄原子1モル当たり、0.4モル以下の範囲となる割合であることが好ましく、検出限界から0.4モル以下の範囲となる割合であることがより好ましく、脱水の効率に優れる範囲として、0.03モル以上から0.11モル以下の範囲となる割合であることがさらに好ましい。ここで、「反応系内に現存する水分量」とは、反応系内の全水分量のうち、前記脂肪族環状化合物の加水分解に消費された水分を除く水、即ち、結晶水、H2O等として現に反応系内に存在する水分(以下、これらを「結晶水等」という。)の総量をいう。Further, after the dehydration step (1), the amount of water existing in the reaction system is preferably in the range of 0.4 mol or less per 1 mol of sulfur atoms of the sulfide agent in the reaction system, and is detected. The ratio is more preferably in the range of 0.4 mol or less from the limit, and further preferably in the range of 0.03 mol or more and 0.11 mol or less as the range in which the dehydration efficiency is excellent. Here, the "amount of water existing in the reaction system", of the total water content in the reaction system, water except the water consumed for hydrolysis of the aliphatic cyclic compound, i.e., water of crystallization, H 2 It refers to the total amount of water (hereinafter, these are referred to as "water of crystallization, etc.") actually existing in the reaction system as O or the like.
このように、本発明は、減圧下で脱水を進行させることで、スルフィド化剤中の結晶水の遊離がより低い加熱温度でも促進され、重合工程で副反応を引起す原因である反応系内の水分が効率的に除去されると伴に、重合促進作用を示すと考えられる脂肪族系環状化合物の加水分解物にも変換され、その結果、重合促進と伴に、重合時の副反応を抑えることができる。 As described above, in the present invention, by proceeding with dehydration under reduced pressure, the liberation of water of crystallization in the sulfidizing agent is promoted even at a lower heating temperature, and the inside of the reaction system which causes a side reaction in the polymerization step. When the water content of the compound is efficiently removed, it is also converted into a hydrolyzate of an aliphatic cyclic compound which is considered to have a polymerization promoting action, and as a result, a side reaction during polymerization is caused along with the polymerization promotion. It can be suppressed.
・脱水工程(2)
本発明は、脱水工程(1)で得られた混合物に、さらに非プロトン性極性有機溶媒を加え、水を留去して脱水を行う脱水工程(2)を任意工程として有していてもよい。脱水工程(2)において、反応系内への非プロトン性極性溶媒の仕込み量は、スルフィド化剤の硫黄原子1モルに対して、好ましくは0.5モル以上から5モル以下の範囲となる割合で加えることが好ましい。反応系内に現存する水分量を、スルフィド化剤の硫黄原子1モルに対して、0.03モル未満の範囲にしようとすると、脱水効率が非常に低下する傾向となるため、このような場合に、脱水工程(1)に引き続き、さらに脱水工程(2)を行うことで、脱水工程(2)終了時の反応系内に含まれる水分量を、スルフィド化剤の硫黄原子1モルに対して、0.03モル未満の範囲、好ましくは、検出限界から0.03モル未満の範囲に、さらに、好ましくは、検出限界以上から0.01モル以下の範囲にまで調整することができる。・ Dehydration process (2)
The present invention may include, as an optional step, a dehydration step (2) in which an aprotic polar organic solvent is further added to the mixture obtained in the dehydration step (1) and water is distilled off to perform dehydration. .. In the dehydration step (2), the amount of the aprotic polar solvent charged into the reaction system is preferably in the range of 0.5 mol or more and 5 mol or less with respect to 1 mol of the sulfur atom of the sulfidizing agent. It is preferable to add in. In such a case, if the amount of water existing in the reaction system is set to a range of less than 0.03 mol with respect to 1 mol of the sulfur atom of the sulfide agent, the dehydration efficiency tends to be very low. By further performing the dehydration step (2) following the dehydration step (1), the amount of water contained in the reaction system at the end of the dehydration step (2) is reduced with respect to 1 mol of the sulfur atom of the sulfide agent. , The range of less than 0.03 mol, preferably the range of less than 0.03 mol from the detection limit, and more preferably the range of more than the detection limit to less than 0.01 mol.
脱水工程(2)における脱水は、液温が90℃以上から220℃以下の範囲で、かつ、30〔kPa abs〕以上から202〔kPa abs〕以下の範囲の条件下で行うことができるが、このうち、脱水工程(1)と同じ減圧下での脱水処理条件、すなわち、液温が好ましくは90℃以上、より好ましくは110℃以上、さらに好ましくは130℃以上から、160℃以下、より好ましくは150℃以下の範囲になるよう加熱しつつ、かつ、好ましくは30〔kPa abs〕以上、より好ましくは35〔kPa abs〕以上、さらに好ましくは40〔kPa abs〕以上から、好ましくは80〔kPa abs〕以下、より好ましくは70〔kPa abs〕以下、さらに好ましくは60〔kPa abs〕以下の範囲になるよう減圧しながら脱水を行うことがより低い液温で効率的に脱水できる観点から好ましい。 Dehydration in the dehydration step (2) can be performed under conditions where the liquid temperature is in the range of 90 ° C. or higher to 220 ° C. or lower and in the range of 30 [kPa abs] or higher to 202 [kPa abs] or lower. Of these, the dehydration treatment conditions under the same decompression as in the dehydration step (1), that is, the liquid temperature is preferably 90 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 130 ° C. or higher, more preferably 160 ° C. or lower. While heating to a range of 150 ° C. or lower, preferably from 30 [kPa abs] or more, more preferably 35 [kPa abs] or more, still more preferably 40 [kPa abs] or more, preferably 80 [kPa abs] or more. It is preferable to perform dehydration while reducing the pressure so as to be in the range of abs] or less, more preferably 70 [kPa abs] or less, still more preferably 60 [kPa abs] or less, from the viewpoint of efficient dehydration at a lower liquid temperature.
なお、脱水工程(2)は、脱水工程(1)と同じ反応容器で行うことが、製造設備の共有化が図れ、生産性が向上する観点から好ましいが、一方で、単位時間当たりの樹脂生産量を向上させる観点から、脱水工程(1)や重合工程と異なる反応容器を用いて行うことも好ましい。 It is preferable that the dehydration step (2) is carried out in the same reaction vessel as the dehydration step (1) from the viewpoint of sharing the manufacturing equipment and improving the productivity, but on the other hand, resin production per unit time. From the viewpoint of improving the amount, it is also preferable to use a reaction vessel different from the dehydration step (1) and the polymerization step.
・重合工程
本発明は、次いで、脱水工程(1)を経て得られた混合物を、ジハロ芳香族化合物1モルに対して反応系内に現存する水分量が0.4モル以下の範囲で加熱して重合反応させる重合工程を有する。また、脱水工程(1)の後に、脱水工程(2)を行った場合には、脱水工程(2)を経て得られた混合物を、ジハロ芳香族化合物1モルに対して反応系内に現存する水分量が0.03モル未満の範囲で加熱して重合反応させることができる。
該重合工程は、脱水工程(1)ないし脱水工程(2)を経て得られた混合物を、密閉された反応容器内で200℃以上かつ300℃以下の範囲に加熱することにより、重合反応を進行させる工程である。-Polymerization Step Next, in the present invention, the mixture obtained through the dehydration step (1) is heated in a range of 0.4 mol or less existing in the reaction system with respect to 1 mol of the dihaloaromatic compound. It has a polymerization step of carrying out a polymerization reaction. When the dehydration step (2) is performed after the dehydration step (1), the mixture obtained through the dehydration step (2) is present in the reaction system with respect to 1 mol of the dihaloaromatic compound. The polymerization reaction can be carried out by heating in a range where the water content is less than 0.03 mol.
In the polymerization step, the polymerization reaction proceeds by heating the mixture obtained through the dehydration step (1) to the dehydration step (2) to a range of 200 ° C. or higher and 300 ° C. or lower in a closed reaction vessel. It is a process to make it.
重合工程において、重合反応条件は特に制限されるものではないが、重合反応が容易に進行し得る温度、すなわち200℃以上かつ300℃以下の範囲、好ましくは210℃以上かつ280℃以下の範囲、更に好ましくは215℃以上かつ250℃以下の範囲にて、反応させることが好ましい。 In the polymerization step, the polymerization reaction conditions are not particularly limited, but the temperature at which the polymerization reaction can easily proceed, that is, the range of 200 ° C. or higher and 300 ° C. or lower, preferably 210 ° C. or higher and 280 ° C. or lower. More preferably, the reaction is carried out in the range of 215 ° C. or higher and 250 ° C. or lower.
上述した通り、重合原料であるジハロ芳香族化合物は、脱水工程(1)で仕込まれる上に、蒸留で共沸留去されるため、共沸留去される量を勘案した上で、ジハロ芳香族化合物を脱水工程において予め過剰に仕込んでおくか、または重合工程が開始されるまでにジハロ芳香族化合物を追加で仕込み、反応系内におけるジハロ芳香族化合物の割合が、スルフィド化剤の硫黄原子1モルに対して、好ましくは0.8モル以上、より好ましくは0.9モル以上から、好ましくは1.2モル以下、より好ましくは1.1モル以下までの範囲、特に好ましくは等モルで反応できるよう調整する。 As described above, the dihalo aromatic compound, which is a polymerization raw material, is charged in the dehydration step (1) and co-boiling distilled by distillation. Therefore, the dihalo aromatic compound is co-boiled and distilled off in consideration of the amount of co-boiling distillate. The group compound is excessively charged in advance in the dehydration step, or an additional dihalo aromatic compound is charged before the polymerization step is started, and the ratio of the dihalo aromatic compound in the reaction system is the sulfur atom of the sulfidizing agent. With respect to 1 mol, preferably in the range of 0.8 mol or more, more preferably 0.9 mol or more, preferably 1.2 mol or less, more preferably 1.1 mol or less, particularly preferably equimolar. Adjust so that it can react.
重合開始時における、反応系内に現存する水分量は少いほどよく、例えば、前記スルフィド化剤の硫黄原子1モルあたり、0.4モル以下の範囲、好ましくは検出限界(モル)以上の範囲から、好ましくは0.4モル以下、より好ましくは0.11モル以下、さらに好ましくは0.08モル以下、特に好ましくは0.03モル以下、最も好ましくは0.01モル以下の範囲である。重合反応が進むにつれて水が生成されるため、重合工程の重合反応終了時に前記スルフィド化剤の硫黄原子1モルあたり0.1モル以上から0.3モル以下の範囲の水が生成されることが好ましく、さらに、ジハロ芳香族化合物の転化率が80モル%を越えた時点以降、より好ましくは60モル%を越えた時点以降、さらに好ましくは重合開始直後から上記範囲を満たしていることが好ましい。 The smaller the amount of water existing in the reaction system at the start of polymerization, the better. For example, the range of 0.4 mol or less, preferably the range of the detection limit (mol) or more, per 1 mol of the sulfur atom of the sulfide agent. Therefore, the range is preferably 0.4 mol or less, more preferably 0.11 mol or less, further preferably 0.08 mol or less, particularly preferably 0.03 mol or less, and most preferably 0.01 mol or less. Since water is generated as the polymerization reaction proceeds, water in the range of 0.1 mol or more and 0.3 mol or less per 1 mol of the sulfur atom of the sulfide agent may be generated at the end of the polymerization reaction in the polymerization step. It is preferable that the above range is satisfied from the time when the conversion rate of the dihalo aromatic compound exceeds 80 mol%, more preferably after the time when it exceeds 60 mol%, and more preferably immediately after the start of polymerization.
ここで、ジハロ芳香族化合物の転化率とは、次の式で表されるものである。
転化率(%)=(仕込み量−残存量)/仕込み量×100
ただし、「仕込み量」は反応系内に仕込んだジハロ芳香族化合物の質量を表し、また「残存量」は反応系内に残存するジハロ芳香族化合物の質量を表すものとする。Here, the conversion rate of the dihalo aromatic compound is expressed by the following formula.
Conversion rate (%) = (charged amount-residual amount) / charged amount x 100
However, the "charged amount" represents the mass of the dihalo aromatic compound charged in the reaction system, and the "residual amount" represents the mass of the dihalo aromatic compound remaining in the reaction system.
・後処理工程
重合反応により得られたポリアリーレンスルフィド樹脂を含む反応混合物は後処理工程を施すことができる。後処理工程としては、公知の方法であればよく、特に制限されるものではないが、例えば、重合反応終了後、先ず反応混合物をそのまま、あるいは酸または塩基を加えた後、減圧下または常圧下で溶媒を留去し、次いで溶媒留去後の固形物を水、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、更に中和、水洗、濾過および乾燥する方法、或いは、重合反応終了後、反応混合物に水、アセトン、メチルエチルケトン、アルコール類、エーテル類、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素などの溶媒(使用した重合溶媒に可溶であり、且つ少なくともポリアリーレンスルフィド樹脂に対しては貧溶媒である溶媒)を沈降剤として添加して、ポリアリーレンスルフィド樹脂や無機塩等の固体状生成物を沈降させ、これらを濾別、洗浄、乾燥する方法、或いは、重合反応終了後、反応混合物に反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、その後中和、水洗、濾過および乾燥をする方法等が挙げられる。
なお、上記に例示したような後処理方法において、ポリアリーレンスルフィド樹脂の乾燥は真空中で行なってもよいし、空気中あるいは窒素のような不活性ガス雰囲気中で行なってもよい。-Post-treatment step The reaction mixture containing the polyarylene sulfide resin obtained by the polymerization reaction can be subjected to a post-treatment step. The post-treatment step may be any known method and is not particularly limited. For example, after the polymerization reaction is completed, the reaction mixture is first used as it is, or an acid or a base is added, and then under reduced pressure or under normal pressure. Then, the solid after distilling off the solvent is washed once or twice or more with a solvent such as water, acetone, methyl ethyl ketone, alcohols, etc., and further neutralized, washed with water, filtered and dried, or After completion of the polymerization reaction, the reaction mixture is mixed with a solvent such as water, acetone, methyl ethyl ketone, alcohols, ethers, halogenated hydrocarbons, aromatic hydrocarbons, aliphatic hydrocarbons (soluble in the polymerization solvent used and is soluble in the solvent used). A method in which a solvent that is a poor solvent for at least a polyarylene sulfide resin) is added as a precipitant to precipitate solid products such as a polyarylene sulfide resin and an inorganic salt, and these are filtered off, washed, and dried. Alternatively, after completion of the polymerization reaction, a reaction solvent (or an organic solvent having the same solubility as that of a low molecular weight polymer) is added to the reaction mixture, and the mixture is stirred and then filtered to remove the low molecular weight polymer. Examples thereof include a method of washing once or twice or more with a solvent such as acetone, methyl ethyl ketone and alcohols, and then neutralizing, washing with water, filtering and drying.
In the post-treatment method as exemplified above, the polyarylene sulfide resin may be dried in a vacuum, in the air, or in an atmosphere of an inert gas such as nitrogen.
この様にして得られたポリアリーレンスルフィド樹脂は、そのまま各種成形材料等に利用可能であるが、空気あるいは酸素富化空気中あるいは減圧条件下で熱処理を行い、酸化架橋させてもよい。この熱処理の温度は、目標とする架橋処理時間や処理する雰囲気によっても異なるものの、180℃以上から270℃以下の範囲であることが好ましい。また、前記熱処理は押出機等を用いてポリアリーレンスルフィド樹脂の融点以上で、ポリアリーレンスルフィド樹脂を溶融した状態で行ってもよいが、ポリアリーレンスルフィド樹脂の熱劣化の可能性が高まるため、融点プラス100℃以下で行うことが好ましい。 The polyarylene sulfide resin thus obtained can be used as it is for various molding materials and the like, but it may be subjected to heat treatment in air or oxygen-enriched air or under reduced pressure conditions to be oxidatively crosslinked. The temperature of this heat treatment is preferably in the range of 180 ° C. or higher to 270 ° C. or lower, although it varies depending on the target crosslinking treatment time and the treatment atmosphere. Further, the heat treatment may be performed in a state where the polyarylene sulfide resin is melted at a temperature equal to or higher than the melting point of the polyarylene sulfide resin using an extruder or the like, but the melting point is increased because the possibility of thermal deterioration of the polyarylene sulfide resin is increased. It is preferable to carry out at plus 100 ° C. or lower.
・製造装置
本発明のポリアリーレンスルフィド樹脂の製造方法において上記の各工程で用いる反応用装置は、原料、すなわち、ジハロ芳香族化合物、スルフィド化剤、アルカリ触媒等、加水分解によって開環し得る脂肪族系環状化合物、脱水工程を経て得られる混合物、そして、重合反応後に得られるポリアリーレンスルフィド樹脂を含む重合反応物との接触部の一部ないし全部が、チタン、ジルコニウム、ニッケル合金で構成されているものを用いることが耐食性の観点から好ましい。-Production equipment The reaction equipment used in each of the above steps in the method for producing a polyarylene sulfide resin of the present invention is a raw material, that is, a fat that can be opened by hydrolysis, such as a dihaloaromatic compound, a sulfidizing agent, and an alkali catalyst. Part or all of the contact portion with the group cyclic compound, the mixture obtained through the dehydration step, and the polymerization reaction product containing the polyarylene sulfide resin obtained after the polymerization reaction is composed of titanium, zirconium, and nickel alloy. It is preferable to use a compound from the viewpoint of corrosion resistance.
前記反応用装置としては、内部に撹拌翼を具備するバッチ式反応容器(オートクレーブ、反応釜)、及び、連続式反応容器などの反応容器(重合ライン)、撹拌翼、邪魔板などが挙げられる。 Examples of the reaction apparatus include a batch type reaction vessel (autoclave, reaction kettle) having a stirring blade inside, a reaction vessel (polymerization line) such as a continuous reaction vessel, a stirring blade, and a baffle plate.
例えば、バッチ式反応容器は、該反応容器内部に原料、混合物または重合反応物を保持し得る容器であればよく、例えば、上部蓋部、胴部、及び底部分から構成され、かつ、必要に応じて密閉可能な構造を有するものが挙げられ、内部に攪拌翼、撹拌翼に動力を伝える軸、邪魔板(バッフル)、温度制御用蛇管を有する構造のものが攪拌効率に優れる点から好ましい。ここで、攪拌翼としては、アンカー型攪拌翼、タービン型攪拌翼、スクリュー型攪拌翼、ダブルヘリカル型攪拌翼等が挙げられる。邪魔板(バッフル)は、下端が反応容器底面付近まで、一方、上端が液面から出る位置まで設置されていることが、熱伝導や熱制御が容易となる観点から好ましい。 For example, the batch type reaction vessel may be a vessel capable of holding a raw material, a mixture or a polymerization reaction product inside the reaction vessel, and is composed of, for example, an upper lid portion, a body portion, and a bottom portion, and if necessary. A structure having a stirring blade, a shaft for transmitting power to the stirring blade, a baffle, and a serpentine tube for temperature control inside is preferable from the viewpoint of excellent stirring efficiency. Here, examples of the stirring blade include an anchor type stirring blade, a turbine type stirring blade, a screw type stirring blade, and a double helical type stirring blade. It is preferable that the baffle is installed so that the lower end reaches the vicinity of the bottom surface of the reaction vessel and the upper end reaches the position where the liquid surface comes out, from the viewpoint of facilitating heat conduction and heat control.
一方、連続式反応容器は、例えば、可動部分のない複数のミキシングエレメントが内部に固定されている管状反応器が挙げられ、該管状反応器を直列に連結させた重合ライン、或いは、複数の管状反応器を連結する共に反応液の一部を前記管状反応器の原料投入口に環流させる構造を有する連続環状重合ラインを形成するものが挙げられる。これらの連続式反応容器は、プランジャーポンプなどにより原料のフィード及び反応液の移送を行うことがきできる。 On the other hand, the continuous reaction vessel includes, for example, a tubular reactor in which a plurality of mixing elements having no moving parts are fixed inside, and a polymerization line in which the tubular reactors are connected in series, or a plurality of tubulars. Examples thereof include those that connect the reactors and form a continuous cyclic polymerization line having a structure in which a part of the reaction solution is recirculated to the raw material inlet of the tubular reactor. These continuous reaction vessels can feed the raw material and transfer the reaction solution by a plunger pump or the like.
また、該反応容器には、更に温度計や圧力計、安全弁等の各種測定機器が備えられており、その外部には蒸気装置へ通じる配管と開閉弁、コンデンサー、デカンター、留出液(デカンターの有機層成分)戻しライン、留出液(デカンターの水層成分)留去ライン等の蒸留装置と、圧力調整弁、真空ポンプ、硫化水素捕捉装置等の減圧装置が配設されたものであることが好ましい。 In addition, the reaction vessel is further equipped with various measuring devices such as a thermometer, a pressure gauge, and a safety valve, and outside the reaction vessel, a pipe leading to a steam device, an on-off valve, a condenser, a decanter, and a distillate (of the decanter). A distillation device such as an organic layer component) return line and a distillate (water layer component of a decanter) distilling line, and a decompression device such as a pressure regulating valve, a vacuum pump, and a hydrogen sulfide trapping device shall be provided. Is preferable.
本発明で使用する反応用装置は、前記接触部の少なくとも一部が、好ましくは全てが前記ニッケル合金で構成されているものとしてもよい。ここで用いられるニッケル合金は、耐食性の面から、クロムの含有割合が好ましくは43質量%以上から47質量%以下の範囲、モリブデンの含有割合が0.1質量%以上から2質量%以下の範囲および残部がニッケルおよび不可避不純物で構成された合金である。タングステン、鉄、コバルトおよび銅は、検出限界以下の含有量であるものが好ましい。なお、本発明において「不可避不純物」の用語は、技術的に除去が困難な微量の不純物を意味している。本発明においては、例えば、合金中において、3質量%以下、好ましくは1質量%以下、より好ましくは検出限界以下の割合で含まれる炭素原子が挙げられる。 In the reaction apparatus used in the present invention, at least a part of the contact portion may be preferably made entirely of the nickel alloy. From the viewpoint of corrosion resistance, the nickel alloy used here preferably has a chromium content in the range of 43% by mass or more and 47% by mass or less, and a molybdenum content in the range of 0.1% by mass or more and 2% by mass or less. And the balance is an alloy composed of nickel and unavoidable impurities. Tungsten, iron, cobalt and copper preferably have a content below the detection limit. In the present invention, the term "unavoidable impurities" means a trace amount of impurities that are technically difficult to remove. In the present invention, for example, carbon atoms contained in the alloy in a proportion of 3% by mass or less, preferably 1% by mass or less, and more preferably detection limit or less can be mentioned.
・成形加工等
以上詳述した本発明の製造方法によって得られたポリアリーレンスルフィド樹脂は、充填剤、前記ポリアリーレンスルフィド樹脂以外の熱可塑性樹脂、エラストマー、2以上の官能基を有する架橋性樹脂及びシランカップリング剤からなる群より選ばれる、少なくとも1種の他の成分と、を配合し、前記ポリアリーレンスルフィド樹脂の融点以上に加熱して、溶融混練する工程を経て、ポリアリーレンスルフィド樹脂組成物とすることができる。Molding, etc. The polyarylene sulfide resin obtained by the production method of the present invention described in detail above includes a filler, a thermoplastic resin other than the polyarylene sulfide resin, an elastomer, and a crosslinkable resin having two or more functional groups. The polyarylene sulfide resin composition is subjected to a step of blending with at least one other component selected from the group consisting of silane coupling agents, heating to a temperature equal to or higher than the melting point of the polyarylene sulfide resin, and melt-kneading. Can be.
充填材としては、特に制限されるものではないが、例えば、繊維状充填材、無機充填材等が挙げられる。繊維状充填材としては、ガラス繊維、炭素繊維、シランガラス繊維、セラミック繊維、アラミド繊維、金属繊維、チタン酸カリウム、炭化珪素、硫酸カルシウム、珪酸カルシウム等の繊維、ウォラストナイト等の天然繊維等が使用出来る。また無機充填材としては、硫酸バリウム、硫酸カルシウム、クレー、バイロフェライト、ベントナイト、セリサイト、ゼオライト、マイカ、雲母、タルク、アタルパルジャイト、フェライト、珪酸カルシウム、炭酸カルシウム、炭酸マグネシウム、ガラスビーズ等が使用出来る。また、成形加工の際に添加剤として離型剤、着色剤、耐熱安定剤、紫外線安定剤、発泡剤、防錆剤、難燃剤、滑剤等の各種添加剤を含有せしめることが出来る。 The filler is not particularly limited, and examples thereof include a fibrous filler and an inorganic filler. Examples of the fibrous filler include glass fibers, carbon fibers, silane glass fibers, ceramic fibers, aramid fibers, metal fibers, potassium titanate, silicon carbide, calcium sulfate, calcium silicate and other fibers, and natural fibers such as wollastonite. Can be used. Examples of the inorganic filler include barium sulfate, calcium sulfate, clay, biloferrite, bentonite, sericite, zeolite, mica, mica, talc, attalpargit, ferrite, calcium silicate, calcium carbonate, magnesium carbonate, glass beads and the like. Can be used. Further, various additives such as a mold release agent, a colorant, a heat-resistant stabilizer, an ultraviolet stabilizer, a foaming agent, a rust preventive, a flame retardant, and a lubricant can be contained as additives in the molding process.
更に、本発明のポリアリーレンスルフィド樹脂組成物に配合される、前記ポリアリーレンスルフィド樹脂以外の熱可塑性樹脂としては、ポリエステル、ポリアミド、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリフェニレンエーテル、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリアリーレン、ポリエチレン、ポリプロピレン、ポリ四弗化エチレン、ポリ二弗化エチレン、ポリスチレン、ABS樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等の合成樹脂を配合したポリアリーレンスルフィド樹脂組成物として使用してもよい。前記ポリアリーレンスルフィド樹脂以外の熱可塑性樹脂の配合割合は、ポリアリーレンスルフィド樹脂100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、さらに好ましくは5質量部以上から、好ましくは300質量部以下、より好ましくは100質量部以下、更に好ましくは45質量部以下の範囲である。ポリアリーレンスルフィド樹脂以外の熱可塑性樹脂の含有量がこれらの範囲にあることにより、耐熱性、耐薬品性及び機械的物性の更なる向上という効果が得られる。 Further, examples of the thermoplastic resin other than the polyarylene sulfide resin blended in the polyarylene sulfide resin composition of the present invention include polyester, polyamide, polyimide, polyetherimide, polycarbonate, polyphenylene ether, polysulphon, and polyethersulphon. , Polyether ether ketone, polyether ketone, polyarylene, polyethylene, polypropylene, polytetrafluorinated ethylene, polydifluorinated ethylene, polystyrene, ABS resin, epoxy resin, silicone resin, phenol resin, urethane resin, liquid crystal polymer, etc. It may be used as a polyarylene sulfide resin composition containing a synthetic resin. The blending ratio of the thermoplastic resin other than the polyarylene sulfide resin is preferably 1 part by mass or more, more preferably 3 parts by mass or more, still more preferably 5 parts by mass or more, based on 100 parts by mass of the polyarylene sulfide resin. The range is preferably 300 parts by mass or less, more preferably 100 parts by mass or less, and further preferably 45 parts by mass or less. When the content of the thermoplastic resin other than the polyarylene sulfide resin is in these ranges, the effect of further improving the heat resistance, chemical resistance and mechanical properties can be obtained.
本発明のポリアリーレンスルフィド樹脂組成物に配合されるエラストマーとしては、熱可塑性エラストマーが用いられることが挙げられる。熱可塑性エラストマーとしては、例えば、ポリオレフィン系エラストマー、弗素系エラストマー及びシリコーン系エラストマーが挙げられる。なお、本明細書において、熱可塑性エラストマーは、前記熱可塑性樹脂ではなくエラストマーに分類される。 As the elastomer to be blended in the polyarylene sulfide resin composition of the present invention, a thermoplastic elastomer can be used. Examples of the thermoplastic elastomer include polyolefin-based elastomers, fluorine-based elastomers, and silicone-based elastomers. In addition, in this specification, a thermoplastic elastomer is classified into an elastomer instead of the thermoplastic resin.
エラストマー(特に熱可塑性エラストマー)は、ヒドロキシ基又はアミノ基と反応し得る官能基を有することが好ましい。これにより、接着性及び耐衝撃性等の点で特に優れた樹脂組成物を得ることができる。係る官能基としては、エポキシ基、カルボキシ基、イソシアネート基、オキサゾリン基、及び、式:R(CO)O(CO)−又はR(CO)O−(式中、Rは炭素原子数1以上から8以下の範囲のアルキル基を表す。)で表される基が挙げられる。係る官能基を有する熱可塑性エラストマーは、例えば、α−オレフィンと前記官能基を有するビニル重合性化合物との共重合により得ることができる。α−オレフィンは、例えば、エチレン、プロピレン及びブテン−1等の炭素原子数2以上から8以下の範囲のα−オレフィン類が挙げられる。前記官能基を有するビニル重合性化合物としては、例えば、(メタ)アクリル酸及び(メタ)アクリル酸エステル等のα,β−不飽和カルボン酸及びそのアルキルエステル、マレイン酸、フマル酸、イタコン酸及びその他の炭素原子数4以上から10以下の範囲のα,β−不飽和ジカルボン酸及びその誘導体(モノ若しくはジエステル、及びその酸無水物等)、並びにグリシジル(メタ)アクリレート等が挙げられる。これらの中でも、エポキシ基、カルボキシ基、及び、式:R(CO)O(CO)−又はR(CO)O−(式中、Rは炭素原子数1以上から8以下の範囲のアルキル基を表す。)で表される基からなる群から選ばれる少なくとも1種の官能基を有するエチレン−プロピレン共重合体及びエチレン−ブテン共重合体が、靭性及び耐衝撃性の向上の点から好ましい。 Elastomers (particularly thermoplastic elastomers) preferably have a functional group capable of reacting with a hydroxy or amino group. Thereby, a resin composition particularly excellent in terms of adhesiveness, impact resistance and the like can be obtained. Such functional groups include an epoxy group, a carboxy group, an isocyanate group, an oxazoline group, and a formula: R (CO) O (CO)-or R (CO) O- (in the formula, R has one or more carbon atoms. A group represented by (representing an alkyl group in the range of 8 or less) can be mentioned. The thermoplastic elastomer having such a functional group can be obtained, for example, by copolymerizing an α-olefin with the vinyl polymerizable compound having the functional group. Examples of the α-olefin include α-olefins in the range of 2 to 8 carbon atoms such as ethylene, propylene and butene-1. Examples of the vinyl polymerizable compound having a functional group include α, β-unsaturated carboxylic acids such as (meth) acrylic acid and (meth) acrylic acid ester and alkyl esters thereof, maleic acid, fumaric acid, itaconic acid and the like. Other examples thereof include α, β-unsaturated dicarboxylic acids and derivatives thereof (mono or diesters and their acid anhydrides, etc.) in the range of 4 to 10 carbon atoms, and glycidyl (meth) acrylate. Among these, an epoxy group, a carboxy group, and an alkyl group having a formula: R (CO) O (CO)-or R (CO) O- (where R has 1 or more to 8 or less carbon atoms). An ethylene-propylene copolymer and an ethylene-butene copolymer having at least one functional group selected from the group consisting of the groups represented by (represented) are preferable from the viewpoint of improving toughness and impact resistance.
エラストマーの配合割合は、その種類、用途により異なるため一概に規定することはできないが、例えば、ポリアリーレンスルフィド樹脂100質量部に対して好ましくは1質量部以上、より好ましくは3質量部以上、さらに好ましくは5質量部以上から、好ましくは300質量部以下、より好ましくは100質量部以下、更に好ましくは45質量部以下の範囲である。エラストマーの含有量がこれらの範囲にあることにより、成形品の耐熱性、靭性の確保の点でより一層優れた効果が得られる。 The blending ratio of the elastomer varies depending on the type and application, and therefore cannot be unconditionally specified. For example, the proportion of the elastomer is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and further, with respect to 100 parts by mass of the polyarylene sulfide resin. The range is preferably 5 parts by mass or more, preferably 300 parts by mass or less, more preferably 100 parts by mass or less, and further preferably 45 parts by mass or less. When the content of the elastomer is within these ranges, even more excellent effects can be obtained in terms of ensuring the heat resistance and toughness of the molded product.
ポリアリーレンスルフィド樹脂組成物に配合される架橋性樹脂は、2以上の官能基を有する。官能基としては、エポキシ基、フェノール性水酸基、アミノ基、アミド基、カルボキシ基、酸無水物基、及びイソシアネート基などが挙げられる。架橋性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、及びウレタン樹脂が挙げられる。 The crosslinkable resin blended in the polyarylene sulfide resin composition has two or more functional groups. Examples of the functional group include an epoxy group, a phenolic hydroxyl group, an amino group, an amide group, a carboxy group, an acid anhydride group, an isocyanate group and the like. Examples of the crosslinkable resin include epoxy resin, phenol resin, and urethane resin.
該架橋性樹脂の配合量は、ポリアリーレンスルフィド樹脂100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、さらに好ましくは5質量部以上から、好ましくは300質量部以下、より好ましくは100質量部以下、更に好ましくは30質量部以下の範囲である。架橋性樹脂の配合量がこれら範囲にあることにより、成形品の剛性及び耐熱性の向上という効果が特に顕著に得られる。 The blending amount of the crosslinkable resin is preferably 1 part by mass or more, more preferably 3 parts by mass or more, still more preferably 5 parts by mass or more, and preferably 300 parts by mass or less with respect to 100 parts by mass of the polyarylene sulfide resin. , More preferably 100 parts by mass or less, still more preferably 30 parts by mass or less. When the blending amount of the crosslinkable resin is within these ranges, the effect of improving the rigidity and heat resistance of the molded product can be obtained particularly remarkably.
本発明のポリアリーレンスルフィド樹脂組成物に配合されるシランカップリング剤としては、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン及びγ−グリシドキシプロピルメチルジメトキシシラン等が挙げられる。 Examples of the silane coupling agent blended in the polyarylene sulfide resin composition of the present invention include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and β- (3,4-epoxy). Cyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane and the like can be mentioned.
シラン化合物の配合量は、例えば、ポリアリーレンスルフィド樹脂100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上から、好ましくは10質量部以下、より好ましくは5質量部以下の範囲である。シラン化合物の配合量がこれらの範囲にあることにより、ポリアリーレンスルフィド樹脂と前記他の成分との相溶性向上という効果が得られる。 The blending amount of the silane compound is, for example, preferably 0.01 part by mass or more, more preferably 0.1 part by mass or more, preferably 10 parts by mass or less, more preferably 10 parts by mass or more, based on 100 parts by mass of the polyarylene sulfide resin. The range is 5 parts by mass or less. When the blending amount of the silane compound is within these ranges, the effect of improving the compatibility between the polyarylene sulfide resin and the other components can be obtained.
本発明のポリアリーレンスルフィド樹脂組成物は、さらに離型剤、着色剤、耐熱安定剤、紫外線安定剤、発泡剤、防錆剤、難燃剤及び滑剤等のその他の添加剤を含有してもよい。添加剤の配合量は、例えば、ポリアリーレンスルフィド樹脂100質量部に対して、1質量部以上から10質量部以下の範囲であることが好ましい。 The polyarylene sulfide resin composition of the present invention may further contain other additives such as a mold release agent, a colorant, a heat stabilizer, an ultraviolet stabilizer, a foaming agent, a rust preventive, a flame retardant and a lubricant. .. The blending amount of the additive is preferably in the range of 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the polyarylene sulfide resin, for example.
ポリアリーレンスルフィド樹脂組成物は、上記方法により得られたポリアリーレンスルフィド樹脂と、前記他の成分とを溶融混練する方法により、例えば、ペレット状のコンパウンド等の形態で得ることができる。溶融混錬の温度は、例えば、好ましくは250℃以上、より好ましくは290℃以上から、好ましくは350℃以下、より好ましくは330℃以下の範囲である。溶融混錬は、2軸押出機等を用いて行うことができる。 The polyarylene sulfide resin composition can be obtained, for example, in the form of a pellet-like compound or the like by a method of melt-kneading the polyarylene sulfide resin obtained by the above method with the other components. The temperature of melt kneading is, for example, preferably in the range of 250 ° C. or higher, more preferably 290 ° C. or higher, preferably 350 ° C. or lower, and more preferably 330 ° C. or lower. Melt kneading can be performed using a twin-screw extruder or the like.
本実施形態に係るポリアリーレンスルフィド樹脂組成物は、単独で又は前記他の成分な
どの材料と組み合わせて、射出成形、押出成形、圧縮成形及びブロー成形のような各種溶
融加工法により溶融成形することで、耐熱性、成形加工性、寸法安定性等に優れた成形品に加工することができる。本発明のポリアリーレンスルフィド樹脂組成物は、金属含有量が少ないことから、高品質の成形品、特に絶縁性に優れた薄肉成形品の容易な製造を可能にする。The polyarylene sulfide resin composition according to the present embodiment is melt-molded by various melt processing methods such as injection molding, extrusion molding, compression molding and blow molding alone or in combination with materials such as the other components. Therefore, it can be processed into a molded product having excellent heat resistance, molding processability, dimensional stability and the like. Since the polyarylene sulfide resin composition of the present invention has a low metal content, it enables easy production of high-quality molded products, particularly thin-walled molded products having excellent insulating properties.
本発明の製造方法で得られるポリアリーレンスルフィド樹脂およびその組成物は、ポリアリーレンスルフィド樹脂の本来有する耐熱性、寸法安定性等の諸性能も具備しているので、例えば、コネクタ、プリント基板及び封止成形品等の電気・電子部品、ランプリフレクター及び各種電装品部品などの自動車部品、各種建築物、航空機及び自動車などの内装用材料、あるいはOA機器部品、カメラ部品及び時計部品などの精密部品等の射出成形若しくは圧縮成形、若しくはコンポジット、シート、パイプなどの押出成形、又は引抜成形などの各種成形加工用の材料として、或いは繊維若しくはフィルム用の材料として幅広く有用である。 The polyarylene sulfide resin and its composition obtained by the production method of the present invention also have various performances such as heat resistance and dimensional stability inherent in the polyarylene sulfide resin. Therefore, for example, a connector, a printed substrate and a seal. Electrical and electronic parts such as stop moldings, automobile parts such as lamp reflectors and various electrical component parts, interior materials such as various buildings, aircraft and automobiles, precision parts such as OA equipment parts, camera parts and clock parts, etc. It is widely useful as a material for various molding processes such as injection molding or compression molding, extrusion molding of composites, sheets, pipes, etc., or pultrusion molding, or as a material for fibers or films.
以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.
(金属原子含有量の測定)
白金るつぼにPPS樹脂を100mg秤取し、濃硫酸2mlを加えた。これを電熱器上に乗せ、硫酸の白煙が出なくなるまで加熱分解を行った。その後、分解物入りるつぼを電気炉に入れ、800℃で3時間加熱分解させ、完全に灰化した。るつぼを冷却し、内容物を1Nの塩酸10mlでメスフラスコに洗い出した。その後、1回5mlの蒸留水で5回に渡って100mlのメスフラスコに洗い出し、メスフラスコを蒸留水でアップし、100mlの希釈液を作製した。得られた希釈液を、ICP発光分光分析装置(パーキン・エルマー株式会社製「Optical Emission Spectrometer Optima 4300 DV」)を使用して、金属イオン含有量を測定し、重合原料として使用したナトリウムイオンを除く、金属イオン含有量を表記した。検出限界は0.01ppmである。(Measurement of metal atom content)
100 mg of PPS resin was weighed into a platinum crucible, and 2 ml of concentrated sulfuric acid was added. This was placed on an electric heater and decomposed by heating until white smoke of sulfuric acid disappeared. Then, the crucible containing the decomposition product was placed in an electric furnace and decomposed by heating at 800 ° C. for 3 hours to completely incinerate. The crucible was cooled and the contents were washed out in a volumetric flask with 10 ml of 1N hydrochloric acid. Then, it was washed into a 100 ml volumetric flask 5 times with 5 ml of distilled water at a time, and the volumetric flask was uplifted with distilled water to prepare a 100 ml diluted solution. The metal ion content of the obtained diluted solution was measured using an ICP emission spectrophotometer (“Optical Emission Spectrometer Optima 4300 DV” manufactured by PerkinElmer Co., Ltd.), and sodium ions used as a polymerization raw material were removed. , The metal ion content is shown. The detection limit is 0.01 ppm.
(溶融粘度の測定法)
PPS樹脂の溶融粘度(η)は、フローテスター(株式会社島津製作所製「CFT500D」)を用い、300℃、1.96MPa、L/D=10(mm)/1(mm)で6分間保持した後に測定した値である。(Measurement method of melt viscosity)
The melt viscosity (η) of the PPS resin was maintained at 300 ° C., 1.96 MPa, L / D = 10 (mm) / 1 (mm) for 6 minutes using a flow tester (“CFT500D” manufactured by Shimadzu Corporation). It is a value measured later.
(フェノール(副生成物)量の定量)
得られたPPSスラリーを10gと内標準物質(クロロベンゼン)0.2gを量り取り、アセトン15gで希釈する。得られた希釈液を超音波で5分間処理し、遠心分離機で固液分離した。その後、上澄み液を1μL採取し、ガスクロマトグラフで測定した。(Quantitative amount of phenol (by-product))
Weigh 10 g of the obtained PPS slurry and 0.2 g of the internal standard substance (chlorobenzene), and dilute with 15 g of acetone. The obtained diluted solution was treated with ultrasonic waves for 5 minutes, and solid-liquid separated by a centrifuge. Then, 1 μL of the supernatant was collected and measured by gas chromatography.
ガスクロマトグラフでの測定は、島津製作所製ガスクロマトグラフィー「GC2014」(カラム:財団法人化学物質評価研究機構製カラム「G300」、キャリアーガス:ヘリウム 、測定カラム条件:140℃5分間保持し→3℃/分で200℃まで昇温→200℃20分間保持)で行った。フェノール濃度を求める為に、まず標準サンプルで検量線を作成した。次に上記で準備した上澄み液を測定して得られたクロマトグラムから標準サンプルと同じ保持時間のピーク面積を得た。該ピーク面積と検量線から測定液中の濃度を求め、スルフィド化剤1モル(仕込んだ硫黄原子合計1モル)あたりのフェノール量のモル数を百分率で算出した(以下、「mol%/S」)。 For measurement with a gas chromatograph, Shimadzu gas chromatography "GC2014" (column: column "G300" manufactured by Chemical Substances Evaluation and Research Institute, carrier gas: helium, measurement column conditions: 140 ° C. Hold for 5 minutes → 3 ° C. The temperature was raised to 200 ° C. at / min → held at 200 ° C. for 20 minutes). To determine the phenol concentration, a calibration curve was first prepared with a standard sample. Next, the peak area having the same retention time as the standard sample was obtained from the chromatogram obtained by measuring the supernatant prepared above. The concentration in the measurement solution was determined from the peak area and the calibration curve, and the number of moles of the amount of phenol per 1 mol of the sulfide agent (1 mol in total of the charged sulfur atoms) was calculated as a percentage (hereinafter, "mol% / S"). ).
(水分量の定量)
水分量は、カールフィッシャー水分測定装置(平沼産業株式会社製 AQV−300)を用いて、カールフィッシャー容量滴定方式にて測定した。なお、検出限界は、硫黄原子1モルに対して6.0×10−6モルである。(Quantification of water content)
The water content was measured by the Karl Fischer titration method using a Karl Fischer water measuring device (AQV-300 manufactured by Hiranuma Sangyo Co., Ltd.). The detection limit is 6.0 × 10-6 mol per 1 mol of sulfur atom.
(実施例1)
・脱水工程(1)
温度計、加熱装置、チタン製撹拌翼および圧力計を備え、原料(pDCB)貯蔵タンク、原料(NMP)貯蔵タンク、減圧装置(圧力調整バルブ、真空ポンプおよび飛散した硫化水素の回収装置)および蒸留装置(精留塔、コンデンサーおよびデカンター)とそれぞれ連結した、内壁(接液部)がニッケル合金(クロム45質量%、モリブデン1質量%およびニッケル残部を含むNi−Cr−Mo合金)製のオートクレーブに、NMP29.7質量部(0.3モル部)、45wt%NaSHaq.123.6質量部(1.5モル部)および48wt%NaOHaq.125.0g(1.5モル部)を室温で仕込み、該オートクレーブを密閉した状態で、撹拌しながら窒素雰囲気下で液温90℃まで昇温した。(Example 1)
・ Dehydration process (1)
Equipped with thermometer, heating device, titanium stirring blade and pressure gauge, raw material (pDCB) storage tank, raw material (NMP) storage tank, decompression device (pressure adjustment valve, vacuum pump and recovery device for scattered hydrogen sulfide) and distillation. An autoclave with an inner wall (wetted part) made of nickel alloy (Ni-Cr-Mo alloy containing 45% by mass of chromium, 1% by mass of molybdenum and the balance of nickel) connected to the equipment (distillation tower, condenser and decanter), respectively. , NMP 29.7 parts by mass (0.3 mol parts), 45 wt% NaSHaq. 123.6 parts by mass (1.5 mol parts) and 48 wt% NaOHaq. 125.0 g (1.5 mol parts) was charged at room temperature, and the temperature of the autoclave was raised to 90 ° C. under a nitrogen atmosphere with stirring in a sealed state.
その後、前記オートクレーブから蒸留装置へ通ずる配管のバルブを開き、大気圧下で脱水を開始するとともに、液温128℃まで昇温した。精留塔から排出された水とp−DCBの混合蒸気をコンデンサーで凝縮し、水とp−DCBをデカンターで分離して、随時、水は系外へ留出し、p−DCBはオートクレーブ内に戻した。 After that, the valve of the pipe leading from the autoclave to the distillation apparatus was opened, dehydration was started under atmospheric pressure, and the liquid temperature was raised to 128 ° C. The mixed steam of water and p-DCB discharged from the rectification tower is condensed with a condenser, the water and p-DCB are separated by a decanter, water is distilled out of the system at any time, and p-DCB is placed in the autoclave. I put it back.
水の留出量が、60質量部となり、目標とする水の留出量(目標留出水分量は123.5質量部)の60%に達したところで、予め原料貯蔵タンクにセットしたp−ジクロロベンゼン(以下、p−DCBと略す)220.5質量部(1.50モル部)を、該原料貯蔵タンクに通じるバルブを開いて、配管よりポンプで押し出し、オートクレーブ内に仕込んだ。 When the distillate amount of water reached 60 parts by mass and reached 60% of the target distillate amount of water (target distillate water content was 123.5 parts by mass), p-set in the raw material storage tank in advance. 220.5 parts by mass (1.50 mol parts) of dichlorobenzene (hereinafter abbreviated as p-DCB) was pumped out from a pipe by opening a valve leading to the raw material storage tank and charged into an autoclave.
次に、脱水を続けつつ、減圧装置へ通ずる配管のバルブを開き、−6.6〔kPa abs〕/minの割合で大気圧下から47〔kPa abs〕まで減圧すると伴に、一旦下がった液温を147℃まで0.1℃/minの割合で徐々に昇温し、最終的に47〔kPa abs〕、液温147℃を維持しながら脱水した。精留塔から排出された水とp−DCBの混合蒸気をコンデンサーで凝縮し、水とp−DCBをデカンターで分離して、随時、水は系外へ留出し、p−DCBはオートクレーブ内に戻した。脱水により系外へ留出させた全水分量の総量が123.5質量部となったところで前記オートクレーブから蒸留装置へ通ずる配管のバルブを閉じ、脱水を終了させた。脱水時間は合計で96分間であった。脱水反応後のオートクレーブ内は微粒子状の無水硫化ナトリウム組成物がDCB中に分散したスラリー状態となり、水分の残存量はオートクレーブ中に存在する硫黄原子1モル当たり0.3モルであった。 Next, while continuing dehydration, the valve of the pipe leading to the decompression device was opened, and the pressure was reduced from atmospheric pressure to 47 [kPa abs] at a rate of -6.6 [kPa abs] / min. The temperature was gradually raised to 147 ° C. at a rate of 0.1 ° C./min, and finally dehydrated while maintaining 47 [kPa abs] and a liquid temperature of 147 ° C. The mixed steam of water and p-DCB discharged from the rectification tower is condensed with a condenser, the water and p-DCB are separated by a decanter, water is distilled out of the system at any time, and p-DCB is placed in the autoclave. I put it back. When the total amount of water distilled out of the system by dehydration reached 123.5 parts by mass, the valve of the pipe leading from the autoclave to the distillation apparatus was closed to complete the dehydration. The total dehydration time was 96 minutes. After the dehydration reaction, the inside of the autoclave was in a slurry state in which the anhydrous sodium sulfide composition in the form of fine particles was dispersed in the DCB, and the residual amount of water was 0.3 mol per 1 mol of sulfur atoms present in the autoclave.
・重合工程
脱水工程で得られた混合物を含むオートクレーブを、窒素雰囲気下とした上でバルブを閉じて、反応系を密閉した。液温を160℃とし、予め原料貯蔵タンクにセットしたNMP415.8質量部(4.2モル部)を、該原料貯蔵タンクに通じるバルブを開いて、配管よりポンプで押し出し、オートクレーブ内に仕込んだ。そして、220℃まで昇温し、2時間撹拌した後、250℃まで昇温し、1時間撹拌した。最終圧力は373〔kPa abs〕であった。その後、室温まで冷却した。-Polymerization step The autoclave containing the mixture obtained in the dehydration step was placed in a nitrogen atmosphere, and the valve was closed to seal the reaction system. The liquid temperature was set to 160 ° C., and 415.8 parts by mass (4.2 mol parts) of NMP set in the raw material storage tank in advance was pushed out from the pipe by a pump by opening the valve leading to the raw material storage tank and charged into the autoclave. .. Then, the temperature was raised to 220 ° C. and stirred for 2 hours, then the temperature was raised to 250 ° C. and the mixture was stirred for 1 hour. The final pressure was 373 [kPa abs]. Then, it cooled to room temperature.
・後処理工程
冷却後、得られたスラリーを3000質量部の水に注いで80℃で1時間撹拌した後、濾過した。このケーキを再び3000質量部の温水で1時間撹拌し、洗浄した後、濾過した。この操作を4回繰り返し、濾過後、熱風乾燥機内で120℃で一晩乾燥して白色の粉末状のPPS154質量部を得た。
このポリマーの溶融粘度は66Pa・sであり、フェノール生成量は0.08モル%、クロム、モリブデンおよびニッケルの合計の金属含有量は検出限界値以下であった。-Post-treatment step After cooling, the obtained slurry was poured into 3000 parts by mass of water, stirred at 80 ° C. for 1 hour, and then filtered. The cake was stirred again with 3000 parts by mass of warm water for 1 hour, washed and then filtered. This operation was repeated 4 times, and after filtration, it was dried overnight at 120 ° C. in a hot air dryer to obtain 154 parts by mass of PPS in the form of a white powder.
The melt viscosity of this polymer was 66 Pa · s, the amount of phenol produced was 0.08 mol%, and the total metal content of chromium, molybdenum and nickel was below the detection limit.
(参考例1)
・脱水工程(1)
温度計、加熱装置、チタン製撹拌翼および圧力計を備え、原料(NMP)貯蔵タンク、減圧装置(圧力調整バルブ、真空ポンプおよび飛散した硫化水素の回収装置)および蒸留装置(精留塔、コンデンサーおよびデカンター)とそれぞれ連結した、内壁(接液部)がニッケル合金(クロム45質量%、モリブデン1質量%およびニッケル残部を含むNi−Cr−Mo合金)製のオートクレーブに、p−ジクロロベンゼン(以下、p−DCBと略す)220.5質量部(1.50モル部)、NMP29.7質量部(0.3モル部)、45wt%NaSHaq.123.6質量部(1.5モル部)および48wt%NaOHaq.125.0g(1.5モル部)を仕込み、該オートクレーブを密閉した状態で、撹拌しながら窒素雰囲気下で液温128℃まで昇温した。(Reference example 1)
・ Dehydration process (1)
Equipped with thermometer, heating device, titanium stirring blade and pressure gauge, raw material (NMP) storage tank, decompression device (pressure adjustment valve, vacuum pump and recovery device for scattered hydrogen sulfide) and distillation device (rectification tower, condenser) And decanter), and p-dichlorobenzene (hereinafter referred to as p-dichlorobenzene) in an autoclave whose inner wall (wetted part) is made of nickel alloy (Ni-Cr-Mo alloy containing 45% by mass of chromium, 1% by mass of molybdenum and the balance of nickel). , P-DCB abbreviated) 220.5 parts by mass (1.50 mol parts), NMP 29.7 parts by mass (0.3 mol parts), 45 wt% NaSHaq. 123.6 parts by mass (1.5 mol parts) and 48 wt% NaOHaq. 125.0 g (1.5 mol parts) was charged, and the temperature of the autoclave was raised to 128 ° C. in a nitrogen atmosphere with stirring in a sealed state.
次に、前記オートクレーブから蒸留装置へ通ずる配管のバルブを開き、脱水を開始するとともに、減圧装置へ通ずる配管のバルブを開き、−6.6〔kPa abs〕/minの割合で大気圧下から47〔kPa abs〕まで減圧すると伴に、液温を128℃から147℃まで0.1℃/minの割合で徐々に昇温し、最終的に47〔kPa abs〕、液温147℃で4時間、脱水した。精留塔から排出された水とp−DCBの混合蒸気をコンデンサーで凝縮し、水とp−DCBをデカンターで分離して、随時、水は系外へ留出し、p−DCBはオートクレーブ内に戻した。その間、水の留出量は123.5質量部であり、脱水反応後のオートクレーブ内は微粒子状の無水硫化ナトリウム組成物がDCB中に分散したスラリー状態であり、現存する水分の残存量はオートクレーブ中に存在する硫黄原子1モル当たり0.3モルであった。 Next, the valve of the pipe leading from the autoclave to the distillation apparatus was opened to start dehydration, and at the same time, the valve of the pipe leading to the decompression apparatus was opened, and the ratio of −6.6 [kPa abs] / min was 47 from under atmospheric pressure. While depressurizing to [kPa abs], the liquid temperature was gradually raised from 128 ° C. to 147 ° C. at a rate of 0.1 ° C./min, and finally 47 [kPa abs] and a liquid temperature of 147 ° C. for 4 hours. , Dehydrated. The mixed steam of water and p-DCB discharged from the rectification tower is condensed with a condenser, the water and p-DCB are separated by a decanter, water is distilled out of the system at any time, and p-DCB is placed in the autoclave. I put it back. During that time, the amount of water distilled out was 123.5 parts by mass, and the inside of the autoclave after the dehydration reaction was in a slurry state in which the anhydrous sodium sulfide composition in the form of fine particles was dispersed in the DCB, and the remaining amount of existing water was in the autoclave. It was 0.3 mol per mol of sulfur atoms present in it.
・重合工程
脱水工程で得られた混合物を含むオートクレーブを、窒素雰囲気下とした上でバルブを閉じて、反応系を密閉した。液温を160℃とし、予め原料貯蔵タンクにセットしたNMP415.8質量部(4.2モル部)を、該原料貯蔵タンクに通じるバルブを開いて、配管よりポンプで押し出し、オートクレーブ内に仕込んだ。そして、220℃まで昇温し、2時間撹拌した後、250℃まで昇温し、1時間撹拌した。最終圧力は373〔kPa abs〕であった。その後、室温まで冷却した。-Polymerization step The autoclave containing the mixture obtained in the dehydration step was placed in a nitrogen atmosphere, and the valve was closed to seal the reaction system. The liquid temperature was set to 160 ° C., and 415.8 parts by mass (4.2 mol parts) of NMP set in the raw material storage tank in advance was pushed out from the pipe by a pump by opening the valve leading to the raw material storage tank and charged into the autoclave. .. Then, the temperature was raised to 220 ° C. and stirred for 2 hours, then the temperature was raised to 250 ° C. and the mixture was stirred for 1 hour. The final pressure was 373 [kPa abs]. Then, it cooled to room temperature.
・後処理工程
冷却後、得られたスラリーを3000質量部の水に注いで80℃で1時間撹拌した後、濾過した。このケーキを再び3000質量部の温水で1時間撹拌し、洗浄した後、濾過した。この操作を4回繰り返し、濾過後、熱風乾燥機内で120℃で一晩乾燥して白色の粉末状のPPS154質量部を得た。
このポリマーの溶融粘度は66Pa・sであり、フェノール生成量は0.08モル%、クロム、モリブデンおよびニッケルの合計の金属含有量は検出限界値以下であった。-Post-treatment step After cooling, the obtained slurry was poured into 3000 parts by mass of water, stirred at 80 ° C. for 1 hour, and then filtered. The cake was stirred again with 3000 parts by mass of warm water for 1 hour, washed and then filtered. This operation was repeated 4 times, and after filtration, it was dried overnight at 120 ° C. in a hot air dryer to obtain 154 parts by mass of PPS in the form of a white powder.
The melt viscosity of this polymer was 66 Pa · s, the amount of phenol produced was 0.08 mol%, and the total metal content of chromium, molybdenum and nickel was below the detection limit.
(比較例1)
「次に、脱水を続けつつ、減圧装置へ通ずる配管のバルブを開き、−6.6〔kPa abs〕/minの割合で大気圧下から47〔kPa abs〕まで減圧すると伴に、一旦下がった液温を147℃まで0.1℃/minの割合で徐々に昇温し、最終的に47〔kPa abs〕、液温147℃を維持しながら脱水した。」とする部分を、
「次に、脱水を続けつつ、一旦下がった液温を173℃まで0.1℃/minの割合で徐々に昇温し、最終的に大気圧下、液温173℃を維持しながら脱水した。」としたこと以外は、実施例1と同様に行った。(Comparative Example 1)
"Next, while continuing dehydration, the valve of the pipe leading to the decompression device was opened, and the pressure was reduced from under atmospheric pressure to 47 [kPa abs] at a rate of -6.6 [kPa abs] / min, and the pressure dropped once. The liquid temperature was gradually raised to 147 ° C. at a rate of 0.1 ° C./min, and finally dehydrated while maintaining 47 [kPa abs] and a liquid temperature of 147 ° C. ".
"Next, while continuing dehydration, the once lowered liquid temperature was gradually raised to 173 ° C. at a rate of 0.1 ° C./min, and finally dehydrated while maintaining the liquid temperature of 173 ° C. under atmospheric pressure. The procedure was the same as in Example 1 except that "."
脱水工程(1)は、脱水により系外へ留出させた全水分量の総量が123.5質量部となったところで前記オートクレーブから蒸留装置へ通ずる配管のバルブを閉じ、脱水を終了させた。脱水反応後のオートクレーブ内は微粒子状の無水硫化ナトリウム組成物がDCB中に分散したスラリー状態であり、水分の残存量はオートクレーブ中に存在する硫黄原子1モル当たり0.31モルであった。 In the dehydration step (1), when the total amount of water distilled out of the system by dehydration reached 123.5 parts by mass, the valve of the pipe leading from the autoclave to the distillation apparatus was closed to complete the dehydration. The inside of the autoclave after the dehydration reaction was in a slurry state in which the anhydrous sodium sulfide composition in the form of fine particles was dispersed in the DCB, and the residual amount of water was 0.31 mol per mol of sulfur atoms present in the autoclave.
また、後処理工程後、得られたPPS樹脂の溶融粘度は65Pa・sであり、フェノール生成量は0.1モル%、クロム、モリブデンおよびニッケルの合計の金属含有量は23ppmであった。 After the post-treatment step, the melt viscosity of the obtained PPS resin was 65 Pa · s, the amount of phenol produced was 0.1 mol%, and the total metal content of chromium, molybdenum and nickel was 23 ppm.
(比較例2)
「次に、脱水を続けつつ、減圧装置へ通ずる配管のバルブを開き、−6.6〔kPa abs〕/minの割合で大気圧下から47〔kPa abs〕まで減圧すると伴に、一旦下がった液温を147℃まで0.1℃/minの割合で徐々に昇温し、最終的に47〔kPa abs〕、液温147℃を維持しながら脱水した。」とする部分を、
「次に、脱水を続けつつ、一旦下がった液温を147℃まで0.1℃/minの割合で徐々に昇温し、最終的に大気圧下、液温147℃を維持しながら脱水した。」としたこと以外は、基本的に、実施例1と同様に行った。(Comparative Example 2)
"Next, while continuing dehydration, the valve of the pipe leading to the decompression device was opened, and the pressure was reduced from under atmospheric pressure to 47 [kPa abs] at a rate of -6.6 [kPa abs] / min, and the pressure dropped once. The liquid temperature was gradually raised to 147 ° C. at a rate of 0.1 ° C./min, and finally dehydrated while maintaining 47 [kPa abs] and a liquid temperature of 147 ° C. ".
"Next, while continuing dehydration, the once lowered liquid temperature was gradually raised to 147 ° C. at a rate of 0.1 ° C./min, and finally dehydrated while maintaining the liquid temperature at 147 ° C. under atmospheric pressure. Except for the fact that "." Was set, basically the same procedure as in Example 1 was performed.
ただし、脱水工程(1)は、脱水時間が合計で96分となったところで、前記オートクレーブから蒸留装置へ通ずる配管のバルブを閉じ、脱水を終了させた。脱水により系外へ留出させた全水分量の総量が49.4質量部であった。脱水反応後のオートクレーブ内は微粒子状の無水硫化ナトリウム組成物がDCB中に分散したスラリー状態であり、水分の残存量はオートクレーブ中に存在する硫黄原子1モル当たり3モルであった。 However, in the dehydration step (1), when the total dehydration time reached 96 minutes, the valve of the pipe leading from the autoclave to the distillation apparatus was closed to complete the dehydration. The total amount of water distilled out of the system by dehydration was 49.4 parts by mass. The inside of the autoclave after the dehydration reaction was in a slurry state in which the anhydrous sodium sulfide composition in the form of fine particles was dispersed in the DCB, and the residual amount of water was 3 mol per 1 mol of sulfur atoms present in the autoclave.
しかしながら、後処理工程後、白色の粉末状のPPS樹脂は得られず、低粘度の生成物が残存した。当該生成物は、粘度が低く、溶融粘度の測定ができなかった。なお、フェノール生成量は0.5モル%、クロム、モリブデンおよびニッケルの合計の金属含有量は0.1ppmであった。 However, after the post-treatment step, a white powdery PPS resin was not obtained, and a low-viscosity product remained. The product had a low viscosity and the melt viscosity could not be measured. The amount of phenol produced was 0.5 mol%, and the total metal content of chromium, molybdenum and nickel was 0.1 ppm.
(実施例2)
「内壁(接液部)がニッケル合金(クロム45質量%、モリブデン1質量%およびニッケル残部を含むNi−Cr−Mo合金)製のオートクレーブ」とする部分を、
「内壁(接液部)がチタン製のオートクレーブ」としたこと以外は、実施例1と同様に行った。(Example 2)
The part where the inner wall (wetted part) is an autoclave made of nickel alloy (Ni-Cr-Mo alloy containing 45% by mass of chromium, 1% by mass of molybdenum and the balance of nickel) is
The procedure was the same as in Example 1 except that the inner wall (wet contact portion) was an autoclave made of titanium.
脱水工程(1)は、脱水により系外へ留出させた全水分量の総量が123.5質量部となったところで前記オートクレーブから蒸留装置へ通ずる配管のバルブを閉じ、脱水を終了させた。脱水反応後のオートクレーブ内は微粒子状の無水硫化ナトリウム組成物がDCB中に分散したスラリー状態であり、水分の残存量はオートクレーブ中に存在する硫黄原子1モル当たり0.29モルであった。 In the dehydration step (1), when the total amount of water distilled out of the system by dehydration reached 123.5 parts by mass, the valve of the pipe leading from the autoclave to the distillation apparatus was closed to complete the dehydration. The inside of the autoclave after the dehydration reaction was in a slurry state in which the anhydrous sodium sulfide composition in the form of fine particles was dispersed in the DCB, and the residual amount of water was 0.29 mol per mol of sulfur atoms present in the autoclave.
また、後処理工程後、得られたPPS樹脂の溶融粘度は67Pa・sであり、フェノール生成量は0.08モル%、チタンの金属含有量は検出限界値以下であった。 After the post-treatment step, the melt viscosity of the obtained PPS resin was 67 Pa · s, the amount of phenol produced was 0.08 mol%, and the metal content of titanium was below the detection limit.
(比較例3)
「内壁(接液部)がニッケル合金(クロム45質量%、モリブデン1質量%およびニッケル残部を含むNi−Cr−Mo合金)製のオートクレーブ」とする部分を、
「内壁(接液部)がチタン製のオートクレーブ」としたこと以外は、比較例1と同様に行った。(Comparative Example 3)
The part where the inner wall (wetted part) is an autoclave made of nickel alloy (Ni-Cr-Mo alloy containing 45% by mass of chromium, 1% by mass of molybdenum and the balance of nickel) is
The procedure was the same as in Comparative Example 1 except that the inner wall (wet contact portion) was an autoclave made of titanium.
脱水工程(1)は、脱水により系外へ留出させた全水分量の総量が123.5質量部となったところで前記オートクレーブから蒸留装置へ通ずる配管のバルブを閉じ、脱水を終了させた。脱水反応後のオートクレーブ内は微粒子状の無水硫化ナトリウム組成物がDCB中に分散したスラリー状態であり、水分の残存量はオートクレーブ中に存在する硫黄原子1モル当たり0.27モルであった。 In the dehydration step (1), when the total amount of water distilled out of the system by dehydration reached 123.5 parts by mass, the valve of the pipe leading from the autoclave to the distillation apparatus was closed to complete the dehydration. The inside of the autoclave after the dehydration reaction was in a slurry state in which the anhydrous sodium sulfide composition in the form of fine particles was dispersed in the DCB, and the residual amount of water was 0.27 mol per mol of sulfur atoms present in the autoclave.
また、後処理工程後、得られたPPS樹脂の溶融粘度は65Pa・sであり、フェノール生成量は0.09モル%、チタンの金属含有量は5ppmであった。 After the post-treatment step, the melt viscosity of the obtained PPS resin was 65 Pa · s, the amount of phenol produced was 0.09 mol%, and the metal content of titanium was 5 ppm.
(比較例4)
「内壁(接液部)がニッケル合金(クロム45質量%、モリブデン1質量%およびニッケル残部を含むNi−Cr−Mo合金)製のオートクレーブ」とする部分を、
「内壁(接液部)がチタン製のオートクレーブ」としたこと以外は、比較例2と同様に行った。(Comparative Example 4)
The part where the inner wall (wetted part) is an autoclave made of nickel alloy (Ni-Cr-Mo alloy containing 45% by mass of chromium, 1% by mass of molybdenum and the balance of nickel) is
The procedure was the same as in Comparative Example 2 except that the inner wall (wet contact portion) was an autoclave made of titanium.
脱水工程(1)は、脱水時間が合計で96分となったところで、前記オートクレーブから蒸留装置へ通ずる配管のバルブを閉じ、脱水を終了させた。脱水により系外へ留出させた全水分量の総量が50.2質量部であった。脱水反応後のオートクレーブ内は微粒子状の無水硫化ナトリウム組成物がDCB中に分散したスラリー状態であり、水分の残存量はオートクレーブ中に存在する硫黄原子1モル当たり2.8モルであった。 In the dehydration step (1), when the total dehydration time reached 96 minutes, the valve of the pipe leading from the autoclave to the distillation apparatus was closed to complete the dehydration. The total amount of water distilled out of the system by dehydration was 50.2 parts by mass. The inside of the autoclave after the dehydration reaction was in a slurry state in which the anhydrous sodium sulfide composition in the form of fine particles was dispersed in the DCB, and the residual amount of water was 2.8 mol per mol of sulfur atoms present in the autoclave.
しかしながら、後処理工程後、白色の粉末状のPPS樹脂は得られず、低粘度の生成物が残存した。当該生成物は、粘度が低く、溶融粘度の測定ができなかった。なお、フェノール生成量は0.5モル%、チタンの金属含有量は2ppmであった。 However, after the post-treatment step, a white powdery PPS resin was not obtained, and a low-viscosity product remained. The product had a low viscosity and the melt viscosity could not be measured. The amount of phenol produced was 0.5 mol%, and the metal content of titanium was 2 ppm.
(実施例3)
「その後、前記オートクレーブから蒸留装置へ通ずる配管のバルブを開き、大気圧下で脱水を開始するとともに、液温128℃まで昇温した。」とする部分を、
「その後、前記オートクレーブから蒸留装置へ通ずる配管のバルブを開き、大気圧下で脱水を開始するとともに、液温105℃まで昇温した。」としたこと、および、
「次に、脱水を続けつつ、減圧装置へ通ずる配管のバルブを開き、−6.6〔kPa abs〕/minの割合で大気圧下から47〔kPa abs〕まで減圧すると伴に、一旦下がった液温を147℃まで0.1℃/minの割合で徐々に昇温し、最終的に47〔kPa abs〕、液温147℃を維持しながら脱水した。」とする部分を、
「次に、脱水を続けつつ、減圧装置へ通ずる配管のバルブを開き、−6.6〔kPa abs〕/minの割合で大気圧下から32〔kPa abs〕まで減圧すると伴に、一旦下がった液温を115℃まで0.1℃/minの割合で徐々に昇温し、最終的に32〔kPa abs〕、液温115℃を維持しながら脱水した。」としたことの2点以外は、実施例1と同様に行った。(Example 3)
"After that, the valve of the pipe leading from the autoclave to the distillation apparatus was opened, dehydration was started under atmospheric pressure, and the liquid temperature was raised to 128 ° C."
"After that, the valve of the pipe leading from the autoclave to the distillation apparatus was opened, dehydration was started under atmospheric pressure, and the liquid temperature was raised to 105 ° C."
"Next, while continuing dehydration, the valve of the pipe leading to the decompression device was opened, and the pressure was reduced from under atmospheric pressure to 47 [kPa abs] at a rate of -6.6 [kPa abs] / min, and the pressure dropped once. The liquid temperature was gradually raised to 147 ° C. at a rate of 0.1 ° C./min, and finally dehydrated while maintaining 47 [kPa abs] and a liquid temperature of 147 ° C. ".
"Next, while continuing dehydration, the valve of the pipe leading to the decompression device was opened, and the pressure was reduced from under atmospheric pressure to 32 [kPa abs] at a rate of -6.6 [kPa abs] / min, and the pressure dropped once. The liquid temperature was gradually raised to 115 ° C. at a rate of 0.1 ° C./min, and finally dehydrated while maintaining 32 [kPa abs] and a liquid temperature of 115 ° C. ”, except for the two points. , The same as in Example 1.
脱水工程(1)は、脱水により系外へ留出させた全水分量の総量が123.5質量部となったところで前記オートクレーブから蒸留装置へ通ずる配管のバルブを閉じ、脱水を終了させた。脱水反応後のオートクレーブ内は微粒子状の無水硫化ナトリウム組成物がDCB中に分散したスラリー状態であり、水分の残存量はオートクレーブ中に存在する硫黄原子1モル当たり0.3モルであった。 In the dehydration step (1), when the total amount of water distilled out of the system by dehydration reached 123.5 parts by mass, the valve of the pipe leading from the autoclave to the distillation apparatus was closed to complete the dehydration. The inside of the autoclave after the dehydration reaction was in a slurry state in which the anhydrous sodium sulfide composition in the form of fine particles was dispersed in the DCB, and the residual amount of water was 0.3 mol per 1 mol of sulfur atoms present in the autoclave.
また、後処理工程後、得られたPPS樹脂の溶融粘度は62Pa・sであり、フェノール生成量は0.1モル%、クロム、モリブデンおよびニッケルの合計の金属含有量は検出限界値以下であった。 After the post-treatment step, the melt viscosity of the obtained PPS resin was 62 Pa · s, the amount of phenol produced was 0.1 mol%, and the total metal content of chromium, molybdenum and nickel was below the detection limit. It was.
(実施例4)
「次に、脱水を続けつつ、減圧装置へ通ずる配管のバルブを開き、−6.6〔kPa abs〕/minの割合で大気圧下から47〔kPa abs〕まで減圧すると伴に、一旦下がった液温を147℃まで0.1℃/minの割合で徐々に昇温し、最終的に47〔kPa abs〕、液温147℃を維持しながら脱水した。」とする部分を、
「次に、脱水を続けつつ、減圧装置へ通ずる配管のバルブを開き、−6.6〔kPa abs〕/minの割合で大気圧下から70〔kPa abs〕まで減圧すると伴に、一旦下がった液温を155℃まで0.1℃/minの割合で徐々に昇温し、最終的に70〔kPa abs〕、液温155℃を維持しながら脱水した。」としたこと以外は、実施例1と同様に行った。(Example 4)
"Next, while continuing dehydration, the valve of the pipe leading to the decompression device was opened, and the pressure was reduced from under atmospheric pressure to 47 [kPa abs] at a rate of -6.6 [kPa abs] / min, and the pressure dropped once. The liquid temperature was gradually raised to 147 ° C. at a rate of 0.1 ° C./min, and finally dehydrated while maintaining 47 [kPa abs] and a liquid temperature of 147 ° C. ".
"Next, while continuing dehydration, the valve of the pipe leading to the decompression device was opened, and the pressure was reduced from under atmospheric pressure to 70 [kPa abs] at a rate of -6.6 [kPa abs] / min, and the pressure dropped once. Examples except that the liquid temperature was gradually raised to 155 ° C. at a rate of 0.1 ° C./min, and finally dehydrated while maintaining 70 [kPa abs] and the liquid temperature of 155 ° C. ”. The procedure was the same as in 1.
脱水工程(1)は、脱水により系外へ留出させた全水分量の総量が123.5質量部となったところで前記オートクレーブから蒸留装置へ通ずる配管のバルブを閉じ、脱水を終了させた。脱水反応後のオートクレーブ内は微粒子状の無水硫化ナトリウム組成物がDCB中に分散したスラリー状態であり、水分の残存量はオートクレーブ中に存在する硫黄原子1モル当たり0.3モルであった。 In the dehydration step (1), when the total amount of water distilled out of the system by dehydration reached 123.5 parts by mass, the valve of the pipe leading from the autoclave to the distillation apparatus was closed to complete the dehydration. The inside of the autoclave after the dehydration reaction was in a slurry state in which the anhydrous sodium sulfide composition in the form of fine particles was dispersed in the DCB, and the residual amount of water was 0.3 mol per 1 mol of sulfur atoms present in the autoclave.
また、後処理工程後、得られたPPS樹脂の溶融粘度は65Pa・sであり、フェノール生成量は0.09モル%、クロム、モリブデンおよびニッケルの合計の金属含有量は検出限界値以下であった。 After the post-treatment step, the melt viscosity of the obtained PPS resin was 65 Pa · s, the amount of phenol produced was 0.09 mol%, and the total metal content of chromium, molybdenum and nickel was below the detection limit. It was.
Claims (11)
水を含むスルフィド化剤と、加水分解によって開環し得る脂肪族系環状化合物とを、液温が90℃以上から150℃以下の範囲となるまで、30〔kPa abs〕以上から大気圧以下の範囲の圧力下で脱水させながら反応させた後、さらに、ジハロ芳香族化合物を加えて、液温が90℃以上から170℃以下の範囲に加熱し、圧力が30〔kPa abs〕以上から80〔kPa abs〕以下の範囲で脱水させながら反応させて、混合物を得る脱水工程(1)を有すること、
前記脱水工程(1)終了後の反応系内に現存する水分量がスルフィド化剤の硫黄原子の合計1モルに対して、0.4モル以下の範囲であること、を特徴とするポリアリーレンスルフィド樹脂の製造方法。 A method for producing a polyarylene sulfide resin in which a dihaloaromatic compound is reacted with a sulfidizing agent in the presence of an aliphatic cyclic compound that can be ring-opened by hydrolysis.
The sulfide agent containing water and the aliphatic cyclic compound which can be opened by hydrolysis are kept at a temperature of 30 [kPa abs] or more and atmospheric pressure or less until the liquid temperature is in the range of 90 ° C. or higher and 150 ° C. or lower. After reacting while dehydrating under a pressure in the range, a dihaloaromatic compound is further added, and the liquid temperature is heated to a range of 90 ° C. or higher to 170 ° C. or lower, and the pressure is 30 [kPa abs] or higher to 80 [kPa abs] or higher. kPa abs] Having a dehydration step (1) of obtaining a mixture by reacting while dehydrating in the following range .
Polyarylene sulfide characterized in that the amount of water existing in the reaction system after completion of the dehydration step (1) is in the range of 0.4 mol or less with respect to a total of 1 mol of sulfur atoms of the sulfidizing agent. Resin manufacturing method.
続いて、脱水工程(2)で得られた混合物を、ジハロ芳香族化合物1モルに対して反応系内に現存する水分量が0.03モル未満で重合反応させる重合工程を有する、請求項1記載の製造方法。 Next, a dehydration step (2), in which an aprotic polar organic solvent is further added to the mixture obtained through the dehydration step (1), and water is distilled off to perform dehydration.
Subsequently, claim 1 comprises a polymerization step in which the mixture obtained in the dehydration step (2) is polymerized with respect to 1 mol of the dihaloaromatic compound when the amount of water existing in the reaction system is less than 0.03 mol. The manufacturing method described.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017127441 | 2017-06-29 | ||
JP2017127441 | 2017-06-29 | ||
JP2018070828 | 2018-04-02 | ||
JP2018070828 | 2018-04-02 | ||
PCT/JP2018/024119 WO2019004170A1 (en) | 2017-06-29 | 2018-06-26 | Method for producing polyarylene sulfide resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019004170A1 JPWO2019004170A1 (en) | 2020-03-26 |
JP6866923B2 true JP6866923B2 (en) | 2021-04-28 |
Family
ID=64741596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019526915A Active JP6866923B2 (en) | 2017-06-29 | 2018-06-26 | Manufacturing method of polyarylene sulfide resin |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6866923B2 (en) |
WO (1) | WO2019004170A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117916002A (en) | 2021-09-08 | 2024-04-19 | 提克纳有限责任公司 | Extraction technique for recovering organic solvent from waste slurry of polyarylene sulfide |
WO2023038887A1 (en) | 2021-09-08 | 2023-03-16 | Ticona Llc | Anti-solvent technique for recovering an organic solvent from a polyarylene sulfide waste sludge |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6123627A (en) * | 1984-07-11 | 1986-02-01 | Kureha Chem Ind Co Ltd | Production apparatus for polyarylene sulfide |
JPH0645692B2 (en) * | 1988-08-05 | 1994-06-15 | 出光石油化学株式会社 | Method for producing polyarylene sulfide |
JPH0335023A (en) * | 1989-06-30 | 1991-02-15 | Idemitsu Petrochem Co Ltd | Production of polyarylene sulfide |
JPH09278888A (en) * | 1996-04-16 | 1997-10-28 | Idemitsu Petrochem Co Ltd | Apparatus for producing polyarylene sulfide and production of polyarylene sulfide using the same |
CN106349478B (en) * | 2008-11-21 | 2019-03-01 | Dic株式会社 | The manufacturing method of polyarylene sulfide resin |
-
2018
- 2018-06-26 JP JP2019526915A patent/JP6866923B2/en active Active
- 2018-06-26 WO PCT/JP2018/024119 patent/WO2019004170A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2019004170A1 (en) | 2019-01-03 |
JPWO2019004170A1 (en) | 2020-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6866924B2 (en) | Manufacturing method of polyarylene sulfide resin | |
EP2053074B1 (en) | Method for producing acid radical-containing polyarylene sulfide resin | |
JP4761173B2 (en) | Method for producing polyarylene sulfide resin | |
US8445629B2 (en) | Method for producing polyarylene sulfide | |
JP5012131B2 (en) | Method for producing polyarylene sulfide resin | |
JP2009185143A (en) | Method for producing polyarylene sulfide resin | |
EP3524632B1 (en) | Polyarylene sulfide preparation method | |
JP6939882B2 (en) | Manufacturing method of polyarylene sulfide resin | |
JP6866923B2 (en) | Manufacturing method of polyarylene sulfide resin | |
JP7172020B2 (en) | Method for producing polyarylene sulfide resin | |
JP6691660B2 (en) | Method for producing polyarylene sulfide resin | |
JP2018154691A (en) | Method for producing polyarylene sulfide resin | |
JP6972591B2 (en) | Method for manufacturing polyarylene sulfide resin | |
JP2013159656A (en) | Crosslinked polyarylene sulfide resin and production method thereof | |
JP6808926B2 (en) | Manufacturing method of polyarylene sulfide resin | |
JP6119252B2 (en) | Method for producing polyarylene sulfide resin | |
JP6202298B2 (en) | Method for producing polyarylene sulfide resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210309 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210322 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6866923 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |